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ABSTRACT

We study the computational limits of learning k-bit Boolean functions (specif-
ically, AND, OR, and their noisy variants), using a minimalist single-head
softmax-attention mechanism, where k = Θ(d) relevant bits are selected from d
inputs. We show that these simple AND and OR functions are unsolvable with a
single-head softmax-attention mechanism alone. However, with teacher forcing,
the same minimalist attention is capable of solving them. These findings offer
two key insights: Architecturally, solving these Boolean tasks requires only min-
imalist attention, without deep Transformer blocks or FFNs. Methodologically,
one gradient descent update with supervision suffices and replaces the multi-step
Chain-of-Thought (CoT) reasoning scheme of [Kim and Suzuki, ICLR 2025] for
solving Boolean problems. Together, the bounds expose a fundamental gap be-
tween what this minimal architecture achieves under ideal supervision and what
is provably impossible under standard training.

1 INTRODUCTION

We study the computational limits of learning monotone k-bit Boolean functions (i.e, AND/OR with
k relevant bits) with d-bit input using a minimalist one-head softmax-attention layer. In particular,
we show that a single softmax-attention head provably learns an unknown k-bit AND/OR function,
where k = Θ(d), after one gradient step if the training loss includes a teacher-forcing signal. In con-
trast, under ordinary end-to-end training (only input-label pairs, no intermediate hints) no algorithm
running in poly(d) time can recover the same function, even when given eΩ(d) examples.

Transformers dominate modern machine learning (Devlin et al., 2018; Brown et al., 2020; Floridi
& Chiriatti, 2020; Ji et al., 2021; Touvron et al., 2023a;b; Zhou et al., 2023; 2024; 2025), yet their
precise capabilities and limits remain elusive. For instance, Large Language Models can achieve
human-level reasoning ability in expert problems (Singhal et al., 2023; Bubeck et al., 2024; Gao
et al., 2025), but fail simple arithmetic problems (Li et al., 2024b; Chiang, 2024; Mahendra et al.,
2025). Similarly, Transformer-based generative models, such as Diffusion Transformers (DiTs)
(Peebles & Xie, 2023), can generate high-quality realistic visual content (Saharia et al., 2022; Ho
et al., 2022; Wu et al., 2023), but they may fail at simple counting tasks or basic physical con-
straints (Huang et al., 2023a; Guo et al., 2025a;b). Thus, studying what tasks a Transformer can or
cannot learn is both theoretically intriguing and practically important. On one hand, identifying in-
herent weaknesses can guide the design of more robust architectures and training methods (e.g., (Hu
et al., 2025) identify necessary conditions for fast LoRA). On the other hand, uncovering new capa-
bilities of even simplified Transformer components can expand our understanding of their potential
(e.g., (Kajitsuka & Sato, 2023; 2024) establish universality of simple transformers and transformers’
minimal requirements for memorizing a set of data). Many theoretical works chart this landscape,
yet Transformers’ training dynamics on algorithmic or logical problems remain underexplored.

Recently, (Kim & Suzuki, 2025) show that a one-layer Transformer can solve the parity function effi-
ciently when provided with intermediate Chain-of-Thought (CoT) reasoning steps (i.e., with teacher
forcing), but struggles to learn parity via end-to-end training without such assistance. These findings
highlight a supervision-gap question: the choice of training regime alone can lead to distinct learn-
ing behavior in the same model. This contrast motivates a deeper investigation into the conditions
under which Transformer-like architectures succeed or fail on structured tasks.
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In this work, we investigate whether the same supervision gap already appears for the simpler k-
Boolean problem (i.e., AND/OR) and whether a even simpler architecture (one single-head attention
without FFN) can still close it. This simple “k-Boolean” task serves as a proxy for understanding
how gradient-based training can (or cannot) discover important features and compute logical opera-
tions in a minimalist attention network. Formally, the target function is an unknown k-bit AND/OR
with k = Θ(d) over d binary inputs. The model is nothing more than a single-head softmax-attention
layer — no feed-forward layer — starting with no clue which k positions matter. Then, we ask:

Can gradient descent training on input-output examples learn to attend to the cor-
rect k bits and reliably compute the AND/OR?

Our analysis yields both a provably efficient learning result and a hardness result.

Theorem 1.1 (Upper bound (Efficient Learnability with Teacher Forcing), Informal Version of The-
orem 4.1). With intermediate supervision that exposes the Boolean label during training, the initial
gradient already aligns with the indicator of the true feature subset. A single gradient update is
enough to drive the model’s attention weights to the correct k positions, yielding vanishing classifi-
cation error.

Theorem 1.2 (Lower bound (Intractability under End-to-End Training), Informal Version of Theo-
rem 4.3). Remove that hint and the picture flips: the gradient of the usual loss averages over

(
d
k

)
competing hypotheses and is therefore nearly uninformative. We prove that any learner, regardless
of step size, adaptivity, or loss landscape access, fails to identify the relevant bits even after eΘ(d)

samples.

Contributions. These results reveal a dramatic gap between what is achievable with the right
supervision and what is provably impossible with naive training. Our contributions are two-fold:

• Upper bound (Theorem 1.1). We prove that if the model is trained with intermediate su-
pervision (a form of teacher forcing where the model is guided to correctly compute partial
results), then just one step of gradient descent from a random initialization suffices to iden-
tify the correct k-bit subset and achieve low error. In fact, with n = Ω(dε) samples for any
constant ε > 0, a single gradient update can drive the classification error to O(d−ε/8). This
result shows that, under the right training regime, even a one-layer attention mechanism can
rapidly learn a high-dimensional conjunction or disjunction. In other words, one-layer at-
tention is in principle powerful enough to implement the required logical function, and it
can do so with minimal training when given appropriate hints.

• Lower bound (Theorem 1.2). In contrast, we prove a strong lower bound for the stan-
dard end-to-end training setting with no intermediate signals. Intuitively, without chain-
of-thought style guidance, the learning algorithm must discover the relevant k bits and
the correct logical operation purely from input-output examples, which poses a compu-
tationally hard search problem. We show that any algorithm (in particular, any gradient-
based learner) will fail to recover the correct subset of bits, even if it is given as many as
n = exp(Θ(d)) training examples. Equivalently, with standard training the model’s er-
ror remains bounded away from zero unless it executes a super-polynomial (exhaustive)
search. This lower bound relies on constructing challenging initializations/loss landscapes
that effectively trap polynomial-time learning algorithms. It establishes that without the
proper supervision, our simple attention model cannot learn the k-bit Boolean function in
any reasonable amount of time, even with overwhelming data.

Taken together, our results draw a clear line in the sand: a single softmax head already has ample
expressive capacity, and the only obstacle to learning the k-bit Boolean task is the absence of an
intermediate signal. By showing one-step convergence with teacher forcing and a matching hardness
bound without it, we isolate the supervision gap as the unique bottleneck.

This dichotomy yields a crisp benchmark for curriculum design, auxiliary-loss engineering, and
inductive-bias studies, pinning down exactly when a minimal attention layer flips from tractable to
impossible. Ultimately, our result work both certify what softmax-attention mechanism can do and
identify why it sometimes fails. Collaboratively, they sharpen our understanding of how architecture,
supervision, and optimization jointly govern the learnability of structured functions.
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2 RELATED WORK

Recent theoretical results highlight that standard Transformers have fundamental difficulty learning
certain Boolean functions unless aided by intermediate supervision. In particular, one-layer Trans-
formers trained end-to-end tend to fail on high-sensitivity tasks like parity without step-by-step
guidance. This has been attributed to an implicit simplicity bias: Transformers favor low-sensitivity
(low-degree) functions, making it hard for gradient descent to find parity-like solutions (Hahn &
Rofin, 2024; Vasudeva et al., 2024). (Hahn & Rofin, 2024) formally show that Transformers trained
from scratch struggle with parity as sequence length grows, due to extremely sharp loss landscapes
for such functions. Indeed, a model that fits parity on short inputs doesn’t generalize to longer
strings under standard training (Hahn & Rofin, 2024), in stark contrast to recurrent networks which
can memorize parity. On the other hand, providing a “scratchpad” or chain-of-thought (CoT) drasti-
cally changes the game – it breaks the task into easier steps and lowers the function’s sensitivity per
step. For example, (Kim & Suzuki, 2025) prove that if a Transformer is trained with intermediate
parity bits as additional supervision, it can learn k-bit parity in just one gradient update via teacher
forcing. Similarly, with CoT data or a multi-step reasoning format, a one-layer Transformer no
longer needs exponential samples – parity becomes learnable with polynomial sample complexity
(Wen et al., 2024). These findings, building on the RNN results of (Wies et al., 2022) for sequen-
tial parity computation, suggest that decomposing a problem into intermediate targets can provably
overcome the optimization barriers. In summary, without step-by-step supervision a Transformer is
biased toward “easy” (low-sensitivity) functions and can barely cope with parity, but with the right
intermediate hints it can solve parity and related problems efficiently. In this work, we extend this
theory to monotone k-bit Boolean functions such as AND and OR, showing that they too exhibit
a pronounced supervision gap. In the vanilla setting, even these monotonic functions remain hard
to learn reliably (echoing recent independent findings on the majority function’s training complex-
ity (Chen et al., 2025)). However, when we introduce intermediate supervision for these tasks –
effectively guiding the Transformer through the incremental evaluation of the AND/OR – the sam-
ple complexity and training time improve dramatically. Our results broaden the scope of provable
Transformer reasoning with CoT, indicating that task decomposition benefits not just parity, but also
monotonic Boolean reasoning, which has implications for designing training curricula for complex
logical tasks. Due to space limits, we defer extended discussions on related work to appendix.

3 PRELIMINARIES AND PROBLEM SETUP

Here we present the ideas we build on and our problem setup.

Notation. We write [n] := {1, 2, · · · , n} for any integer n. We use 1n to denote a length-n vector
where all entries are ones. We use 0n×d to denote a n × d matrix where all entries are zeros. We
use 1{E} to denote an indicator variable where it outputs 1 if event E holds and 0 otherwise. Scalar
operations apply componentwise to vectors, e.g. for z ∈ Rn we write ϕ(z) = (ϕ(z1), · · · , ϕ(zn)⊤
and z2 = (z21 , · · · , z2n)⊤. For any vector x ∈ Rn, the ℓ2 norm is denoted by ∥x∥ := (

∑n
i=1 x

2
i )

1/2.
and For any x ∈ Rn we define ∥x∥∞ := maxi∈[n] |xi|. The multi-linear inner product or contraction
of z1, · · · , zr ∈ Rn for any r ∈ N is denoted as ⟨z1, · · · , zr⟩ :=

∑n
i=1 z1,i · · · zr,i. In particular,

⟨z1⟩ = z⊤1 1n and ⟨z1, z2⟩ = z⊤1 z2. Let B :=
(
[d]
k

)
denote the set containing all size-k subsets of [d].

Let vb ∈ Rd denote the vector representing the k bits in b for all b ∈ B, i.e. the t-th entry of vb is 1
if t ∈ b else 0. Denote the ℓ2-loss

Ln,b(θ) :=
1

2nd

n∑
i=1

∥vb − fθ(x
i, yi)∥2.

Denote the column-wise Softmax function softmax(·) : Rd×t 7→ Rd×t

softmax(W )(j,m) := σj(wm), where σj(wm) := ewj,m/

d∑
i=1

ewi,m .

Softmax Attention Layer. The attention mechanism is generally defined in terms of key, query
and value matrices K, Q, V : Attn(X) := V softmax(K⊤Q). In this paper, we reparametrize K⊤Q
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by a single matrix W ∈ Rd×t; the value matrix V is set as the identity matrix Id×d to only preserve
the x component1. Thus, for any input X ∈ Rn×d, our attention is defined as

AttW ( X︸︷︷︸
n×d

) := X︸︷︷︸
n×d

softmax(W )︸ ︷︷ ︸
d×t

∈ Rn×t.

Remark 3.1. While the Transformer considered in (Kim & Suzuki, 2025) is already very simple
(consisting of a single-head attention layer followed by an FFN ϕ(·)), our setting is even simpler.
We consider only a single-head softmax attention mechanism as the core computational unit for the
Boolean problem of interest. Such a atomic setting allows us to reveal more fundamental results.
Remark 3.2. Our attention module is the same single-head softmax attention as in (Kim & Suzuki,
2025). Our only simplifications are: (i) we omit the output FFN ϕ(·) and instead train with a
surrogate loss on intermediate targets; and (ii) we analyze a single gradient update. We remark
that, adding a post-attention FFN does not resolve the bottleneck: locating the k relevant bits. An
FFN only reshapes the attended mixture and is incapable of recovering missing support information.
The gradient signal remains uninformative. Thus, the same hardness result in this work hold even
with one extra output FFN as in (Kim & Suzuki, 2025).

Problem Setup. Here we state our problem setting.
Definition 3.3 (Learning k-bit Boolean Functions). Let d ≥ k ≥ 2 be integers such that k =

Θ(d) and let B =
(
[d]
k

)
denote the set of all size k subsets of [d] := {1, · · · , d} equipped with the

uniform distribution. Our goal is to study the k-boolean problem for d-bit inputs x = (xj)
d
j=1 ∼

Unif({0, 1}d), where the target

yand(x) :=
∏
j∈b

xj , or yor(x) := 1−
∏
j∈b

(1− xj), with |b| = k,

is determined by the boolean value of an unknown subset of bits b ∈ B. Given n samples
(xi, yi)i∈[n], our goal is to predict the size k subset b ∈ B deciding the boolean function. In this
paper, we denote xi ∈ Rd to be the i-th input vector. We denote xj ∈ Rn as (xj)i := (xi)j , i.e. xj

is an n-dimensional vector containing the j-th bits of all xi, and y ∈ Rn as yi :=
∏

j∈b x
i
j .

We emphasize that this problem setup distinct this work from (Kim & Suzuki, 2025):
Remark 3.4 (Learning Support vs. Learning Output). The key difference compared to (Kim &
Suzuki, 2025) is that our algorithm learns the support of the Boolean function. Specifically, the exact
input bits that determine the output, whereas (Kim & Suzuki, 2025) only learn to predict the output of
the parity function. To be more precise, the k-bit parity boolean problem studied in (Kim & Suzuki,
2025) is non-monotone. We look at monotone AND/OR on a hidden k-bit subset inside d inputs. The
task seems easier, yet it still shows a huge gap between training with and without hints. Importantly,
our model must identify the unknown subset of relevant input bits (the support of the function). This
is a harder learning objective that goes beyond merely computing the Boolean output. This allows
us to examine whether a single-head attention can not only compute a logical function but also
discover which features matter, highlighting the limits of end-to-end learning without guidance.
Remark 3.5. Our “teacher forcing” supervision provides the hidden relevant subset during train-
ing. This is an idealized scheme. Chain-of-thought prompting in practice gives intermediate reason-
ing but not ground-truth features (Wei et al., 2022). Our one-step hint is stronger. It serves only to
show a theoretical limit: a minimal model can succeed if perfect intermediate feedback is available.

4 MAIN THEORY

We now present our main theoretical results for a single softmax attention head, which reveal a strik-
ing supervision gap between teacher-forced and end-to-end training. Notably, this dichotomy echoes
the recent findings of (Kim & Suzuki, 2025), who showed that efficiently learning parity requires
chain-of-thought supervision (i.e., explicit intermediate reasoning steps). While parity is a partic-
ularly challenging non-monotonic function, here we focus on a simpler class of Boolean concepts:

1This type of reparametrization is common in the literature to make dynamical analysis tractable (Zhang
et al., 2024; Huang et al., 2023b; Mahankali et al., 2023; Kim & Suzuki, 2024; 2025).
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monotone k-bit AND/OR functions with k = Θ(d). Yet we still observe an equally dramatic gap
in learnability. On one hand, under strong supervision (teacher forcing), our minimalist attention
model can learn the target function almost instantaneously: as formalized by Theorem 4.1, a single
gradient step suffices to recover the relevant k-bit subset and produce the correct AND/OR output
with vanishing error. On the other hand, without such intermediate guidance, learning becomes
provably infeasible: Theorem 4.3 shows that no polynomial-time learner can succeed in training the
same model end-to-end, even when provided with exponentially many input-output examples. This
stark contrast underscores the conceptual importance of step-by-step guidance in training and sets
the stage for the formal development in the rest of the section.

4.1 UPPER BOUND: ONE-LAYER ATTENTION PROVABLY SOLVES BOOLEAN PROBLEMS

We now present a constructive upper bound under the monotone k-Boolean setting of Definition 3.3.
Specifically, we show that a single softmax-attention head can represent any AND/OR on k = Θ(d)
relevant bits. More importantly, when the training loss provides teacher-forcing hints (i.e., directly
revealing the relevant bits), the network learns the correct Boolean function in a single gradient
step. Hence, architectural depth is not the bottleneck; appropriate intermediate supervision is. This
stands in stark contrast to the parity result of (Kim & Suzuki, 2025), which requires chain-of-thought
supervision for efficient learning.

We begin by considering the idealized scenario of teacher forcing, where training explicitly identifies
the k relevant bits. This direct supervision renders the learning task almost trivial: even a single
softmax-attention head converges to the desired Boolean function in essentially one gradient step.

Teacher Forcing. Let the k bits in set b ⊆ [d] be j1, . . . , jk, and set t = k/2. We decompose the
Boolean function into t = k/2 intermediate products:

y =

d+t∏
m=d+1

xm,

where for each i ∈ [t], the vector xd+i ∈ Rn is defined by (xd+i)l := (xj2i−1
)l(xj2i)l for l ∈ [d].

The surrogate loss function computes the squared error over the intermediate states xd+1, · · · , xd+t:

L(W ) :=
1

2n

d+t∑
m=d+1

∥ẑ − xm∥2.

Theorem 4.1 (Upper Bound: Softmax Attention Provably Solve Definition 3.3 with Teacher Forc-
ing). Let ϵ > 0, and suppose d is a sufficiently large positive integer. Let k = Θ(d) be an even
integer, and set t = k/2. Define B :=

(
[d]
k

)
to be the collection of all size-k subsets of [d]. Let

X := (x1 · · · xd) ∈ Rn×d and E := (xd+1 · · · xd+t) ∈ Rn×t. Assume n = Ω(dϵ) and consider
any O(d−1−ϵ/4)-approximate gradient oracle ∇̃. Let the weights be initialized as W (0) = 0d×t.
Let vb ∈ {0, 1}d denote the indicator vector that encodes the Boolean target associated with subset
b ⊆ [d]. Since ground-truth vector vb ∈ {0, 1}d is unknown, we define the surrogate function

L(W ) :=
1

2n
∥AttW (X)− E∥2F ,

instead of the loss ∥2 · Softmax(W (1))1t − vb∥∞ to find the target weight matrix W . Set the
learning rate η = Θ(d1+ϵ/8), and choose κ ∈ [d−1, 1] (we set κ = O(d−ϵ/4)). Let W (1) :=
W (0) − η · ∇L(W (0)) be the one-step gradient update.

Then for any target subset b ∈ B, the algorithm solves the k-Boolean problem (Definition 3.3) over
d-bit inputs. With probability at least 1 − exp(−Θ(dϵ/2)) over the randomness in sampling, the
one-step update W (1) ∈ Rd×t satisfies:

∥2 · Softmax(W (1))1t − vb∥∞ ≤ O(d−ϵ/8).

Intuitively, the extra hint collapses an otherwise exponential search over
(
d
k

)
subsets: the fresh gra-

dient already points in the right direction, so the model “locks on” immediately. Therefore, we

5
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establish that with the right supervision, one-layer attention is a universal Boolean learner in prac-
tice as well as theory. To our knowledge, this is the first result demonstrating that a lone softmax
attention head can learn a high-dimensional Boolean concept in essentially one shot.
Remark 4.2 (Teacher Forcing vs. Practice). We reiterate (Remark 3.5) that, our supervision gives
the hidden relevant subset during training. This is an idealized signal. In practice one may use
weaker forms, such as auxiliary losses on partial reasoning steps or chain-of-thought prompts that
provide intermediate text without ground-truth features. Any hint that narrows the search space can
improve learning. Extending our analysis to such surrogate objectives is future work.

Proof Sketch. Our proof consists of three conceptual steps:

Step 1: Computing Interaction Strength. Denote ẑ := 1
d

∑d
i=1 xi. Here, for each i ∈ [t],

we define p[j2i−1] := d + i, and p[j2i] := d + i. The partial derivative of L with respect to
wj,m := W(j,m) can be presented as the inner product 1

nd ⟨ẑ − xm, xj − ẑ⟩, and the gradient has
significant difference between the cases of p[j] = m and p[j] ̸= m. Specifically,

∂L

∂wj,m
=

{
Θ(d−1), p[j] = m;

O(d−1−ϵ/4), p[j] ̸= m.

Step 2: Concentration of Softmax Scores. Taking η = Θ(d1+ϵ/8), the updated weights W (1) =

W (0) − η∇̃L(W (0)) ∈ Rd×t become

w
(1)
j,m = Θ(dϵ/8) · 1{p[j]=m} +O(d−ϵ/8).

Then the softmax scores satisfy

σj(w
(1)
m ) =

{
1
2 +O(d−ϵ/8), p[j] = m;

exp(−Θ(d)), p[j] ̸= m.

Step 3: Upper Bounding the Loss. Let b ∈ B. For any j ∈ [d], if j ∈ b, there’s exactly one
m ∈ [t] such that p[j] = m, and

σ(w
(1)
j,m) =

{
1
2 +O(d−ϵ/8), p[j] = m;

exp(−Θ(d)), p[j] ̸= m.

for j ∈ [d]\b, σ(wj,m) = exp(Ω(d)) for all m ∈ [t]. We deduce that

(Softmax(W (1))1t)j =

{
1
2 +O(d−ϵ/8) + (t− 1) · exp(−Θ(d)), j ∈ b;

t · exp(−Θ(d)), j /∈ b.

Therefore we have

∥2 · Softmax(W (1))1t − vb∥∞ = O(d−ϵ/8).

Please see Section F for a detailed proof.

Discussion. Our main result gives a surprising affirmative answer. We prove that this one-layer
attention model can indeed identify and compute such a k-bit Boolean function with just a single
gradient update, provided it is trained under an idealized supervision regime. In this setting, the
training procedure supplies a direct hint to the attention mechanism (analogous to a teacher-forcing
signal), effectively telling the model how to attend to the relevant inputs in the very first update.

We distill the implications of Theorem 4.1 into four concrete points.

• Single-Step Identifiability. One gradient update assigns roughly 1
2 of the attention mass to

each of the k relevant tokens and pushes all others to exp(−Θ(d)). The model thus learns
the whole AND/OR in one shot, even when k = Θ(d).

• Supervision, NOT Depth, is Critical. Depth 1 already has the needed capacity; teacher
forcing unlocks it. Without this hint, the learner must search over

(
d
k

)
subsets, recovering

the hardness of parity (Kim & Suzuki, 2025).
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• Sharper Upper Bound. Earlier work required more complex networks, or many steps to
fit high-arity Boolean functions. We show these are unnecessary under ideal supervision,
tightening the expressive–learnability frontier for attention.

• Practical Takeaway. Intermediate signals (e.g., attention masks or chain-of-thought la-
bels) can collapse an exponential search space, turning a hard combinatorial task into easy
optimization. Carefully designed auxiliary losses may therefore substitute for architectural
complexity in real systems.

4.2 LOWER BOUND: BOOLEAN HARDNESS

The previous hardness result of (Kim & Suzuki, 2025) only shows that learning the parity function is
hard. We present a new result showing that even learning the support of an easier Boolean problem
(Definition 3.3) in the standard end-to-end learning setting is hard.

Theorem 4.3 (Hardness of Finite-Sample Boolean). Let A be an algorithm to solve k-bit Boolean
problem (Definition 3.3) for d-bit inputs x = (xj)

d
j=1 ∼ Unif({0, 1}d). Let vb denote the length-d

vectors where i-th entry is 1 if i ∈ b and 0 otherwise. Suppose k = Θ(d). Denote the number of
samples as n, and let fθ : {0, 1}n×(d+1) → Rd be any differentiable parameterized model.

If n = eΘ(d), the output θ(A) of A has entry-wise loss lower bounded as

E
b∈B,x

[min
j∈[d]

|(vb − fθ(A)(x, y))j |] ≥ min{k/d, 1− k/d} − e−Θ(d).

Proof. Please see Section G for a detailed proof.

Lower Bounds as (Kim & Suzuki, 2025; Chen et al., 2025) are Possible for Parity/Majority but
not Possible for AND/OR. We remark that proving a similar lower bound for AND/OR functions
using the framework from (Kim & Suzuki, 2025; Chen et al., 2025) is unlikely. The intuition is
that for a random string, balanced functions (e.g., Majority or Parity) output 1 or 0 with equal
probability (1/2). This is not the case for AND/OR. In detail, a key step in previous work (Kim
& Suzuki, 2025; Chen et al., 2025) involves computing binomial coefficients. In (Kim & Suzuki,
2025), they compute A1 =

∑m/2
j=0

(
m
2j

)(
d−m
k−2j

)
and bound |A1/B − 1| ≤ e−Ω(d) where B := 1

2

(
d
k

)
.

In (Chen et al., 2025), they consider a slightly different A1:
∑k/2

j=0

(
m
j

)(
d−m
k−j

)
(see further details

on page 11 in (Chen et al., 2025)), where m denotes the number of ones in x. In contrast, for an
AND function always outputting 1, we have: A1 =

(
m
k

)
·
(
d−m
0

)
=

(
m
k

)
and B = 1

d

(
d
k

)
. For the one

always outputting 0, we have A0 =
∑k−1

j=0

(
m
j

)
·
(
d−m
k−j

)
. Then we just need to bound |A1/B − 1| =

|2
(
m
k

)
/
(
d
k

)
− 1|. Note that

(
m
k

)
∈ [(m/k)k, (em/k)k]. Thus, there exists some constant c0 such that(

m
k

)
= (c0m/k)k + O(1). Similarly, there exists constant c1 such that

(
d
k

)
= (c1d/k)

k + O(1).
As long as we pick 2(c0m/c1d)

k = 1, we can show |A1/B − 1| ≤ e−Ω(d) for k = Θ(d). This
means (c1d/c0m)k = 2. Thus, we need to choose m = dc1

21/kc0
. Therefore in the setting of AND,

the choice of m is super restricted, but in previous work (Kim & Suzuki, 2025; Chen et al., 2025),
the choice range is quite general. Similarly, it’s true for OR.

Discussion. Earlier sections showed how special intermediate feedback (e.g., one-step supervision
or guidance on intermediate predictions) can break the learning task into smaller, more tractable
pieces. A key open question is whether such signals are truly necessary. Put differently, does the
lack of intermediate hints make learning impossible in practice if we only have raw end-to-end data?
The following claim answers in the affirmative:

Claim 4.4. Without the special training signal, the learning problem is computationally intractable,
even though it remains statistically learnable with sufficient data.

A few remarks are in order.

Remark 4.5 (Difference to Previous Computational Hardness Results). A wide range of existing
hardness results (Alman & Song, 2023; 2024a;b; 2025) have shown that, under the SETH (Im-
pagliazzo & Paturi, 2001) hypothesis, Transformer forward and backward computations cannot be

7
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numerically approximated in truly subquadratic time with acceptable error. These results primarily
focus on numerical computation, examining only whether efficient computation of Transformers is
feasible. In contrast, our work addresses a completely different problem: whether Transformers
can generalize well on simple Boolean logic problems. Rather than only focusing on numerical
properties, we take a more practical perspective on model generalization.

Remark 4.6 (Implications). We highlight two main consequences for theory and practice:

• Theoretical Significance. This lower bound complements our earlier positive results.
When one-step supervision is available, the learning problem is tractable. Without such
supervision, the problem is essentially intractable. Hence, these results precisely demar-
cate the boundary of efficient learning for our model: the extra training signals are not
merely a helpful artifact of analysis, but are fundamentally required for polynomial-time
learning. This underscores the gap between statistical learnability (possible in principle)
and computational feasibility (efficient in practice).

• Practical Impact. In real-world scenarios of this form, relying on end-to-end training alone
(with no auxiliary signals) may be doomed to fail. Instead, practitioners should incorporate
additional supervision or structure – like our one-step guidance — to render the problem
solvable within reasonable computational limits. This clarifies why intermediate feedback
is so valuable: without it, the search space becomes prohibitively large.

In sum, this lower bound is tight: it shows that the strong supervision in our one-step scheme is not
merely beneficial, but necessary. Absent such signals, learning becomes computationally infeasible.
Combined with the previous upper bound, these results delineate a sharp threshold on what single-
head attention can learn and underscore the pivotal role of the training regime in achieving success.
Finally, we remark that our techniques can be generalized to a broader family of Boolean functions
(e.g., functions that output the answer with some probability of failure, known as noisy Boolean
functions). Due to space limitations, we defer these results to the appendix.

4.3 PRACTICAL IMPLICATIONS

Our results highlight five key takeaways:

Architectural Capacity. Our theoretical findings highlight that even a minimalist Transformer
configuration can perform surprisingly complex logical reasoning. In particular, a single-head,
single-layer softmax attention module (with a simple feed-forward output) is sufficient to repre-
sent and learn monotone Boolean functions involving Θ(d)-way feature interactions. This defies the
conventional intuition that deep stacks of layers or large model depth are necessary for such combi-
natorial tasks. In principle, one layer of softmax attention already possesses the expressive capacity
for high-arity logical operations, such as an AND/OR over a hidden subset of the inputs.

Training Dynamics and Supervision. From an optimization perspective, our results expose a
stark dichotomy in learning outcomes. With carefully designed intermediate supervision (for exam-
ple, a teacher-forcing signal that guides the attention head’s output), gradient descent homes in on
the correct solution in a single step. In essence, the model quickly “finds a needle in a haystack” by
immediately identifying the true relevant subset of features. In contrast, under standard end-to-end
training (i.e. using only input-output pairs with no intermediate hints), the same model is provably
unable to escape the haystack of exponentially many possibilities. No polynomial-time algorithm
can find the correct subset in this setting without an exponential number of samples or steps.

In practical terms, this suggests that appropriate inductive biases or curriculum-based training pro-
tocols (such as breaking the task into smaller, explicitly supervised steps) are essential for learning
such logical structure. Simply scaling up model size or training data, without the right form of
intermediate guidance, is unlikely to yield the desired reasoning ability. Notably, this theoretical di-
chotomy mirrors recent empirical successes with chain-of-thought training methods: providing the
model with intermediate “hints” or subgoals can transform an otherwise intractable learning prob-
lem into a trivial one-step task. Our results provide a concrete example of this principle, explaining
why giving the model the right hint makes all the difference.

8
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Why Supervision Helps? The analysis offers insight into how the presence of intermediate targets
so dramatically alters the learning dynamics. Under the idealized loss with teacher-forcing super-
vision, the initial gradient is exactly aligned with the direction of the true k-bit subset of features.
In other words, right at initialization the very first gradient step nudges the attention weights toward
precisely the correct k relevant bits. This fortunate alignment is what enables one-step learning:
the model effectively locks onto the correct subset almost immediately. By contrast, without any
intermediate signals, the initial gradient is merely an average over all plausible target functions, and
the informative component pointing to the true subset is drowned out by the contributions of myriad
incorrect subsets. The model is left with no clear direction in parameter space, meaning that expo-
nentially many samples or updates would be required to eventually sift out the true features from
final-output supervision alone. These structural observations vividly illustrate how a well-chosen
training signal can fundamentally alter the trajectory of learning, turning an otherwise infeasible
search problem into a tractable one.

Broader Theoretical Significance. In a broader context, our results reinforce an emerging theme
in the theory of Transformer learning: expressive power is cheap, but learning power is costly. Even
an extremely simple attention architecture — a one-head, one-layer Transformer — can represent
surprisingly intricate Boolean logic. Prior work has likewise shown that even small Transformers
can emulate complex computations by appropriate setting of their weights. The true bottleneck,
therefore, is not the ability to express or represent a complex function, but the ability to learn it
efficiently. Without the aid of intermediate hints (such as teacher forcing or chain-of-thought
supervision), gradient-based training must blindly explore an exponentially large hypothesis space,
and it inevitably stalls when confined to polynomial time or sample complexity. Thus, our theoretical
study sharpens the distinction between what a minimal architecture could do in principle and what
it can actually learn to do under standard training. The gap between expressivity and learnability
uncovered here points to the critical role of the training regime in unlocking a model’s potential.

Implications for Curriculum Design. By identifying the exact form of supervision that flips our
learning task from intractable to one-step solvable, we provide a clean benchmark for research on
curriculum learning, intermediate targets, and inductive biases. This k-bit Boolean teacher-forcing
task serves as a minimal example of how the right training protocol can unlock a network’s latent
capabilities. It illuminates how even very simple models can succeed at systematic reasoning when
guided with minimal but well-chosen intermediate feedback. Such insights suggest a principled
blueprint for designing curricula and architectural biases to teach Transformers how to reason, rather
than relying on brute-force depth or scale alone. Future work can use this task as a testbed for
exploring how additional hints, auxiliary losses, or structural priors might bridge the gap between a
model’s theoretical capacity and its practical learnability.

Summary. We demonstrate that: with the right supervision, even a minimalist one-layer attention
model solves the task in one step. Without it, learning is intractable. This contrast clarifies how
architecture, supervision, and optimization jointly determine learnability.

5 CONCLUSION

We show that a single-head softmax attention model can learn a k-bit AND/OR Boolean function
in one gradient step with teacher forcing, achieving low error with only polynomial many samples
(Theorem 4.1). We also prove a lower bound: without such intermediate supervision, no efficient
algorithm can learn these functions, and training remains stuck with error bounded away from zero
(Theorem 4.3). These findings demonstrate the strong representational power of even the simplest
attention networks. At the same time, they reveal that successful training hinges on the right su-
pervision signals. Notably, our analysis aligns with recent results on parity (Kim & Suzuki, 2025),
which likewise highlight the need for chain-of-thought guidance to solve certain tasks. Looking for-
ward, these insights suggest that carefully designed curricula and training protocols incorporating
intermediate hints could unlock the full potential of simple attention models. They also invite further
theoretical exploration into how such minimalist architectures learn complex tasks.

9
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Appendix

LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.

Roadmap. In Section A, we present the paper’s broader impact. Section B discusses its limita-
tions. Section D lists well-known probability tools such as Hoeffding and Chernoff bounds, and
recalls a basic algebraic fact. Section E introduces several interaction tools, primarily used to prove
the upper bound. Section F states our upper-bound result, and Section G gives the lower-bound re-
sult. Section H extends classical Boolean functions to their noisy variants. Finally, Section I extends
our upper bound to the local majority problem.

A BROADER IMPACT

Our theory identifies when a small attention model can and cannot learn logical rules. The results
can guide curricula that add simple hints and save compute. The work is purely theoretical, so direct
harm is unlikely. Clearer supervision may cut silent failures in safety-critical AI. We release no
models or data, so misuse risk stays low.

B LIMITATIONS

Our analysis isolates a clear supervision gap for k-bit monotone AND/OR functions but rests on
several simplifying assumptions. First, the positive result requires teacher-forcing signals that ex-
pose the hidden subset, a form of intermediate supervision seldom available in practice. Second, the
negative result is worst-case: polynomial-time learners might still succeed on benign data distribu-
tions or with heuristic regularization. Third, we study only monotone Boolean tasks with k = Θ(d)
and a single-head, depth-one attention layer; extending the proofs to non-monotone logic, differ-
ent sparsity regimes, or realistic multi-head Transformers remains open. Lastly, the work is purely
theoretical. Empirical confirmation and tighter finite-sample constants are left for future research.

C MORE RELATED WORK

Circuit Complexity Lower Bounds for Attention Mechanism. Circuit complexity bound is a
fundamental concept in complexity theory (Vollmer, 1999; Arora & Barak, 2009), which shows the
simplest logical circuit that can compute a specific function with low approximation error. Specifi-
cally, when a model belongs to a weaker circuit complexity class, it cannot solve problems that be-
long to stronger complexity classes. For instance, any model that can be approximated in TC0 will
fail to solve NC1 problems like arithmetic formula evaluations (Floyd, 1993), unless TC0 = NC1

(a famous open problem). Recent works (Merrill et al., 2022; Liu et al., 2023) have shown that
Transformers with average-head attention or softmax attention have similar computational capabil-
ity as constant-depth threshold circuits, falling into the non-uniform TC0 class. (Li et al., 2024b)
has shown that Transformers without CoT (Wei et al., 2022; Wang et al., 2023) belong to the TC0

circuit family, and this problem can be alleviated by involving CoT, resulting in a stronger capa-
bility to solve NC1-hard problems. These results have recently been extended to more settings of
attention computation, such as RoPE-based Transformers (Chen et al., 2024), graph attention (Li
et al., 2025), and generalized tensor attention (Li et al., 2024a). Previous results mainly focus on
the forward computation of Transformer models, showing that regardless of the training dynamics,
Transformers may solve any TC0 problems. In this work, we present a training dynamics aware
hardness result, which shows that even the simplistic Boolean function computation problem that is
in weaker circuit complexity classes can be hard for Transformers, differing from previous circuit
complexity-based hardness results.
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Computational Hardness of Attention Computation. Recent works have shown hardness re-
sults showing that attention mechanisms cannot be approximated efficiently, conditioned on famous
open conjectures (i.e., strengthening of P ̸= NP) in complexity theory, such as the Strong Expo-
nential Time Hypothesis (SETH) 2 (Impagliazzo & Paturi, 2001). For instance, (Alman & Song,
2023) has proved that for d = O(log n) with Θ(

√
log n) level weight matrix entry magnitude, there

is no algorithm that can approximate the attention matrix witin 1/ poly(n) approximation error in
truly subquadratic time. (Alman & Song, 2023) has shown that such hardness can be alleviated with
bounding the entries of the model parameters of attention, and when the weight element magnitude is
at o(

√
log n), there is an algorithm that can approximate the attention mechanism with 1/ poly(n)

approximation error in almost linear time. Besides, (Alman & Song, 2024a) extends (Alman &
Song, 2023)’s forward-only hardness results to backward computations with theoretically optimal
polynomials, showing that without bounded entries, there is no algorithm that can approximate the
Transformer gradients in truly subquadratic time, and with bounded entries the gradients can be
approximated in almost linear time. These results extend to more types of attention, such as hard-
ness of the generalized tensor attention (Alman & Song, 2024b), and RoPE-based attention (Alman
& Song, 2025). Very recently, (Gupta et al., 2025) further extends the work of (Alman & Song,
2023) to almost all the regimes of feature dimension d (beyond d = O(log n)). These previous
works mainly show that the numerical computations of Transformers, in both forward and backward
passes, are hard to finish in truly subquadratic time. In contrast, our work shows that without CoT,
Transformers cannot generalize well on some specific types of simple Boolean functions, being
orthogonal to previous contributions.

D PROBABILITY TOOLS AND SIMPLE ALGEBRA FACTS

To prepare our proof, we first introduce some well-known probability tools.
Lemma D.1 (Chebyshev’s Inequality, Theorem 2 of (Chebyshev, 1867)). Let X be a random vari-
able with finite expected value µ = E[X] and finite non-zero variance σ2 = Var[X] > 0. Then, for
any real number k > 0,

P(|X − µ| ≥ kσ) ≤ 1

k2
.

Lemma D.2 (Hoeffding’s Inequality, Theorem 2 of (Hoeffding, 1963)). If X1, X2, · · · , Xn are
independent random variables and ai ≤ Xi ≤ bi for all i ∈ [n]. Let X = 1

n

∑n
i=1 Xi. Then for

any δ > 0,

Pr[X − E[X] ≥ t] ≤ exp(− 2n2t2∑n
i=1(bi − ai)2

).

Lemma D.3 (Chernoff Bound). Let X ∼ Bin(n, p) and let µ = E[X]. For any δ ∈ (0, 1), we have

• Pr[X ≥ (1 + δ)µ] ≤ exp(−δ2µ/3).

• Pr[X ≤ (1− δ)µ] ≤ exp(−δ2µ/2).
Fact D.4. If the following conditions hold

• a > 0, b > 0.

• Let δ ∈ (0, 0.1).

• a/b ≤ 1 + δ.

• b/a ≤ 1 + δ.

• a+ b ≥ 1− δ.

• a+ b ≤ 1.

Then, we can show
2For any δ > 0, there exists a sufficiently large k such that the k-SAT problem cannot be solved in 2(1−δ)n

time.
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• Part 1. a ∈ [ 12 − 2δ, 1
2 + 2δ].

• Part 2. b ∈ [ 12 − 2δ, 1
2 + 2δ].

Proof. Without loss of generality, we know one of the a and b is ≥ 1
2 − δ/2. Thus, we can assume

that a ≥ 1
2 − δ/2 and b ≤ 1

2 + δ/2.

Proof of Part 1. Then we can show

a ≥ 1

2
− δ/2

≥ 1

2
− δ,

where the first step follows from our assumption of a, the second step follows from the domain of δ.

We can show

a ≤ (1 + δ)b

≤ (1 + δ)(
1

2
+ δ/2)

=
1

2
+ 1.5δ + δ2/2

≤ 1

2
+ 2δ,

where the first step follows from a/b ≤ 1+ δ, the second step follows from our assumption of b, the
second step follows from the simple algebra, the third step follows from the domain of δ.

Proof of Part 2. We know that

b ≤ 1

2
+ δ/2

≤ 1

2
+ δ,

where the first step follows from our assumption of b, the second step follows from the domain of δ.

Similarly, we can show

b ≥ 1

2
− 2δ,

where the step follows from a similar procedure as Part 1.

E INTERACTIONS

E.1 INTERACTION TOOL FROM PREVIOUS WORK

We start with stating a tool from previous work,
Lemma E.1 (Concentration of Interaction Terms, Lemma 9 of (Kim & Suzuki, 2025)). If the fol-
lowing conditions holds

• Let κ be defined κ := 4
√

log(d/p)/n.

• Let p ∈ (0, 0.1) denote the failure probability.

• Suppose each bit xi
j for i ∈ [n], j ∈ [d] is i.i.d. generated from the uniform distribution on

{±1}.

• Let Ir,m := {(j1, · · · , jr) | 1 ≤ j1, · · · , jr ≤ m− 1, xj1 · · ·xjr ̸≡ 1}
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Then, we have with probability at least 1− p

max
r∈[4]

(j1,··· ,jr)∈Ir,m

1

n
|⟨xj1 , . . . , xjr ⟩| ≤ κ.

E.2 OUR INTERACTION TOOL

Lemma E.2 (Concentration of Interaction Terms). If the following conditions holds

• Let κ be defined κ := 4
√

log(d/p)/n.

• Let p ∈ (0, 0.1) denote the failure probability.

• Suppose each bit xi
j for i ∈ [n], j ∈ [d] is i.i.d. generated from the uniform distribution on

{0, 1}.

Then, we have with probability at least 1− p

max
r∈[2]

(j1,··· ,jr)∈Ir

1

n
|⟨xj1 , . . . , xjr ⟩ −

1

2r
| ≤ κ.

Proof. Each tuple (j1, · · · , jr, ) ∈ Ir computes a boolean xjr · · ·xjr for which the bits xi :=
xi
jr
· · ·xi

jr
, i = 1, · · · , n are i.i.d. Pr[xi = 1] = 1

2r and Pr[xi = 0] = 1 − 1
2r . By Lemma D.2 we

have that

Pr[|⟨xj1 , · · · , xjr ⟩ −
n

2r
| ≥ κ] ≤ 2e−κ2/n

,

Moreover, |Ir| ≤ dr so that

|I1|+ |I2|+ |I3| ≤ d+ d2 + d3 < 3d3,

Therefore it follows by union bounding that

Pr[ max
r∈[2],(j1,··· ,jr)∈Ir

|⟨xj1 , · · · , xjr ⟩| ≥ nκ] ≤ 6d24e−(nκ)2/n

= 6d3e−4 log(d/p)

= 6d3(p4/d4)

≤ p,

where the second step follows choosing κ = 4
√

log(d/p)/n, and the last step follows from p ∈
(0, 0.1).

Thus, we complete the proof.

Lemma E.3 (Concentration of majority interaction terms). If the following conditions holds

• Let κ be defined κ := 4
√

log(d/p)/n.

• Let p ∈ (0, 0.1) denote the failure probability.

• Suppose each bit xi
j for i ∈ [n], j ∈ [d] is i.i.d. generated from the uniform distribution on

{±1}.

• Let MAJ2 : {+2, 0,−2}d → {+1, 0,−1}d be defined as MAJ2(x + y) := (x + y)/2 for
all x, y ∈ {+1,−1}d.

Then, we have with probability at least 1− p

max
m∈[t]

| 1
n
⟨xj2m−1 ,MAJ2(xj2m−1 , xj2m)⟩ − 1

2
| ≤ κ.
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Proof. Recall the definition of MAJ2. Notice that

MAJ2(xj1 , xj2) =
xj1 + xj2

2
, (1)

We can show that

⟨xj1 ,MAJ2(xj1 , xj2)⟩ = ⟨xj1 ,
xj1 + xj2

2
⟩

=
1

2
⟨xj1 , xj1⟩+

1

2
⟨xj1 , xj2⟩

=
n

2
+

1

2
⟨xj1 , xj2⟩,

where the first step follows from Eq. (1), the second step follows linearity of inner product, and the
last step follows from xj1 ∈ {−1,+1}n.

Note that above equation implies

1

n
⟨xj1 , xj2⟩ =

2

n
⟨xj1 ,MAJ2(xj1 , xj2)⟩ − 1

Applying Lemma E.1 we have

Pr[max
m∈[t]

| 1
n
⟨xj2m−1

, xj2m⟩| ≤ κ] ≥ 1− p.

Combining the above two equations, we have

Pr[max
m∈[t]

| 1
n
⟨xj1 ,MAJ2(xj1 , xj2)⟩ −

1

2
| ≤ κ/2] ≥ 1− p.

This completes the proof.

F UPPER BOUND

The goal of this section is to prove Theorem 4.1. Let us restate it first.

Theorem F.1 (Upper Bound: Softmax Attention Provably Solve Definition 3.3 with Teacher Forc-
ing, Theorem 4.1 Restated). Let ϵ > 0, and suppose d is a sufficiently large positive integer. Let
k = Θ(d) be an even integer, and set t = k/2. Define B :=

(
[d]
k

)
to be the collection of all size-k

subsets of [d]. Let X := (x1 · · · xd) ∈ Rn×d and E := (xd+1 · · · xd+t) ∈ Rn×t. Assume
n = Ω(dϵ) and consider any O(d−1−ϵ/4)-approximate gradient oracle ∇̃. Let the weights be ini-
tialized as W (0) = 0d×t. Let vb ∈ {0, 1}d denote the indicator vector that encodes the Boolean
target associated with subset b ⊆ [d]. Since ground-truth vector vb ∈ {0, 1}d is unknown, we define
the surrogate function

L(W ) :=
1

2n
∥AttW (X)− E∥2F ,

instead of the loss ∥2 · Softmax(W (1))1t − vb∥∞ to find the target weight matrix W . Set the
learning rate η = Θ(d1+ϵ/8), and choose κ ∈ [d−1, 1] (we set κ = O(d−ϵ/4)). Let W (1) :=
W (0) − η · ∇L(W (0)) be the one-step gradient update.

Then for any target subset b ∈ B, the algorithm solves the k-Boolean problem (Definition 3.3) over
d-bit inputs. With probability at least 1 − exp(−Θ(dϵ/2)) over the randomness in sampling, the
one-step update W (1) ∈ Rd×t satisfies:

∥2 · Softmax(W (1))1t − vb∥∞ ≤ O(d−ϵ/8).

Proof. For the choice of n and p, we choose n = Ω(dϵ) and p = exp(−dϵ/2).
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Using Lemma E.2, we can show

κ = O(d−ϵ/4).

We can rewrite L(W (0)) in the following sense.

L(W (0)) =
1

2n

d+t∑
m=d+1

∥ẑm − xm∥2, ẑm =

d∑
j=1

σj(wm)xj .

Define ẑ as ẑ = 1
d

∑d
j=1 xj .

We define δjα as follows:

δjα :=

{
0, α ̸= j;

1, α = j.

Let us consider the parameter regime 1 ≤ α < m.

Then we can show
∂σα(wm)

∂wj,m
= (δjα − σα(wm))σj(wm)

= (δjα − σj(wm))σα(wm),

where the 1st step is by definition, and the 2nd step is by simple algebra.

We also have

∂ẑm
∂wj,m

=

d∑
α=1

(δjα − σj(wm))σα(wm)xα

= σj(wm)(xj − ẑm), (2)

where the 1st line is by separating the terms of ẑ, and the 2nd line is by simple algebra.

Remember for all j < m, we have that σj(wm) = 1
d .

Note that W (0) is set as 0d× k
2

at initialization.

Therefore, at the initialization, the gradient of L with respect to each element wj,m can be calculated
as

∂L

∂wj,m
(W ) =

1

n
(ẑm − xm)⊤

∂ẑm
∂wj,m

=
σj(wm)

n
⟨ẑ − xm, xj − ẑ⟩

=
1

nd
(−⟨xm, xj⟩+ ⟨xm, ẑ⟩+ ⟨ẑ, xj⟩ − ⟨ẑ, ẑ⟩)

:=
1

nd
(A1 +A2 +A3 +A4), (3)

where the 1st step is by chain rule, the 2nd step is by Eq. (2), the 3rd step is by separating the terms,
and the last step follows from we define A1, A2, A3 and A4 in that way.

Analyzing the Interaction Terms. Using Lemma E.2, we have

1

n
⟨xm, xj⟩ =

{
1
4 +O(κ), p[j] = m;
1
8 +O(κ), otherwise.

(4)

where the 1/4 from when p[j] = m, ⟨xm, xj⟩ = ⟨xc1[m], xc2[m]⟩ ∈ I2, the 1/8 terms from when
p[j] ̸= m, ⟨xm, xj⟩ = ⟨xc1[m], xc2[m], xj⟩ ∈ I3.

Note that κ = O(d−ϵ/4). Also we consider the parameter regime d < m ≤ 2d− 1.
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For the first term in Eq. (3), we can show
1

nd
A1 = − 1

nd
⟨xm, xj⟩

= − 1

8d
(1{p[j]=m} + 1) +O(d−1κ)

= − 1

8d
1{p[j]=m} −

1

8d
+O(d−1−ϵ/4),

where the 2nd step is by Eq. (4), and the 3rd step is by combining the terms.

Next, for term A2, we have
1

nd
A2 =

1

nd2
⟨xm, ẑm⟩

=
1

nd2
(

∑
p[α]=m

⟨xm, xα⟩+
∑

p[β] ̸=m

⟨xm, xβ⟩)

=
1

nd2
(2 · (n

4
+O(nκ)) + (d− 2) · (n

8
+O(nκ))

=
1

8d2
+

1

8d
+O(d−1κ)

=
1

8d
+O(d−1−ϵ/4).

For term A3, we have that
1

nd
A3 =

1

nd
⟨ẑ, xj⟩

=
1

nd2
(⟨xj , xj⟩+

∑
α ̸=j

⟨xα, xj⟩)

=
1

nd2
(
n

2
+O(nκ) +

(d− 1)n

4
+O((d− 1)nκ))

=
1

4d
+O(d−1−ϵ/4),

where the 1st step is by definition, and the 2nd step is by separating the terms, the 3rd step is by
Lemma E.2, and the last step is by κ = O(d−ϵ/4) and combining the terms.

For term A4, we have
1

nd
A4 = − 1

nd
⟨ẑ, ẑ⟩

= − 1

nd3
(

d∑
α=1

⟨xα, xα⟩+
∑
α ̸=β

⟨xα, xβ⟩)

= − 1

nd3
(
nd

2
+O(ndκ) +

nd(d− 1)

4
+O(nd(d− 1)κ))

= − 1

4d2
− 1

4d
−O(d−1κ)

= − 1

4d
−O(d−1−ϵ/4),

where the 1st step is by definition, the 2nd step is by separating terms, the 3rd step is by ⟨xα, xα⟩ =
⟨xα⟩ and Lemma E.2, the 4th step is by combining the terms, and the last step is by κ = O(d−ϵ/4).

From the computation of A1, A2, A3 and A4, we conclude that
∂L

∂wj,m
(W (0)) = − 1

8d
1{p[j]=m} +O(d−1−ϵ/4),

In addition, we want to remark same result holds to the approximate gradient ∇̃wj,mL at initializa-
tion since the cutoff does not apply and each component of the noise is bounded by O(d−1−ϵ/4).
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Property of Softmax Calculations. Taking η = Θ(d1+ϵ/8), the updated weights

W (1) = W (0)︸ ︷︷ ︸
d× k

2

−η ∇̃L(W (0))︸ ︷︷ ︸
d× k

2

become

w
(1)
j,m =

dϵ/8

8
1{p[j]=m} +O(d−ϵ/8). (5)

For each j ̸= c1[m], c2[m], we can show

σj(w
(1)
m ) = ew

(1)
j,m/

∑
α

ew
(1)
α,m

≤ e
w

(1)
j,m−w

(1)

c1[m],m

≤ exp(−Ω(d)), (6)

where the 1st step is by definition of softmax function, the 2nd step is by simple algebra, and the 3rd
step is by Eq. (5).

It is obvious that summation of all softmax values is equal to 1, thus, we have

σc1[m](w
(1)
m ) + σc2[m](w

(1)
m ) ≥ 1− exp(−Ω(d)).

Furthermore,

σc1[m](w
(1)
m )

σc2[m](w
(1)
m )

= e
w

(1)

c1[m],m
−w

(1)

c2[m],m

≤ exp(O(d−ϵ/8))

≤ 1 +O(d−ϵ/8), (7)

where the 1st line is by definition, the 2nd line is by Eq. (5), and the 3rd line is by the inequality
et ≤ 1 +O(t) for small t > 0.

Using symmetry property,

σc2[m](w
(1)
m )/σc1[m](w

(1)
m ) ≤ 1 +O(d−ϵ/8). (8)

By Eq. (7) , Eq. (8) and Lemma D.4, we conclude that

1

2
−O(d−ϵ/8) ≤ σc1[m](w

(1)
m ), σc2[m](w

(1)
m ) ≤ 1

2
+O(d−ϵ/8). (9)

Proof of Loss Function. Let prediction of vb be 2W (1)1 k
2

.

Then, we can show

∥2 · Softmax(W (1))1t − vb∥∞ ≤ max
j∈[d]∩b

(|
t∑

i=1

σj(w
(1)
i )− 1|) + max

j∈[d]\b
(|

t∑
i=1

σj(w
(1)
i )|)

≤ 2(O(d−ϵ/8) + (t− 1) exp(−Ω(d)) +
k

d
exp(−Ω(d)))

= O(d−ϵ/8),

where the 1st step is by the definition of ∥ · ∥∞, the 2nd line is by Eq. (6) and Eq. (9), and the last
step is by simple algebra.

This completes the proof.

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

G LOWER BOUND

The goal of this section is to prove Theorem 4.3. Let us first restate it first.
Theorem G.1 (Theorem 4.3 Restate: Hardness of Finite-Sample Boolean). Let A be any algorithm
to solve k-bit Boolean problem (Definition 3.3) for d-bit inputs x = (xj)

d
j=1 ∼ Unif({0, 1}d). Let vb

denote the length-d vectors where i-th entry is 1 if i ∈ b and 0 otherwise. Suppose k = Θ(d). Denote
the number of samples as n, and let fθ : {0, 1}n×(d+1) → Rd be any differentiable parameterized
model. Let n = 2Θ(d). Then, the output θ(A) of A has entry-wise loss lower bounded as

E
b∈B,x

[min
j∈[d]

|(vb − fθ(A)(x, y))j |] ≥ min{k/d, 1− k/d} − e−Θ(d).

Proof. For x ∈ {0, 1}d, denote m to be the number of 1’s in x. By the Chernoff bound for the
binomial distribution, for x ∼ Unif({0, 1}d) the following holds:

Pr[m− d/2 > δd/2] ≤ exp(−δ2d/6).

Let δ = 7/8, we have

Pr[m > 15d/16] ≤ exp(−492d/384),

and by union bounding over n = O(( 1615 )
k/2) samples, we have that with probability at least 1 −

O(exp(−492d/384)( 1615 )
k/2) ≥ 1−O(exp(−d/20)), it holds that for all i ∈ [n], there are less than

15d/16 1’s in xi.

Let b ∈ B be any target subset. Since xi are i.i.d. ∼ Unif({0, 1}d), the probability that y = 0n is
greater than 1− n · 1

2k
= 1− exp(Θ(d)).

Combining the above, there is probability 1 − exp(Θ(d)) over random sampling that each sample
xi contains less than 15d/16 1’s and each yi = 0.

Under this situation, by logical deduction we can only deny at most
(
15d/16

k

)
n possibilities of the

target subset b, while the other subsets are all possible to be the target subset.

We calculate (
15d/16

k

)
n(

d
k

) = n · (15d/16)(15d/16− 1) · · · (15d/16− k + 1)

d(d− 1) · · · (d− k + 1)

≤ (
15

16
)kn

= O((
15

16
)k/2)

= exp(−Θ(d)), (10)

where the 1st step is by definition, the 2nd step is by 15d/16−l+1
d−l+1 ≤ 15

16 for all l ∈ [k], the 3rd step is
by n = O(( 1615 )

k/2), and the last step is by simple algebra.

Denote Q to be the collection of the subsets that are possible to be the target subset with the inputs
xi for all i ∈ [n], then |Q|

|B| = exp(−Θ(d)).

For an arbitrary j ∈ [d], there are exactly k|B|
d vectors vb whose j-th entry is 1 for all b ∈ B due to

symmetry. We give a partition of B as B = Bj ∪ Bj , where Bj = {(vb)j = 1|b ∈ B} and Bj its
complement. Then we have

|Bj |
|B|

=
k

d
,

|Bj |
|B|

=
d− k

d
. (11)

Since the subset b is independent of the distribution of the samples, the output of the algorithm
fθ(X; y) ∈ Rd must be the same, and the loss is bounded as

E
b∈B

[|(vb − fθ(A))j |]
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=
1

|B|
∑
b∈B

|(vb − fθ(A))j |

=
1

|B|
(
∑
b∈Bj

|(vb)j − (fθ(A))j |+
∑
b∈Bj

|(vb)j − (fθ(A))j |)

≥ 1

|B|
(

∑
b∈Bj∩Q

|(vb)j − (fθ(A))j |+
∑

b∈Bj∩Q

|(vb)j − (fθ(A))j |)

≥ 1

|B|
((|Bj | − |B\Q|)|1− (fθ(A))j |+ (|Bj | − |B\Q|)|0− (fθ(A))j |)

≥ 1

|B|
min{|Bj | − |B\Q|, |Bj | − |B\Q|}(|1− (fθ(A))j |+ |(fθ(A))j |)

≥ 1

|B|
(min{|Bj |, |Bj |} − |B\Q|)

≥ min{k/d, 1− k/d} − e−Θ(d).

where the 1st step is by the definition of expectation, the 2nd step is by separating the terms, the 3rd
step is by restricting to Q, the 4th and 5th step is by simple algebra, the 6th step is by |a|+|b| ≥ |a+b|
for a, b ∈ R, and the last step is by Eq. (11) and Eq. (10).

H EXTENSION TO NOISY BOOLEAN PROBLEMS

Recall that in Definition 3.3, we define the classical boolean problems. Here we provide a noisy
version as an extension.
Definition H.1 (Learning k-bit p-Noisy Boolean Functions). Let d ≥ k ≥ 2 be integers such that
k = Θ(d) and let B =

(
[d]
k

)
denote the set of all size k subsets of [d] := {1, · · · , d} equipped with

the uniform distribution. Let p ∈ [0, 1/3]. Let the k bits in set b ⊆ [d] be j1, . . . , jk, and set t = k/2.
Our goal is to study the noisy k-boolean problem for d-bit inputs x = (xj)

d
j=1 ∼ Unif({0, 1}d),

where the target

yand(x) :=

d+t∏
m=d+1

x′
m, or yor(x) := 1−

d+t∏
m=d+1

(1− x′
m), with |b| = k,

is determined by the boolean value of the unknown subset of bits b ∈ B.

We can define k-bit p-Noisy AND function. We suppose that the intermediate bits are noisy, and for
each i ∈ [t] and l ∈ [n], the vector xd+i ∈ Rn is defined by

(x′
d+i)l :=

{
(xj2i−1

)l(xj2i)l, with prob. 1− p; (correct case)

1− (xj2i−1)l(xj2i)l, with prob. p.

Similarly, for k-bit p-Noisy OR function, we have

(x′
d+i)l :=

{
1− (xj2i−1

)l(xj2i)l, with prob. 1− p; (correct case)

(xj2i−1
)l(xj2i)l, with prob. p.

Given n samples (xi, yi)i∈[n], our goal is to predict the size k subset b ∈ B deciding the boolean
function. In this paper, we denote xi ∈ Rd to be the i-th input vector. We denote xj ∈ Rn as
(xj)i := (xi)j , i.e. xj is an n-dimensional vector containing the j-th bits of all xi, and y ∈ Rn as
yi :=

∏
j∈b x

i
j .

The following theorem can be viewed as a general version of Theorem 4.1. Essentially, Theorem 4.1
only solves the case when p = 0.
Theorem H.2 (Upper Bound: Softmax Attention Provably Solve Definition H.1 with Teacher Forc-
ing). Let ϵ > 0, and suppose d is a sufficiently large positive integer. Let k = Θ(d) be an even
integer, and set t = k/2. Define B :=

(
[d]
k

)
to be the collection of all size-k subsets of [d]. Let
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X := (x1 · · · xd) ∈ Rn×d and E := (xd+1 · · · xd+t) ∈ Rn×t. Assume n = Ω(dϵ) and consider
any O(d−1−ϵ/4)-approximate gradient oracle ∇̃. Let the weights be initialized as W (0) = 0d×t.
Let vb ∈ {0, 1}d denote the indicator vector that encodes the Boolean target associated with subset
b ⊆ [d]. Since ground-truth vector vb ∈ {0, 1}d is unknown, we define the surrogate function

L(W ) :=
1

2n
∥AttW (X)− E∥2F ,

instead of the loss ∥2 · Softmax(W (1))1t − vb∥∞ to find the target weight matrix W . Set the
learning rate η = Θ(d1+ϵ/8), and choose κ ∈ [d−1, 1] (we set κ = O(d−ϵ/4)). Let W (1) :=
W (0) − η · ∇L(W (0)) be the one-step gradient update.

Then for any target subset b ∈ B, the algorithm solves the noisy k-Boolean problem (Definition H.1)
over d-bit inputs. Denote ϕ : R → R as

ϕ(x) :=

{
0, if x ≤ 0.5dϵ/8;

1, otherwise.

With probability at least 1 − exp(−Θ(dϵ/2)) over the randomness in sampling and the affect of
noise, the one-step update W (1) ∈ Rd×t satisfies:

ϕ(W (1))1t = vb.

Proof. Denote ẑ := 1
d

∑d
j=1 xj as in Theorem 4.1. The surrogate loss function computes the

squared error over the intermediate states xd+1, · · · , xd+t:

L(W ) :=
1

2n

d+t∑
m=d+1

∥ẑ − xm∥2.

For any i ∈ [t], we firstly bound the number of indices l ∈ [n] such that

(x′
d+i)l = 1− (xj2i−1)l(xj2i)l.

Denote ri to be the number of indices l satisfying the conditions.

Note that

µ = E[ri] = pn

Using Chernoff bound (Lemma D.3), we have

Pr[ri ≥ (1 + δ)µ] ≤ exp(−δ2µ/3)

Choosing δ = 0.5, we have

Pr[ri ≥ 1.5pn] ≤ exp(−pn/12) = exp(−Θ(dϵ)) (12)

As in Theorem 4.1, the gradient of L with respect to each element wj,m at initialization can be
computed as

∂L

∂wj,m
(W ) =

1

n
(ẑm − x′

m)⊤
∂ẑm
∂wj,m

=
σj(wm)

n
⟨ẑ − x′

m, xj − ẑ⟩

=
1

nd
(−⟨x′

m, xj⟩+ ⟨x′
m, ẑ⟩+ ⟨ẑ, xj⟩ − ⟨ẑ, ẑ⟩)

:=
1

nd
(B1 +B2 +B3 +B4), (13)

where ẑ is defined as ẑ = 1
d

∑d
j=1 xj .
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Using Eq. (12), we have that with probability at least 1 − exp(Θ(dϵ)), δ1 := |A1 − B1| ≤ 1.5pn,
δ2 := |A2 −B2| ≤ 1.5pn. Let δ := δ1 + δ2. We also have B3 = A3 and B4 = A4.

Combining the computation of A1-A4 in Theorem 4.1, ∂L
∂wj,m

(W ) is bounded as

1

nd
(

4∑
i=1

Ai − δ) ≤ 1

nd

4∑
i=1

Bi ≤
1

nd
(

4∑
i=1

Ai + δ),

which deduce to

− 1

8d
1p[j]=m +O(d−1−ϵ/4)− 3p

d
≤ ∂L

∂wj,m
(W ) ≤ − 1

8d
1p[j]=m +O(d−1−ϵ/4) +

3p

d
.

To guarantee that 1/(8d) is dominating the term 3p/d, we need to make that 3p/d ≤ 1/(9d). This
means, p ≤ 1/3.

Thus, we have

− 1

72d
1p[j]=m +O(d−1−ϵ/4) ≤ ∂L

∂wj,m
(W ) ≤ − 1

72d
1p[j]=m +O(d−1−ϵ/4).

Property of Softmax Calculations. Taking η = Θ(d1+ϵ/8), the updated weights

W (1) = W (0)︸ ︷︷ ︸
d× k

2

−η ∇̃L(W (0))︸ ︷︷ ︸
d× k

2

,

become

w
(1)
j,m = dϵ/81{p[j]=m} +O(d−ϵ/8).

Recall ϕ : R → R is denoted as

ϕ(x) :=

{
0, x ≤ 0.5dϵ/8;

1, otherwise.

Therefore

ϕ(w
(1)
j,m) =

{
0, p[j] ̸= m;

1, p[j] = m.

Since for each j ∈ b, there’s exactly one m ∈ [d + t]\[d] such that p[j] = m, we deduce that
ϕ(W (1))1t = vb.

This completes the proof.

I THE MAJORITY PROBLEM

In this section, we extend our techniques to study the k-Majority problem, akin to (Chen et al., 2025)
(Note that prior work only studies the hardness result). We also want to remark that, the majority
problem we study is more or less a local majority problem (where you take two variables as inputs).
Such majority problem is not equivalent to the general majority problem, where the inputs can be
arbitrary number of variables. In order to define k-Majority problem, we need to firstly define
majority function.
Definition I.1 (The Majority Function). Let d ∈ N+. For x ∈ {±1, 0}d and S ⊆ [d], the majority
function MAJ : {±1, 0}d × 2[d] is defined as follows:

MAJ(x, S) :=


+1,

∑
j∈S xj > 0;

0,
∑

j∈S xj = 0;

−1,
∑

j∈S xj < 0.

In particular, MAJ(x, S) is also denoted as MAJ(x) if S = [d].

We define MAJ2(x+ y) := (x+ y)/2.
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Now, we’re ready to define the k-Majority problem.
Definition I.2 (The k-Majority Problem). Suppose d ≥ k ≥ 2 are positive integers. Denote S to be
the set of all S ⊆ [d] with |S| = k. Let S ∈ S be a fixed subset of [d], but unknown. The k-majority
problem is to find out the subset S with n d-bit inputs:

x := (xj)
d
j=1 ∼ Unif({±1}d) ∈ Rd,

and the output y := MAJ(x, S) ∈ {±1, 0}.

Teacher Forcing. Suppose k is an even integer and let t = k/2. Let the k bits in set S ⊆ [d]
be j1, · · · , jk. Let x′ ∈ {±1, 0}t such that x′

m = MAJ2(xj2m−1
, xj2m) for m ∈ [t]. The majority

function y = MAJ(x, S) is also computed as

y = MAJ(x′).

The surrogate loss function computes the squared error over the intermediate states x′:

L(W ) :=
1

2n

t∑
m=1

∥ẑm − x′
m∥2,

where ẑm =
∑d

j=1 σj(wm)xj .

Theorem I.3 (Softmax Attention Provably Solve Definition I.2 with Teacher Forcing). Let ϵ > 0,
and d > 0 be a sufficiently large integer. Suppose k = Θ(d) is an even integer, and let t = k/2.
Define S :=

(
[d]
k

)
as the collection of [d]’s all size-k subsets. Denote the i-th input as xi for i ∈ [n],

and let xj ∈ Rn denote all the j-th entries of xi, i.e. (xj)i = (xi)j for all i ∈ [n] and j ∈ [d]. Set
initialization W (0) = 0d×t, and let E := (x′

1 · · ·x′
t) ∈ Rn×t. For any target subset S ∈ [d], the

algorithm solves the k-majority problem (Definition I.2) over d-bit inputs. With probability at least
1− exp(−Θ(dϵ/2)) over the randomness in sampling, the one-step update W (1) ∈ Rd×t satisfies:

x⊤nint(2W (1))1t −MAJ(x, S) = 0,

for any input x ∈ {±1}d.

Proof. Similar to Theorem 4.1, we compute

∂L

∂wj,m
(W ) =

1

n
(ẑm − x′

m)⊤
∂ẑm
∂wj,m

=
σj(wm)

n
⟨ẑm − x′

m, xj − ẑ⟩

=
1

nd
(−⟨x′

m, xj⟩+ ⟨x′
m, ẑ⟩+ ⟨ẑ, xj⟩ − ⟨ẑ, ẑ⟩)

:=
1

nd
(C1 + C2 + C3 + C4),

where ẑ is defined as ẑ := 1
d

∑d
j=1 xj .

Analyzing the Interaction Terms. When p[j] ̸= m,

⟨xj , x
′
m⟩ = 1

2
⟨xj , xc1[m] + xc2[m]⟩.

Then by Lemma E.3, we deduce that with probability at least 1− p,

|⟨xj , x
′
m⟩| ≤ κ,

for all j,m such that p[j] ̸= m.

Combining the above, we have

∂L

∂wj,m
(W ) =

1

2d
1p[j]=m +O(d−1κ).
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Properties of Softmax Calculations. Taking η = Θ(d1+ϵ/8), the updated weights W (1) =

W (0)︸ ︷︷ ︸
d×t

−η ∇̃L(W (0))︸ ︷︷ ︸
d×t

become

w
(1)
j,m = dϵ/81{p[j]=m} +O(d−ϵ/8). (14)

In particular, for each j ̸= c1[m], c2[m], we have

σj(w
(1)
m ) = ew

(1)
j,m/

∑
α

ew
(1)
α,m

≤ e
w

(1)
j,m−w

(1)

c1[m],m

≤ exp(−Ω(d)),

where the 1st step is by definition of softmax function, the 2nd step is by simple algebra, and the 3rd
step is by Eq. (14).

Using the property
∑d

j=1 σj(wm) = 1, we can show

σc1[m](w
(1)
m ) + σc2[m](w

(1)
m ) ≥ 1− exp(−Ω(d)).

Furthermore,

σc1[m](w
(1)
m )/σc2[m](w

(1)
m ) = e

w
(1)

c1[m],m
−w

(1)

c2[m],m

≤ exp(O(d−ϵ/8))

≤ 1 +O(d−ϵ/8), (15)

where the 1st line is by definition, the 2nd line is by Eq. (14), and the 3rd line is by the inequality
et ≤ 1 +O(t) for small t > 0.

Then using symmetric property, we have

σc2[m](w
(1)
m )/σc1[m](w

(1)
m ) ≤ 1 +O(d−ϵ/8). (16)

By Eq. (15) and Eq. (16), we have

1

2
−O(d−ϵ/8) ≤ σc1[m](w

(1)
m ), σc2[m](w

(1)
m ) ≤ 1

2
+O(d−ϵ/8).

Proof of Loss Function. Define the function nint(·) : R → Z : x 7→ y, where y is the closest
integer with x.

When x is a half integer, we define

nint(x) := x− 1

2
.

Therefore we have

nint(2W (1))(j,m) =

{
1, p[j] = m;

0, otherwise.

Then for any input x ∈ Rd, we have

x⊤nint(2W (1))1t −MAJ(x, S) = 0.

This completes the proof.
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