
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING THE PARTIALLY DYNAMIC TRAVELLING
SALESMAN PROBLEM

Anonymous authors
Paper under double-blind review

ABSTRACT

Learning to solve the Travelling Salesman Problem (TSP) using Deep Reinforce-
ment Learning (Deep RL) and Graph Neural Networks (GNNs) has shown promis-
ing results for small instances of the problem. We demonstrate that these meth-
ods can be extended to solve instances of a partially dynamic variant of the TSP.
Solving this partially dynamic variant more effectively exploits the strengths of
reinforcement learning and also presents challenges for more established methods
of solving the TSP. We show the policies trained using Deep RL outperform mod-
ified versions of TSP solvers and heuristics for different distributions of dynamic
vertices, including on larger instances than the policies were trained on. This
shows the promise of Deep RL for solving this type of dynamic routing problem
which is predicted to become of great importance as logistical services become
more flexible and responsive to customer demand. Furthermore, our method is
a general purpose approach to Deep RL where the problem consists of selecting
items from a dynamically-evolving and arbitrarily-sized set.

1 INTRODUCTION

In the Travelling Salesman Problem (TSP), we are given a list of vertices (representing locations)
and distances between them. A tour is the name given to the route which visits every vertex exactly
once and returns to the starting vertex. When solving an instance of TSP, the objective is to find the
shortest possible tour. It is an NP-Hard combinatorial optimization problem, which means that when
solving it there is typically a trade-off between the speed and the exactness of the solution. The most
well-known TSP solver, Concorde (Applegate et al., 2006), uses a cutting-plane method Applegate
et al. (2001) to solve the problem exactly and there are many heuristic methods (Rosenkrantz et al.,
1974; Lin & Kernighan, 1973; Christofides, 2022) which compute approximate solutions in a much
shorter time.

There are several papers which have applied Reinforcement Learning methodology to TSP. In Bello
et al. (2016), a pointer network (Vinyals et al., 2015) policy is trained using policy gradient methods
(Williams, 1992) with a critic baseline (Degris et al., 2012). By sampling the policy network multiple
times and selecting the best performing solution, their method produces solutions that are close
to optimal for examples of the TSP in 2D Euclidean space with up to 100 vertices. Kool et al.
(2019) present an improvement to this method by using an attention-based model and utilising a
novel baseline in actor-critic which involves a greedy rollout of the best performing policy. Another
improvement is made by Joshi et al. (2022) who use a GNN to encode TSP instances.

All three of these papers make a compelling demonstration of the effectiveness of solving TSP in-
stances with reinforcement learning for small numbers of vertices. They also highlight the immense
challenge of trying to improve upon the established methods for solving this problem.

In this paper, we extend the TSP by having a subset of the vertices in the final tour appear dynami-
cally as the tour is in progress. As we are looking to extend models used for reinforcement learning
on the static TSP, we devise a partially dynamic extension to the TSP (PDTSP) which keeps the
problem as pure as possible. In this formulation, the only additional constraint added is that dy-
namic vertices cannot appear in the tour before their assigned arrival time. The objective remains
the same as the TSP, finding the shortest possible tour.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

The challenge associated with the partially dynamic TSP is that routing decisions need to be made
while the route is currently in progress. This makes it important that the solution method is capable
of producing updated solutions quickly when new vertices appear in the problem. An optimal so-
lution to this problem, i.e. the shortest tour visiting all of the static and dynamic vertices, is highly
unlikely to ever be achieved by any solution method because it would require not only routing opti-
mally through the vertices which are currently known but also routing so that dynamic vertices can
be incorporated optimally into the route.

The key benefit of RL in this situation is that it can learn a solution that is adapted to the underlying
distribution of dynamic vertices in the problem it is being applied to. This is something that exist-
ing TSP solvers cannot be expected to achieve. They have been specifically designed so that they
perform well on TSP problems in which the vertices are uniformly distributed in the space.

The RL method works by training a neural network policy using gradient descent on simulated
examples of the PDTSP to optimise tour length. These simulated examples enable the RL method to
learn tours which outperform modified versions of existing solution methods because the RL method
not only learns how to create efficient tours in the TSP but also how to best anticipate the arrival of
new vertices into the problem.

From a practical point of view, considering a dynamic variant of the TSP is useful because as delivery
and logistic operations continue to develop, they are being expected to operate on shorter timescales
(Hildebrandt et al., 2023). Some concrete examples are same-day delivery services, online food-
delivery, ride-hailing apps, emergency repair services and emergency medical services. Being able
to make alterations to routes quickly in response to new locations appearing in a schedule is clearly
desirable in these applications.

In the literature, there are existing partially dynamic extensions to the travelling salesman problem.
For example, the Partially Dynamic Travelling Repairman Problem (Larsen et al., 2002), the dial-a-
ride problem (Cordeau & Laporte, 2007) and the Dynamic Vehicle Routing Problem with Stochastic
Requests (DVRPSR) (Zhang et al., 2023). Each of these problems introduce additional constraints
such as time windows, time horizons, vehicle capacities, multiple vehicles and different types of
vertices (i.e. pick-up vertices and drop-off vertices). The objectives of these extensions typically
differ from the pure TSP objective of finding the shortest tour, instead optimising the waiting times
of customers or the total number of customers served. For this initial extension of the TSP, we choose
to demonstrate efficacy on two simple cases of the PDTSP, one with a unimodal spatial distribution
and one with a bimodal spatial distribution where the probability shifts from one mode to another as
the tour is built.

Our contributions are (a) a new partially dynamic travelling salesman environment, (b) a demonstra-
tion that the reinforcement learning methods and models developed for the static TSP outperform
static solvers and heuristics which we modify to work in the PDTSP, and (c) a demonstration of ef-
fective performance on larger instances than those in the training sets. This is particularly important
because it means that policies trained on small instances due to compute concerns can be utilised
effectively on larger real-world instances.

2 PARTIALLY DYNAMIC TSP ENVIRONMENT

The problem we consider is a dynamic variant of the Travelling Salesperson Problem (TSP) in which
a subset of the vertices in the problem are static and their locations are known prior to commencing
the tour. The remaining vertices are dynamic and their locations are revealed as the tour progresses.
We call this variation a Partially Dynamic Travelling Salesperson Problem (PDTSP).

Just like in the static TSP, the objective is to minimize the total length of this tour, Π, given by:

L(Π|s) = ||xΠn
− xΠ1

||2 +
N−1∑
i=1

||xΠi
− xΠi+1

||2, (1)

where xi ∈ [0, 1]2 are the vertex co-ordinates. Here s is used to denote a particular instance of the
PDTSP, Π is used to denote a tour which is a permutation of the vertices, and N is the total number
of static and dynamic vertices.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

For a particular instance of PDTSP, there are a set number of static and dynamic vertices. The static
vertex co-ordinates are sampled uniformly in the unit square. The dynamic vertex co-ordinates are
sampled according to a seperate spatial distribution over the unit square. When simulating data
for this paper, we consider unimodal and bimodal distributions. The arrival times, ta ∈ Ta of
the dynamic vertices are sampled without replacement from a categorical distribution with support
[2, N − 1].

Time in the PDTSP is discrete and each time step corresponds to visiting a new vertex on to the tour.
At time t = 1, the salesperson will be located at the starting vertex of its tour. The agent will observe
the state of the problem and select the next vertex in its tour using the policy network. At time t = 2,
the salesperson will be located at the vertex selected at t = 1 and so on until the salesperson arrives
back at the starting vertex and the tour is complete. If the current time corresponds to an arrival time
of one of the dynamic vertices, ∃ta ∈ Ta : ta = t, then that vertex will arrive in the problem at time
t and can be selected by the agent at time t or any subsequent time step. Crucially, the agent cannot
alter steps of the tour which have been completed before the current time.

In the static TSP problem, the choice of starting vertex is arbitrary as the final tour remains the same
regardless of which vertex it begins from. In the PDTSP, the order in which vertices are visited in the
final tour matters because the dynamic vertices only appear in the problem after a certain number of
vertices have been visited. For this reason, when generating instances of PDTSP, the starting vertex
of the tour is fixed.

3 MODELLING THE PROBLEM

3.1 REPRESENTING THE PROBLEM AS A DYNAMIC GRAPH

We represent the PDTSP as a dynamic graph G = {Gta : ta ∈ Ta ∪ 1}. Each graph Gta =
(Vta , Eta) ∈ G is a complete graph and is referred to as a snapshot of the dynamic graph. The
vertices vi ∈ Vta have co-ordinates xi and the edges eij have weights corresponding to the Euclidean
distance between the two connected vertices, ||xi − xj ||2.

The first snapshot, G1 = (V1, E1), is the initial graph consisting of the static vertices which are
present at the start of the problem. The next snapshot, Gta1

= (Vta1
, Eta1

) occurs when the first
dynamic vertex arrives in the problem, Vta1

= V1 ∪ {vn+1}, the edge set is extended to include
edges from all other vertices to the new dynamic vertex. The snapshots follow this pattern until all
dynamic vertices have been added to the graph.

Before being input to the neural network model, a graph sparsification heuristic is applied to each
graph snapshot Gta . The heuristic works by finding the set of k-nearest neighbours of each vertex
in the graph and removing edges to all the other vertices in the graph which do not belong to this
set. Joshi et al. (2022) show that this improves the performance of the neural network model.

3.2 NEURAL NETWORK ARCHITECTURE

The policy is embodied by a neural network with an Encoder-Decoder architecture (Hamilton et al.,
2017) as depicted in Fig. 1. The encoder component takes as input the current state of the PDTSP
problem represented as a graph and outputs a d-dimensional embedding of each vertex in the graph.
The decoder component takes this embedding as input and outputs a probability distribution over
actions which correspond to unvisited vertices in the PDTSP.

3.2.1 ENCODER

The encoder receives as input the vector of vertex co-ordinates, xi ∀ vi ∈ Vta , the vector of edge
weights, ||xi − xj ||2 ∀ eij ∈ Eta , and an adjacency matrix of the graph Gta .

As in Joshi et al. (2022), the encoder is a GNN. The vertex and edge features are first projected
into Rd by linear layers to obtain feature vectors h0

i and e0ij . This keeps the dimension consistent in
the message passing component. In the message passing component, the vertex and edge features
are updated by a stack of L message passing layers. Each message passing layer updates vertex

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

features by a weighted aggregation of its own features with those of its neighbours in the graph. The
functional form of the message passing layers for vertex features is given by,

hℓ+1
i = hℓ

i +ReLU
(
NORM

(
U ℓhℓ

i + AGGRj∈Ni

(
σ(eℓij)⊙ V ℓhℓ

j

)))
, (2)

Here, hℓ
i is the vector of vertex features of vertex vi output by message-passing layer ℓ. Similarly

eℓij is the vector of edge features of the edge between vertices i and j output by message-passing
layer ℓ. U ℓ and V ℓ are network parameters, σ indicates the application of a sigmoid function, AGGR
indicates the application of an aggregation function over the set of neighbouring vertices Ni, ReLU
is the rectified linear unit function and NORM indicates the application of a batch normalization
layer. The ⊙ symbol is the element-wise multiplication operator.

The edge features are updated by a weighted aggregation of the edge features with the features of
the two vertices connected by the edge. The functional form is given by,

eℓ+1
ij = eℓij +ReLU

(
NORM(Aℓeℓij +Bℓhℓ

i + Cℓhℓ
j

)
, (3)

eℓij and hℓ
i are as above, as are the ReLU and NORM functions. Aℓ, Bℓ and Cℓ are network pa-

rameters. For a network with L message passing layers, the final output of the encoder, hL
i , is a

d-dimensional vertex embedding for each vertex in the PDTSP graph.

When a new arrival occurs at time ta, we obtain a new graph Gta , with a new set of vertices and
edges. This graph is input to the encoder and a new embedding is obtained to feed to the decoder in
the subsequent time steps until another arrival occurs.

3.2.2 DECODER

The decoder component of the network comes from Kool et al. (2019). It operates sequentially,
producing a probability over vertices at each timestep of the tour, t ∈ {1, ..., NTotal}.

At each timestep t, the input to the decoder are the vertex embeddings output by the encoder hL
i .The

final edge embeddings from the encoder are not used directly by the decoder. The graph embedding,
h̄L
i , is obtained by aggregating the vertex embeddings. This is concatenated with the vertex embed-

dings of the previous vertex in the tour hL
Πt−1

and the first (and hence last) vertex in the tour hL
Π1

to
create a context vector, hc,

hc = [h̄L, hL
Πt−1

, hL
Π1

]. (4)

This context vector is then used as the sole query vector in a multi-headed attention (MHA) layer
with M heads. The value and key vectors are the vertex embeddings hL

i ,

qc = WQhc, ki = WKhL
i , vi = WV hL

i , (5)

where WQ, WK and WV are network parameters. The output of this attention layer is an updated
context vector hc′ ,

hc′ =

M∑
m=1

WO
mhim, (6)

him =
∑
i

Softmax
(
qTc ki√
dk

)
vi, (7)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

𝑋1

𝑋2

𝑋3

𝑋4

ℎ1
𝐿

ℎ2
𝐿

ℎ3
𝐿

ℎ4
𝐿

GNN
Encoder

𝑋1

𝑋2

𝑋4

𝑋3
𝑋5

t = 1

ℎ1
𝐿 ℎ1

𝐿

ℎ𝑐

MHA

𝑞𝑐

ℎ𝑐′

𝑞𝑐′

ℎ2
𝐿 ℎ3

𝐿 ℎ4
𝐿

𝑝2 𝑝3 𝑝4

Decoder

t = 2

ℎ3
𝐿 ℎ1

𝐿

MHA

Decoder

𝑞𝑐

𝑞𝑐′

ℎ2
𝐿 ℎ4

𝐿

𝑝2 𝑝4

t = 3
Dynamic Arrival

ℎ2
𝐿 ℎ1

𝐿

MHA

Decoder

𝑞𝑐

𝑞𝑐′

ℎ4
𝐿 ℎ5

𝐿

𝑝4

t = 4

ℎ5
𝐿 ℎ1

𝐿

MHA

Decoder

𝑞𝑐

𝑞𝑐′

ℎ4
𝐿

3 2

𝑝5

5

𝑝4

4

GNN
Encoder

ℎ4
𝐿

ℎ2
𝐿

ℎ1
𝐿

ℎ3
𝐿

ℎ5
𝐿

Vertex Embedding

Graph Embedding

Context Embedding

Concatenation

Output Probability

Attention Weight

Attention Weight × Value

Attention Query

Identity/Reference

Vertex

Fixed Starting Vertex

Edge

Figure 1: Diagram showing how the neural network model works for a simplified instance of PDTSP
in which there are 4 static vertices and 1 dynamic vertex. For this instance, the model outputs a tour
Π = (1, 3, 2, 5, 4). The initial vertex embeddings from the GNN are input to the Decoder, the
embedding of the fixed first vertex is input along with a graph embedding to a context vector. MHA
is used to update the context vector with the vertex embeddings, then another round of attention is
used to obtain probabilities of the next vertex in the tour. At time step t = 3, the dynamic vertex
arrives and a new embedding is created using the encoder.

Here, WO
m are network parameters applied to the output of each of the M attention heads. him is the

output of the mth attention head which is calculated by calculating the attention weights using the
query and key vectors, taking a softmax, multiplying by the value vector and summing the results.
The updated context vector is input to another MHA layer, again with M heads, but this time we are
only interested in the attention weights. The attention weight of each vertex is taken and clipped to
lie within the range [−C,C] to obtain log-probabilities of each vertex,

ui =

{
C · tanh

(
qT
c′ki√
dk

)
if i ̸= Πt′ ∀t′ < t

−∞ otherwise.
(8)

Here dk =
dh

c
′

M is the query/key dimensionality and qc′ is the query vector associated with the
updated context. Vertices which are already part of the tour are masked. These logits are then input
to a softmax function to obtain the probability of selecting each vertex (θ represents the network
parameters),

pθ(πt|π1:t−1) =
eui∑
j e

ui
. (9)

4 TRAINING THE MODEL

Each environment in a training batch shares the same number of static and dynamic vertices in
its PDTSP. When each batch is generated, the number of static and dynamic vertices for every
environment in that batch is randomly sampled from a range which is set prior to training. This
method of generating training batches means that each individual batch is easier to work with but

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

the policy still experiences a range of problem instances across batches in terms of the total number
of vertices and the proportion of vertices which are dynamic.

Each environment in a batch starts at time step t = 1. The state corresponding to the current feature
graph of each environment is input to the encoder-decoder network and a probability distribution
over vertices is output for each environment. A vertex is sampled for each environment and then
the state of each environment is updated to add this vertex to the tour and the time step of that
environment is incremented by 1. The set of arrival times, Ta, for each environment is then checked
to see if ∃ta ∈ Ta : ta = t. The environments which have an arrival are paused. The state of a
paused environment is fixed until an arrival has occurred for each environment in the batch. At that
point, the graphs for the batch are updated with their new vertex arrival and the batch is input to
the encoder and a new graph embedding is produced for each environment. The environments are
unpaused and then new vertices continue to be selected until the next arrival happens. The reason
for organizing simulations this way is to take advantage of GPU hardware which is typically much
faster when calculating a batch of inputs rather than inputs one at a time. 1

The model is trained by a policy gradient algorithm in which the loss is given by:

L(θ|s) = Epθ(Π|s)[L(Π)], (10)

the expectation of the tour length L(Π), where pθ(Π|s) is the probability distribution obtained from
the policy. The policy gradient is then given by:

∇L(θ|s) = Epθ(Π|s)[(L(Π)− b(s))∇ log pθ(Π|s)]. (11)

These expectations are approximated by the sample mean over the batch of training data. The
baseline b(s) is obtained by running a previous version of the policy in which actions are selected
greedily rather than by sampling. The previous version of the policy is compared with the current
version at the end of each epoch and if the difference between rewards obtained by the current policy
is a statistically sufficient improvement on the previous version as determined by a t-test, then the
baseline model is replaced by the current policy and training resumes.

5 EXPERIMENTAL SETUP

In this paper, we look at two training sets. In the first, the spatial distribution of dynamic vertices
is a unimodal bivariate Gaussian distribution. From now on, the policy trained on this data will be
referred to as the Unimodal policy. In the second the spatial distribution of dynamic vertices is a
bimodal mixture of Gaussian distributions and will be referred to as the Bimodal policy.

With bimodal arrivals, the probability of sampling from one mode of the distribution has higher
probability during the first half of the tour and the other mode has higher probability during the
second half of the tour. This is designed to mimic an example situation that could arise in a practical
application in which demand could shift from a commercial location to a residential location as time
progresses.

The unimodal distribution has mode (0.2, 0.2) and covariance matrix 0.1×I , where I is the identity
matrix. The probability density is illustrated in Fig. 2a. The bimodal distribution is a mixture of two
Gaussian distributions with modes at (0.2, 0.2) and (0.8, 0.8) and both having covariance matrices
0.1 × I . In the first half of the tour the probability of sampling from the Gaussian distribution at
(0.2, 0.2) is double that of the other and vice versa for the second half of the tour. The probability
density is illustrated in Fig. 2b.

For both of these training sets, the number of static and dynamic vertices for each batch are both
sampled in the range [20, 50]. This means that the smallest instance during training will be a 40

1This simulation process does not affect the training of the network using gradient descent. For a batch of
simulations, the final output for each element of the batch is a list of vertex selections and the corresponding
probability distribution from which the selections were drawn. The time steps for which the environment sat
paused are simply removed for each of the different environments.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

(a) Unimodal scenario.

(b) Bimodal scenario showing the distibution for the first half of the tour on the left and the second half of the
tour on the right.

Figure 2: Spatial distributions for the dynamic vertices in the two PDTSP scenarios.

vertex instance and the largest 100. The number of static and dynamic vertices are sampled sep-
arately so batches in training will have a variety of different proportions of dynamic vertices. For
each training set, the model is trained on a total of 1, 600, 000 training instances. These instances
are split between 100 epochs of training and each epoch is split into batches of size 16.

In these training runs, the model is built with the following hyperparameters. The encoder consists
of 3 message passing layers with embedding dimension, d = 128. Max functions are used for
aggregation in the message passing layers and also for the graph embedding. The probabilities
output by the decoder are clipped with parameter C = 10. The total number of model parameters
for this set of hyperparameters is 364, 544.

The trained models are evaluated on four test sets. Two each for the unimodal and bimodal model.
The test sets for each of the models shares the respective spatial distributions. For each model, there
is a test set consisting of sets of 1, 280 PDTSP instances with 40, 80, 120, 160, 200 and 500 (for
500 vertices, 128 instances are used) total vertices with a 50/50 split between static and dynamic
vertices. The other test set for each model consists of sets of 1, 280 PDTSP with 100 total vertices
where each set has a different proportion {0, 0.2, 0.4, 0.6, 0.8} of vertices which are dynamic.

As an optimal solver can not exist for this problem without being given knowledge of future arrivals,
the models and comparison methods are evaluated based on average tour length. At evaluation, the
policies are queried greedily to better demonstrate the efficacy of the learned policies.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Running times for the different methods on different sizes of PDTSP (format static ver-
tices:dynamic vertices) The times given are the time in seconds taken to run 40 instances. The
Rerun Concorde, Rerun Insertion and Model CPU methods were ran on a Intel(R) Xeon(R) Gold
6248R CPU @ 3.00GHz processor. The Model GPU method was ran on a NVidia L40 GPU.

Instance Rerun Concorde Rerun Insertion Model CPU Model GPU
20:20 3.36 0.35 11.54 0.65
40:40 25.33 1.09 37.07 1.06
60:60 70.43 2.40 98.20 2.81
80:80 176.72 4.30 175.66 4.97
100:100 348.90 6.98 303.2 9.01

5.1 COMPARISON METHODS

It is necessary to adapt some of the heuristic methods for the Static TSP so that they can be used to
solve the partially dynamic TSP. The first method we call Concorde plus insertion. In this method,
the Concorde solver is used to compute an optimal tour on the static vertices in the problem. When
a dynamic vertex arrives, it is inserted into the tour in the lowest cost position between any two
vertices in the tour which have not yet been visited. The cost of insertion of dynamic vertex k
between any two vertices i and j is calculated as,

cijk = dik + djk − dij . (12)

where c is the cost and d is the distance between the two vertices in the subscript.

The other two methods allow for more adaptation of the tour in response to an arrival. These methods
we call rerun insertion and rerun Concorde. These methods involve using either a nearest insertion
heuristic or Concorde solver to re-plan the tour through the vertices which have not yet been visited
each time a new arrival happens. These two methods give more flexibility as the whole remaining
tour can be altered in response to an arrival and not just the position of the new dynamic vertex.

6 EXPERIMENTAL RESULTS

For the unimodal policy, Figure. 3a shows the performance of the policy on the test set with different
proportions of dynamic vertices. The policy is outperformed by the competing methods for the
instance with 0 dynamic vertices but this is expected as this is the static variant of the TSP. When
the proportion of dynamic vertices is increased to 0.2 then the policy starts to slightly outperform
the competing methods with the gap increasing as the proportion of dynamic vertices increases.

Figure. 3b shows the performance of the policy on the test set of problem instances with different
total numbers of vertices. The policy outperforms each of the competing methods for the different
numbers of vertices tested. Encouragingly for the applicability of these models, the trend continues
for instances with more vertices than was seen in the training set.

There is a similar story when testing the bimodal model, the corresponding plots are shown in
Figures. 3c and 3d. The only difference being that the tours tend to be slightly longer on average
and the bimodal model is outperformed by the method which reruns Concorde after each new arrival
for problem instances with a 0.2 proportion of dynamic vertices. For larger proportions, the model
comes out on top with the gap in tour length increasing with the proportion of dynamic vertices.

The performance of the policies evaluated on a mismatched training set (Policy (Bimodal data) in
Figures. 3b and 3a and Policy (Unimodal data) in Figure. 3d and 3c) outperforms the comparison
methods in both cases. This suggests that the policy is not just learning where dynamic vertices are
likely to arrive but also how to build tours which are better at anticipating new arrivals wherever
they occur. There is still a small performance gap favouring the policy with matching training data
demonstrating that having some prior knowledge of the true distribution of dynamic vertices does
benefit the policy.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) (b)

(c) (d)

Figure 3: Average tour length of the policy evaluated on unimodal (a,b) and bimodal (c,d) test sets
compared with comparison methods, including the policy trained on the other data distribution. The
red dashed line in plots b and d shows the size of the largest instance in the training set for the RL
policies.

The running times of the different methods are shown in Table. 1. Running on a CPU, querying
the RL model takes a similar amount of time to complete to rerunning concorde with rerunning the
insertion heuristic being much faster. When the RL model is queried on a GPU it is much faster and
comparable in speed to rerunning insertion.

7 DISCUSSION AND CONCLUSION

The results show that for the PDTSP, the trained policy is able to outperform comparison methods
including one which re-solves for an optimal tour each time a new vertex is added. This suggests
that the trained policy is not only learning what features make a good tour in TSP but is also learning
to create tours which are anticipatory in the face of dynamic vertices. The evaluation time of the
RL model is very fast on specialised hardware suggesting that it would be able to make live routing
decisions.

The experiments do not look at the performance of the unimodal policy on the bimodal test sets or
vice versa. This is because generalizing between spatial distributions that have changed in such a
dramatic fashion is not something that is expected in practice. The bimodal scenario already shows
that the model is equipped to deal with more realistic changes in the spatial distribution reflecting
what might happen in a city when people move from work to home for example. In light of this,
we believe that the best direction of future research would be to consider the robustness of a trained
policy to small fluctuations in the spatial or temporal distributions of dynamic vertices. Also of

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

interest would be the possibility of training a baseline policy which is capable of adapting quickly
to new spatial distributions corresponding to different cities for example.

Another encouraging aspect of these results is that the trained policies perform well on instances with
more vertices than the largest instances in the training sets. This is important because it suggests
that the trained policies can be utilised on large instances of the dynamic TSP without requiring
prohibitively expensive training on larger instances.

8 REPRODUCIBILITY STATEMENT

To enable reproduction of the methods and results in this paper, we attach the code base used during
this project. The code base includes test set .txt files which contain the data used to produce the
results.

REFERENCES

David Applegate, Robert Bixby, Vašek Chvátal, and William Cook. Tsp cuts which do not conform
to the template paradigm. Computational Combinatorial Optimization: Optimal or Provably
Near-Optimal Solutions, pp. 261–303, 2001.

David Applegate, Robert Bixby, Vašek Chvátal, and William Cook, 2006. URL https://www.
math.uwaterloo.ca/tsp/concorde/.

Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. CoRR, abs/1611.09940, 2016.

Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem. In
Operations Research Forum, volume 3, pp. 20. Springer, 2022.

Jean-François Cordeau and Gilbert Laporte. The dial-a-ride problem: models and algorithms. An-
nals of operations research, 153:29–46, 2007.

Thomas Degris, Martha White, and Richard S. Sutton. Off-policy actor-critic. In Proceedings of
the 29th International Conference on Machine Learning, ICML’12, pp. 179–186, Madison, WI,
USA, 2012. Omnipress.

William L. Hamilton, Rex Ying, and Jure Leskovec. Representation learning on graphs: Methods
and applications. IEEE Data Eng. Bull., 40(3):52–74, 2017.

Florentin D Hildebrandt, Barrett W Thomas, and Marlin W Ulmer. Opportunities for reinforcement
learning in stochastic dynamic vehicle routing. Computers & operations research, 150:106071,
2023.

Chaitanya K Joshi, Quentin Cappart, Louis-Martin Rousseau, and Thomas Laurent. Learning
the travelling salesperson problem requires rethinking generalization. Constraints, 27(1):70–98,
2022.

Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019, 2019.

Allan Larsen, OBGD Madsen, and Marius Solomon. Partially dynamic vehicle routing—models
and algorithms. Journal of the operational research society, 53(6):637–646, 2002.

Shen Lin and Brian W Kernighan. An effective heuristic algorithm for the traveling-salesman prob-
lem. Operations research, 21(2):498–516, 1973.

Daniel J Rosenkrantz, Richard Edwin Stearns, and Philip M Lewis. Approximate algorithms for the
traveling salesperson problem. In 15th Annual Symposium on Switching and Automata Theory
(swat 1974), pp. 33–42. IEEE, 1974.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

10

https://www.math.uwaterloo.ca/tsp/concorde/
https://www.math.uwaterloo.ca/tsp/concorde/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

Jian Zhang, Kelin Luo, Alexandre M Florio, and Tom Van Woensel. Solving large-scale dynamic
vehicle routing problems with stochastic requests. European Journal of Operational Research,
306(2):596–614, 2023.

11

	Introduction
	Partially Dynamic TSP Environment
	Modelling the Problem
	Representing the Problem as a Dynamic Graph
	Neural Network Architecture
	Encoder
	Decoder

	Training the Model
	Experimental Setup
	Comparison Methods

	Experimental Results
	Discussion and Conclusion
	Reproducibility Statement

