

000 MINIMALIST SOFTMAX ATTENTION PROVABLY 001 002 LEARNS CONSTRAINED BOOLEAN FUNCTIONS 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 We study the computational limits of learning k -bit Boolean functions (specifically, AND, OR, and their noisy variants), using a minimalist single-head softmax-attention mechanism, where $k = \Theta(d)$ relevant bits are selected from d inputs. We show that these simple AND and OR functions are unsolvable with a single-head softmax-attention mechanism alone. However, with *teacher forcing*, the same minimalist attention is capable of solving them. These findings offer two key insights: Architecturally, solving these Boolean tasks requires only *minimalist attention*, without deep Transformer blocks or FFNs. Methodologically, one gradient descent update with supervision suffices and replaces the multi-step Chain-of-Thought (CoT) reasoning scheme of [Kim and Suzuki, ICLR 2025] for solving Boolean problems. Together, the bounds expose a fundamental gap between what this minimal architecture achieves under ideal supervision and what is provably impossible under standard training.

024 025 1 INTRODUCTION

028 We study the computational limits of learning monotone k -bit Boolean functions (i.e., AND/OR with k relevant bits) with d -bit input using a minimalist one-head softmax-attention layer. In particular, 029 we show that a *single softmax-attention head* provably learns an unknown k -bit AND/OR function, 030 where $k = \Theta(d)$, after *one gradient step* if the training loss includes a teacher-forcing signal. In 031 contrast, under ordinary end-to-end training (only input-label pairs, no intermediate hints) *no* algorithm 032 running in $\text{poly}(d)$ time can recover the same function, even when given $e^{\Omega(d)}$ examples.

033 Transformers dominate modern machine learning (Devlin et al., 2018; Brown et al., 2020; Floridi & Chiratti, 2020; Ji et al., 2021; Touvron et al., 2023a;b; Zhou et al., 2023; 2024; 2025), yet their 034 precise capabilities and limits remain elusive. For instance, Large Language Models can achieve 035 human-level reasoning ability in expert problems (Singhal et al., 2023; Bubeck et al., 2024; Gao 036 et al., 2025), but fail simple arithmetic problems (Li et al., 2024b; Chiang, 2024; Mahendra et al., 037 2025). Similarly, Transformer-based generative models, such as Diffusion Transformers (DiTs) 038 (Peebles & Xie, 2023), can generate high-quality realistic visual content (Saharia et al., 2022; Ho 039 et al., 2022; Wu et al., 2023), but they may fail at simple counting tasks or basic physical 040 constraints (Huang et al., 2023a; Guo et al., 2025a;b). Thus, studying what tasks a Transformer can or 041 cannot learn is both theoretically intriguing and practically important. On one hand, identifying 042 inherent weaknesses can guide the design of more robust architectures and training methods (e.g., (Hu 043 et al., 2025) identify necessary conditions for fast LoRA). On the other hand, uncovering new 044 capabilities of even simplified Transformer components can expand our understanding of their potential 045 (e.g., (Kajitsuka & Sato, 2023; 2024) establish universality of simple transformers and transformers' 046 minimal requirements for memorizing a set of data). Many theoretical works chart this landscape, 047 yet Transformers' training dynamics on algorithmic or logical problems remain underexplored.

048 Recently, (Kim & Suzuki, 2025) show that a one-layer Transformer can solve the parity function 049 efficiently *when* provided with intermediate Chain-of-Thought (CoT) reasoning steps (i.e., with *teacher 050 forcing*), but struggles to learn parity via end-to-end training without such assistance. These 051 findings highlight a *supervision-gap* question: the choice of training regime alone can lead to distinct 052 learning behavior in the same model. This contrast motivates a deeper investigation into the conditions 053 under which Transformer-like architectures succeed or fail on structured tasks.

054 In this work, we investigate whether the same supervision gap already appears for the simpler k -
 055 Boolean problem (i.e., AND/OR) and whether an even simpler architecture (one single-head attention
 056 *without* FFN) can still close it. This simple “ k -Boolean” task serves as a proxy for understanding
 057 how gradient-based training can (or cannot) discover important features and compute logical operations
 058 in a minimalist attention network. Formally, the target function is an unknown k -bit AND/OR
 059 with $k = \Theta(d)$ over d binary inputs. The model is nothing more than a single-head softmax-attention
 060 layer — no feed-forward layer — starting with no clue which k positions matter. Then, we ask:

061 Can gradient descent training on input-output examples learn to attend to the cor-
 062 rect k bits and reliably compute the AND/OR?
 063

064 Our analysis yields both a provably efficient learning result and a hardness result.
 065

066 **Theorem 1.1** (Upper bound (Efficient Learnability with Teacher Forcing), Informal Version of The-
 067 *orem 4.1*). *With intermediate supervision that exposes the Boolean label during training, the initial*
 068 *gradient already aligns with the indicator of the true feature subset. A single gradient update is*
 069 *enough to drive the model’s attention weights to the correct k positions, yielding vanishing classifi-*
 070 *cation error.*

071 **Theorem 1.2** (Lower bound (Intractability under End-to-End Training), Informal Version of Theo-
 072 *rem 4.3*). *Remove that hint and the picture flips: the gradient of the usual loss averages over $\binom{d}{k}$*
 073 *competing hypotheses and is therefore nearly uninformative. We prove that any learner, regardless*
 074 *of step size, adaptivity, or loss landscape access, fails to identify the relevant bits even after $e^{\Theta(d)}$*
 075 *samples.*

076 **Contributions.** These results reveal a dramatic gap between what is achievable with the right
 077 supervision and what is provably impossible with naive training. Our contributions are two-fold:
 078

- 079 • **Upper bound (Theorem 1.1).** We prove that if the model is trained with intermediate su-
 080 *upervision (a form of teacher forcing where the model is guided to correctly compute partial*
 081 *results), then just *one step* of gradient descent from a random initialization suffices to iden-*
 082 *tify the correct k -bit subset and achieve low error. In fact, with $n = \Omega(d^\varepsilon)$ samples for any*
 083 *constant $\varepsilon > 0$, a single gradient update can drive the classification error to $O(d^{-\varepsilon/8})$. This*
 084 *result shows that, under the right training regime, even a one-layer attention mechanism can*
 085 *rapidly learn a high-dimensional conjunction or disjunction. In other words, *one-layer attention* is in principle powerful enough to implement the required logical function, and it*
 086 *can do so with minimal training when given appropriate hints.*
- 087 • **Lower bound (Theorem 1.2).** In contrast, we prove a strong lower bound for the stan-
 088 *dard end-to-end training setting with no intermediate signals. Intuitively, without chain-*
 089 *of-thought style guidance, the learning algorithm must discover the relevant k bits and*
 090 *the correct logical operation purely from input-output examples, which poses a computa-*
 091 *tionally hard search problem. We show that any algorithm (in particular, any gradient-*
 092 *based learner) will *fail* to recover the correct subset of bits, even if it is given as many as*
 093 *$n = \exp(\Theta(d))$ training examples. Equivalently, with standard training the model’s er-*
 094 *ror remains bounded away from zero unless it executes a super-polynomial (exhaustive)*
 095 *search. This lower bound relies on constructing challenging initializations/loss landscapes*
 096 *that effectively trap polynomial-time learning algorithms. It establishes that *without the**
 097 **proper supervision, our simple attention model cannot learn the k -bit Boolean function in**
 098 **any reasonable amount of time, even with overwhelming data.**

099 Taken together, our results draw a clear line in the sand: a single softmax head already has ample
 100 *expressive* capacity, and the only obstacle to learning the k -bit Boolean task is the absence of an
 101 *intermediate signal. By showing one-step convergence with teacher forcing and a matching hardness*
 102 *bound without it, we isolate the supervision gap as the unique bottleneck.*

103 This dichotomy yields a crisp benchmark for curriculum design, auxiliary-loss engineering, and
 104 *inductive-bias* studies, pinning down exactly when a minimal attention layer flips from tractable to
 105 *impossible. Ultimately, our result work both certify what softmax-attention mechanism *can* do and*
 106 *identify why it sometimes fails. Collaboratively, they sharpen our understanding of how architecture,*
 107 *supervision, and optimization jointly govern the learnability of structured functions.*

108

2 RELATED WORK

109

110 Recent theoretical results highlight that standard Transformers have fundamental difficulty learning
111 certain Boolean functions unless aided by intermediate supervision. In particular, one-layer Trans-
112 formers trained end-to-end tend to fail on high-sensitivity tasks like parity without step-by-step
113 guidance. This has been attributed to an implicit simplicity bias: Transformers favor low-sensitivity
114 (low-degree) functions, making it hard for gradient descent to find parity-like solutions (Hahn &
115 Rofin, 2024; Vasudeva et al., 2024). (Hahn & Rofin, 2024) formally show that Transformers trained
116 from scratch struggle with parity as sequence length grows, due to extremely sharp loss landscapes
117 for such functions. Indeed, a model that fits parity on short inputs doesn't generalize to longer
118 strings under standard training (Hahn & Rofin, 2024), in stark contrast to recurrent networks which
119 can memorize parity. On the other hand, providing a “scratchpad” or chain-of-thought (CoT) drasti-
120 cally changes the game – it breaks the task into easier steps and lowers the function’s sensitivity per
121 step. For example, (Kim & Suzuki, 2025) prove that if a Transformer is trained with intermediate
122 parity bits as additional supervision, it can learn k-bit parity in just one gradient update via teacher
123 forcing. Similarly, with CoT data or a multi-step reasoning format, a one-layer Transformer no
124 longer needs exponential samples – parity becomes learnable with polynomial sample complexity
125 (Wen et al., 2024). These findings, building on the RNN results of (Wies et al., 2022) for sequen-
126 tial parity computation, suggest that decomposing a problem into intermediate targets can provably
127 overcome the optimization barriers. In summary, without step-by-step supervision a Transformer is
128 biased toward “easy” (low-sensitivity) functions and can barely cope with parity, but with the right
129 intermediate hints it can solve parity and related problems efficiently. In this work, we extend this
130 theory to monotone k -bit Boolean functions such as AND and OR, showing that they too exhibit
131 a pronounced supervision gap. In the vanilla setting, even these monotonic functions remain hard
132 to learn reliably (echoing recent independent findings on the majority function’s training complex-
133 ity (Chen et al., 2025)). However, when we introduce intermediate supervision for these tasks –
134 effectively guiding the Transformer through the incremental evaluation of the AND/OR – the sam-
135 ple complexity and training time improve dramatically. Our results broaden the scope of provable
136 Transformer reasoning with CoT, indicating that task decomposition benefits not just parity, but also
137 monotonic Boolean reasoning, which has implications for designing training curricula for complex
138 logical tasks. Due to space limits, we defer extended discussions on related work to appendix.
139

140

3 PRELIMINARIES AND PROBLEM SETUP

141

142 Here we present the ideas we build on and our problem setup.
143

144 **Notation.** We write $[n] := \{1, 2, \dots, n\}$ for any integer n . We use $\mathbf{1}_n$ to denote a length- n vector
145 where all entries are ones. We use $\mathbf{0}_{n \times d}$ to denote a $n \times d$ matrix where all entries are zeros. We
146 use $\mathbf{1}_{\{E\}}$ to denote an indicator variable where it outputs 1 if event E holds and 0 otherwise. Scalar
147 operations apply componentwise to vectors, e.g. for $z \in \mathbb{R}^n$ we write $\phi(z) = (\phi(z_1), \dots, \phi(z_n))^\top$
148 and $z^2 = (z_1^2, \dots, z_n^2)^\top$. For any vector $x \in \mathbb{R}^n$, the ℓ_2 norm is denoted by $\|x\| := (\sum_{i=1}^n x_i^2)^{1/2}$.
149 and For any $x \in \mathbb{R}^n$ we define $\|x\|_\infty := \max_{i \in [n]} |x_i|$. The multi-linear inner product or contraction
150 of $z_1, \dots, z_r \in \mathbb{R}^n$ for any $r \in \mathbb{N}$ is denoted as $\langle z_1, \dots, z_r \rangle := \sum_{i=1}^n z_{1,i} \cdots z_{r,i}$. In particular,
151 $\langle z_1 \rangle = z_1^\top \mathbf{1}_n$ and $\langle z_1, z_2 \rangle = z_1^\top z_2$. Let $\mathcal{B} := \binom{[d]}{k}$ denote the set containing all size- k subsets of $[d]$.
152 Let $v_b \in \mathbb{R}^d$ denote the vector representing the k bits in b for all $b \in \mathcal{B}$, i.e. the t -th entry of v_b is 1
153 if $t \in b$ else 0. Denote the ℓ_2 -loss
154

$$L_{n,b}(\theta) := \frac{1}{2nd} \sum_{i=1}^n \|v_b - f_\theta(x^i, y^i)\|^2.$$
155

156 Denote the column-wise Softmax function $\text{softmax}(\cdot) : \mathbb{R}^{d \times t} \mapsto \mathbb{R}^{d \times t}$
157

$$\text{softmax}(W)_{(j,m)} := \sigma_j(w_m), \quad \text{where} \quad \sigma_j(w_m) := e^{w_{j,m}} / \sum_{i=1}^d e^{w_{i,m}}.$$
158

159 **Softmax Attention Layer.** The attention mechanism is generally defined in terms of key, query
160 and value matrices K, Q, V : $\text{Attn}(X) := V \text{softmax}(K^\top Q)$. In this paper, we reparametrize $K^\top Q$
161

162 by a single matrix $W \in \mathbb{R}^{d \times t}$; the value matrix V is set as the identity matrix $I_{d \times d}$ to only preserve
 163 the x component¹. Thus, for any input $X \in \mathbb{R}^{n \times d}$, our attention is defined as
 164

$$165 \text{Att}_W(\underbrace{X}_{n \times d}) := \underbrace{X}_{n \times d} \underbrace{\text{softmax}(W)}_{d \times t} \in \mathbb{R}^{n \times t}.$$

166

167 **Remark 3.1.** While the Transformer considered in (Kim & Suzuki, 2025) is already very simple
 168 (consisting of a single-head attention layer followed by an FFN $\phi(\cdot)$), our setting is even simpler.
 169 We consider only a single-head softmax attention mechanism as the core computational unit for the
 170 Boolean problem of interest. Such a atomic setting allows us to reveal more fundamental results.

171 **Remark 3.2.** Our attention module is the same single-head softmax attention as in (Kim & Suzuki,
 172 2025). Our only simplifications are: (i) we omit the output FFN $\phi(\cdot)$ and instead train with a
 173 surrogate loss on intermediate targets; and (ii) we analyze a single gradient update. We remark
 174 that, adding a post-attention FFN does not resolve the bottleneck: locating the k relevant bits. An
 175 FFN only reshapes the attended mixture and is incapable of recovering missing support information.
 176 The gradient signal remains uninformative. Thus, the same hardness result in this work hold even
 177 with one extra output FFN as in (Kim & Suzuki, 2025).

178 **Problem Setup.** Here we state our problem setting.

180 **Definition 3.3** (Learning k -bit Boolean Functions). Let $d \geq k \geq 2$ be integers such that $k =$
 181 $\Theta(d)$ and let $\mathcal{B} = \binom{[d]}{k}$ denote the set of all size k subsets of $[d] := \{1, \dots, d\}$ equipped with the
 182 uniform distribution. Our goal is to study the k -boolean problem for d -bit inputs $x = (x_j)_{j=1}^d \sim$
 183 $\text{Unif}(\{0, 1\}^d)$, where the target

$$185 y_{\text{and}}(x) := \prod_{j \in b} x_j, \quad \text{or} \quad y_{\text{or}}(x) := 1 - \prod_{j \in b} (1 - x_j), \quad \text{with} \quad |b| = k,$$

186

187 is determined by the boolean value of an unknown subset of bits $b \in \mathcal{B}$. Given n samples
 188 $(x^i, y^i)_{i \in [n]}$, our goal is to predict the size k subset $b \in \mathcal{B}$ deciding the boolean function. In this
 189 paper, we denote $x^i \in \mathbb{R}^d$ to be the i -th input vector. We denote $x_j \in \mathbb{R}^n$ as $(x_j)_i := (x^i)_j$, i.e. x_j
 190 is an n -dimensional vector containing the j -th bits of all x^i , and $y \in \mathbb{R}^n$ as $y_i := \prod_{j \in b} x_j^i$.

192 We emphasize that this problem setup distinct this work from (Kim & Suzuki, 2025):

193 **Remark 3.4** (Learning Support vs. Learning Output). The key difference compared to (Kim &
 194 Suzuki, 2025) is that our algorithm learns the support of the Boolean function. Specifically, the exact
 195 input bits that determine the output, whereas (Kim & Suzuki, 2025) only learn to predict the output of
 196 the parity function. To be more precise, the k -bit parity boolean problem studied in (Kim & Suzuki,
 197 2025) is non-monotone. We look at monotone AND/OR on a hidden k -bit subset inside d inputs. The
 198 task seems easier, yet it still shows a huge gap between training with and without hints. Importantly,
 199 our model must identify the unknown subset of relevant input bits (the support of the function). This
 200 is a harder learning objective that goes beyond merely computing the Boolean output. This allows
 201 us to examine whether a single-head attention can not only compute a logical function but also
 202 discover which features matter, highlighting the limits of end-to-end learning without guidance.

203 **Remark 3.5.** Our “teacher forcing” supervision provides the hidden relevant subset during training.
 204 This is an idealized scheme. Chain-of-thought prompting in practice gives intermediate reasoning
 205 but not ground-truth features (Wei et al., 2022). Our one-step hint is stronger. It serves only to
 206 show a theoretical limit: a minimal model can succeed if perfect intermediate feedback is available.

207 4 MAIN THEORY

209 We now present our main theoretical results for a single softmax attention head, which reveal a striking
 210 supervision gap between teacher-forced and end-to-end training. Notably, this dichotomy echoes
 211 the recent findings of (Kim & Suzuki, 2025), who showed that efficiently learning parity requires
 212 chain-of-thought supervision (i.e., explicit intermediate reasoning steps). While parity is a partic-
 213 ularly challenging non-monotonic function, here we focus on a simpler class of Boolean concepts:

214 ¹This type of reparametrization is common in the literature to make dynamical analysis tractable (Zhang
 215 et al., 2024; Huang et al., 2023b; Mahankali et al., 2023; Kim & Suzuki, 2024; 2025).

monotone k -bit AND/OR functions with $k = \Theta(d)$. Yet we still observe an equally dramatic gap in learnability. On one hand, under strong supervision (teacher forcing), our minimalist attention model can learn the target function almost instantaneously: as formalized by Theorem 4.1, a single gradient step suffices to recover the relevant k -bit subset and produce the correct AND/OR output with vanishing error. On the other hand, without such intermediate guidance, learning becomes provably infeasible: Theorem 4.3 shows that no polynomial-time learner can succeed in training the same model end-to-end, even when provided with exponentially many input-output examples. This stark contrast underscores the conceptual importance of step-by-step guidance in training and sets the stage for the formal development in the rest of the section.

4.1 UPPER BOUND: ONE-LAYER ATTENTION PROVABLY SOLVES BOOLEAN PROBLEMS

We now present a constructive upper bound under the monotone k -Boolean setting of Definition 3.3. Specifically, we show that a single softmax-attention head can represent any AND/OR on $k = \Theta(d)$ relevant bits. More importantly, when the training loss provides teacher-forcing hints (i.e., directly revealing the relevant bits), the network learns the correct Boolean function in a single gradient step. Hence, architectural depth is *not* the bottleneck; appropriate intermediate supervision is. This stands in stark contrast to the parity result of (Kim & Suzuki, 2025), which requires chain-of-thought supervision for efficient learning.

We begin by considering the idealized scenario of teacher forcing, where training explicitly identifies the k relevant bits. This direct supervision renders the learning task almost trivial: even a single softmax-attention head converges to the desired Boolean function in essentially one gradient step.

Teacher Forcing. Let the k bits in set $b \subseteq [d]$ be j_1, \dots, j_k , and set $t = k/2$. We decompose the Boolean function into $t = k/2$ intermediate products:

$$y = \prod_{m=d+1}^{d+t} x_m,$$

where for each $i \in [t]$, the vector $x_{d+i} \in \mathbb{R}^n$ is defined by $(x_{d+i})_l := (x_{j_{2i-1}})l (x_{j_{2i}})_l$ for $l \in [d]$. The surrogate loss function computes the squared error over the intermediate states x_{d+1}, \dots, x_{d+t} :

$$L(W) := \frac{1}{2n} \sum_{m=d+1}^{d+t} \|\hat{z} - x_m\|^2.$$

Theorem 4.1 (Upper Bound: Softmax Attention Provably Solve Definition 3.3 with Teacher Forcing). *Let $\epsilon > 0$, and suppose d is a sufficiently large positive integer. Let $k = \Theta(d)$ be an even integer, and set $t = k/2$. Define $\mathcal{B} := \binom{[d]}{k}$ to be the collection of all size- k subsets of $[d]$. Let $X := (x_1 \dots x_d) \in \mathbb{R}^{n \times d}$ and $E := (x_{d+1} \dots x_{d+t}) \in \mathbb{R}^{n \times t}$. Assume $n = \Omega(d^\epsilon)$ and consider any $O(d^{1-\epsilon/4})$ -approximate gradient oracle $\tilde{\nabla}$. Let the weights be initialized as $W^{(0)} = \mathbf{0}_{d \times t}$. Let $v_b \in \{0, 1\}^d$ denote the indicator vector that encodes the Boolean target associated with subset $b \subseteq [d]$. Since ground-truth vector $v_b \in \{0, 1\}^d$ is unknown, we define the surrogate function*

$$L(W) := \frac{1}{2n} \|\text{Att}_W(X) - E\|_F^2,$$

instead of the loss $\|2 \cdot \text{Softmax}(W^{(1)})\mathbf{1}_t - v_b\|_\infty$ to find the target weight matrix W . Set the learning rate $\eta = \Theta(d^{1+\epsilon/8})$, and choose $\kappa \in [d^{-1}, 1]$ (we set $\kappa = O(d^{-\epsilon/4})$). Let $W^{(1)} := W^{(0)} - \eta \cdot \nabla L(W^{(0)})$ be the one-step gradient update.

Then for any target subset $b \in \mathcal{B}$, the algorithm solves the k -Boolean problem (Definition 3.3) over d -bit inputs. With probability at least $1 - \exp(-\Theta(d^{\epsilon/2}))$ over the randomness in sampling, the one-step update $W^{(1)} \in \mathbb{R}^{d \times t}$ satisfies:

$$\|2 \cdot \text{Softmax}(W^{(1)})\mathbf{1}_t - v_b\|_\infty \leq O(d^{-\epsilon/8}).$$

Intuitively, the extra hint collapses an otherwise exponential search over $\binom{d}{k}$ subsets: the fresh gradient already points in the right direction, so the model “locks on” immediately. Therefore, we

270 establish that with the right supervision, one-layer attention is a universal Boolean learner in practice as well as theory. To our knowledge, this is the first result demonstrating that a lone softmax
 271 attention head can learn a high-dimensional Boolean concept in essentially one shot.
 272

273 **Remark 4.2** (Teacher Forcing vs. Practice). *We reiterate (Remark 3.5) that, our supervision gives
 274 the hidden relevant subset during training. This is an idealized signal. In practice one may use
 275 weaker forms, such as auxiliary losses on partial reasoning steps or chain-of-thought prompts that
 276 provide intermediate text without ground-truth features. Any hint that narrows the search space can
 277 improve learning. Extending our analysis to such surrogate objectives is future work.*
 278

279 *Proof Sketch.* Our proof consists of three conceptual steps:
 280

281 **Step 1: Computing Interaction Strength.** Denote $\hat{z} := \frac{1}{d} \sum_{i=1}^d x_i$. Here, for each $i \in [t]$,
 282 we define $p[j_{2i-1}] := d + i$, and $p[j_{2i}] := d + i$. The partial derivative of L with respect to
 283 $w_{j,m} := W_{(j,m)}$ can be presented as the inner product $\frac{1}{nd} \langle \hat{z} - x_m, x_j - \hat{z} \rangle$, and the gradient has
 284 significant difference between the cases of $p[j] = m$ and $p[j] \neq m$. Specifically,

$$\frac{\partial L}{\partial w_{j,m}} = \begin{cases} \Theta(d^{-1}), & p[j] = m; \\ O(d^{-1-\epsilon/4}), & p[j] \neq m. \end{cases}$$

288 **Step 2: Concentration of Softmax Scores.** Taking $\eta = \Theta(d^{1+\epsilon/8})$, the updated weights $W^{(1)} =$
 289 $W^{(0)} - \eta \tilde{\nabla} L(W^{(0)}) \in \mathbb{R}^{d \times t}$ become
 290

$$w_{j,m}^{(1)} = \Theta(d^{\epsilon/8}) \cdot \mathbb{1}_{\{p[j]=m\}} + O(d^{-\epsilon/8}).$$

293 Then the softmax scores satisfy

$$\sigma_j(w_m^{(1)}) = \begin{cases} \frac{1}{2} + O(d^{-\epsilon/8}), & p[j] = m; \\ \exp(-\Theta(d)), & p[j] \neq m. \end{cases}$$

297 **Step 3: Upper Bounding the Loss.** Let $b \in \mathcal{B}$. For any $j \in [d]$, if $j \in b$, there's exactly one
 298 $m \in [t]$ such that $p[j] = m$, and
 299

$$\sigma(w_{j,m}^{(1)}) = \begin{cases} \frac{1}{2} + O(d^{-\epsilon/8}), & p[j] = m; \\ \exp(-\Theta(d)), & p[j] \neq m. \end{cases}$$

300 for $j \in [d] \setminus b$, $\sigma(w_{j,m}) = \exp(-\Theta(d))$ for all $m \in [t]$. We deduce that
 301

$$(\text{Softmax}(W^{(1)})\mathbf{1}_t)_j = \begin{cases} \frac{1}{2} + O(d^{-\epsilon/8}) + (t-1) \cdot \exp(-\Theta(d)), & j \in b; \\ t \cdot \exp(-\Theta(d)), & j \notin b. \end{cases}$$

307 Therefore we have

$$\|2 \cdot \text{Softmax}(W^{(1)})\mathbf{1}_t - v_b\|_\infty = O(d^{-\epsilon/8}).$$

310 Please see Section F for a detailed proof. □

311 **Discussion.** Our main result gives a surprising affirmative answer. We prove that this one-layer
 312 attention model can indeed *identify and compute* such a k -bit Boolean function with just a single
 313 gradient update, provided it is trained under an idealized supervision regime. In this setting, the
 314 training procedure supplies a direct hint to the attention mechanism (analogous to a teacher-forcing
 315 signal), effectively telling the model how to attend to the relevant inputs in the very first update.
 316

317 We distill the implications of Theorem 4.1 into four concrete points.

- 319 • **Single-Step Identifiability.** One gradient update assigns roughly $\frac{1}{2}$ of the attention mass to
 320 each of the k relevant tokens and pushes all others to $\exp(-\Theta(d))$. The model thus learns
 321 the whole AND/OR in one shot, even when $k = \Theta(d)$.
- 322 • **Supervision, NOT Depth, is Critical.** Depth 1 already has the needed capacity; teacher
 323 forcing unlocks it. Without this hint, the learner must search over $\binom{d}{k}$ subsets, recovering
 324 the hardness of parity (Kim & Suzuki, 2025).

- **Sharper Upper Bound.** Earlier work required more complex networks, or many steps to fit high-arity Boolean functions. We show these are unnecessary under ideal supervision, tightening the expressive–learnability frontier for attention.
- **Practical Takeaway.** Intermediate signals (e.g., attention masks or chain-of-thought labels) can collapse an exponential search space, turning a hard combinatorial task into easy optimization. Carefully designed auxiliary losses may therefore substitute for architectural complexity in real systems.

332 4.2 LOWER BOUND: BOOLEAN HARDNESS

334 The previous hardness result of (Kim & Suzuki, 2025) only shows that learning the parity function is
 335 hard. We present a new result showing that even learning the *support* of an *easier* Boolean problem
 336 (Definition 3.3) in the standard end-to-end learning setting is hard.

337 **Theorem 4.3** (Hardness of Finite-Sample Boolean). *Let \mathcal{A} be an algorithm to solve k -bit Boolean*
 338 *problem (Definition 3.3) for d -bit inputs $x = (x_j)_{j=1}^d \sim \text{Unif}(\{0, 1\}^d)$. Let v_b denote the length- d*
 339 *vectors where i -th entry is 1 if $i \in b$ and 0 otherwise. Suppose $k = \Theta(d)$. Denote the number of*
 340 *samples as n , and let $f_\theta : \{0, 1\}^{n \times (d+1)} \rightarrow \mathbb{R}^d$ be any differentiable parameterized model.*

341 *If $n = e^{\Theta(d)}$, the output $\theta(\mathcal{A})$ of \mathcal{A} has entry-wise loss lower bounded as*

$$343 \mathbb{E}_{b \in \mathcal{B}, x} \left[\min_{j \in [d]} |(v_b - f_{\theta(\mathcal{A})}(x, y))_j| \right] \geq \min\{k/d, 1 - k/d\} - e^{-\Theta(d)}.$$

346 *Proof.* Please see Section G for a detailed proof. \square

348 **Lower Bounds as (Kim & Suzuki, 2025; Chen et al., 2025) are Possible for Parity/Majority but**
 349 **not Possible for AND/OR.** We remark that proving a similar lower bound for AND/OR functions
 350 using the framework from (Kim & Suzuki, 2025; Chen et al., 2025) is unlikely. The intuition is
 351 that for a random string, balanced functions (e.g., Majority or Parity) output 1 or 0 with equal
 352 probability (1/2). This is not the case for AND/OR. In detail, a key step in previous work (Kim
 353 & Suzuki, 2025; Chen et al., 2025) involves computing binomial coefficients. In (Kim & Suzuki,
 354 2025), they compute $A_1 = \sum_{j=0}^{m/2} \binom{m}{2j} \binom{d-m}{k-2j}$ and bound $|A_1/B - 1| \leq e^{-\Omega(d)}$ where $B := \frac{1}{2} \binom{d}{k}$.
 355 In (Chen et al., 2025), they consider a slightly different $A_1: \sum_{j=0}^{k/2} \binom{m}{j} \binom{d-m}{k-j}$ (see further details
 356 on page 11 in (Chen et al., 2025)), where m denotes the number of ones in x . In contrast, for an
 357 AND function always outputting 1, we have: $A_1 = \binom{m}{k} \cdot \binom{d-m}{0} = \binom{m}{k}$ and $B = \frac{1}{d} \binom{d}{k}$. For the one
 358 always outputting 0, we have $A_0 = \sum_{j=0}^{k-1} \binom{m}{j} \cdot \binom{d-m}{k-j}$. Then we just need to bound $|A_1/B - 1| =$
 359 $|2 \binom{m}{k} / \binom{d}{k} - 1|$. Note that $\binom{m}{k} \in [(m/k)^k, (em/k)^k]$. Thus, there exists some constant c_0 such that
 360 $\binom{m}{k} = (c_0 m/k)^k + O(1)$. Similarly, there exists constant c_1 such that $\binom{d}{k} = (c_1 d/k)^k + O(1)$.
 361 As long as we pick $2(c_0 m/c_1 d)^k = 1$, we can show $|A_1/B - 1| \leq e^{-\Omega(d)}$ for $k = \Theta(d)$. This
 362 means $(c_1 d/c_0 m)^k = 2$. Thus, we need to choose $m = \frac{dc_1}{2^{1/k} c_0}$. Therefore in the setting of AND,
 363 the choice of m is super restricted, but in previous work (Kim & Suzuki, 2025; Chen et al., 2025),
 364 the choice range is quite general. Similarly, it's true for OR.

367 **Discussion.** Earlier sections showed how special intermediate feedback (e.g., *one-step supervision*
 368 or *guidance on intermediate predictions*) can break the learning task into smaller, more tractable
 369 pieces. A key open question is whether such signals are truly necessary. Put differently, does the
 370 lack of intermediate hints make learning impossible in practice if we only have raw end-to-end data?
 371 The following claim answers in the affirmative:

372 **Claim 4.4.** *Without the special training signal, the learning problem is computationally intractable,*
 373 *even though it remains statistically learnable with sufficient data.*

374 A few remarks are in order.

376 **Remark 4.5** (Difference to Previous Computational Hardness Results). *A wide range of existing*
 377 *hardness results (Alman & Song, 2023; 2024a;b; 2025) have shown that, under the SETH (Im-*
pagliazzo & Paturi, 2001) hypothesis, Transformer forward and backward computations cannot be

378 numerically approximated in truly subquadratic time with acceptable error. These results primarily
 379 focus on numerical computation, examining only whether efficient computation of Transformers is
 380 feasible. In contrast, our work addresses a completely different problem: whether Transformers
 381 can generalize well on simple Boolean logic problems. Rather than only focusing on numerical
 382 properties, we take a more practical perspective on model generalization.

383 **Remark 4.6** (Implications). We highlight two main consequences for theory and practice:
 384

- 385 • **Theoretical Significance.** This lower bound complements our earlier positive results.
 386 When one-step supervision is available, the learning problem is tractable. Without such
 387 supervision, the problem is essentially intractable. Hence, these results precisely demar-
 388 cate the boundary of efficient learning for our model: the extra training signals are not
 389 merely a helpful artifact of analysis, but are fundamentally required for polynomial-time
 390 learning. This underscores the gap between statistical learnability (possible in principle)
 391 and computational feasibility (efficient in practice).
- 392 • **Practical Impact.** In real-world scenarios of this form, relying on end-to-end training alone
 393 (with no auxiliary signals) may be doomed to fail. Instead, practitioners should incorporate
 394 additional supervision or structure – like our one-step guidance — to render the problem
 395 solvable within reasonable computational limits. This clarifies why intermediate feedback
 396 is so valuable: without it, the search space becomes prohibitively large.

398 In sum, this lower bound is tight: it shows that the strong supervision in our one-step scheme is not
 399 merely beneficial, but *necessary*. Absent such signals, learning becomes computationally infeasible.
 400 Combined with the previous upper bound, these results delineate a sharp threshold on what single-
 401 head attention can learn and underscore the pivotal role of the training regime in achieving success.
 402 Finally, we remark that our techniques can be generalized to a broader family of Boolean functions
 403 (e.g., functions that output the answer with some probability of failure, known as noisy Boolean
 404 functions). Due to space limitations, we defer these results to the appendix.

405 4.3 PRACTICAL IMPLICATIONS

407 Our results highlight five key takeaways:

409 **Architectural Capacity.** Our theoretical findings highlight that even a minimalist Transformer
 410 configuration can perform surprisingly complex logical reasoning. In particular, a single-head,
 411 single-layer softmax attention module (with a simple feed-forward output) is sufficient to repre-
 412 sent and learn monotone Boolean functions involving $\Theta(d)$ -way feature interactions. This defies the
 413 conventional intuition that deep stacks of layers or large model depth are necessary for such combi-
 414 natorial tasks. In principle, one layer of softmax attention already possesses the expressive capacity
 415 for high-arity logical operations, such as an AND/OR over a hidden subset of the inputs.

417 **Training Dynamics and Supervision.** From an optimization perspective, our results expose a
 418 stark dichotomy in learning outcomes. With carefully designed intermediate supervision (for exam-
 419 ple, a teacher-forcing signal that guides the attention head’s output), gradient descent homes in on
 420 the correct solution in a single step. In essence, the model quickly “finds a needle in a haystack” by
 421 immediately identifying the true relevant subset of features. In contrast, under standard end-to-end
 422 training (i.e. using only input-output pairs with no intermediate hints), the same model is provably
 423 unable to escape the haystack of exponentially many possibilities. No polynomial-time algorithm
 424 can find the correct subset in this setting without an exponential number of samples or steps.

425 In practical terms, this suggests that appropriate inductive biases or curriculum-based training
 426 protocols (such as breaking the task into smaller, explicitly supervised steps) are essential for learning
 427 such logical structure. Simply scaling up model size or training data, without the right form of
 428 intermediate guidance, is unlikely to yield the desired reasoning ability. Notably, this theoretical di-
 429 chotomy mirrors recent empirical successes with chain-of-thought training methods: providing the
 430 model with intermediate “hints” or subgoals can transform an otherwise intractable learning prob-
 431 lem into a trivial one-step task. Our results provide a concrete example of this principle, explaining
 why giving the model the right hint makes all the difference.

432 **Why Supervision Helps?** The analysis offers insight into *how* the presence of intermediate targets
 433 so dramatically alters the learning dynamics. Under the idealized loss with teacher-forcing supervi-
 434 sion, the initial gradient is *exactly aligned* with the direction of the true k -bit subset of features.
 435 In other words, right at initialization the very first gradient step nudges the attention weights toward
 436 precisely the correct k relevant bits. This fortunate alignment is what enables one-step learning:
 437 the model effectively locks onto the correct subset almost immediately. By contrast, without any
 438 intermediate signals, the initial gradient is merely an average over all plausible target functions, and
 439 the informative component pointing to the true subset is drowned out by the contributions of myriad
 440 incorrect subsets. The model is left with no clear direction in parameter space, meaning that expo-
 441 nentially many samples or updates would be required to eventually sift out the true features from
 442 final-output supervision alone. These structural observations vividly illustrate how a well-chosen
 443 training signal can fundamentally alter the trajectory of learning, turning an otherwise infeasible
 444 search problem into a tractable one.
 445

446 **Broader Theoretical Significance.** In a broader context, our results reinforce an emerging theme
 447 in the theory of Transformer learning: *expressive power is cheap, but learning power is costly*. Even
 448 an extremely simple attention architecture — a one-head, one-layer Transformer — can represent
 449 surprisingly intricate Boolean logic. Prior work has likewise shown that even small Transformers
 450 can emulate complex computations by appropriate setting of their weights. *The true bottleneck,*
 451 *therefore, is not the ability to express or represent a complex function, but the ability to learn it*
 452 *efficiently.* Without the aid of intermediate hints (such as teacher forcing or chain-of-thought
 453 supervision), gradient-based training must blindly explore an exponentially large hypothesis space,
 454 and it inevitably stalls when confined to polynomial time or sample complexity. Thus, our theoretical
 455 study sharpens the distinction between what a minimal architecture could do in principle and what
 456 it can actually learn to do under standard training. The gap between expressivity and learnability
 457 uncovered here points to the critical role of the training regime in unlocking a model’s potential.
 458

459 **Implications for Curriculum Design.** By identifying the exact form of supervision that flips our
 460 learning task from intractable to one-step solvable, we provide a clean benchmark for research on
 461 curriculum learning, intermediate targets, and inductive biases. This k -bit Boolean teacher-forcing
 462 task serves as a minimal example of how the right training protocol can unlock a network’s latent
 463 capabilities. It illuminates how even very simple models can succeed at systematic reasoning when
 464 guided with minimal but well-chosen intermediate feedback. Such insights suggest a principled
 465 blueprint for designing curricula and architectural biases to teach Transformers how to reason, rather
 466 than relying on brute-force depth or scale alone. Future work can use this task as a testbed for
 467 exploring how additional hints, auxiliary losses, or structural priors might bridge the gap between a
 468 model’s theoretical capacity and its practical learnability.
 469

470 **Summary.** We demonstrate that: with the right supervision, even a minimalist one-layer attention
 471 model solves the task in one step. Without it, learning is intractable. This contrast clarifies how
 472 architecture, supervision, and optimization jointly determine learnability.
 473

474 5 CONCLUSION

475 We show that a single-head softmax attention model can learn a k -bit AND/OR Boolean function
 476 in one gradient step with teacher forcing, achieving low error with only polynomial many samples
 477 (Theorem 4.1). We also prove a lower bound: without such intermediate supervision, no efficient
 478 algorithm can learn these functions, and training remains stuck with error bounded away from zero
 479 (Theorem 4.3). These findings demonstrate the strong representational power of even the simplest
 480 attention networks. At the same time, they reveal that successful training hinges on the right sup-
 481 vision signals. Notably, our analysis aligns with recent results on parity (Kim & Suzuki, 2025),
 482 which likewise highlight the need for chain-of-thought guidance to solve certain tasks. Looking for-
 483 ward, these insights suggest that carefully designed curricula and training protocols incorporating
 484 intermediate hints could unlock the full potential of simple attention models. They also invite further
 485 theoretical exploration into how such minimalist architectures learn complex tasks.
 486

486
487
ETHIC STATEMENT488
489
490
491
This paper does not involve human subjects, personally identifiable data, or sensitive applications.
We do not foresee direct ethical risks. We follow the ICLR Code of Ethics and affirm that all aspects
of this research comply with the principles of fairness, transparency, and integrity.492
493
REPRODUCIBILITY STATEMENT494
495
496
497
We ensure reproducibility of our theoretical results by including all formal assumptions, definitions,
and complete proofs in the appendix. The main text states each theorem clearly and refers to the
detailed proofs. No external data or software is required.498
499
REFERENCES500
501
Josh Alman and Zhao Song. Fast attention requires bounded entries. *Advances in Neural Information
Processing Systems (NeurIPS)*, 36:63117–63135, 2023.502
503
Josh Alman and Zhao Song. The fine-grained complexity of gradient computation for training large
language models. In *NeurIPS*, 2024a.505
506
Josh Alman and Zhao Song. How to capture higher-order correlations? generalizing matrix softmax
attention to kronecker computation. In *ICLR*. arXiv preprint arXiv:2310.04064, 2024b.507
508
Josh Alman and Zhao Song. Fast rope attention: Combining the polynomial method and fast fourier
transform. *arXiv preprint arXiv:2505.11892*, 2025.510
511
Sanjeev Arora and Boaz Barak. *Computational complexity: a modern approach*. Cambridge Uni-
versity Press, 2009.512
513
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.516
517
Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Ka-
mar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general
intelligence: Early experiments with gpt-4. *arXiv preprint arXiv:2303.12712*, 2024.519
520
Pafnuitii Lvovich Chebyshev. Des valeurs moyennes. *J. Math. Pures Appl.*, 12(2):177–184, 1867.521
522
Bo Chen, Xiaoyu Li, Yingyu Liang, Jiangxuan Long, Zhenmei Shi, and Zhao Song. Circuit com-
plexity bounds for rope-based transformer architecture. *arXiv preprint arXiv:2411.07602*, 2024.523
524
Bo Chen, Zhenmei Shi, Zhao Song, and Jiahao Zhang. Provable failure of language models in
learning majority boolean logic via gradient descent. *arXiv preprint arXiv:2504.04702*, 2025.525
526
David Chiang. Transformers in uniform tc0. *arXiv preprint arXiv:2409.13629*, 2024.527
528
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. *arXiv preprint arXiv:1810.04805*, 2018.530
531
Luciano Floridi and Massimo Chiriatti. Gpt-3: Its nature, scope, limits, and consequences. *Minds
and Machines*, 30:681–694, 2020.532
533
Robert W Floyd. Assigning meanings to programs. In *Program Verification: Fundamental Issues
in Computer Science*, pp. 65–81. Springer, 1993.534
535
Bofei Gao, Feifan Song, Zhe Yang, Zefan Cai, Yibo Miao, Qingxiu Dong, Lei Li, Chenghao Ma,
Liang Chen, Runxin Xu, et al. Omni-math: A universal olympiad level mathematic benchmark
for large language models. In *ICLR*, 2025.538
539
Xuyang Guo, Zekai Huang, Jiayan Huo, Yingyu Liang, Zhenmei Shi, Zhao Song, and Jiahao Zhang.
Can you count to nine? a human evaluation benchmark for counting limits in modern text-to-video
models. *arXiv preprint arXiv:2504.04051*, 2025a.

540 Xuyang Guo, Jiayan Huo, Zhenmei Shi, Zhao Song, Jiahao Zhang, and Jiale Zhao. T2vphysbench:
 541 A first-principles benchmark for physical consistency in text-to-video generation. *arXiv preprint*
 542 *arXiv:2505.00337*, 2025b.

543 Shreya Gupta, Boyang Huang, Barna Saha, Yinzhan Xu, and Christopher Ye. Subquadratic algo-
 544 rithms and hardness for attention with any temperature. In *arXiv preprint arXiv:2505.14840*,
 545 2025.

546 Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? *arXiv preprint*
 547 *arXiv:2402.09963*, 2024.

548 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 549 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–
 550 8646, 2022.

551 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. *Journal of the*
 552 *American Statistical Association*, 58(301):13–30, 1963.

553 Jerry Yao-Chieh Hu, Maojiang Su, En-Jui Kuo, Zhao Song, and Han Liu. Computational limits of
 554 low-rank adaptation (lora) fine-tuning for transformer models. In *The Thirteenth International*
 555 *Conference on Learning Representations*, 2025.

556 Kaiyi Huang, Kaiyue Sun, Enze Xie, Zhenguo Li, and Xihui Liu. T2i-compbench: A com-
 557 pre-
 558 hensive benchmark for open-world compositional text-to-image generation. *Advances in Neural*
 559 *Information Processing Systems*, 36:78723–78747, 2023a.

560 Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. *arXiv preprint*
 561 *arXiv:2310.05249*, 2023b.

562 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. *Journal of Computer and*
 563 *System Sciences*, 62(2):367–375, 2001.

564 Yanrong Ji, Zhihan Zhou, Han Liu, and Ramana V Davuluri. Dnabert: pre-trained bidirectional
 565 encoder representations from transformers model for dna-language in genome. *Bioinformatics*,
 566 37(15):2112–2120, 2021.

567 Tokio Kajitsuka and Issei Sato. Are transformers with one layer self-attention using low-rank weight
 568 matrices universal approximators? *arXiv preprint arXiv:2307.14023*, 2023.

569 Tokio Kajitsuka and Issei Sato. Optimal memorization capacity of transformers. *arXiv preprint*
 570 *arXiv:2409.17677*, 2024.

571 Juno Kim and Taiji Suzuki. Transformers learn nonlinear features in context: Nonconvex mean-field
 572 dynamics on the attention landscape. *arXiv preprint arXiv:2402.01258*, 2024.

573 Juno Kim and Taiji Suzuki. Transformers provably solve parity efficiently with chain of thought. In
 574 *The Thirteenth International Conference on Learning Representations*, 2025.

575 Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, and Mingda Wan. Theoretical constraints on the
 576 expressive power of rope-based tensor attention transformers. *arXiv preprint arXiv:2412.18040*,
 577 2024a.

578 Xiaoyu Li, Yingyu Liang, Zhenmei Shi, Zhao Song, Wei Wang, and Jiahao Zhang. On the com-
 579 putational capability of graph neural networks: A circuit complexity bound perspective. *arXiv*
 580 *preprint arXiv:2501.06444*, 2025.

581 Zhiyuan Li, Hong Liu, Denny Zhou, and Tengyu Ma. Chain of thought empowers transformers to
 582 solve inherently serial problems. In *ICLR*, 2024b.

583 Bingbin Liu, Jordan T Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
 584 learn shortcuts to automata. In *The Eleventh International Conference on Learning Representa-
 585 tions*, 2023.

594 Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
 595 provably the optimal in-context learner with one layer of linear self-attention. *arXiv preprint*
 596 *arXiv:2307.03576*, 2023.

597 Rahmad Mahendra, Damiano Spina, Lawrence Cavedon, and Karin Verspoor. Evaluating numeracy
 598 of language models as a natural language inference task. In *Findings of the Association for*
 599 *Computational Linguistics: NAACL 2025*, pp. 8336–8361, 2025.

600 William Merrill, Ashish Sabharwal, and Noah A Smith. Saturated transformers are constant-depth
 601 threshold circuits. *Transactions of the Association for Computational Linguistics*, 10:843–856,
 602 2022.

603 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 604 *the IEEE/CVF international conference on computer vision*, pp. 4195–4205, 2023.

605 Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
 606 Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
 607 text-to-image diffusion models with deep language understanding. *Advances in neural informa-*
 608 *tion processing systems*, 35:36479–36494, 2022.

609 Karan Singhal, Shekoofeh Azizi, Tao Tu, S Sara Mahdavi, Jason Wei, Hyung Won Chung, Nathan
 610 Scales, Ajay Tanwani, Heather Cole-Lewis, Stephen Pfahl, et al. Large language models encode
 611 clinical knowledge. *Nature*, 620(7972):172–180, 2023.

612 Hugo Touvron, Thibaut Lavrille, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
 613 Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
 614 efficient foundation language models. *arXiv preprint arXiv:2302.13971*, 2023a.

615 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
 616 lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open founda-
 617 tion and fine-tuned chat models. *arXiv preprint arXiv:2307.09288*, 2023b.

618 Bhavya Vasudeva, Deqing Fu, Tianyi Zhou, Elliott Kau, Youqi Huang, and Vatsal Sharan. Simplicity
 619 bias of transformers to learn low sensitivity functions. *arXiv preprint arXiv:2403.06925*, 2024.

620 Heribert Vollmer. *Introduction to circuit complexity: a uniform approach*. Springer Science &
 621 Business Media, 1999.

622 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 623 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 624 In *ICLR*, 2023.

625 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 626 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 627 *neural information processing systems*, 35:24824–24837, 2022.

628 Kaiyue Wen, Huaqing Zhang, Hongzhou Lin, and Jingzhao Zhang. From sparse dependence to
 629 sparse attention: unveiling how chain-of-thought enhances transformer sample efficiency. *arXiv*
 630 *preprint arXiv:2410.05459*, 2024.

631 Noam Wies, Yoav Levine, and Amnon Shashua. Sub-task decomposition enables learning in se-
 632 quence to sequence tasks. *arXiv preprint arXiv:2204.02892*, 2022.

633 Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
 634 Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
 635 models for text-to-video generation. In *Proceedings of the IEEE/CVF International Conference*
 636 *on Computer Vision*, pp. 7623–7633, 2023.

637 Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
 638 *Journal of Machine Learning Research*, 25(49):1–55, 2024.

639 Zhihan Zhou, Yanrong Ji, Weijian Li, Pratik Dutta, Ramana Davuluri, and Han Liu. Dnabert-
 640 2: Efficient foundation model and benchmark for multi-species genome. *arXiv preprint*
 641 *arXiv:2306.15006*, 2023.

648 Zhihan Zhou, Winmin Wu, Harrison Ho, Jiayi Wang, Lizhen Shi, Ramana V Davuluri, Zhong Wang,
649 and Han Liu. Dnabert-s: Learning species-aware dna embedding with genome foundation models.
650 *arXiv preprint arXiv:2402.08777*, 2024.
651
652 Zhihan Zhou, Robert Riley, Satria Kautsar, Weimin Wu, Rob Egan, Steven Hofmeyr, Shira
653 Goldhaber-Gordon, Mutian Yu, Harrison Ho, Fengchen Liu, et al. Genomeocean: An efficient
654 genome foundation model trained on large-scale metagenomic assemblies. *bioRxiv*, pp. 2025–01,
655 2025.
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

702 703 704 705 Appendix

706 LLM USAGE DISCLOSURE

707 LLMs were used only to polish language, such as grammar and wording. These models did not
708 contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
709

710 **Roadmap.** In Section A, we present the paper’s broader impact. Section B discusses its limita-
711 tions. Section D lists well-known probability tools such as Hoeffding and Chernoff bounds, and
712 recalls a basic algebraic fact. Section E introduces several interaction tools, primarily used to prove
713 the upper bound. Section F states our upper-bound result, and Section G gives the lower-bound re-
714 sult. Section H extends classical Boolean functions to their noisy variants. Finally, Section I extends
715 our upper bound to the local majority problem.
716

717 A BROADER IMPACT

718 Our theory identifies when a small attention model can and cannot learn logical rules. The results
719 can guide curricula that add simple hints and save compute. The work is purely theoretical, so direct
720 harm is unlikely. Clearer supervision may cut silent failures in safety-critical AI. We release no
721 models or data, so misuse risk stays low.
722

723 B LIMITATIONS

724 Our analysis isolates a clear supervision gap for k -bit monotone AND/OR functions but rests on
725 several simplifying assumptions. First, the positive result requires teacher-forcing signals that ex-
726 pose the hidden subset, a form of intermediate supervision seldom available in practice. Second, the
727 negative result is worst-case: polynomial-time learners might still succeed on benign data distribu-
728 tions or with heuristic regularization. Third, we study only monotone Boolean tasks with $k = \Theta(d)$
729 and a single-head, depth-one attention layer; extending the proofs to non-monotone logic, differ-
730 ent sparsity regimes, or realistic multi-head Transformers remains open. Lastly, the work is purely
731 theoretical. Empirical confirmation and tighter finite-sample constants are left for future research.
732

733 C MORE RELATED WORK

734 **Circuit Complexity Lower Bounds for Attention Mechanism.** Circuit complexity bound is a
735 fundamental concept in complexity theory (Vollmer, 1999; Arora & Barak, 2009), which shows the
736 simplest logical circuit that can compute a specific function with low approximation error. Specifi-
737 cally, when a model belongs to a weaker circuit complexity class, it cannot solve problems that be-
738 long to stronger complexity classes. For instance, any model that can be approximated in TC^0 will
739 fail to solve NC^1 problems like arithmetic formula evaluations (Floyd, 1993), unless $\text{TC}^0 = \text{NC}^1$
740 (a famous open problem). Recent works (Merrill et al., 2022; Liu et al., 2023) have shown that
741 Transformers with average-head attention or softmax attention have similar computational capabili-
742 ty as constant-depth threshold circuits, falling into the non-uniform TC^0 class. (Li et al., 2024b)
743 has shown that Transformers without CoT (Wei et al., 2022; Wang et al., 2023) belong to the TC^0
744 circuit family, and this problem can be alleviated by involving CoT, resulting in a stronger capa-
745 bility to solve NC^1 -hard problems. These results have recently been extended to more settings of
746 attention computation, such as RoPE-based Transformers (Chen et al., 2024), graph attention (Li
747 et al., 2025), and generalized tensor attention (Li et al., 2024a). Previous results mainly focus on
748 the forward computation of Transformer models, showing that regardless of the training dynamics,
749 Transformers may solve any TC^0 problems. In this work, we present a training dynamics aware
750 hardness result, which shows that even the simplistic Boolean function computation problem that is
751 in weaker circuit complexity classes can be hard for Transformers, differing from previous circuit
752 complexity-based hardness results.
753

756 **Computational Hardness of Attention Computation.** Recent works have shown hardness re-
 757 sults showing that attention mechanisms cannot be approximated efficiently, conditioned on famous
 758 open conjectures (i.e., strengthening of $P \neq NP$) in complexity theory, such as the Strong Ex-
 759 ponential Time Hypothesis (SETH)² (Impagliazzo & Paturi, 2001). For instance, (Alman & Song,
 760 2023) has proved that for $d = O(\log n)$ with $\Theta(\sqrt{\log n})$ level weight matrix entry magnitude, there
 761 is no algorithm that can approximate the attention matrix within $1/\text{poly}(n)$ approximation error in
 762 truly subquadratic time. (Alman & Song, 2023) has shown that such hardness can be alleviated with
 763 bounding the entries of the model parameters of attention, and when the weight element magnitude is
 764 at $o(\sqrt{\log n})$, there is an algorithm that can approximate the attention mechanism with $1/\text{poly}(n)$
 765 approximation error in almost linear time. Besides, (Alman & Song, 2024a) extends (Alman &
 766 Song, 2023)'s forward-only hardness results to backward computations with theoretically optimal
 767 polynomials, showing that without bounded entries, there is no algorithm that can approximate the
 768 Transformer gradients in truly subquadratic time, and with bounded entries the gradients can be
 769 approximated in almost linear time. These results extend to more types of attention, such as hard-
 770 ness of the generalized tensor attention (Alman & Song, 2024b), and RoPE-based attention (Alman &
 771 Song, 2025). Very recently, (Gupta et al., 2025) further extends the work of (Alman & Song,
 772 2023) to almost all the regimes of feature dimension d (beyond $d = O(\log n)$). These previous
 773 works mainly show that the numerical computations of Transformers, in both forward and backward
 774 passes, are hard to finish in truly subquadratic time. In contrast, our work shows that without CoT,
 775 Transformers cannot generalize well on some specific types of simple Boolean functions, being
 776 orthogonal to previous contributions.

777 D PROBABILITY TOOLS AND SIMPLE ALGEBRA FACTS

779 To prepare our proof, we first introduce some well-known probability tools.

780 **Lemma D.1** (Chebyshev's Inequality, Theorem 2 of (Chebyshev, 1867)). *Let X be a random vari-
 781 able with finite expected value $\mu = \mathbb{E}[X]$ and finite non-zero variance $\sigma^2 = \text{Var}[X] > 0$. Then, for
 782 any real number $k > 0$,*

$$783 \quad 784 \quad 785 \quad \mathbb{P}(|X - \mu| \geq k\sigma) \leq \frac{1}{k^2}.$$

786 **Lemma D.2** (Hoeffding's Inequality, Theorem 2 of (Hoeffding, 1963)). *If X_1, X_2, \dots, X_n are
 787 independent random variables and $a_i \leq X_i \leq b_i$ for all $i \in [n]$. Let $\bar{X} = \frac{1}{n} \sum_{i=1}^n X_i$. Then for
 788 any $\delta > 0$,*

$$789 \quad 790 \quad 791 \quad \Pr[\bar{X} - \mathbb{E}[\bar{X}] \geq t] \leq \exp\left(-\frac{2n^2t^2}{\sum_{i=1}^n (b_i - a_i)^2}\right).$$

792 **Lemma D.3** (Chernoff Bound). *Let $X \sim \text{Bin}(n, p)$ and let $\mu = \mathbb{E}[X]$. For any $\delta \in (0, 1)$, we have*

- 793 • $\Pr[X \geq (1 + \delta)\mu] \leq \exp(-\delta^2\mu/3)$.
- 794 • $\Pr[X \leq (1 - \delta)\mu] \leq \exp(-\delta^2\mu/2)$.

795 **Fact D.4.** *If the following conditions hold*

- 796 • $a > 0, b > 0$.
- 797 • $Let \delta \in (0, 0.1)$.
- 798 • $a/b \leq 1 + \delta$.
- 799 • $b/a \leq 1 + \delta$.
- 800 • $a + b \geq 1 - \delta$.
- 801 • $a + b \leq 1$.

802 *Then, we can show*

803 ²For any $\delta > 0$, there exists a sufficiently large k such that the k -SAT problem cannot be solved in $2^{(1-\delta)n}$
 804 time.

810 • **Part 1.** $a \in [\frac{1}{2} - 2\delta, \frac{1}{2} + 2\delta]$.
 811
 812 • **Part 2.** $b \in [\frac{1}{2} - 2\delta, \frac{1}{2} + 2\delta]$.
 813

814 *Proof.* Without loss of generality, we know one of the a and b is $\geq \frac{1}{2} - \delta/2$. Thus, we can assume
 815 that $a \geq \frac{1}{2} - \delta/2$ and $b \leq \frac{1}{2} + \delta/2$.
 816

817 **Proof of Part 1.** Then we can show
 818

$$\begin{aligned} a &\geq \frac{1}{2} - \delta/2 \\ &\geq \frac{1}{2} - \delta, \end{aligned}$$

823 where the first step follows from our assumption of a , the second step follows from the domain of δ .
 824

825 We can show
 826

$$\begin{aligned} a &\leq (1 + \delta)b \\ &\leq (1 + \delta)(\frac{1}{2} + \delta/2) \\ &= \frac{1}{2} + 1.5\delta + \delta^2/2 \\ &\leq \frac{1}{2} + 2\delta, \end{aligned}$$

833 where the first step follows from $a/b \leq 1 + \delta$, the second step follows from our assumption of b , the
 834 second step follows from the simple algebra, the third step follows from the domain of δ .
 835

836 **Proof of Part 2.** We know that
 837

$$\begin{aligned} b &\leq \frac{1}{2} + \delta/2 \\ &\leq \frac{1}{2} + \delta, \end{aligned}$$

841 where the first step follows from our assumption of b , the second step follows from the domain of δ .
 842

843 Similarly, we can show
 844

$$b \geq \frac{1}{2} - 2\delta,$$

846 where the step follows from a similar procedure as **Part 1**.
 847

□

850 E INTERACTIONS 851

852 E.1 INTERACTION TOOL FROM PREVIOUS WORK 853

854 We start with stating a tool from previous work,
 855

856 **Lemma E.1** (Concentration of Interaction Terms, Lemma 9 of (Kim & Suzuki, 2025)). *If the following conditions holds*

- 858 • Let κ be defined $\kappa := 4\sqrt{\log(d/p)/n}$.
- 859 • Let $p \in (0, 0.1)$ denote the failure probability.
- 860 • Suppose each bit x_j^i for $i \in [n], j \in [d]$ is i.i.d. generated from the uniform distribution on
 861 $\{\pm 1\}$.
- 862 • Let $I_{r,m} := \{(j_1, \dots, j_r) \mid 1 \leq j_1, \dots, j_r \leq m-1, x_{j_1} \cdots x_{j_r} \not\equiv 1\}$

864 Then, we have with probability at least $1 - p$

$$866 \max_{\substack{r \in [4] \\ (j_1, \dots, j_r) \in I_{r,m}}} \frac{1}{n} |\langle x_{j_1}, \dots, x_{j_r} \rangle| \leq \kappa.$$

869 E.2 OUR INTERACTION TOOL

871 **Lemma E.2** (Concentration of Interaction Terms). *If the following conditions holds*

- 873 • Let κ be defined $\kappa := 4\sqrt{\log(d/p)/n}$.
- 874 • Let $p \in (0, 0.1)$ denote the failure probability.
- 875 • Suppose each bit x_j^i for $i \in [n], j \in [d]$ is i.i.d. generated from the uniform distribution on $876 \{0, 1\}$.

879 Then, we have with probability at least $1 - p$

$$881 \max_{\substack{r \in [2] \\ (j_1, \dots, j_r) \in I_r}} \frac{1}{n} |\langle x_{j_1}, \dots, x_{j_r} \rangle - \frac{1}{2^r}| \leq \kappa.$$

884 *Proof.* Each tuple $(j_1, \dots, j_r) \in I_r$ computes a boolean $x_{j_r} \dots x_{j_1}$ for which the bits $x^i :=$
885 $x_{j_r}^i \dots x_{j_1}^i, i = 1, \dots, n$ are i.i.d. $\Pr[x^i = 1] = \frac{1}{2^r}$ and $\Pr[x^i = 0] = 1 - \frac{1}{2^r}$. By Lemma D.2 we
886 have that

$$888 \Pr[|\langle x_{j_1}, \dots, x_{j_r} \rangle - \frac{n}{2^r}| \geq \kappa] \leq 2e^{-\kappa^2/n},$$

890 Moreover, $|I_r| \leq d^r$ so that

$$892 |I_1| + |I_2| + |I_3| \leq d + d^2 + d^3 < 3d^3,$$

893 Therefore it follows by union bounding that

$$895 \Pr[\max_{r \in [2], (j_1, \dots, j_r) \in I_r} |\langle x_{j_1}, \dots, x_{j_r} \rangle| \geq n\kappa] \leq 6d^2 4e^{-(n\kappa)^2/n} \\ 896 = 6d^3 e^{-4\log(d/p)} \\ 897 = 6d^3 (p^4/d^4) \\ 898 \leq p,$$

901 where the second step follows choosing $\kappa = 4\sqrt{\log(d/p)/n}$, and the last step follows from $p \in$
902 $(0, 0.1)$.

903 Thus, we complete the proof. \square

905 **Lemma E.3** (Concentration of majority interaction terms). *If the following conditions holds*

- 907 • Let κ be defined $\kappa := 4\sqrt{\log(d/p)/n}$.
- 908 • Let $p \in (0, 0.1)$ denote the failure probability.
- 909 • Suppose each bit x_j^i for $i \in [n], j \in [d]$ is i.i.d. generated from the uniform distribution on $\{\pm 1\}$.
- 910 • Let $\text{MAJ2} : \{+2, 0, -2\}^d \rightarrow \{+1, 0, -1\}^d$ be defined as $\text{MAJ2}(x + y) := (x + y)/2$ for
911 all $x, y \in \{+1, -1\}^d$.

915 Then, we have with probability at least $1 - p$

$$917 \max_{m \in [t]} \left| \frac{1}{n} \langle x_{j_{2m-1}}, \text{MAJ2}(x_{j_{2m-1}}, x_{j_{2m}}) \rangle - \frac{1}{2} \right| \leq \kappa.$$

918 *Proof.* Recall the definition of MAJ2. Notice that
 919

$$920 \quad \text{MAJ2}(x_{j_1}, x_{j_2}) = \frac{x_{j_1} + x_{j_2}}{2}, \quad (1)$$

922 We can show that
 923

$$924 \quad \langle x_{j_1}, \text{MAJ2}(x_{j_1}, x_{j_2}) \rangle = \langle x_{j_1}, \frac{x_{j_1} + x_{j_2}}{2} \rangle$$

$$925 \quad = \frac{1}{2} \langle x_{j_1}, x_{j_1} \rangle + \frac{1}{2} \langle x_{j_1}, x_{j_2} \rangle$$

$$926 \quad = \frac{n}{2} + \frac{1}{2} \langle x_{j_1}, x_{j_2} \rangle,$$

$$927$$

$$928$$

$$929$$

930 where the first step follows from Eq. (1), the second step follows linearity of inner product, and the
 931 last step follows from $x_{j_1} \in \{-1, +1\}^n$.
 932

933 Note that above equation implies
 934

$$934 \quad \frac{1}{n} \langle x_{j_1}, x_{j_2} \rangle = \frac{2}{n} \langle x_{j_1}, \text{MAJ2}(x_{j_1}, x_{j_2}) \rangle - 1$$

$$935$$

$$936$$

937 Applying Lemma E.1 we have
 938

$$939 \quad \Pr[\max_{m \in [t]} \left| \frac{1}{n} \langle x_{j_{2m-1}}, x_{j_{2m}} \rangle \right| \leq \kappa] \geq 1 - p.$$

$$940$$

941 Combining the above two equations, we have
 942

$$943 \quad \Pr[\max_{m \in [t]} \left| \frac{1}{n} \langle x_{j_1}, \text{MAJ2}(x_{j_1}, x_{j_2}) \rangle - \frac{1}{2} \right| \leq \kappa/2] \geq 1 - p.$$

$$944$$

$$945$$

946 This completes the proof. \square
 947

948 F UPPER BOUND

$$949$$

950 The goal of this section is to prove Theorem 4.1. Let us restate it first.
 951

952 **Theorem F.1** (Upper Bound: Softmax Attention Provably Solve Definition 3.3 with Teacher Forcing, Theorem 4.1 Restated). *Let $\epsilon > 0$, and suppose d is a sufficiently large positive integer. Let $k = \Theta(d)$ be an even integer, and set $t = k/2$. Define $\mathcal{B} := \binom{[d]}{k}$ to be the collection of all size- k subsets of $[d]$. Let $X := (x_1 \cdots x_d) \in \mathbb{R}^{n \times d}$ and $E := (x_{d+1} \cdots x_{d+t}) \in \mathbb{R}^{n \times t}$. Assume $n = \Omega(d^\epsilon)$ and consider any $O(d^{-1-\epsilon/4})$ -approximate gradient oracle $\tilde{\nabla}$. Let the weights be initialized as $W^{(0)} = \mathbf{0}_{d \times t}$. Let $v_b \in \{0, 1\}^d$ denote the indicator vector that encodes the Boolean target associated with subset $b \subseteq [d]$. Since ground-truth vector $v_b \in \{0, 1\}^d$ is unknown, we define the surrogate function*

$$953$$

$$954$$

$$955$$

$$956$$

$$957$$

$$958$$

$$959$$

$$960 \quad L(W) := \frac{1}{2n} \|\text{Att}_W(X) - E\|_F^2,$$

$$961$$

$$962$$

963 *instead of the loss $\|2 \cdot \text{Softmax}(W^{(1)})\mathbf{1}_t - v_b\|_\infty$ to find the target weight matrix W . Set the
 964 learning rate $\eta = \Theta(d^{1+\epsilon/8})$, and choose $\kappa \in [d^{-1}, 1]$ (we set $\kappa = O(d^{-\epsilon/4})$). Let $W^{(1)} :=$
 965 $W^{(0)} - \eta \cdot \nabla L(W^{(0)})$ be the one-step gradient update.*

$$966$$

$$967$$

$$968$$

969 *Then for any target subset $b \in \mathcal{B}$, the algorithm solves the k -Boolean problem (Definition 3.3) over
 970 d -bit inputs. With probability at least $1 - \exp(-\Theta(d^{\epsilon/2}))$ over the randomness in sampling, the
 971 one-step update $W^{(1)} \in \mathbb{R}^{d \times t}$ satisfies:*

$$972$$

$$973$$

$$974$$

$$975 \quad \|2 \cdot \text{Softmax}(W^{(1)})\mathbf{1}_t - v_b\|_\infty \leq O(d^{-\epsilon/8}).$$

$$976$$

$$977$$

978 *Proof.* For the choice of n and p , we choose $n = \Omega(d^\epsilon)$ and $p = \exp(-d^{\epsilon/2})$.
 979

972 Using Lemma E.2, we can show
 973

$$974 \quad \kappa = O(d^{-\epsilon/4}).$$

975
 976 We can rewrite $L(W^{(0)})$ in the following sense.
 977

$$978 \quad L(W^{(0)}) = \frac{1}{2n} \sum_{m=d+1}^{d+t} \|\hat{z}_m - x_m\|^2, \quad \hat{z}_m = \sum_{j=1}^d \sigma_j(w_m) x_j.$$

981 Define \hat{z} as $\hat{z} = \frac{1}{d} \sum_{j=1}^d x_j$.
 982

983 We define $\delta_{j\alpha}$ as follows:
 984

$$985 \quad \delta_{j\alpha} := \begin{cases} 0, & \alpha \neq j; \\ 1, & \alpha = j. \end{cases}$$

987 Let us consider the parameter regime $1 \leq \alpha < m$.
 988

989 Then we can show

$$990 \quad \frac{\partial \sigma_\alpha(w_m)}{\partial w_{j,m}} = (\delta_{j\alpha} - \sigma_\alpha(w_m)) \sigma_j(w_m) \\ 991 \\ 992 \quad = (\delta_{j\alpha} - \sigma_j(w_m)) \sigma_\alpha(w_m),$$

993 where the 1st step is by definition, and the 2nd step is by simple algebra.
 994

995 We also have

$$996 \quad \frac{\partial \hat{z}_m}{\partial w_{j,m}} = \sum_{\alpha=1}^d (\delta_{j\alpha} - \sigma_j(w_m)) \sigma_\alpha(w_m) x_\alpha \\ 997 \\ 998 \quad = \sigma_j(w_m) (x_j - \hat{z}_m), \quad (2)$$

1000 where the 1st line is by separating the terms of \hat{z} , and the 2nd line is by simple algebra.
 1001

1002 Remember for all $j < m$, we have that $\sigma_j(w_m) = \frac{1}{d}$.
 1003

1004 Note that $W^{(0)}$ is set as $\mathbf{0}_{d \times \frac{k}{2}}$ at initialization.
 1005

1006 Therefore, at the initialization, the gradient of L with respect to each element $w_{j,m}$ can be calculated
 1007 as

$$1008 \quad \frac{\partial L}{\partial w_{j,m}}(W) = \frac{1}{n} (\hat{z}_m - x_m)^\top \frac{\partial \hat{z}_m}{\partial w_{j,m}} \\ 1009 \\ 1010 \quad = \frac{\sigma_j(w_m)}{n} \langle \hat{z} - x_m, x_j - \hat{z} \rangle \\ 1011 \\ 1012 \quad = \frac{1}{nd} (-\langle x_m, x_j \rangle + \langle x_m, \hat{z} \rangle + \langle \hat{z}, x_j \rangle - \langle \hat{z}, \hat{z} \rangle) \\ 1013 \\ 1014 \quad := \frac{1}{nd} (A_1 + A_2 + A_3 + A_4), \quad (3)$$

1015 where the 1st step is by chain rule, the 2nd step is by Eq. (2), the 3rd step is by separating the terms,
 1016 and the last step follows from we define A_1, A_2, A_3 and A_4 in that way.
 1017

1018 **Analyzing the Interaction Terms.** Using Lemma E.2, we have

$$1020 \quad \frac{1}{n} \langle x_m, x_j \rangle = \begin{cases} \frac{1}{4} + O(\kappa), & \mathbf{p}[j] = m; \\ \frac{1}{8} + O(\kappa), & \text{otherwise.} \end{cases} \quad (4)$$

1021 where the $1/4$ from when $\mathbf{p}[j] = m$, $\langle x_m, x_j \rangle = \langle x_{c_1[m]}, x_{c_2[m]} \rangle \in I_2$, the $1/8$ terms from when
 1022 $\mathbf{p}[j] \neq m$, $\langle x_m, x_j \rangle = \langle x_{c_1[m]}, x_{c_2[m]}, x_j \rangle \in I_3$.
 1023

1024 Note that $\kappa = O(d^{-\epsilon/4})$. Also we consider the parameter regime $d < m \leq 2d - 1$.
 1025

1026 For the first term in Eq. (3), we can show
 1027

$$\begin{aligned} \frac{1}{nd} A_1 &= -\frac{1}{nd} \langle x_m, x_j \rangle \\ &= -\frac{1}{8d} (\mathbb{1}_{\{p[j]=m\}} + 1) + O(d^{-1}\kappa) \\ &= -\frac{1}{8d} \mathbb{1}_{\{p[j]=m\}} - \frac{1}{8d} + O(d^{-1-\epsilon/4}), \end{aligned}$$

1030 where the 2nd step is by Eq. (4), and the 3rd step is by combining the terms.
 1031

1032 Next, for term A_2 , we have
 1033

$$\begin{aligned} \frac{1}{nd} A_2 &= \frac{1}{nd^2} \langle x_m, \hat{z}_m \rangle \\ &= \frac{1}{nd^2} \left(\sum_{p[\alpha]=m} \langle x_m, x_\alpha \rangle + \sum_{p[\beta] \neq m} \langle x_m, x_\beta \rangle \right) \\ &= \frac{1}{nd^2} (2 \cdot \left(\frac{n}{4} + O(n\kappa) \right) + (d-2) \cdot \left(\frac{n}{8} + O(n\kappa) \right)) \\ &= \frac{1}{8d^2} + \frac{1}{8d} + O(d^{-1}\kappa) \\ &= \frac{1}{8d} + O(d^{-1-\epsilon/4}). \end{aligned}$$

1034 For term A_3 , we have that
 1035

$$\begin{aligned} \frac{1}{nd} A_3 &= \frac{1}{nd} \langle \hat{z}, x_j \rangle \\ &= \frac{1}{nd^2} (\langle x_j, x_j \rangle + \sum_{\alpha \neq j} \langle x_\alpha, x_j \rangle) \\ &= \frac{1}{nd^2} \left(\frac{n}{2} + O(n\kappa) + \frac{(d-1)n}{4} + O((d-1)n\kappa) \right) \\ &= \frac{1}{4d} + O(d^{-1-\epsilon/4}), \end{aligned}$$

1036 where the 1st step is by definition, and the 2nd step is by separating the terms, the 3rd step is by
 1037 Lemma E.2, and the last step is by $\kappa = O(d^{-\epsilon/4})$ and combining the terms.
 1038

1039 For term A_4 , we have
 1040

$$\begin{aligned} \frac{1}{nd} A_4 &= -\frac{1}{nd} \langle \hat{z}, \hat{z} \rangle \\ &= -\frac{1}{nd^3} \left(\sum_{\alpha=1}^d \langle x_\alpha, x_\alpha \rangle + \sum_{\alpha \neq \beta} \langle x_\alpha, x_\beta \rangle \right) \\ &= -\frac{1}{nd^3} \left(\frac{nd}{2} + O(nd\kappa) + \frac{nd(d-1)}{4} + O(nd(d-1)\kappa) \right) \\ &= -\frac{1}{4d^2} - \frac{1}{4d} - O(d^{-1}\kappa) \\ &= -\frac{1}{4d} - O(d^{-1-\epsilon/4}), \end{aligned}$$

1041 where the 1st step is by definition, the 2nd step is by separating terms, the 3rd step is by $\langle x_\alpha, x_\alpha \rangle =$
 1042 $\langle x_\alpha \rangle$ and Lemma E.2, the 4th step is by combining the terms, and the last step is by $\kappa = O(d^{-\epsilon/4})$.
 1043

1044 From the computation of A_1, A_2, A_3 and A_4 , we conclude that
 1045

$$\frac{\partial L}{\partial w_{j,m}}(W^{(0)}) = -\frac{1}{8d} \mathbb{1}_{\{p[j]=m\}} + O(d^{-1-\epsilon/4}),$$

1046 In addition, we want to remark same result holds to the approximate gradient $\tilde{\nabla}_{w_{j,m}} L$ at initialization
 1047 since the cutoff does not apply and each component of the noise is bounded by $O(d^{-1-\epsilon/4})$.
 1048

1080 **Property of Softmax Calculations.** Taking $\eta = \Theta(d^{1+\epsilon/8})$, the updated weights
 1081

$$1082 \quad W^{(1)} = \underbrace{W^{(0)}}_{d \times \frac{k}{2}} - \eta \underbrace{\tilde{\nabla} L(W^{(0)})}_{d \times \frac{k}{2}}$$

$$1083$$

$$1084$$

1085 become
 1086

$$1087 \quad w_{j,m}^{(1)} = \frac{d^{\epsilon/8}}{8} \mathbf{1}_{\{p[j]=m\}} + O(d^{-\epsilon/8}). \quad (5)$$

$$1088$$

1089 For each $j \neq c_1[m], c_2[m]$, we can show
 1090

$$1091 \quad \sigma_j(w_m^{(1)}) = e^{w_{j,m}^{(1)}} / \sum_{\alpha} e^{w_{\alpha,m}^{(1)}} \\ 1092 \quad \leq e^{w_{j,m}^{(1)} - w_{c_1[m],m}^{(1)}} \\ 1093 \quad \leq \exp(-\Omega(d)), \quad (6)$$

$$1094$$

$$1095$$

$$1096$$

1097 where the 1st step is by definition of softmax function, the 2nd step is by simple algebra, and the 3rd
 1098 step is by Eq. (5).

1099 It is obvious that summation of all softmax values is equal to 1, thus, we have
 1100

$$1101 \quad \sigma_{c_1[m]}(w_m^{(1)}) + \sigma_{c_2[m]}(w_m^{(1)}) \geq 1 - \exp(-\Omega(d)).$$

$$1102$$

1103 Furthermore,

$$1104 \quad \frac{\sigma_{c_1[m]}(w_m^{(1)})}{\sigma_{c_2[m]}(w_m^{(1)})} = e^{w_{c_1[m],m}^{(1)} - w_{c_2[m],m}^{(1)}} \\ 1105 \quad \leq \exp(O(d^{-\epsilon/8})) \\ 1106 \quad \leq 1 + O(d^{-\epsilon/8}), \quad (7)$$

$$1107$$

$$1108$$

$$1109$$

1110 where the 1st line is by definition, the 2nd line is by Eq. (5), and the 3rd line is by the inequality
 1111 $e^t \leq 1 + O(t)$ for small $t > 0$.

1112 Using symmetry property,

$$1113 \quad \sigma_{c_2[m]}(w_m^{(1)}) / \sigma_{c_1[m]}(w_m^{(1)}) \leq 1 + O(d^{-\epsilon/8}). \quad (8)$$

$$1114$$

$$1115$$

1116 By Eq. (7), Eq. (8) and Lemma D.4, we conclude that
 1117

$$1118 \quad \frac{1}{2} - O(d^{-\epsilon/8}) \leq \sigma_{c_1[m]}(w_m^{(1)}), \sigma_{c_2[m]}(w_m^{(1)}) \leq \frac{1}{2} + O(d^{-\epsilon/8}). \quad (9)$$

$$1119$$

$$1120$$

1121 **Proof of Loss Function.** Let prediction of v_b be $2W^{(1)}\mathbf{1}_{\frac{k}{2}}$.
 1122

1123 Then, we can show

$$1124 \quad \|2 \cdot \text{Softmax}(W^{(1)})\mathbf{1}_t - v_b\|_{\infty} \leq \max_{j \in [d] \cap b} (|\sum_{i=1}^t \sigma_j(w_i^{(1)}) - 1|) + \max_{j \in [d] \setminus b} (|\sum_{i=1}^t \sigma_j(w_i^{(1)})|) \\ 1125 \quad \leq 2(O(d^{-\epsilon/8}) + (t-1)\exp(-\Omega(d)) + \frac{k}{d}\exp(-\Omega(d))) \\ 1126 \quad = O(d^{-\epsilon/8}),$$

$$1127$$

$$1128$$

$$1129$$

$$1130$$

1131 where the 1st step is by the definition of $\|\cdot\|_{\infty}$, the 2nd line is by Eq. (6) and Eq. (9), and the last
 1132 step is by simple algebra.

1133 This completes the proof. \square

1134 **G LOWER BOUND**
 1135

1136 The goal of this section is to prove Theorem 4.3. Let us first restate it first.
 1137

1138 **Theorem G.1** (Theorem 4.3 Restate: Hardness of Finite-Sample Boolean). *Let \mathcal{A} be any algorithm
 1139 to solve k -bit Boolean problem (Definition 3.3) for d -bit inputs $x = (x_j)_{j=1}^d \sim \text{Unif}(\{0, 1\}^d)$. Let v_b
 1140 denote the length- d vectors where i -th entry is 1 if $i \in b$ and 0 otherwise. Suppose $k = \Theta(d)$. Denote
 1141 the number of samples as n , and let $f_\theta : \{0, 1\}^{n \times (d+1)} \rightarrow \mathbb{R}^d$ be any differentiable parameterized
 1142 model. Let $n = 2^{\Theta(d)}$. Then, the output $\theta(\mathcal{A})$ of \mathcal{A} has entry-wise loss lower bounded as*

$$1143 \mathbb{E}_{b \in \mathcal{B}, x} [\min_{j \in [d]} |(v_b - f_{\theta(\mathcal{A})}(x, y))_j|] \geq \min\{k/d, 1 - k/d\} - e^{-\Theta(d)}.$$

1145 *Proof.* For $x \in \{0, 1\}^d$, denote m to be the number of 1's in x . By the Chernoff bound for the
 1146 binomial distribution, for $x \sim \text{Unif}(\{0, 1\}^d)$ the following holds:
 1147

$$1148 \Pr[m - d/2 > \delta d/2] \leq \exp(-\delta^2 d/6).$$

1149 Let $\delta = 7/8$, we have
 1150

$$1151 \Pr[m > 15d/16] \leq \exp(-49^2 d/384),$$

1152 and by union bounding over $n = O((\frac{16}{15})^{k/2})$ samples, we have that with probability at least $1 -$
 1153 $O(\exp(-49^2 d/384)(\frac{16}{15})^{k/2}) \geq 1 - O(\exp(-d/20))$, it holds that for all $i \in [n]$, there are less than
 1154 $15d/16$ 1's in x^i .
 1155

1156 Let $b \in \mathcal{B}$ be any target subset. Since x^i are i.i.d. $\sim \text{Unif}(\{0, 1\}^d)$, the probability that $y = \mathbf{0}_n$ is
 1157 greater than $1 - n \cdot \frac{1}{2^k} = 1 - \exp(-\Theta(d))$.
 1158

1159 Combining the above, there is probability $1 - \exp(-\Theta(d))$ over random sampling that each sample
 1160 x^i contains less than $15d/16$ 1's and each $y^i = 0$.
 1161

Under this situation, by logical deduction we can only deny at most $\binom{15d/16}{k} n$ possibilities of the
 1162 target subset b , while the other subsets are all possible to be the target subset.
 1163

We calculate
 1164

$$1165 \frac{\binom{15d/16}{k} n}{\binom{d}{k}} = n \cdot \frac{(15d/16)(15d/16 - 1) \cdots (15d/16 - k + 1)}{d(d - 1) \cdots (d - k + 1)} \\ 1166 \leq \left(\frac{15}{16}\right)^k n \\ 1167 = O\left(\left(\frac{15}{16}\right)^{k/2}\right) \\ 1168 = \exp(-\Theta(d)), \quad (10)$$

1173 where the 1st step is by definition, the 2nd step is by $\frac{15d/16 - l + 1}{d - l + 1} \leq \frac{15}{16}$ for all $l \in [k]$, the 3rd step is
 1174 by $n = O((\frac{16}{15})^{k/2})$, and the last step is by simple algebra.
 1175

1176 Denote \mathcal{Q} to be the collection of the subsets that are possible to be the target subset with the inputs
 1177 x^i for all $i \in [n]$, then $\frac{|\mathcal{Q}|}{|\mathcal{B}|} = \exp(-\Theta(d))$.
 1178

1179 For an arbitrary $j \in [d]$, there are exactly $\frac{k|\mathcal{B}|}{d}$ vectors v_b whose j -th entry is 1 for all $b \in \mathcal{B}$ due to
 1180 symmetry. We give a partition of \mathcal{B} as $\mathcal{B} = \mathcal{B}_j \cup \mathcal{B}_{\bar{j}}$, where $\mathcal{B}_j = \{(v_b)_j = 1 | b \in \mathcal{B}\}$ and $\mathcal{B}_{\bar{j}}$ its
 1181 complement. Then we have

$$1182 \frac{|\mathcal{B}_j|}{|\mathcal{B}|} = \frac{k}{d}, \quad \frac{|\mathcal{B}_{\bar{j}}|}{|\mathcal{B}|} = \frac{d - k}{d}. \quad (11)$$

1185 Since the subset b is independent of the distribution of the samples, the output of the algorithm
 1186 $f_\theta(X; y) \in \mathbb{R}^d$ must be the same, and the loss is bounded as
 1187

$$\mathbb{E}_{b \in \mathcal{B}} [|(v_b - f_{\theta(\mathcal{A})})_j|]$$

$$\begin{aligned}
&= \frac{1}{|\mathcal{B}|} \sum_{b \in \mathcal{B}} |(v_b - f_{\theta(\mathcal{A})})_j| \\
&= \frac{1}{|\mathcal{B}|} \left(\sum_{b \in \mathcal{B}_j} |(v_b)_j - (f_{\theta(\mathcal{A})})_j| + \sum_{b \in \mathcal{B}_{\bar{j}}} |(v_b)_j - (f_{\theta(\mathcal{A})})_j| \right) \\
&\geq \frac{1}{|\mathcal{B}|} \left(\sum_{b \in \mathcal{B}_j \cap \mathcal{Q}} |(v_b)_j - (f_{\theta(\mathcal{A})})_j| + \sum_{b \in \mathcal{B}_{\bar{j}} \cap \mathcal{Q}} |(v_b)_j - (f_{\theta(\mathcal{A})})_j| \right) \\
&\geq \frac{1}{|\mathcal{B}|} ((|\mathcal{B}_j| - |\mathcal{B} \setminus \mathcal{Q}|) |1 - (f_{\theta(\mathcal{A})})_j| + (|\mathcal{B}_{\bar{j}}| - |\mathcal{B} \setminus \mathcal{Q}|) |0 - (f_{\theta(\mathcal{A})})_j|) \\
&\geq \frac{1}{|\mathcal{B}|} \min\{|\mathcal{B}_j| - |\mathcal{B} \setminus \mathcal{Q}|, |\mathcal{B}_{\bar{j}}| - |\mathcal{B} \setminus \mathcal{Q}|\} (|1 - (f_{\theta(\mathcal{A})})_j| + |0 - (f_{\theta(\mathcal{A})})_j|) \\
&\geq \frac{1}{|\mathcal{B}|} (\min\{|\mathcal{B}_j|, |\mathcal{B}_{\bar{j}}|\} - |\mathcal{B} \setminus \mathcal{Q}|) \\
&\geq \min\{k/d, 1 - k/d\} - e^{-\Theta(d)}.
\end{aligned}$$

where the 1st step is by the definition of expectation, the 2nd step is by separating the terms, the 3rd step is by restricting to \mathcal{Q} , the 4th and 5th step is by simple algebra, the 6th step is by $|a| + |b| \geq |a+b|$ for $a, b \in \mathbb{R}$, and the last step is by Eq. (11) and Eq. (10). \square

H EXTENSION TO NOISY BOOLEAN PROBLEMS

Recall that in Definition 3.3, we define the classical boolean problems. Here we provide a noisy version as an extension.

Definition H.1 (Learning k -bit p -Noisy Boolean Functions). *Let $d \geq k \geq 2$ be integers such that $k = \Theta(d)$ and let $\mathcal{B} = \binom{[d]}{k}$ denote the set of all size k subsets of $[d] := \{1, \dots, d\}$ equipped with the uniform distribution. Let $p \in [0, 1/3]$. Let the k bits in set $b \subseteq [d]$ be j_1, \dots, j_k , and set $t = k/2$. Our goal is to study the noisy k -boolean problem for d -bit inputs $x = (x_j)_{j=1}^d \sim \text{Unif}(\{0, 1\}^d)$, where the target*

$$y_{\text{and}}(x) := \prod_{m=d+1}^{d+t} x'_m, \quad \text{or} \quad y_{\text{or}}(x) := 1 - \prod_{m=d+1}^{d+t} (1 - x'_m), \quad \text{with } |b| = k,$$

is determined by the boolean value of the unknown subset of bits $b \in \mathcal{B}$.

We can define k -bit p -Noisy AND function. We suppose that the intermediate bits are noisy, and for each $i \in [t]$ and $l \in [n]$, the vector $x_{d+i} \in \mathbb{R}^n$ is defined by

$$(x'_{d+i})_l := \begin{cases} (x_{j_{2i-1}})_l (x_{j_{2i}})_l, & \text{with prob. } 1-p; \quad (\text{correct case}) \\ 1 - (x_{j_{2i-1}})_l (x_{j_{2i}})_l, & \text{with prob. } p. \end{cases}$$

Similarly, for k -bit p -Noisy OR function, we have

$$(x'_{d+i})_l := \begin{cases} 1 - (x_{j_{2i-1}})_l (x_{j_{2i}})_l, & \text{with prob. } 1-p; \quad (\text{correct case}) \\ (x_{j_{2i-1}})_l (x_{j_{2i}})_l, & \text{with prob. } p. \end{cases}$$

Given n samples $(x^i, y^i)_{i \in [n]}$, our goal is to predict the size k subset $b \in \mathcal{B}$ deciding the boolean function. In this paper, we denote $x^i \in \mathbb{R}^d$ to be the i -th input vector. We denote $x_j \in \mathbb{R}^n$ as $(x_j)_i := (x^i)_j$, i.e. x_j is an n -dimensional vector containing the j -th bits of all x^i , and $y \in \mathbb{R}^n$ as $y_i := \prod_{j \in b} x_j^i$.

The following theorem can be viewed as a general version of Theorem 4.1. Essentially, Theorem 4.1 only solves the case when $p = 0$.

Theorem H.2 (Upper Bound: Softmax Attention Provably Solve Definition H.1 with Teacher Forcing). *Let $\epsilon > 0$, and suppose d is a sufficiently large positive integer. Let $k = \Theta(d)$ be an even integer, and set $t = k/2$. Define $\mathcal{B} := \binom{[d]}{k}$ to be the collection of all size- k subsets of $[d]$. Let*

1242 $X := (x_1 \dots x_d) \in \mathbb{R}^{n \times d}$ and $E := (x_{d+1} \dots x_{d+t}) \in \mathbb{R}^{n \times t}$. Assume $n = \Omega(d^\epsilon)$ and consider
 1243 any $O(d^{-1-\epsilon/4})$ -approximate gradient oracle $\tilde{\nabla}$. Let the weights be initialized as $W^{(0)} = \mathbf{0}_{d \times t}$.
 1244 Let $v_b \in \{0, 1\}^d$ denote the indicator vector that encodes the Boolean target associated with subset
 1245 $b \subseteq [d]$. Since ground-truth vector $v_b \in \{0, 1\}^d$ is unknown, we define the surrogate function
 1246

$$1247 \quad L(W) := \frac{1}{2n} \|\text{Att}_W(X) - E\|_F^2,$$

1248 instead of the loss $\|2 \cdot \text{Softmax}(W^{(1)})\mathbf{1}_t - v_b\|_\infty$ to find the target weight matrix W . Set the
 1249 learning rate $\eta = \Theta(d^{1+\epsilon/8})$, and choose $\kappa \in [d^{-1}, 1]$ (we set $\kappa = O(d^{-\epsilon/4})$). Let $W^{(1)} :=$
 1250 $W^{(0)} - \eta \cdot \nabla L(W^{(0)})$ be the one-step gradient update.
 1251

1252 Then for any target subset $b \in \mathcal{B}$, the algorithm solves the noisy k -Boolean problem (Definition H.1)
 1253 over d -bit inputs. Denote $\phi : \mathbb{R} \rightarrow \mathbb{R}$ as
 1254

$$1255 \quad \phi(x) := \begin{cases} 0, & \text{if } x \leq 0.5d^{\epsilon/8}; \\ 1, & \text{otherwise.} \end{cases}$$

1256 With probability at least $1 - \exp(-\Theta(d^{\epsilon/2}))$ over the randomness in sampling and the affect of
 1257 noise, the one-step update $W^{(1)} \in \mathbb{R}^{d \times t}$ satisfies:
 1258

$$1261 \quad \phi(W^{(1)})\mathbf{1}_t = v_b.$$

1262 *Proof.* Denote $\hat{z} := \frac{1}{d} \sum_{j=1}^d x_j$ as in Theorem 4.1. The surrogate loss function computes the
 1263 squared error over the intermediate states x_{d+1}, \dots, x_{d+t} :
 1264

$$1266 \quad L(W) := \frac{1}{2n} \sum_{m=d+1}^{d+t} \|\hat{z} - x_m\|^2.$$

1267 For any $i \in [t]$, we firstly bound the number of indices $l \in [n]$ such that
 1268

$$1269 \quad (x'_{d+i})_l = 1 - (x_{j_{2i-1}})_l (x_{j_{2i}})_l.$$

1270 Denote r_i to be the number of indices l satisfying the conditions.
 1271

1272 Note that
 1273

$$1274 \quad \mu = \mathbb{E}[r_i] = pn$$

1275 Using Chernoff bound (Lemma D.3), we have
 1276

$$1277 \quad \Pr[r_i \geq (1 + \delta)\mu] \leq \exp(-\delta^2\mu/3)$$

1278 Choosing $\delta = 0.5$, we have
 1279

$$1280 \quad \Pr[r_i \geq 1.5pn] \leq \exp(-pn/12) = \exp(-\Theta(d^\epsilon)) \tag{12}$$

1281 As in Theorem 4.1, the gradient of L with respect to each element $w_{j,m}$ at initialization can be
 1282 computed as
 1283

$$1284 \quad \begin{aligned} \frac{\partial L}{\partial w_{j,m}}(W) &= \frac{1}{n} (\hat{z}_m - x'_m)^\top \frac{\partial \hat{z}_m}{\partial w_{j,m}} \\ 1285 &= \frac{\sigma_j(w_m)}{n} \langle \hat{z} - x'_m, x_j - \hat{z} \rangle \\ 1286 &= \frac{1}{nd} (-\langle x'_m, x_j \rangle + \langle x'_m, \hat{z} \rangle + \langle \hat{z}, x_j \rangle - \langle \hat{z}, \hat{z} \rangle) \\ 1287 &:= \frac{1}{nd} (B_1 + B_2 + B_3 + B_4), \end{aligned} \tag{13}$$

1288 where \hat{z} is defined as $\hat{z} = \frac{1}{d} \sum_{j=1}^d x_j$.
 1289

1296 Using Eq. (12), we have that with probability at least $1 - \exp(-\Theta(d^\epsilon))$, $\delta_1 := |A_1 - B_1| \leq 1.5pn$,
 1297 $\delta_2 := |A_2 - B_2| \leq 1.5pn$. Let $\delta := \delta_1 + \delta_2$. We also have $B_3 = A_3$ and $B_4 = A_4$.
 1298

1299 Combining the computation of A_1 - A_4 in Theorem 4.1, $\frac{\partial L}{\partial w_{j,m}}(W)$ is bounded as
 1300

$$1301 \frac{1}{nd} \left(\sum_{i=1}^4 A_i - \delta \right) \leq \frac{1}{nd} \sum_{i=1}^4 B_i \leq \frac{1}{nd} \left(\sum_{i=1}^4 A_i + \delta \right),$$

1302 which deduce to
 1303

$$1304 -\frac{1}{8d} \mathbb{1}_{p[j]=m} + O(d^{-1-\epsilon/4}) - \frac{3p}{d} \leq \frac{\partial L}{\partial w_{j,m}}(W) \leq -\frac{1}{8d} \mathbb{1}_{p[j]=m} + O(d^{-1-\epsilon/4}) + \frac{3p}{d}.$$

1305 To guarantee that $1/(8d)$ is dominating the term $3p/d$, we need to make that $3p/d \leq 1/(9d)$. This
 1306 means, $p \leq 1/3$.
 1307

1308 Thus, we have
 1309

$$1310 -\frac{1}{72d} \mathbb{1}_{p[j]=m} + O(d^{-1-\epsilon/4}) \leq \frac{\partial L}{\partial w_{j,m}}(W) \leq -\frac{1}{72d} \mathbb{1}_{p[j]=m} + O(d^{-1-\epsilon/4}).$$

1311 **Property of Softmax Calculations.** Taking $\eta = \Theta(d^{1+\epsilon/8})$, the updated weights
 1312

$$1313 W^{(1)} = \underbrace{W^{(0)}}_{d \times \frac{k}{2}} - \eta \underbrace{\tilde{\nabla} L(W^{(0)})}_{d \times \frac{k}{2}},$$

1314 become
 1315

$$1316 w_{j,m}^{(1)} = d^{\epsilon/8} \mathbb{1}_{\{p[j]=m\}} + O(d^{-\epsilon/8}).$$

1317 Recall $\phi : \mathbb{R} \rightarrow \mathbb{R}$ is denoted as
 1318

$$1319 \phi(x) := \begin{cases} 0, & x \leq 0.5d^{\epsilon/8}; \\ 1, & \text{otherwise.} \end{cases}$$

1320 Therefore
 1321

$$1322 \phi(w_{j,m}^{(1)}) = \begin{cases} 0, & p[j] \neq m; \\ 1, & p[j] = m. \end{cases}$$

1323 Since for each $j \in b$, there's exactly one $m \in [d+t] \setminus [d]$ such that $p[j] = m$, we deduce that
 1324 $\phi(W^{(1)}) \mathbf{1}_t = v_b$.
 1325

1326 This completes the proof. □
 1327

1328 I THE MAJORITY PROBLEM

1329 In this section, we extend our techniques to study the k -Majority problem, akin to (Chen et al., 2025)
 1330 (Note that prior work only studies the hardness result). We also want to remark that, the majority
 1331 problem we study is more or less a local majority problem (where you take two variables as inputs).
 1332 Such majority problem is not equivalent to the general majority problem, where the inputs can be
 1333 arbitrary number of variables. In order to define k -Majority problem, we need to firstly define
 1334 majority function.
 1335

1336 **Definition I.1** (The Majority Function). Let $d \in \mathbb{N}_+$. For $x \in \{\pm 1, 0\}^d$ and $S \subseteq [d]$, the majority
 1337 function $\text{MAJ} : \{\pm 1, 0\}^d \times 2^{[d]}$ is defined as follows:
 1338

$$1339 \text{MAJ}(x, S) := \begin{cases} +1, & \sum_{j \in S} x_j > 0; \\ 0, & \sum_{j \in S} x_j = 0; \\ -1, & \sum_{j \in S} x_j < 0. \end{cases}$$

1340 In particular, $\text{MAJ}(x, S)$ is also denoted as $\text{MAJ}(x)$ if $S = [d]$.
 1341

1342 We define $\text{MAJ2}(x + y) := (x + y)/2$.
 1343

1350 Now, we're ready to define the k -Majority problem.

1351 **Definition I.2** (The k -Majority Problem). Suppose $d \geq k \geq 2$ are positive integers. Denote \mathcal{S} to be
 1352 the set of all $S \subseteq [d]$ with $|S| = k$. Let $S \in \mathcal{S}$ be a fixed subset of $[d]$, but unknown. The k -majority
 1353 problem is to find out the subset S with n d -bit inputs:

1354
$$x := (x_j)_{j=1}^d \sim \text{Unif}(\{\pm 1\}^d) \in \mathbb{R}^d,$$

1355 and the output $y := \text{MAJ}(x, S) \in \{\pm 1, 0\}$.

1356 **Teacher Forcing.** Suppose k is an even integer and let $t = k/2$. Let the k bits in set $S \subseteq [d]$
 1357 be j_1, \dots, j_k . Let $x' \in \{\pm 1, 0\}^t$ such that $x'_m = \text{MAJ2}(x_{j_{2m-1}}, x_{j_{2m}})$ for $m \in [t]$. The majority
 1358 function $y = \text{MAJ}(x, S)$ is also computed as

1359
$$y = \text{MAJ}(x').$$

1360 The surrogate loss function computes the squared error over the intermediate states x' :

1361
$$L(W) := \frac{1}{2n} \sum_{m=1}^t \|\hat{z}_m - x'_m\|^2,$$

1362 where $\hat{z}_m = \sum_{j=1}^d \sigma_j(w_m) x_j$.

1363 **Theorem I.3** (Softmax Attention Provably Solve Definition I.2 with Teacher Forcing). Let $\epsilon > 0$,
 1364 and $d > 0$ be a sufficiently large integer. Suppose $k = \Theta(d)$ is an even integer, and let $t = k/2$.
 1365 Define $\mathcal{S} := \binom{[d]}{k}$ as the collection of $[d]$'s all size- k subsets. Denote the i -th input as x^i for $i \in [n]$,
 1366 and let $x_j \in \mathbb{R}^n$ denote all the j -th entries of x^i , i.e. $(x_j)_i = (x^i)_j$ for all $i \in [n]$ and $j \in [d]$. Set
 1367 initialization $W^{(0)} = \mathbf{0}_{d \times t}$, and let $E := (x'_1 \cdots x'_t) \in \mathbb{R}^{n \times t}$. For any target subset $S \in [d]$, the
 1368 algorithm solves the k -majority problem (Definition I.2) over d -bit inputs. With probability at least
 1369 $1 - \exp(-\Theta(d^{\epsilon/2}))$ over the randomness in sampling, the one-step update $W^{(1)} \in \mathbb{R}^{d \times t}$ satisfies:

1370
$$x^\top \text{nint}(2W^{(1)}) \mathbf{1}_t - \text{MAJ}(x, S) = 0,$$

1371 for any input $x \in \{\pm 1\}^d$.

1372 *Proof.* Similar to Theorem 4.1, we compute

1373
$$\begin{aligned} \frac{\partial L}{\partial w_{j,m}}(W) &= \frac{1}{n} (\hat{z}_m - x'_m)^\top \frac{\partial \hat{z}_m}{\partial w_{j,m}} \\ &= \frac{\sigma_j(w_m)}{n} \langle \hat{z}_m - x'_m, x_j - \hat{z} \rangle \\ &= \frac{1}{nd} (-\langle x'_m, x_j \rangle + \langle x'_m, \hat{z} \rangle + \langle \hat{z}, x_j \rangle - \langle \hat{z}, \hat{z} \rangle) \\ &:= \frac{1}{nd} (C_1 + C_2 + C_3 + C_4), \end{aligned}$$

1374 where \hat{z} is defined as $\hat{z} := \frac{1}{d} \sum_{j=1}^d x_j$.

1375 **Analyzing the Interaction Terms.** When $p[j] \neq m$,

1376
$$\langle x_j, x'_m \rangle = \frac{1}{2} \langle x_j, x_{c_1[m]} + x_{c_2[m]} \rangle.$$

1377 Then by Lemma E.3, we deduce that with probability at least $1 - p$,

1378
$$|\langle x_j, x'_m \rangle| \leq \kappa,$$

1379 for all j, m such that $p[j] \neq m$.

1380 Combining the above, we have

1381
$$\frac{\partial L}{\partial w_{j,m}}(W) = \frac{1}{2d} \mathbf{1}_{p[j]=m} + O(d^{-1} \kappa).$$

1404 **Properties of Softmax Calculations.** Taking $\eta = \Theta(d^{1+\epsilon/8})$, the updated weights $W^{(1)} =$
 1405 $\underbrace{W^{(0)}}_{d \times t} - \eta \underbrace{\tilde{\nabla} L(W^{(0)})}_{d \times t}$ become
 1406

$$1407 \quad w_{j,m}^{(1)} = d^{\epsilon/8} \mathbb{1}_{\{p[j]=m\}} + O(d^{-\epsilon/8}). \quad (14)$$

1410 In particular, for each $j \neq c_1[m], c_2[m]$, we have
 1411

$$1412 \quad \sigma_j(w_m^{(1)}) = e^{w_{j,m}^{(1)}} / \sum_{\alpha} e^{w_{\alpha,m}^{(1)}} \\ 1413 \quad \leq e^{w_{j,m}^{(1)} - w_{c_1[m],m}^{(1)}} \\ 1414 \quad \leq \exp(-\Omega(d)), \\ 1415$$

1416 where the 1st step is by definition of softmax function, the 2nd step is by simple algebra, and the 3rd
 1417 step is by Eq. (14).
 1418

1419 Using the property $\sum_{j=1}^d \sigma_j(w_m) = 1$, we can show
 1420

$$1421 \quad \sigma_{c_1[m]}(w_m^{(1)}) + \sigma_{c_2[m]}(w_m^{(1)}) \geq 1 - \exp(-\Omega(d)). \\ 1422$$

1423 Furthermore,
 1424

$$1425 \quad \sigma_{c_1[m]}(w_m^{(1)}) / \sigma_{c_2[m]}(w_m^{(1)}) = e^{w_{c_1[m],m}^{(1)} - w_{c_2[m],m}^{(1)}} \\ 1426 \quad \leq \exp(O(d^{-\epsilon/8})) \\ 1427 \quad \leq 1 + O(d^{-\epsilon/8}), \\ 1428 \quad (15)$$

1429 where the 1st line is by definition, the 2nd line is by Eq. (14), and the 3rd line is by the inequality
 1430 $e^t \leq 1 + O(t)$ for small $t > 0$.
 1431

1432 Then using symmetric property, we have
 1433

$$1434 \quad \sigma_{c_2[m]}(w_m^{(1)}) / \sigma_{c_1[m]}(w_m^{(1)}) \leq 1 + O(d^{-\epsilon/8}). \quad (16)$$

1435 By Eq. (15) and Eq. (16), we have
 1436

$$1437 \quad \frac{1}{2} - O(d^{-\epsilon/8}) \leq \sigma_{c_1[m]}(w_m^{(1)}), \sigma_{c_2[m]}(w_m^{(1)}) \leq \frac{1}{2} + O(d^{-\epsilon/8}). \\ 1438$$

1439 **Proof of Loss Function.** Define the function $\text{nint}(\cdot) : \mathbb{R} \rightarrow \mathbb{Z} : x \mapsto y$, where y is the closest
 1440 integer with x .
 1441

1442 When x is a half integer, we define
 1443

$$1444 \quad \text{nint}(x) := x - \frac{1}{2}. \\ 1445$$

1446 Therefore we have
 1447

$$1448 \quad \text{nint}(2W^{(1)})_{(j,m)} = \begin{cases} 1, & p[j] = m; \\ 0, & \text{otherwise.} \end{cases} \\ 1449$$

1450 Therefore we have
 1451 Then for any input $x \in \mathbb{R}^d$, we have
 1452

$$1453 \quad x^\top \text{nint}(2W^{(1)}) \mathbf{1}_t - \text{MAJ}(x, S) = 0.$$

1454 This completes the proof. □
 1455

1456
 1457