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Abstract

We investigate the mechanistic sources of uncertainty in large language models1

(LLMs), an area with important implications for their reliability and trustworthi-2

ness. To do so, we conduct a series of experiments designed to identify whether the3

factuality of generated responses and a model’s uncertainty originate in separate or4

shared circuits [5] in the model architecture. We approach this question by adapt-5

ing the well-established mechanistic interpretability techniques of path patching6

and zero-ablation that allows identifying the effect of different circuits on LLM7

generations. Our extensive experiments on eight different models and five datasets,8

representing tasks predominantly requiring factual recall, clearly demonstrate that9

uncertainty is produced in the same parts of a model that are responsible for the10

factuality of generated responses. We release code for our implementation.11

1 Introduction12

Uncertainty quantification (UQ) in large language models (LLMs) for knowledge-intensive tasks13

[16] remains a critical yet understudied area. Despite achieving human-level performance on various14

benchmarks, LLMs often struggle with reliable uncertainty estimation, leading to issues such as15

overconfidence and hallucination [19]. This limitation has strong implications for their trustworthiness16

and safety in high-stakes applications. While recent research has explored verbalized uncertainty17

in LLMs [1, 10, 11], significant gaps remain in our understanding and ability to improve UQ. In18

particular, existing UQ techniques typically provide little insight into the factors responsible for an19

uncertainty estimate, limiting their usefulness both as tools for trustworthiness. We propose leveraging20

mechanistic interpretability, an approach focused on characterizing models’ internal mechanisms of21

reasoning, to advance our comprehension and enhancement of uncertainty quantification in LLMs.22

Following Kadavath et al. [10], to better understand how LMs generate uncertainty estimates, we used23

parametric P(IK) (“probability that I know”) probes—one-layer binary classifiers that are trained to24

predict the probability that a given LM knows the answer to a given question. As in [10], we trained25

P(IK) probes on several datasets and with several models. We then used these probes’ predicted26

confidences as target metrics for path patching and zero-ablation, two mechanistic interpretability27

techniques which identify the components of a model relevant for a task by testing the effect of an28

interventons made on activations in the model during evaluation. We compared the mechanistic29

signatures of changes in the model’s accuracy and the probe’s output to evaluate whether the same30

circuits were responsible for the answer and the predicted confidence.31

In our empirical evaluation, in which we performed zero-ablation for a large range of model–dataset32

combinations and path patching for one combination, we found that model accuracy and probe33

behavior largely responded to the same interventions, indicating that circuits responsible for the34

factuality of responses and for uncertainty quantification are located in the same parts of the model.35

For a group of knowledge-intensive question answering [16] tasks, model accuracy and probe36

confidence are (highly) positively related to one another. We conclude that, at least on recall tasks, a37
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Figure 1: Left: P(IK) probing. The LLM takes a question as input and returns an answer and
last-layer activations. Answers are checked for correctness. The probe learns to predict whether
the model’s answer is correct, based on the last-layer activations. Our analysis uses the probe as a
proxy for an LLM’s P(IK). We conduct path patching and zero ablation studies on the probe and
the corresponding LLM. Right: Locations used in interventions. Path-patching restorations are at
mlp.resid, mlp.out, layer.out, and embed.out. Zero-ablations are at attn.out and mlp.out.

language model’s representation of confidence may derive mainly from introspection on its question-38

answering process, rather than from separate reasoning specific to the UQ task.39

To summarize, the key contributions of this paper are as follows:40

1. We use mechanistic interpretability and uncertainty quantification tools to investigate the mecha-41

nistic sources of uncertainty in large language models. To do so, we use a logistic P(IK) probe42

with path patching and zero-ablation to perform a hypothesis test to examine whether LLM43

uncertainty and the factuality of answers generated by an LLM reside in shared or separate44

circuits within the model.45

2. We perform an extensive empirical analysis on eight different models and five recall-intensive46

datasets, and find evidence that uncertainty quantification and the factuality of answers generated47

by an LLM are handled by the same parts of the model.48

2 Background49

Path Patching. Path patching is a causal intervention method that aims to trace and identify50

important components in neural models for a given task [14, 18], which is a generalization of causal51

mediation analysis [17]. In this work, we use path patching [14] to examine the importance and role52

of individual circuits and components in LLMs. Specifically, given a specific input q, path patching53

involves three runs: (1) a clean run, in which the original input q is given to the model, which is54

used to obtain the hidden states of each layer; (2) a corrupted run, in which the input embeddings55

of certain tokens are corrupted by adding noise or (in this paper) replaced with zeros; and (3) a56

corrupted-with-restoration run, in which the computation is similar to the corrupted run except that57

the hidden states at specific locations ℓ in the model are restored using the hidden states obtained58

from the clean run. By comparing the differences between the output (predicted probabilities) of the59

clean, corrupted, and restored runs, path patching allows the identification of important components60

in LLMs. That is, if the restored run achieves a similar effect as the clean run, it is likely that the61

corresponding restored component plays an important role in the model’s processing.62

Zero-Ablation. Zero-ablation is a mechanistic intervention technique that takes advantage of a63

transformer’s residual structure by treating attention or MLP layers as separable modules which read64

from and write to the residual stream [6, 15]. A component ℓ (in this paper, an attention or MLP65

layer) is “ablated” by replacing its output with zero. The drop in model performance on a given task66

after an intervention removing a component ℓ provides a measure of the importance of ℓ for the task.67
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Figure 2: Left: Results of path patching for Llama 3 8B Instruct on a question in CounterFact. Only
layer.out locations are shown (plus embed.out in the first row). The input embeddings for the
starred tokens are replaced with zeros in the corrupted and restored runs. Center: Predicting m given
p. The black and red X (top-right and bottom-left) show the clean and corrupted runs; all others show
restored runs. Yellow points are later in the sequence. The grey line shows the predictor m̂. Right:
Results of zero ablation for Llama 3 8B Instruct on four different datasets. Circle, triangle, and X
markers represent MLP ablations, attention ablations, and clean runs respectively. Warmer colors
represent earlier layers.

3 Uncertainty Introspection: Investigating the Shared Circuits Hypothesis68

The aim of this paper is to make progress toward characterizing the mechanistic structures used for69

UQ in language models. To this end, we propose a theoretical hypothesis (“shared circuits”) about70

the locations of these structures, along with operationalizations which we test experimentally.71

Shared Circuits Hypothesis. Uncertainty quantification in question-answering (QA) sys-
tems may be carried out in a variety of ways. We hypothesize that language models are capable
of expressing uncertainty using shared circuits that both solve the underlying question-
answering task and output uncertainty information. This contrasts with the possibility that
uncertainty quantification emerges in separate circuits, either to post-process messy uncer-
tainty signals from question-answering circuits or to do uncertainty calculations of their own.

72

We study eight Llama[12, 13] and Gemma [7] models and five datasets, described in Appendix ??.73

3.1 Experiment Design: Path Patching74

On a given question qi in a dataset Q, for each path patching run (clean, corrupted, and restored)75

we compute the model’s sample probability m(qi) for the correct first token of the answer, and76

the probe’s confidence p(qi). (We omit the question for the rest of this section for legibility; we77

consider questions individually.) Locations ℓ where mrestored(ℓ) ≈ mclean correspond to parts of the78

model which are important for solving the QA task; likewise, locations ℓ where prestored(ℓ) ≈ pclean79

correspond to parts of the model which are important for the UQ task.12 In the context of path80

patching, we operationalize the shared circuits hypothesis in the claim that mrestored can be predicted81

from prestored by interpolating between the clean and corrupted values: for example, if the model’s82

correct-token probability on a restored run is halfway between the values from the clean and corrupted83

runs, then the probe’s confidence should also be halfway between the clean and corrupted runs.84

Specifically, for each question qi ∈ Q, we claim that the linear predictor m̂restored defined by85

m̂restored(ℓ) −mcorrupted

mclean −mcorrupted
=

prestored(ℓ) − pcorrupted

pclean − pcorrupted

1Although note that the converse is not necessarily true; see Appendix D for details.
2Here, P(corr)restored(ℓ) and P(IK)restored(ℓ) represent the correct token probability and p probe output for a

run with the hidden state restored at location ℓ in the model; notation is likewise for clean and corrupted runs.
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explains most of the variance in mrestored (i.e., has a high coefficient of determination R2). As a86

(somewhat weak) formalization of this, we attempt to reject the null hypothesis87

H0 : R2 is no greater than expected under random permutations of the set of locations ℓ. (1)

3.2 Experiment Design: Zero-Ablation88

We also test the shared circuits hypothesis via zero-ablation on layers. Here, because we are interested89

in multi-token answers, we define m(qi) as the probability of a correct answer sampled by the model90

when prompted on the question qi ∈ Q, and p(qi) as the probe output on that question. Taking means91

over Q, we can compare changes in the model accuracy m and the average probe output p. Under92

the shared circuits hypothesis, the change in the probe output from ablation |pablated(ℓ) − pclean| is93

large when the change in model accuracy |mablated(ℓ) −mclean| is large. Concretely, we claim that the94

predictor m̂ defined by95

mclean − m̂ablated(ℓ) = |pablated(ℓ) − pclean|

explains most of the variance in mablated (has a high R2), and attempt to reject the null hypothesis96

H0 : R2 is no greater than expected under random permutations of the set of layers ℓ. (2)

3.3 Testing the Hypothesis97

Path Patching. We performed path patching with Llama 3 8B Instruct [13] on a random sample of98

16 questions from the CounterFact dataset [14], considering only questions which the model could99

answer (mclean > 0.5). We used the probe and few-shot prompt for TriviaQA. Across this sample,100

the predictors m̂restored generally estimated mrestored well, with R2 > 0.6 in all but three cases.3 For101

each question qi, we tested the null hypothesis (1) by sampling 10,000 permutations.4 In all cases,102

we reject H0 with p < 0.0001.103

Zero-Ablation. We performed zero ablation with eight models across five question-answering104

datasets (see Appendix B). Across this sample, the predictors m̂ablated generally estimated mablated105

better than chance, with a median of R2 = 0.33. For each model–dataset combination, we tested the106

null hypothesis (2) by sampling 10,000 permutations. We reject the null hypothesis with p < 0.05 in107

36 out of 38 cases, and p < 0.0001 in 31 out of 38 cases.108

In many cases, the model’s uncertainty representation plays particularly nicely with zero-ablation,109

remaining calibrated on average even after an intervention: using the same statistical framework110

as above, the very simple predictor m̂ablated = pablated does better than expected under random111

permutations in 27 out of 38 cases (at p < 0.05).5 While other explanations may be possible, one112

interpretation of these results is that a given component makes a nonzero contribution to the model’s113

uncertainty representation if and only if it can also contribute information about the answer.114

4 Discussion and Conclusion115

The results of our path patching and zero-ablation analyses broadly support the shared circuits116

hypothesis, implying that across the setups we considered the sets of model components used for117

question-answering and uncertainty quantification were largely, albeit not entirely, the same. This118

suggests that P(IK) probing may be a viable way of eliciting introspective, interpretable uncertainty119

estimates. Based on these findings, further research could analyze the mechanisms responsible120

for P(IK) estimates in greater detail or apply P(IK) probing as an interpretability tool to study121

phenomena such as hallucination in LLMs and meaningfully contribute to technical AI governance.122

3Based on manual inspection (see graphs in the Supplementary Materials), we conclude that R2 < 1 both
due to small discrepancies between UQ and QA circuitry and due to nonlinearity in the UQ/QA relationship.

4Specifically, we shuffle the values of mrestored(ℓ) independently for the mlp.out, mlp.resid, and
layer.out/embed.out locations, to exclude the explanation that the predictor works well because the mlp.out
and mlp.resid states each carry less information than layer.out. We do likewise for zero-ablation.

5If R2 is the fraction of the variance in mablated explained by m̂ablated = pablated, we reject the null hypothesis
R2 is no greater than expected under random permutations of the set of layers ℓ at p < 0.05 in 27/38 cases.
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Appendix186

Appendix A Reproducibility187

Code to reproduce our results can be found at
https://anonymous.4open.science/r/sciurus_anonymized-E434/

188

Appendix B Models and Datasets189

We studied the following eight models and five datasets:

Table 1: Models studied

Model Parameters Layers
Llama 2 7B 7B 32
Llama 2 7B Chat 7B 32
Llama 2 13B 13B 40
Llama 2 13B Chat 13B 40
Llama 3 8B 8B 32
Llama 3 8B Instruct 8B 32
Gemma 2 2B Instruct 2B 26
Gemma 2 9B Instruct 9B 42

Dataset
TriviaQA[9]
WebQuestions[2]
MMLU[8]
ARC[4]
CounterFact[14]

190

All the datasets studied, with the partial exception of MMLU, are “recall-intensive” in that they191

largely depend on recalling factual information learned during training. Based on some preliminary192

zero-ablation experiments, we believe that models may exhibit separate circuits on some non-recall193

tasks such as simple synthetic math questions.194

ARC includes both the ARC-Easy and ARC-Challenge splits. ARC questions are drawn from195

standardized tests; the datasets listed as ARC (Hg) and ARC (Other) correspond, respectively, to the196

“Mercury” test and to a combination of the other 20 tests.197

We reformulated CounterFact prompts as questions to match the format of our other datasets. Because198

we used the TriviaQA probe for the path patching experiment with CounterFact, we also did few-shot199

prompting with the prompt from TriviaQA.200

B.1 Licenses201

Models:202

• Llama 2 is licensed under the Llama 2 Community License Agreement, available at203

https://ai.meta.com/llama/license/.204

• Llama 3 is licensed under the Meta Llama 3 License, available at205

https://llama.meta.com/llama3/license/.206

• Gemma 2 is licensed under the Gemma Terms of Use, available at207

https://ai.google.dev/gemma/terms.208

Datasets:209

• TriviaQA is licensed under the Apache License 2.0, available at210

https://www.apache.org/licenses/LICENSE-2.0.211

• WebQuestions is licensed under the Creative Commons Attribution 4.0 International License,212

available at https://creativecommons.org/licenses/by/4.0/.213

• MMLU (Massive Multitask Language Understanding) is licensed under the MIT License,214

available at https://opensource.org/licenses/MIT.215

• ARC (AI2 Reasoning Challenge) is licensed under the Creative Commons Attribution-216

ShareAlike 4.0 International License, available at https://creativecommons.org/licenses/by-217

sa/4.0/.218

• CounterFact is licensed under the MIT License, available at https://opensource.org/licenses/MIT.219
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Appendix C Probe Design220

We use a P(IK) probing approach in part because of the difficulty of reasoning about uncertainty221

using token probabilities. Token probabilities for open-ended questions are a highly imperfect proxy222

for a model’s confidence, because they conflate semantic uncertainty (uncertainty about content) with223

syntactic uncertainty (uncertainty about form). Furthermore, we are most interested in improving224

uncertainty quantification for fine-tuned chat models, for which token probabilities do not correspond225

to an underlying distribution over possible text strings.226

We construct a dataset on which to train the P(IK) probe according to the following steps.227

1. Perform 32 forward passes for each question on the question-answering task. We used few-shot228

prompting with 5 examples to ensure that the model answered in the right format.229

2. Check whether a model’s answers are correct. Specifically, we check whether a model’s answer230

contains any correct answer as a substring, ignoring case.231

3. For each question in the dataset, save the number of correct and incorrect answers (implying a232

“true probability” of the model answering correctly).233

4. Also, for each question, save the output of the model’s last layer (before the unembedding). This234

is a vector in Rdmodel .235

The P(IK) probe is a logistic classifier p : Rdmodel → (0, 1) which takes these last layer activations as236

input and returns the proportion of correct answers. For example, if the model answers a question237

correctly 47% of the time, the probe should output 0.47 when given the last-layer activations at the238

last token of that question. We trained with binary cross-entropy loss, using dropout and a triangular239

learning rate schedule, and used a low learning rate (η = 3× 10−6) as in [10].240

Appendix D Limitations of Path Patching and Zero-Ablation241

Path patching and zero-ablation, like many interpretability techniques, yield results which can242

imperfectly reflect the contributions of model internals to a task. In particular:243

Zero-ablation. We chose to ablate activations in the model with zeros. While the zero vector is far244

from an arbitrary choice, especially given its relevance to dropout and the additive residual structure245

of a transformer, this approach may lack specificity. For example, zero-ablating an early or late MLP246

layer sometimes severely damages a model’s ability to produce coherent language in general, so247

accuracies from ablation do not necessarily correspond to the flow of question-specific information248

through the model. Approaches such as causal scrubbing [3] avoid this limitation but are generally249

more computationally expensive.250

Path patching. The “path” through the model identified comprises, to a first approximation, the251

set of points in the model at which all information relevant to the task is present. As such, when252

information relevant to a question passes along multiple paths in parallel, it may be that no individual253

path shows a substantial difference between the restored and baseline conditions. For example, in the254

question in Fig. 2 (left), restoring the input embedding for any one token of “Prince Edward Island”255

without the others has little effect on the model.256
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Appendix E Full Results for Zero-Ablation257
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Figure 3: Results of zero-ablation for eight models and five datasets. Circle, triangle, and X markers
represent MLP ablations, attention ablations, and clean runs respectively. Warmer colors represent
earlier layers. Error bars for individual points are omitted for legibility, but std. err. < 0.032 in all
cases (by the bounds on p and m).
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Figure 4: (continued) Results of zero-ablation for eight models and five datasets. Circle, triangle, and
X markers represent MLP ablations, attention ablations, and clean runs respectively. Warmer colors
represent earlier layers. Error bars for individual points are omitted for legibility, but std. err. < 0.032
in all cases (by the bounds on p and m).
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Appendix F Computational Resources258

This project has used approximately 1000 GPU-hours of computation time on an academic cluster,259

mainly on RTX8000 GPUs with 48 GB of memory, including approximately 500 GPU-hours260

for results used directly in this paper. Results for individual model/dataset combinations can be261

reproduced independently; for example, the code to produce the TriviaQA / Llama 3 8B Instruct262

results ran in approximately 20 GPU-hours.263

Appendix G Ethics Statement264

This paper intends to advance the areas of interpretability and uncertainty quantification for language265

models, with the primary aim of making language models more reliable and more trustworthy.266

We expect these research directions in general to reduce societal risks from machine learning (for267

example, by allowing for warning signals in situations where a model might be lying or making268

a dangerous mistake). Nevertheless, since reliability work also makes systems more useful, some269

caution is warranted: for example, users might be tempted to deploy the resultant more-reliable270

systems in higher-stakes contexts in which tail risks from failures are greater.271

The humanoid and sciuroid robots in Fig. 1 were created using DALL-E 3.272
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NeurIPS Paper Checklist273

1. Claims274

Question: Do the main claims made in the abstract and introduction accurately reflect the275

paper’s contributions and scope?276

Answer: [Yes]277

Justification: This paper proposes methods for studying uncertainty quantification in lan-278

guage models, and provides evidence for a “shared circuits” hypothesis across a range of279

models and tasks; we do not claim to address other settings (e.g., larger models or non-recall-280

based questions). Our introduction suggests some potential applications of our methods281

(e.g., the study of hallucinations) which we do not claim to pursue these in this paper.282

2. Limitations283

Question: Does the paper discuss the limitations of the work performed by the authors?284

Answer: [Yes]285

Justification: We note the limited range of our experimental settings. We also acknowledge286

the major limitations of the mechanistic interpretability techniques we use (in particular,287

their tendency to produce noisy results which can be difficult to formalize) in Appendix D,288

and note that the hypotheses which we test formally are imperfect proxies for our shared289

circuits hypothesis.290

3. Theory Assumptions and Proofs291

Question: For each theoretical result, does the paper provide the full set of assumptions and292

a complete (and correct) proof?293

Answer: [NA]294

Justification: We do not present theoretical results.295

4. Experimental Result Reproducibility296

Question: Does the paper fully disclose all the information needed to reproduce the main ex-297

perimental results of the paper to the extent that it affects the main claims and/or conclusions298

of the paper (regardless of whether the code and data are provided or not)?299

Answer: [Yes]300

Justification: We present novel results based largely on existing mechanistic interpretability301

techniques, which we describe in sufficient detail to allow replication. We describe our302

probing setup in detail in Appendix C. We also provide code for reproducing our work.303

5. Open access to data and code304

Question: Does the paper provide open access to the data and code, with sufficient instruc-305

tions to faithfully reproduce the main experimental results, as described in supplemental306

material?307

Answer: [Yes]308

Justification: We provide code for reproducing our work.309

6. Experimental Setting/Details310

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-311

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the312

results?313

Answer: [Yes]314

Justification: We describe the major details of our experimental setup in the body and315

appendices, with full details provided in the code.316

7. Experiment Statistical Significance317

Question: Does the paper report error bars suitably and correctly defined or other appropriate318

information about the statistical significance of the experiments?319

Answer: [Yes]320
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We describe the statistical tests used for our main results and note the details of our permuta-321

tion sampling setup.322

8. Experiments Compute Resources323

Question: For each experiment, does the paper provide sufficient information on the com-324

puter resources (type of compute workers, memory, time of execution) needed to reproduce325

the experiments?326

Answer: [Yes]327

Justification: Yes, in Appendix F.328

9. Code Of Ethics329

Question: Does the research conducted in the paper conform, in every respect, with the330

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?331

Answer: [Yes]332

Justification: Our work uses commonly-used datasets intended for research and does not333

involve human subjects or sensitive data. While this is largely a foundational paper, we334

discuss some potential societal impacts and safety implications in Appendix G.335

10. Broader Impacts336

Question: Does the paper discuss both potential positive societal impacts and negative337

societal impacts of the work performed?338

Answer: [Yes]339

Justification: While this is largely a foundational paper, we discuss some potential societal340

impacts and safety implications in Appendix G.341

11. Safeguards342

Question: Does the paper describe safeguards that have been put in place for responsible343

release of data or models that have a high risk for misuse (e.g., pretrained language models,344

image generators, or scraped datasets)?345

Answer: [NA]346

Justification: We do not create or release data or models that have a high risk for misuse.347

12. Licenses for existing assets348

Question: Are the creators or original owners of assets (e.g., code, data, models), used in349

the paper, properly credited and are the license and terms of use explicitly mentioned and350

properly respected?351

Answer: [Yes]352

Justification: Our use of libraries, data, and models is consistent with the relevant licenses353

and terms of use. We provide explicit license information in the references section.354

13. New Assets355

Question: Are new assets introduced in the paper well documented and is the documentation356

provided alongside the assets?357

Answer: [Yes]358

Justification: We provide documented code for reproducibility.359

14. Crowdsourcing and Research with Human Subjects360

Question: For crowdsourcing experiments and research with human subjects, does the paper361

include the full text of instructions given to participants and screenshots, if applicable, as362

well as details about compensation (if any)?363

Answer: [NA]364

Justification: This paper does not involve crowdsourcing or human subjects.365

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human366

Subjects367
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Question: Does the paper describe potential risks incurred by study participants, whether368

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)369

approvals (or an equivalent approval/review based on the requirements of your country or370

institution) were obtained?371

Answer: [NA]372

Justification: This paper does not involve crowdsourcing or human subjects.373
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