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Abstract

Inductive program synthesis, or programming by example, requires synthesizing1

functions from input-output examples that generalize to unseen inputs. While large2

language model agents have shown promise in programming tasks guided by natu-3

ral language, their ability to perform inductive program synthesis is underexplored.4

Existing evaluation protocols rely on static sets of examples and held-out tests,5

offering no feedback when synthesized functions are incorrect and failing to reflect6

real-world scenarios such as reverse engineering. We propose CodeARC, the Code7

Abstraction and Reasoning Challenge, a new evaluation framework where agents8

interact with a hidden target function by querying it with new inputs, synthesizing9

candidate functions, and iteratively refining their solutions using a differential test-10

ing oracle. This interactive setting encourages agents to perform function calls and11

self-correction based on feedback. We construct the first large-scale benchmark for12

general-purpose inductive program synthesis, featuring 1114 functions. Among 1813

models evaluated, o3-mini performs best with a success rate of 52.7%, highlighting14

the difficulty of this task. Fine-tuning LLaMA-3.1-8B-Instruct on curated synthesis15

traces yields up to a 31% relative performance gain. CodeARC provides a more16

realistic and challenging testbed for evaluating LLM-based program synthesis and17

inductive reasoning.18

1 Introduction19

Inductive reasoning, i.e., the ability to identify patterns and form abstractions from limited examples,20

is widely recognized as a fundamental aspect of human intelligence [22, 75]. In the context of21

programming, inductive reasoning underpins the task of synthesizing functions that satisfy given22

input-output examples and generalize to unseen inputs. This task, commonly referred to as inductive23

program synthesis or programming by example [48, 52, 15, 34], has broad application domains [66,24

10].25

Recent advances in Large Language Models (LLMs) have led to the emergence of autonomous26

agents capable of decision-making, multi-step planning, tool use, and iterative self-improvement27

through interaction and feedback [7, 44, 42, 19, 70]. While much of the existing work focuses on28

programming tasks guided by natural language [6, 2, 28, 27], we study a fundamentally different29

problem: inductive program synthesis, where the objective is to infer the target program solely from30

input-output examples. This setting provides a more rigorous test of inductive reasoning capabilities,31

as it eliminates natural language descriptions that can trigger retrieval-based completions memorized32

during model training.33

Designing an effective evaluation protocol for inductive program synthesis with LLMs is inherently34

challenging, as multiple valid functions may satisfy a given set of input-output examples (as demon-35

strated in Section 5.2). The state-of-the-art protocol [34], which evaluates synthesized functions on36
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Figure 1: Overview of CodeARC. Our framework evaluates LLMs’ reasoning capabilities in
inductive program synthesis. The agent begins with input-output examples, interacts with a hidden
target function via function calls, and uses a differential testing oracle to check the correctness of the
synthesized function for self-reflection and refinement.

held-out test cases after presenting 10 fixed input-output examples, has several notable limitations.37

First, a small, static set of input-output examples may underspecify the target functions, especially for38

those with complex logic. Moreover, held-out tests may fail to reveal subtle semantic discrepancies39

between the generated and intended implementations. In addition, when the model produces an40

incorrect solution, it receives no feedback and has no opportunity to revise or explore alternatives.41

Finally, existing benchmarks for inductive program synthesis [18, 66, 69, 10, 34] are focused on42

domain-specific tasks and do not assess the ability of LLMs to synthesize functions written in43

general-purpose programming languages.44

To address the limitations of existing evaluation protocols for inductive program synthesis, we45

introduce CodeARC, the Code Abstraction and Reasoning Challenge, inspired by real-world scenarios46

such as decompilation and reverse engineering [36, 49, 1]. In such settings, an agent is given a binary47

executable (without source code) and must synthesize an equivalent source code by observing input-48

output behavior. Rather than relying on a fixed dataset, the agent can query the binary with new49

inputs, invoke a differential testing oracle to compare the synthesized program against the reference50

binary, and use counterexamples to iteratively refine its solution.51

As shown in Figure 1, our framework CodeARC emulates this process: LLM-based agents interact52

with an environment by starting with an initial set of input-output examples, querying the ground-truth53

function for additional examples, and debugging synthesized code using a differential testing oracle.54

We impose fixed budgets on both the number of observable input-output examples and the number of55

testing oracle invocations for self-debugging. The task requires agents to proactively generate inputs56

(function calls) and revise solutions based on feedback (self-reflection). This interactive setup offers57

a more realistic alternative to prior static evaluation protocols.58

We construct the first comprehensive dataset for general-purpose inductive program synthesis, featur-59

ing 1114 functions with initial input-output examples. Our benchmark targets general programming60

tasks and employs two state-of-the-art differential testing tools [45, 13] for correctness evaluation.61

Our experiments demonstrate that CodeARC poses a significant challenge for LLM-based inductive62

program synthesis. Among the 18 models evaluated, OpenAI o3-mini performs the best overall, yet63

only achieves 52.7% success rate. We further conduct ablation studies to analyze how budgets on64

the number of input-output examples and oracle calls affect model performance. To enhance model65

capabilities, we generate synthetic fine-tuning data with curated synthesis traces that capture the66

reasoning steps. We show that supervised fine-tuning on LLaMA-3.1-8B-Instruct yields up to a 31%67

relative performance improvement.68

In summary, our contributions are as follows:69

• Interactive evaluation protocol for inductive program synthesis. We introduce a setup where70

agents start with fixed input-output examples but can generate new inputs to query ground-truth71

2



functions and invoke a differential testing oracle to self-correct their solutions. This setup brings72

the task closer to a real-world setting, e.g. reverse-engineering.73

• General-purpose benchmark with extensive evaluation. We construct the first large-scale,74

general-purpose benchmark for this task, including 1114 diverse functions. Among the 18 models75

evaluated, o3-mini achieves the best overall performance but still only reaches a success rate of76

52.7%.77

• Synthetic data and fine-tuning. To boost model performance, we generate synthetic fine-tuning78

data containing curated synthesis traces that capture both function invocations and reasoning steps.79

We show that fine-tunining on LLaMA-3.1-8B-Instruct yields up to a 31% relative performance80

improvement.81

2 Related Work82

Inductive Program Synthesis Traditional inductive program synthesis methods rely solely on83

input-output examples, without natural language input. They focus on domain-specific tasks like84

string and data transformations [18, 60, 73], SQL [66], visual programming [67], and quantum85

computing [10]. These approaches typically define a domain-specific language and use tailored86

search algorithms to prune the space efficiently [16, 58, 14, 20, 50]. In contrast, we introduce the87

first general-purpose program synthesis benchmark for LLM-powered agents.88

LLM Benchmarks for Code Most LLM benchmarks—such as HumanEval+ [6, 40], MBPP+ [2,89

40], APPS [23], and others [35, 41, 33, 26, 3, 54, 43, 12, 62, 80, 76, 31, 56, 64, 65]—evaluate code90

generation from natural language. Beyond generation, tasks like I/O prediction [17, 37], execution91

prediction [38, 30, 53, 11], bug localization [61], and program equivalence [68] have also been92

studied. In contrast, we focus on predicting function bodies purely from input-output examples,93

without natural language. Prior work [34, 4] targets domain-specific tasks, while we introduce a94

general-purpose benchmark with an interactive evaluation protocol.95

LLM Benchmarks for Reasoning LLMs are widely benchmarked on reasoning tasks across96

domains, including commonsense [63], mathematical [9], and logical [21, 51, 39, 55]. Inductive97

reasoning, a core cognitive skill that generalizes from limited examples [22], is increasingly studied98

in LLMs [32, 46, 71, 5]. ARC [8] is a prominent benchmark for abstract pattern induction. Our work99

shares this goal but is for inductive program synthesis.100

LLM-powered Agents LLM-based agents have shown strong performance in domains like web101

navigation [78, 79], code generation [77, 29], and ML experimentation [25]. They interact with102

environments, invoke functions, make decisions, and self-reflect [47, 57, 72, 24, 59]. We introduce103

the first benchmark to systematically evaluate agents’ capabilities in inductive program synthesis,104

providing a rigorous testbed for inductive reasoning and program synthesis.105

3 Method106

3.1 Problem Definition of Inductive Program Synthesis107

We formalize the inductive program synthesis task as follows. Let f∗ be a hidden ground-truth108

function that maps inputs x ∈ X to outputs y ∈ Y . The synthesizer is given an initial set of input-109

output examples E0 = {(xi, yi)}ni=1, where yi = f∗(xi), and the goal is to synthesize a program f̂110

such that f̂ ≡ f∗, i.e.,111

∀x ∈ X , f̂(x) = f∗(x).

To evaluate whether a synthesized function f̂ is correct, we introduce a differential testing oracle O.112

The oracle takes as input both the synthesized function f̂ and the hidden ground-truth function f∗ and113

attempts to identify inputs on which their behaviors differ. Formally, the oracle operates as follows:114

O(f∗, f̂) =

{
Pass, if ∀x ∈ Xtest, f̂(x) = f∗(x);

Fail(x), if ∃x ∈ Xtest such that f̂(x) ̸= f∗(x),
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where Xtest ⊆ X is a set of test inputs dynamically selected by the oracle.115

Unlike fixed held-out test sets used in prior work, the differential testing oracle conditions on both116

f∗ and the candidate f̂ , generating targeted inputs to expose discrepancies. On failure, it returns117

a counterexample x ∈ Xtest such that f̂(x) ̸= f∗(x). Note that program equivalence checking is118

fundamentally undecidable, and thus no perfect oracle exists. To approximate oracle functionality, we119

adopt two state-of-the-art differential testing tools, providing a more robust and practical evaluation.120

3.2 Interactive Evaluation Protocol for LLM Agents121

To evaluate the capabilities of LLM-based agents in inductive program synthesis, we introduce an122

interactive protocol. This protocol extends beyond static evaluation settings by enabling dynamic123

interaction with the hidden ground-truth function and the differential testing oracle.124

Initial Information. At the beginning of the task, the agent is provided with an initial set of input-125

output examples E0 = {(xi, yi)}ni=1, as explained previously. This set serves as partial information126

about the target function.127

Action Space. During evaluation, the agent may take two types of actions. First, it may query128

the ground-truth function f∗ at a chosen input x ∈ X , and obtain the corresponding output f∗(x),129

thereby augmenting its observed set of input-output pairs. Second, it may synthesize a candidate130

program f̂ and invoke the differential testing oracle O(f∗, f̂), which returns PASS if no discrepancies131

are found on a dynamically generated test set, or FAIL with a counterexample x ∈ Xtest such that132

f̂(x) ̸= f∗(x).133

Self-Reflection. If the oracle returns FAIL, a counterexample δ, which is a tuple of (x, f̂(x), f∗(x))134

will be provided to the agent. This counterexample helps the agent to self-reflect and revise its current135

hypothesis, either by issuing additional queries f∗ or synthesizing new programs. The ability to take136

such feedback is crucial for iterative refinement.137

Budget Constraints. The agent operates under two budget parameters: Bio and Boracle. Bio limits138

the total number of input-output examples that the agent can observe from the ground-truth function139

f∗, while Boracle limits the number of invocations to the differential testing oracle O.140

Evaluation Metrics. The task is considered successful if the final synthesized program f̂ , produced141

within the given budgets, receives a PASS from the differential testing oracle O(f∗, f̂). We assess the142

performance of an LLM agent along two dimensions: correctness and efficiency, with correctness143

being the primary criterion. The objective is to synthesize correct programs, even at the cost144

of increased resource consumption. Correctness is quantified by the success rate, defined as the145

proportion of problems in the dataset for which the agent successfully synthesizes a correct program146

within the specified budget. Efficiency is measured by the average number of input-output queries147

and oracle invocations utilized per problem.148

3.3 Benchmark Preparation149

Our benchmark is designed to evaluate LLM agents on the inductive synthesis of general-purpose150

Python programs. This contrasts with prior benchmarks that focus on domain-specific tasks or151

programs written in domain-specific languages, such as string manipulation and SQL query genera-152

tion [74, 10, 34].153

Programs for Synthesis. We curate a diverse collection of Python functions sampled from three154

established code generation benchmarks: HumanEval [6], MBPP [2], and APPS [23]. HumanEval155

and MBPP primarily consist of simple, entry-level programming tasks, whereas APPS contains156

more challenging problems that resemble competition-level code exercises. Importantly, we extract157

only the function bodies from these benchmarks and do not use any accompanying natural language158

descriptions.159
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Annotated vs. Anonymized. To assess the extent to which function names help the LLM agent160

synthesize the correct program, we construct two versions of the benchmark. In the annotated161

version, function names that reflect the intended functionality of the task (e.g., is_palindrome)162

are made available to the agent. In the anonymized version, all function names are replaced with a163

generic identifier (i.e., solution). This design isolates the influence of identifier cues on synthesis164

performance. We report results on both versions.165

Initial Input-Output Examples. Each synthesis task includes 10 fixed input-output examples that166

specify the target function’s expected behavior. We use GPT-4o to generate diverse inputs and execute167

the original function to obtain the corresponding ground-truth outputs.168

Synthetic Data Generation. We generate a synthetic dataset for fine-tuning (described in more169

detail in Section 3.4) by first collecting 50 seed Python functions that are disjoint from the evaluation170

set. Using these seeds, we prompt GPT-4o to synthesize a diverse set of new functions, yielding171

10,000 candidates. For each generated function, we additionally instruct GPT-4o to produce 10172

representative inputs that expose the function’s behavior and highlight patterns in its input-output173

relationships. These inputs are executed to verify the executability of the functions, and we discard174

any that fail at this stage. To reduce redundancy, we deduplicate the dataset based on function names,175

finally resulting in 5,405 unique Python functions used for fine-tuning.176

3.4 Fine-Tuning on Synthetic Data177

We investigate whether simply fine-tuning on curated synthesis traces, which capture both function178

invocations and reasoning steps, can improve LLM performance on CodeARC. We adopt a knowledge179

distillation fine-tuning approach, where the student model learns to imitate the reasoning and behavior180

of a teacher model that has access to the ground-truth function body of f∗.181

During training, we first run the interactive evaluation protocol described in Section 3.2 with a frozen182

teacher model. Unlike a standard evaluation, we prepend a set of task-specific instructions Pf∗183

to each teacher prompt. This prefix includes the function body of f∗ and explicitly instructs the184

teacher to (1) query f∗ on informative inputs, (2) explain the rationale behind those queries, and (3)185

synthesize the full implementation of f∗ only when confident that the correct logic can be inferred186

from the accumulated input-output pairs. The student model, which is the only model we fine-tune,187

learns to mimic the teacher’s reasoning and synthesis behavior without ever seeing the function body.188

We provide the teacher with access to f∗ because we find that, in many cases, the model struggles to189

solve the task independently. Without knowledge of the ground truth, the teacher is often too weak to190

generate meaningful queries or explanations, limiting the effectiveness of the resulting supervision.191

While executing the evaluation protocol, we record the multi-turn conversation history CT , which192

comprises the teacher model’s prompts and responses. Let n be the total number of turns in CT and193

denote by xi the sequence of tokens in the ith turn. Furthermore, let p represent the number of tokens194

in the teacher-specific instruction prefix Pf∗ .195

We fine-tune the student model using a language modeling objective by minimizing the negative196

log-likelihood of predicting the next token in CT :197

L = −
n∑

i=1

|xi|∑
j=p+1

logP
(
xi
j | CT,<i, x

i
<j

)
.

Here, P
(
xi
j | CT,<i, x

i
<j

)
denotes the probability of generating token xi

j given all tokens from198

previous turns, CT,<i, and the tokens preceding xi
j in the current turn, xi

<j . By starting the inner sum199

at j = p+ 1, the teacher-specific instructions Pf∗ are excluded from the loss computation, ensuring200

that the training signal comes only from the parts of CT available during inference.201

4 Experiment Setup202

We construct two versions (annotated and anonymized) of the 1114 Python functions, drawn from203

HumanEval+, MBPP+ [40], and APPS [23]. Table 1 summarizes key statistics. Unlike prior work204
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Annotated Dataset Anonymized Dataset
Model #I/O # Oracle Success (%) #I/O # Oracle Success (%)

Llama-3.2-3B 28.3 1.9 11.0 29.3 2.0 4.8
Mixtral-8x7B 27.4 1.9 20.3 28.5 1.9 12.0
Llama-3.1-8B 28.0 1.8 19.3 28.6 1.9 13.7
Mixtral-8x22B 26.7 1.8 25.1 28.1 1.9 15.0
QwQ-32B 24.6 1.8 20.0 25.7 1.9 15.4
Qwen2.5-7B 26.9 1.8 29.2 28.3 1.9 15.8
Llama-3.2-11B 27.3 1.8 24.9 28.3 1.9 16.1
gpt-4o-mini 27.0 1.8 26.1 27.9 1.8 18.5
Llama-3.2-90B 26.2 1.8 28.4 27.7 1.9 19.7
Llama-3.1-70B 26.9 1.8 30.1 27.9 1.9 20.0
Qwen2.5-72B 25.5 1.7 30.1 27.1 1.8 21.6
Llama-3.1-405B 24.2 1.7 38.6 26.0 1.8 26.7
gpt-4o 23.4 1.7 37.8 25.2 1.8 28.7
DeepSeek-V3 23.7 1.7 37.7 25.1 1.8 29.5
claude3.7-sonnet 23.6 1.7 39.0 24.6 1.7 33.8
DeepSeek-R1 18.6 1.6 49.8 20.3 1.7 41.3
o1-mini 21.0 1.6 53.2 21.5 1.6 47.7
o3-mini 15.6 1.5 59.5 16.0 1.6 52.7

Table 2: Success rates of LLMs on CodeARC using both annotated and anonymized datasets. We also
report the average number of observed input-output examples and oracle invocations. All open-source
models are instruction-tuned.

in program synthesis that often focuses on domain specific languages and constrained settings, our205

benchmark consists of programs written in Python, a general purpose language that captures a broader206

range of real-world algorithms and tasks.207

Source Functions Lines of Code
Min Max Avg

HumanEval+ 78 7 56 18.5
MBPP+ 131 2 21 3.9
APPS 905 2 74 9.5

Annotated 1114 2 74 9.5
Anonymized 1114 2 74 9.5

Table 1: Number of functions and lines of code
statistics for each benchmark source across both
dataset versions.

For the main evaluation (Section 5.1), we pro-208

vide 10 initial input-output examples and set209

the query budget to 30 input-output pairs and210

2 oracle calls (Bio = 30, Boracle = 2), chosen211

based on practical constraints such as API cost212

and runtime. Section 5.3 reports ablation stud-213

ies on both budgets. We use two state-of-the-214

art differential testing tools, PYNGUIN [45] and215

MOKAV [13]. For supervised fine-tuning on syn-216

thetic reasoning trajectories, we use gpt-4o as217

the teacher model and LLaMA-3.1-8B-Instruct218

as the student. See Appendix A for further ex-219

periment details, including prompts and the fine-220

tuning parameters.221

5 Results222

5.1 Main Results223

Table 2 shows the results for 18 large language models on CodeARC. The order is sorted based on the224

success rate on the anonymized dataset. We also report the average number of observed input-output225

examples and oracle invocations. Our findings are as follows:226

Reasoning models perform best. Reasoning models (o3-mini, o1-mini, DeepSeek-R1) achieve227

the highest success rates, all exceeding 40% on the anonymized dataset. They also require fewer I/O228

examples and oracle calls, indicating greater accuracy and efficiency.229

CodeARC is a challenging benchmark. Among the 18 evaluated models, only OpenAI’s o3-230

mini achieves over 50% success on both datasets (i.e., 59.5% on the annotated and 52.7% on the231
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Figure 2: Scaling trend on CodeARC.

Metric # Problems (%)

Pass1: Initial I/O Examples 1506 (67.6%)
Pass2: Testing Oracle 866 (38.9%)
∆ = Pass1 − Pass2 640 (28.7%)

Table 3: Number of problems (in both
datasets) where the synthesized function
passes the initial examples compared to the
oracle.

Model Success Rate (%)
10 I/O 20 I/O 30 I/O

o1-mini 43.7 49.6 50.5
o3-mini 51.3 53.8 56.1

Table 4: Success rates (%) with varying bud-
gets on the observable input-output examples
(on both datasets).

anonymized) while all other models fall short of this threshold. This underscores the difficulty of the232

task and reveals the limitations of current models in inductive reasoning.233

Anonymization of function names reduces performance, but trends persist. All models show234

a modest drop in success rate on the anonymized dataset. However, the overall ranking remains235

largely consistent. This suggests that while the presence of meaningful function names provides236

some benefit, strong inductive reasoning remains the main factor behind high performance on this237

synthesis benchmark.238

Scaling up model size improves performance. Larger models generally achieve better perfor-239

mance, as shown in Figure 2 (log-scale x-axis). All model families exhibit scaling trends, though240

with varying consistency. Llama-3.1 scales steadily, while Llama-3.2 plateaus at larger sizes, likely241

due to its multimodal focus. Qwen2.5 shows clearer scaling on anonymized data, where reasoning is242

required over memorization, highlighting model size’s impact on generalization.243

5.2 Do Initial Input-Output Examples Underspecify the Target Function?244

To assess whether 10 input-output examples [34] suffice to specify the target function, we evaluate the245

first synthesized function of o3-mini—the strongest model in our study. Functions that pass the initial246

examples but fail under oracle testing indicate under-specification, motivating the need for additional247

examples or oracle-guided feedback. As shown in Table 3, 67.6% pass the initial 10 input-output248

example tests, but only 38.9% pass the oracle, revealing 640 cases (28.7%) where the initial examples249

fail to uniquely specify the target function. These findings show that initial input-output examples250

often under-specify program behavior, motivating additional queries and oracle-guided feedback for251

reliable evaluation. This motivates the design of our interactive evaluation protocol.252

5.3 Ablation Study: Input-Output Queries and Oracle Feedback253

We perform two ablation studies to evaluate how varying the budgets for querying ground-truth254

functions and invoking the oracle impacts performance.255
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Effect of Input-Output Query Budget. We evaluate o3-mini and o1-mini with input-output256

budgets of 10, 20, and 30, using the same setup as Section 5.1. Table 4 shows that success rates257

improve consistently with more examples.258

Effect of Oracle Invocation Budget. We vary the number of allowed oracle invocations and report259

success rates in Figure 3 for four models on both datasets. More oracle calls consistently improve260

performance, showing that counterexamples from differential testing are valuable for guiding iterative261

refinement.262

These results demonstrate that incorporating both querying mechanisms and oracle feedback consis-263

tently enhances overall performance. This improvement underscores the importance of adopting an264

interactive evaluation protocol rather than relying solely on static, one-shot evaluation approaches.265

5.4 Performance of Fine-Tuned Models266

Dataset Success Rate (%)
Base Model Fine-Tuned Rel. ∆

Annotated 19.3 25.3 +31%
Anonymized 13.7 15.0 +9.5%

Table 5: Success rates of LLaMA-3.1-8B-Instruct and
its fine-tuned variant on annotated and anonymized
datasets. Fine-tuning improves performance, especially
on the annotated dataset.

Table 5 shows that fine-tuning the LLaMA-267

3.1-8B-Instruct model on curated synthe-268

sis traces yields consistent improvements269

across both datasets. The larger gain on the270

annotated variant suggests that fine-tuning271

is particularly effective when semantically272

informative identifiers are present. Notably,273

this performance gap emerges despite both274

datasets being evaluated under the same275

model architecture and training methodol-276

ogy discussed in Section 3.4. These results277

indicate that while fine-tuning helps, there278

remains substantial room for further improvement. This suggests that future research may focus279

on enhancing the quality and diversity of the fine-tuning dataset, particularly for the anonymized280

variant where gains are more limited. Another promising direction is to explore reinforcement281

learning approaches that directly optimize for higher synthesis success rates, potentially overcoming282

limitations of supervised fine-tuning alone.283

5.5 Case Study284

Figure 4 shows an interaction trace from our benchmark. The model starts by querying the ground-285

truth function with edge-case inputs, aiming to probe its behavior beyond the initial examples. It then286

synthesizes a candidate solution using pairwise comparisons, which passes the given examples but287

fails on a counterexample with unhashable elements. From the error message, the model correctly288

infers that the ground-truth function raises a TypeError, while its own does not. On the second289

attempt, it reasons that using a set simplifies the uniqueness check and synthesizes the correct set-290
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def solution(l):
    return len(l) == len(set(l))

def solution(l):
    for i in range(len(l)):
        for j in range(i + 1, len(l)):
            if l[i] == l[j]:
                return False
    return True

New Invocations

Synthesized Function
Input Output

Initial Examples
Testing Oracle

Expected

Updated Function

[1, 2, 3, 4, 5] True

[1, 2, 2, 4, 5] False

['a', 'b', 'c', 'd', 'e'] True

[None, 0, "None"] True

Input Output

[1, [5,6], [5,6]] FalseTypeError

Unhashable
type: 'list'

Figure 4: Case Study. The model queries edge cases, synthesizes a comparison function, receives a
counterexample from the oracle, and corrects it with a set-based solution.

based function. This case illustrates how the model combines function invocation and oracle feedback291

to perform inductive program synthesis. The full trace is in Appendix A.1.292

6 Conclusion293

We introduce CodeARC, a new framework for evaluating LLMs on inductive program synthesis294

through interactive input generation and self-correction. Unlike static protocols, CodeARC allows295

agents to query a ground truth function and use a differential testing oracle to get feedback for iterative296

refinement. Designed to assess inductive reasoning from input-output examples, our benchmark297

covers 1114 diverse and general-purpose functions and evaluates 18 language models. The best-298

performing model, OpenAI o3-mini, achieves a success rate of 52.7%. Fine-tuning LLaMA-3.1-8B-299

Instruct on curated synthesis traces results in a 31% relative performance gain. CodeARC provides a300

more realistic and challenging testbed for evaluating LLM-based inductive program synthesis.301
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A Appendix531

A.1 Case Study532

In the below example, the model first invokes the ground-truth function with 10 more inputs, then533

tries to synthesize the function, and then gets back the counter-example from the differential testing534

oracle. Its second trial then passes the oracle’s test.535

Prompt:536

You are a software engineer tasked with implementing a blackbox Python function solution. Your537

goal is to implement this function correctly, ensuring it works for all possible valid inputs, not just538

the example inputs provided.539

Your primary goal is to get the function implementation exactly right. Your secondary goal is to540

minimize the number of function invocations and implementation attempts.541

GIVEN EXAMPLES:542

print(’Result 1: ’ + str(solution([1, 2, 3, 4, 5])))543

print(’Result 2: ’ + str(solution([1, 2, 2, 4, 5])))544

print(’Result 3: ’ + str(solution([’a’, ’b’, ’c’, ’d’, ’e’])))545

print(’Result 4: ’ + str(solution([’apple’, ’banana’, ’apple’])))546

print(’Result 5: ’ + str(solution([])))547

print(’Result 6: ’ + str(solution([10, 20, 30, 40, 50, 60])))548

print(’Result 7: ’ + str(solution([10, 20, 30, 30, 50, 60])))549

print(’Result 8: ’ + str(solution([’x’, ’y’, ’z’])))550

print(’Result 9: ’ + str(solution([1, 1, 1, 1])))551

print(’Result 10: ’ + str(solution(list(range(100)))))552

Corresponding outputs:553

Result 1: True554

Result 2: False555

Result 3: True556

Result 4: False557

Result 5: True558

Result 6: True559

Result 7: False560

Result 8: True561

Result 9: False562

Result 10: True563

Strategy Overview:564

You should work in two phases:565

1. Exploration Phase: use function invocations strategically to fully understand the function’s566

behavior.567

2. Implementation Phase: only after a thorough understanding, attempt an implementation.568

569

This is the first iteration. You must first reason and then decide between one of the following two570

options:571

1. Generate more function invocations in the same format as the examples. You can generate up to 20572

additional function invocations across all iterations.573

2. Generate an implementation of solution. You have only 1 debugging check total. If your574

implementation is incorrect, you lose your check and are shown a counterexample. If you attempt an575

implementation and have no debugging checks left and your implementation is incorrect, you cannot576

take any more actions. This attempt will be considered your final answer.577

578

Assistant:579

I’ll start with the Exploration Phase and generate additional strategic invocations to better understand580

the function’s behavior over a wide range of inputs. I want to explore cases like unique negative and581

15



non-negative numbers, duplicate negative numbers, duplicate empty strings, duplicate boolean values,582

and unique special character strings. I also want to verify that single element lists should be unique.583

INVOCATIONS:584

print(’Result 11: ’ + str(solution([-1, -2, 0, 1])))585

print(’Result 12: ’ + str(solution([-1, -2, -1])))586

print(’Result 13: ’ + str(solution([1, 1.0, 2])))587

print(’Result 14: ’ + str(solution([(1,), (2,), (1,)])))588

print(’Result 15: ’ + str(solution([42])))589

print(’Result 16: ’ + str(solution(["", "a", "b"])))590

print(’Result 17: ’ + str(solution(["", "", "b"])))591

print(’Result 18: ’ + str(solution([True, False, False])))592

print(’Result 19: ’ + str(solution([’!’, ’@’, ’#’, ’$’])))593

print(’Result 20: ’ + str(solution([None, 0, "None"])))594

Prompt:595

Here are the outputs of the function invocations from the previous iteration:596

Result 11: True597

Result 12: False598

Result 13: False599

Result 14: False600

Result 15: True601

Result 16: True602

Result 17: False603

Result 18: False604

Result 19: True605

Result 20: True606

STRATEGY UPDATE: Based on the new data above, you should update your understanding of the607

function and decide on your next action. You have 10 additional function invocations and 1 debugging608

check left.609

Assistant: Based on the input-output pairs I have analyzed, I infer that this function is intended to610

evaluate whether all elements in a given list are distinct—that is, to determine if there are any duplicate611

entries within the list. To implement this functionality, I propose using a pairwise comparison strategy.612

By systematically comparing each element in the list with every subsequent element, it becomes613

possible to identify any duplicates that may exist. This approach ensures thorough coverage of all614

potential comparisons and provides a reliable method for detecting non-unique elements in the list.615

IMPLEMENTATION:616

def solution(lst):617

# Use a simple pairwise comparison approach618

n = len(lst)619

for i in range(n):620

for j in range(i + 1, n):621

if lst[i] == lst[j]:622

return False623

return True624

Prompt:625

The implementation you generated in the previous iteration failed for the following input (and626

potentially other inputs):627

Failed input: [1, 2, 3, 4, [5, 6], [5, 6]]628

Ground Truth Function != Output From Generated Code:629

'Error' != 'No Error'630

This failure provides valuable information about a case you didn’t account for. You should decide631

between generating more invocations to explore and debug the function behavior or generating one632

final implementation. You have 10 additional function invocations and NO debugging checks left.633
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Assistant: Based on the error message, it appears that raising an error for this input would be the634

appropriate response. To handle this effectively, a set-based approach might be more suitable than a635

pairwise comparison approach. By converting the list to a set, I can efficiently detect unhashable636

elements, as attempting this operation would naturally raise a TypeError for any such elements. Let637

me proceed with implementing this approach to validate the reasoning.638

639

IMPLEMENTATION:640

def solution(lst):641

# Attempt to convert the list to a set.642

# If any element is unhashable, this will raise a TypeError as expected.643

return len(lst) == len(set(lst))644

This final implementation passes the differential testing oracle.645
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A.2 Supervised Fine-Tuning Experiment Setup646

Table 6 presents the parameters used for our supervised fine-tuning experiments.647

Name Value
Teacher Model gpt-4o
Student Model LLaMA-3.1-8B-Instruct
Fine-tuning Context Length 32768
Learning Rate 1.00E-5
LR Schedule linear
Warmup Ratio 0.03
Epoch 3
Batch Size 8
Gradient Accumulation Steps 8
LoRA Rank 8
LoRA α 8

Table 6: LoRA Fine-Tuning Parameters.
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