© ® N O o A~ W N =

20
21
22
23
24
25

26
27
28
29
30
31
32
33

34
35
36

CodeARC: Benchmarking Reasoning Capabilities of
LLM Agents for Inductive Program Synthesis

Anonymous Author(s)
Affiliation
Address
email

Abstract

Inductive program synthesis, or programming by example, requires synthesizing
functions from input-output examples that generalize to unseen inputs. While large
language model agents have shown promise in programming tasks guided by natu-
ral language, their ability to perform inductive program synthesis is underexplored.
Existing evaluation protocols rely on static sets of examples and held-out tests,
offering no feedback when synthesized functions are incorrect and failing to reflect
real-world scenarios such as reverse engineering. We propose CodeARC, the Code
Abstraction and Reasoning Challenge, a new evaluation framework where agents
interact with a hidden target function by querying it with new inputs, synthesizing
candidate functions, and iteratively refining their solutions using a differential test-
ing oracle. This interactive setting encourages agents to perform function calls and
self-correction based on feedback. We construct the first large-scale benchmark for
general-purpose inductive program synthesis, featuring 1114 functions. Among 18
models evaluated, 03-mini performs best with a success rate of 52.7%, highlighting
the difficulty of this task. Fine-tuning LLaMA-3.1-8B-Instruct on curated synthesis
traces yields up to a 31% relative performance gain. CodeARC provides a more
realistic and challenging testbed for evaluating LLM-based program synthesis and
inductive reasoning.

1 Introduction

Inductive reasoning, i.e., the ability to identify patterns and form abstractions from limited examples,
is widely recognized as a fundamental aspect of human intelligence [22, 75]. In the context of
programming, inductive reasoning underpins the task of synthesizing functions that satisfy given
input-output examples and generalize to unseen inputs. This task, commonly referred to as inductive
program synthesis or programming by example [48, 52, 15, 34], has broad application domains [66,
10].

Recent advances in Large Language Models (LLMs) have led to the emergence of autonomous
agents capable of decision-making, multi-step planning, tool use, and iterative self-improvement
through interaction and feedback [7, 44, 42, 19, 70]. While much of the existing work focuses on
programming tasks guided by natural language [6, 2, 28, 27], we study a fundamentally different
problem: inductive program synthesis, where the objective is to infer the target program solely from
input-output examples. This setting provides a more rigorous test of inductive reasoning capabilities,
as it eliminates natural language descriptions that can trigger retrieval-based completions memorized
during model training.

Designing an effective evaluation protocol for inductive program synthesis with LLMs is inherently
challenging, as multiple valid functions may satisfy a given set of input-output examples (as demon-
strated in Section 5.2). The state-of-the-art protocol [34], which evaluates synthesized functions on

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38
39
40
41
42
43
44

45
46
47
48
49
50
51

52
53
54
55
56
57
58

59
60
61

62
63
64
65
66
67
68

69

| t Output N A .
(M\ Py ® © ® Hidden Target Function Q Testing Oracle
\fz\ 2 ,\‘ def funci(x): N\ Counterexample found!
082 if x >= 0: Input = funcl(2.5) func2(2.5)
) return math.floor(x + 0.5)
. else: = 3 # 2
o return math.ceil(x - 0.5
Initial 1/0 examples ¢) Feedback
; - ee ac Need a different
Rounding? ! [n{noregconﬁdfnt n:w — rounding rule for .5?
? et me generate code.
— Let me try more...
Letmetry |((func1(8.1) o . -
moreinputs.| ® - / o e el - func2 next try this?
8 = 3 *
@ i - o
T . [def func2(x): | oo S
"; Function ¥ return round(x) o 1 T
as . a 123 123
Invocation - -)
Agent Agent Synthesized Function Agent Self-Reflection

Figure 1: Overview of CodeARC. Our framework evaluates LLMs’ reasoning capabilities in
inductive program synthesis. The agent begins with input-output examples, interacts with a hidden
target function via function calls, and uses a differential testing oracle to check the correctness of the
synthesized function for self-reflection and refinement.

held-out test cases after presenting 10 fixed input-output examples, has several notable limitations.
First, a small, static set of input-output examples may underspecify the target functions, especially for
those with complex logic. Moreover, held-out tests may fail to reveal subtle semantic discrepancies
between the generated and intended implementations. In addition, when the model produces an
incorrect solution, it receives no feedback and has no opportunity to revise or explore alternatives.
Finally, existing benchmarks for inductive program synthesis [18, 66, 69, 10, 34] are focused on
domain-specific tasks and do not assess the ability of LLMs to synthesize functions written in
general-purpose programming languages.

To address the limitations of existing evaluation protocols for inductive program synthesis, we
introduce CodeARC, the Code Abstraction and Reasoning Challenge, inspired by real-world scenarios
such as decompilation and reverse engineering [36, 49, 1]. In such settings, an agent is given a binary
executable (without source code) and must synthesize an equivalent source code by observing input-
output behavior. Rather than relying on a fixed dataset, the agent can query the binary with new
inputs, invoke a differential testing oracle to compare the synthesized program against the reference
binary, and use counterexamples to iteratively refine its solution.

As shown in Figure 1, our framework CodeARC emulates this process: LLM-based agents interact
with an environment by starting with an initial set of input-output examples, querying the ground-truth
function for additional examples, and debugging synthesized code using a differential testing oracle.
We impose fixed budgets on both the number of observable input-output examples and the number of
testing oracle invocations for self-debugging. The task requires agents to proactively generate inputs
(function calls) and revise solutions based on feedback (self-reflection). This interactive setup offers
a more realistic alternative to prior static evaluation protocols.

We construct the first comprehensive dataset for general-purpose inductive program synthesis, featur-
ing 1114 functions with initial input-output examples. Our benchmark targets general programming
tasks and employs two state-of-the-art differential testing tools [45, 13] for correctness evaluation.

Our experiments demonstrate that Code ARC poses a significant challenge for LLM-based inductive
program synthesis. Among the 18 models evaluated, OpenAl 03-mini performs the best overall, yet
only achieves 52.7% success rate. We further conduct ablation studies to analyze how budgets on
the number of input-output examples and oracle calls affect model performance. To enhance model
capabilities, we generate synthetic fine-tuning data with curated synthesis traces that capture the
reasoning steps. We show that supervised fine-tuning on LLaMA-3.1-8B-Instruct yields up to a 31%
relative performance improvement.

In summary, our contributions are as follows:

* Interactive evaluation protocol for inductive program synthesis. We introduce a setup where
agents start with fixed input-output examples but can generate new inputs to query ground-truth

83
84
85
86
87
88

89
90
91
92
93
94
95

96
97
98
99
100

101
102
103
104
105

106

107

108
109

110
111

112

113
114

functions and invoke a differential testing oracle to self-correct their solutions. This setup brings
the task closer to a real-world setting, e.g. reverse-engineering.

* General-purpose benchmark with extensive evaluation. We construct the first large-scale,
general-purpose benchmark for this task, including 1114 diverse functions. Among the 18 models
evaluated, 03-mini achieves the best overall performance but still only reaches a success rate of
52.7%.

* Synthetic data and fine-tuning. To boost model performance, we generate synthetic fine-tuning
data containing curated synthesis traces that capture both function invocations and reasoning steps.
We show that fine-tunining on LLaMA-3.1-8B-Instruct yields up to a 31% relative performance
improvement.

2 Related Work

Inductive Program Synthesis Traditional inductive program synthesis methods rely solely on
input-output examples, without natural language input. They focus on domain-specific tasks like
string and data transformations [18, 60, 73], SQL [66], visual programming [67], and quantum
computing [10]. These approaches typically define a domain-specific language and use tailored
search algorithms to prune the space efficiently [16, 58, 14, 20, 50]. In contrast, we introduce the
first general-purpose program synthesis benchmark for LLM-powered agents.

LLM Benchmarks for Code Most LLM benchmarks—such as HumanEval+ [6, 40], MBPP+ [2,
40], APPS [23], and others [35, 41, 33, 26, 3, 54, 43, 12, 62, 80, 76, 31, 56, 64, 65]—evaluate code
generation from natural language. Beyond generation, tasks like I/O prediction [17, 37], execution
prediction [38, 30, 53, 11], bug localization [61], and program equivalence [68] have also been
studied. In contrast, we focus on predicting function bodies purely from input-output examples,
without natural language. Prior work [34, 4] targets domain-specific tasks, while we introduce a
general-purpose benchmark with an interactive evaluation protocol.

LLM Benchmarks for Reasoning LLMs are widely benchmarked on reasoning tasks across
domains, including commonsense [63], mathematical [9], and logical [21, 51, 39, 55]. Inductive
reasoning, a core cognitive skill that generalizes from limited examples [22], is increasingly studied
in LLMs [32, 46, 71, 5]. ARC [8] is a prominent benchmark for abstract pattern induction. Our work
shares this goal but is for inductive program synthesis.

LLM-powered Agents LLM-based agents have shown strong performance in domains like web
navigation [78, 79], code generation [77, 29], and ML experimentation [25]. They interact with
environments, invoke functions, make decisions, and self-reflect [47, 57, 72, 24, 59]. We introduce
the first benchmark to systematically evaluate agents’ capabilities in inductive program synthesis,
providing a rigorous testbed for inductive reasoning and program synthesis.

3 Method

3.1 Problem Definition of Inductive Program Synthesis

We formalize the inductive program synthesis task as follows. Let f* be a hidden ground-truth
function that maps inputs z € X to outputs y €). The synthesizer is given an initial set of input-

output examples & = {(z;, y;)}1—,, where y; = f*(z;), and the goal is to synthesize a program f
such that f = f*, i.e.,
Vee X, f(z)=f"(z).

To evaluate whether a synthesized function f is correct, we introduce a differential testing oracle O.

The oracle takes as input both the synthesized function f and the hidden ground-truth function f* and
attempts to identify inputs on which their behaviors differ. Formally, the oracle operates as follows:

« &) Pass, if Vo € Xeg, f(x) = f*(z);
Of" f) = {Fail(x), if 3z € Xleg such that f(x) # f*(z),

115

116
117
118

119
120

121

122
123
124

125
126
127

128
129
130
131
132

133

134
135
136
137

138
139
140

141

142
143
144
145
146
147
148

149

150
151
152

154
155
156
157
158
159

where Xy C X is a set of test inputs dynamically selected by the oracle.

Unlike fixed held-out test sets used in prior work, the differential testing oracle conditions on both
f* and the candidate f, generating targeted inputs to expose discrepancies. On failure, it returns

a counterexample 2 € X such that f(z) # f*(z). Note that program equivalence checking is
fundamentally undecidable, and thus no perfect oracle exists. To approximate oracle functionality, we
adopt two state-of-the-art differential testing tools, providing a more robust and practical evaluation.

3.2 Interactive Evaluation Protocol for LLM Agents

To evaluate the capabilities of LLM-based agents in inductive program synthesis, we introduce an
interactive protocol. This protocol extends beyond static evaluation settings by enabling dynamic
interaction with the hidden ground-truth function and the differential testing oracle.

Initial Information. At the beginning of the task, the agent is provided with an initial set of input-
output examples & = {(x;,y;)}~ 1, as explained previously. This set serves as partial information
about the target function.

Action Space. During evaluation, the agent may take two types of actions. First, it may query
the ground-truth function f* at a chosen input = € X, and obtain the corresponding output f*(z),
thereby augmenting its observed set of input-output pairs. Second, it may synthesize a candidate
program f and invoke the differential testing oracle O(f*, f), which returns PASS if no discrepancies
are found on a dynamically generated test set, or FAIL with a counterexample x € Xy such that

f(@) # [(2).

Self-Reflection. If the oracle returns FAIL, a counterexample d, which is a tuple of (z, f(z), f*(x))
will be provided to the agent. This counterexample helps the agent to self-reflect and revise its current
hypothesis, either by issuing additional queries f* or synthesizing new programs. The ability to take
such feedback is crucial for iterative refinement.

Budget Constraints. The agent operates under two budget parameters: Bj, and Bopycle. Bio limits
the total number of input-output examples that the agent can observe from the ground-truth function
[, while Boacle limits the number of invocations to the differential testing oracle O.

Evaluation Metrics. The task is considered successful if the final synthesized program f , produced

within the given budgets, receives a PASS from the differential testing oracle O(f*, f). We assess the
performance of an LLM agent along two dimensions: correctness and efficiency, with correctness
being the primary criterion. The objective is to synthesize correct programs, even at the cost
of increased resource consumption. Correctness is quantified by the success rate, defined as the
proportion of problems in the dataset for which the agent successfully synthesizes a correct program
within the specified budget. Efficiency is measured by the average number of input-output queries
and oracle invocations utilized per problem.

3.3 Benchmark Preparation

Our benchmark is designed to evaluate LLM agents on the inductive synthesis of general-purpose
Python programs. This contrasts with prior benchmarks that focus on domain-specific tasks or
programs written in domain-specific languages, such as string manipulation and SQL query genera-
tion [74, 10, 34].

Programs for Synthesis. We curate a diverse collection of Python functions sampled from three
established code generation benchmarks: HumanEval [6], MBPP [2], and APPS [23]. HumanEval
and MBPP primarily consist of simple, entry-level programming tasks, whereas APPS contains
more challenging problems that resemble competition-level code exercises. Importantly, we extract
only the function bodies from these benchmarks and do not use any accompanying natural language
descriptions.

160
161
162
163
164
165

166
167
168

169
170
171
172
173
174
175
176

177

178
179
180
181

182
183
184
185
186
187
188

189

191

192
193
194
195

196
197

198
199

201

202

203
204

Annotated vs. Anonymized. To assess the extent to which function names help the LLM agent
synthesize the correct program, we construct two versions of the benchmark. In the annotated
version, function names that reflect the intended functionality of the task (e.g., is_palindrome)
are made available to the agent. In the anonymized version, all function names are replaced with a
generic identifier (i.e., solution). This design isolates the influence of identifier cues on synthesis
performance. We report results on both versions.

Initial Input-Output Examples. Each synthesis task includes 10 fixed input-output examples that
specify the target function’s expected behavior. We use GPT-40 to generate diverse inputs and execute
the original function to obtain the corresponding ground-truth outputs.

Synthetic Data Generation. We generate a synthetic dataset for fine-tuning (described in more
detail in Section 3.4) by first collecting 50 seed Python functions that are disjoint from the evaluation
set. Using these seeds, we prompt GPT-40 to synthesize a diverse set of new functions, yielding
10,000 candidates. For each generated function, we additionally instruct GPT-40 to produce 10
representative inputs that expose the function’s behavior and highlight patterns in its input-output
relationships. These inputs are executed to verify the executability of the functions, and we discard
any that fail at this stage. To reduce redundancy, we deduplicate the dataset based on function names,
finally resulting in 5,405 unique Python functions used for fine-tuning.

3.4 Fine-Tuning on Synthetic Data

We investigate whether simply fine-tuning on curated synthesis traces, which capture both function
invocations and reasoning steps, can improve LLM performance on Code ARC. We adopt a knowledge
distillation fine-tuning approach, where the student model learns to imitate the reasoning and behavior
of a teacher model that has access to the ground-truth function body of f*.

During training, we first run the interactive evaluation protocol described in Section 3.2 with a frozen
teacher model. Unlike a standard evaluation, we prepend a set of task-specific instructions Py«
to each teacher prompt. This prefix includes the function body of f* and explicitly instructs the
teacher to (1) query f* on informative inputs, (2) explain the rationale behind those queries, and (3)
synthesize the full implementation of f* only when confident that the correct logic can be inferred
from the accumulated input-output pairs. The student model, which is the only model we fine-tune,
learns to mimic the teacher’s reasoning and synthesis behavior without ever seeing the function body.

We provide the teacher with access to f* because we find that, in many cases, the model struggles to
solve the task independently. Without knowledge of the ground truth, the teacher is often too weak to
generate meaningful queries or explanations, limiting the effectiveness of the resulting supervision.

While executing the evaluation protocol, we record the multi-turn conversation history C'r-, which
comprises the teacher model’s prompts and responses. Let n be the total number of turns in Cr and
denote by x* the sequence of tokens in the ith turn. Furthermore, let p represent the number of tokens
in the teacher-specific instruction prefix Pp-.

We fine-tune the student model using a language modeling objective by minimizing the negative
log-likelihood of predicting the next token in Cp:

[— _Z Z logP(l‘; | OT,<iaxl<j)'

i=1 j=p+1

Here, P (:17; | Cr <is z’< j) denotes the probability of generating token x; given all tokens from

previous turns, Cr «;, and the tokens preceding :c; in the current turn, 1’1< ;- By starting the inner sum
at j = p + 1, the teacher-specific instructions Py~ are excluded from the loss computation, ensuring
that the training signal comes only from the parts of Cr available during inference.

4 Experiment Setup

We construct two versions (annotated and anonymized) of the 1114 Python functions, drawn from
HumanEval+, MBPP+ [40], and APPS [23]. Table 1 summarizes key statistics. Unlike prior work

205
206
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221

222

223

224
225
226

227
228
229

230
231

Annotated Dataset Anonymized Dataset
Model #I/0 #Oracle Success (%) | #1/0 # Oracle Success (%)
Llama-3.2-3B 28.3 1.9 11.0 29.3 2.0 4.8
Mixtral-8x7B 274 1.9 20.3 28.5 1.9 12.0
Llama-3.1-8B 28.0 1.8 19.3 28.6 1.9 13.7
Mixtral-8x22B 26.7 1.8 25.1 28.1 1.9 15.0
QwQ-32B 24.6 1.8 20.0 25.7 1.9 15.4
Qwen2.5-7B 26.9 1.8 29.2 28.3 1.9 15.8
Llama-3.2-11B 27.3 1.8 24.9 28.3 1.9 16.1
gpt-4o-mini 27.0 1.8 26.1 27.9 1.8 18.5
Llama-3.2-90B 26.2 1.8 28.4 27.7 1.9 19.7
Llama-3.1-70B 26.9 1.8 30.1 27.9 1.9 20.0
Qwen2.5-72B 25.5 1.7 30.1 27.1 1.8 21.6
Llama-3.1-405B 24.2 1.7 38.6 26.0 1.8 26.7
gpt-4o 23.4 1.7 37.8 252 1.8 28.7
DeepSeek-V3 23.7 1.7 37.7 25.1 1.8 29.5
claude3.7-sonnet 23.6 1.7 39.0 24.6 1.7 33.8
DeepSeck-R1 18.6 1.6 49.8 20.3 1.7 41.3
ol-mini 21.0 1.6 53.2 21.5 1.6 47.7
03-mini 15.6 1.5 59.5 16.0 1.6 52.7

Table 2: Success rates of LLMs on Code ARC using both annotated and anonymized datasets. We also
report the average number of observed input-output examples and oracle invocations. All open-source
models are instruction-tuned.

in program synthesis that often focuses on domain specific languages and constrained settings, our
benchmark consists of programs written in Python, a general purpose language that captures a broader
range of real-world algorithms and tasks.

For the main evaluation (Section 5.1), we pro-
vide 10 initial input-output examples and set

the query budget to 30 input-output pairs and Source Functions L}nes of Code
Min Max Avg
2 oracle calls (B;, = 30, Boracle = 2), chosen
based on practical constraints such as API cost HumanEval+ 78 7 56 185
and runtime. Section 5.3 reports ablation stud- MBPSP+ 3(3); % 2411 32
ies on both budgets. We use two state-of-the- APP 7 :
art differential testing tools, PYNGUIN [45] and Annotated 1114 2 74 95
MoOKAV [13]. For supervised fine-tuning on syn- Anonymized 1114 2 74 95

thetic reasoning trajectories, we use gpt-4o as . .

the teacher model and LLaMA-3.1-8B-Instruct 1able 1: Number of functions and lines of code
as the student. See Appendix A for further ex- statistics for each benchmark source across both
periment details, including prompts and the fine- dataset versions.

tuning parameters.

5 Results

5.1 Main Results

Table 2 shows the results for 18 large language models on Code ARC. The order is sorted based on the
success rate on the anonymized dataset. We also report the average number of observed input-output
examples and oracle invocations. Our findings are as follows:

Reasoning models perform best. Reasoning models (03-mini, ol-mini, DeepSeek-R1) achieve
the highest success rates, all exceeding 40% on the anonymized dataset. They also require fewer I/O
examples and oracle calls, indicating greater accuracy and efficiency.

CodeARC is a challenging benchmark. Among the 18 evaluated models, only OpenAl’s 03-
mini achieves over 50% success on both datasets (i.e., 59.5% on the annotated and 52.7% on the

232
233

234

236
237
238

239
240
241
242
243

244

245
246
247
248
249
250
251
252

253

254
255

Model Scale & Success Rate (Annotated)

Model Scale & Success Rate (Anonymized)

40 u — u
) e
£30 @ N £20 B =2
o & o o A
@ a -
020 w L4 I *
S 910
> >
P 10f A g 4
21 22 23 24 25 26 27 28 29 21 22 23 24 25 26 27 28 29
Model Parameters (Billion) o Model Parameters (Billion)
Model Families
® Qwen2.5 B Llama-3.1 Llama-3.2 @ \Mixtral
Figure 2: Scaling trend on CodeARC.
Metric # Problems (%) Model Success Rate (%)
Pass1: Initial I/O Examples 1506 (67.6%) 10V0 2010 3010
Pass2: Testing Oracle 866 (38.9%) ol-mini 437 49.6 50.5
A = Passl — Pass2 640 (28.7%) 03-mini 51.3 53.8 56.1

Table 3: Number of problems (in both
datasets) where the synthesized function
passes the initial examples compared to the
oracle.

Table 4: Success rates (%) with varying bud-
gets on the observable input-output examples
(on both datasets).

anonymized) while all other models fall short of this threshold. This underscores the difficulty of the
task and reveals the limitations of current models in inductive reasoning.

Anonymization of function names reduces performance, but trends persist. All models show
a modest drop in success rate on the anonymized dataset. However, the overall ranking remains
largely consistent. This suggests that while the presence of meaningful function names provides
some benefit, strong inductive reasoning remains the main factor behind high performance on this
synthesis benchmark.

Scaling up model size improves performance. Larger models generally achieve better perfor-
mance, as shown in Figure 2 (log-scale x-axis). All model families exhibit scaling trends, though
with varying consistency. Llama-3.1 scales steadily, while Llama-3.2 plateaus at larger sizes, likely
due to its multimodal focus. Qwen2.5 shows clearer scaling on anonymized data, where reasoning is
required over memorization, highlighting model size’s impact on generalization.

5.2 Do Initial Input-Output Examples Underspecify the Target Function?

To assess whether 10 input-output examples [34] suffice to specify the target function, we evaluate the
first synthesized function of 03-mini—the strongest model in our study. Functions that pass the initial
examples but fail under oracle testing indicate under-specification, motivating the need for additional
examples or oracle-guided feedback. As shown in Table 3, 67.6% pass the initial 10 input-output
example tests, but only 38.9% pass the oracle, revealing 640 cases (28.7%) where the initial examples
fail to uniquely specify the target function. These findings show that initial input-output examples
often under-specify program behavior, motivating additional queries and oracle-guided feedback for
reliable evaluation. This motivates the design of our interactive evaluation protocol.

5.3 Ablation Study: Input-Output Queries and Oracle Feedback

We perform two ablation studies to evaluate how varying the budgets for querying ground-truth
functions and invoking the oracle impacts performance.

256
257
258

260
261
262

263
264
265

266

267

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

284

285
286
287

289
290

Model Scale & Success Rate (Annotated) Model Scale & Success Rate (Anonymized)

70
60
—~60 —
8 s
250 3
& & 40
0 40 @
§ § 30
330 320
20 10
1 2 3 1 2 3
Maximum Number of Oracle Invocations Maximum Number of Oracle Invocations
Models
—e— gpt-40-mini —&— gpt-40 ol-mini —— 03-mini

Figure 3: Success rates (%) of LLM models across varying numbers of oracle invocations.

Effect of Input-Output Query Budget. We evaluate 03-mini and ol-mini with input-output
budgets of 10, 20, and 30, using the same setup as Section 5.1. Table 4 shows that success rates
improve consistently with more examples.

Effect of Oracle Invocation Budget. We vary the number of allowed oracle invocations and report
success rates in Figure 3 for four models on both datasets. More oracle calls consistently improve
performance, showing that counterexamples from differential testing are valuable for guiding iterative
refinement.

These results demonstrate that incorporating both querying mechanisms and oracle feedback consis-
tently enhances overall performance. This improvement underscores the importance of adopting an
interactive evaluation protocol rather than relying solely on static, one-shot evaluation approaches.

5.4 Performance of Fine-Tuned Models

Table 5 shows that fine-tuning the LLaMA-

3.1-8B-Instruct model on curated synthe- Dataset Success Rate (%)

sis traces yields consistent improvements Base Model Fine-Tuned Rel. A
across both datasets. The larger gain on the Annotated 19.3 253 +31%
annotated variant suggests that fine-tuning ~ Anonymized 13.7 15.0 +9.5%

is particularly effective when semantically
informative identifiers are present. Notably,
this performance gap emerges despite both
datasets being evaluated under the same
model architecture and training methodol-
ogy discussed in Section 3.4. These results
indicate that while fine-tuning helps, there
remains substantial room for further improvement. This suggests that future research may focus
on enhancing the quality and diversity of the fine-tuning dataset, particularly for the anonymized
variant where gains are more limited. Another promising direction is to explore reinforcement
learning approaches that directly optimize for higher synthesis success rates, potentially overcoming
limitations of supervised fine-tuning alone.

Table 5: Success rates of LLaMA-3.1-8B-Instruct and
its fine-tuned variant on annotated and anonymized
datasets. Fine-tuning improves performance, especially
on the annotated dataset.

5.5 Case Study

Figure 4 shows an interaction trace from our benchmark. The model starts by querying the ground-
truth function with edge-case inputs, aiming to probe its behavior beyond the initial examples. It then
synthesizes a candidate solution using pairwise comparisons, which passes the given examples but
fails on a counterexample with unhashable elements. From the error message, the model correctly
infers that the ground-truth function raises a TypeError, while its own does not. On the second
attempt, it reasons that using a set simplifies the uniqueness check and synthesizes the correct set-

291
292

294
295
296
297
298
299
300
301

302

303
304
305
306

307
308
309

311
312

313
314
315

316
317
318

319
320
321

322
323

324

326
327

Input Output Unhashable

type: 'list’

Initial Examples ® © ® Synthesized Function @,\Testlng Oracle

[1,2,3,4,5] True def solution(l): Input Expected Output
for i in range(len(l)):

[1,2,2,4,5] False [1,[5,6], [5,6]] TypeError False
for j in range(i + 1, len(l)):
['a,'b,'c,'d,'el True X X . A
if 1[i] == 1[]]: ® © ® Updated Function
New Invocations return False def solution(l):
[None, O, "None"] True return True return len(l) == len(set(1))

Figure 4: Case Study. The model queries edge cases, synthesizes a comparison function, receives a
counterexample from the oracle, and corrects it with a set-based solution.

based function. This case illustrates how the model combines function invocation and oracle feedback
to perform inductive program synthesis. The full trace is in Appendix A.1.

6 Conclusion

We introduce CodeARC, a new framework for evaluating LLLMs on inductive program synthesis
through interactive input generation and self-correction. Unlike static protocols, Code ARC allows
agents to query a ground truth function and use a differential testing oracle to get feedback for iterative
refinement. Designed to assess inductive reasoning from input-output examples, our benchmark
covers 1114 diverse and general-purpose functions and evaluates 18 language models. The best-
performing model, OpenAl 03-mini, achieves a success rate of 52.7%. Fine-tuning LLaMA-3.1-8B-
Instruct on curated synthesis traces results in a 31% relative performance gain. CodeARC provides a
more realistic and challenging testbed for evaluating LLM-based inductive program synthesis.

References

[1] Ali Al-Kaswan, Toufique Ahmed, Maliheh Izadi, Anand Ashok Sawant, Premkumar Devanbu,
and Arie van Deursen. Extending source code pre-trained language models to summarise
decompiled binaries. In 2023 IEEE International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 260-271. IEEE, 2023.

[2] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiv:2108.07732, 2021.

[3] Debangshu Banerjee, Tarun Suresh, Shubham Ugare, Sasa Misailovic, and Gagandeep Singh.
Crane: Reasoning with constrained 1lm generation, 2025. URL https://arxiv.org/abs/
2502.09061.

[4] Shraddha Barke, Emmanuel Anaya Gonzalez, Saketh Ram Kasibatla, Taylor Berg-Kirkpatrick,
and Nadia Polikarpova. Hysynth: Context-free 1lm approximation for guiding program synthesis.
Advances in Neural Information Processing Systems, 37:15612-15645, 2024.

[5] Chengkun Cai, Xu Zhao, Haoliang Liu, Zhongyu Jiang, Tianfang Zhang, Zongkai Wu, Jeng-
Neng Hwang, and Lei Li. The role of deductive and inductive reasoning in large language
models. arXiv preprint arXiv:2410.02892, 2024.

[6] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

[7] Xinyun Chen, Maxwell Lin, Nathanael Schirli, and Denny Zhou. Teaching large language
models to self-debug. arXiv preprint arXiv:2304.05128, 2023.

[8] Frangois Chollet. On the measure of intelligence. arXiv preprint arXiv:1911.01547, 2019.

[9] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

https://arxiv.org/abs/2502.09061
https://arxiv.org/abs/2502.09061
https://arxiv.org/abs/2502.09061

328
329
330

331

333

334
335
336

337
338

339
340

341
342
343

344
345

346
347
348

349
350

351
352
353

354
355
356

357
358
359

360

362
363
364

365
366

367
368
369

370
371
372

374
375

[10] Haowei Deng, Runzhou Tao, Yuxiang Peng, and Xiaodi Wu. A case for synthesis of recursive
quantum unitary programs. Proceedings of the ACM on Programming Languages, 8(POPL):
1759-1788, 2024.

[11] Yangruibo Ding, Jinjun Peng, Marcus J Min, Gail Kaiser, Junfeng Yang, and Baishakhi Ray.
Semcoder: Training code language models with comprehensive semantics reasoning. arXiv
preprint arXiv:2406.01006, 2024.

[12] Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen, Jiayi Feng,
Chaofeng Sha, Xin Peng, and Yiling Lou. Classeval: A manually-crafted benchmark for
evaluating 1lms on class-level code generation. arXiv preprint arXiv:2308.01861, 2023.

[13] Khashayar Etemadi, Bardia Mohammadi, Zhendong Su, and Martin Monperrus. Mokav:
Execution-driven differential testing with 1lms. arXiv preprint arXiv:2406.10375, 2024.

[14] Yu Feng, Ruben Martins, Osbert Bastani, and Isil Dillig. Program synthesis using conflict-driven
learning. ACM SIGPLAN Notices, 53(4):420-435, 2018.

[15] Jack Feser, Isil Dillig, and Armando Solar-Lezama. Inductive program synthesis guided by
observational program similarity. Proceedings of the ACM on Programming Languages, 7
(OOPSLA2):912-940, 2023.

[16] John K Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations
from input-output examples. ACM SIGPLAN Notices, 50(6):229-239, 2015.

[17] Alex Gu, Baptiste Roziere, Hugh Leather, Armando Solar-Lezama, Gabriel Synnaeve, and
Sida I Wang. Cruxeval: A benchmark for code reasoning, understanding and execution. arXiv
preprint arXiv:2401.03065, 2024.

[18] Sumit Gulwani. Automating string processing in spreadsheets using input-output examples.
ACM Sigplan Notices, 46(1):317-330, 2011.

[19] Taicheng Guo, Xiuying Chen, Yaqi Wang, Ruidi Chang, Shichao Pei, Nitesh V Chawla, Olaf
Wiest, and Xiangliang Zhang. Large language model based multi-agents: A survey of progress
and challenges. arXiv preprint arXiv:2402.01680, 2024.

[20] Sankha Narayan Guria, Jeffrey S Foster, and David Van Horn. Absynthe: Abstract interpretation-
guided synthesis. Proceedings of the ACM on Programming Languages, 7(PLDI):1584-1607,
2023.

[21] Simeng Han, Hailey Schoelkopf, Yilun Zhao, Zhenting Qi, Martin Riddell, Wenfei Zhou, James
Coady, David Peng, Yujie Qiao, Luke Benson, et al. Folio: Natural language reasoning with
first-order logic. arXiv preprint arXiv:2209.00840, 2022.

[22] Brett K Hayes, Evan Heit, and Haruka Swendsen. Inductive reasoning. Wiley interdisciplinary
reviews: Cognitive science, 1(2):278-292, 2010.

[23] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo,
Collin Burns, Samir Puranik, Horace He, Dawn Song, et al. Measuring coding challenge
competence with apps. arXiv preprint arXiv:2105.09938, 2021.

[24] Jiaxin Huang, Shixiang Shane Gu, Le Hou, Yuexin Wu, Xuezhi Wang, Hongkun Yu, and Jiawei
Han. Large language models can self-improve. arXiv preprint arXiv:2210.11610, 2022.

[25] Qian Huang, Jian Vora, Percy Liang, and Jure Leskovec. Mlagentbench: Evaluating language
agents on machine learning experimentation, 2024. URL https://arxiv.org/abs/2310.
03302.

[26] Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Ar-
mando Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination
free evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

[27] Naman Jain, Manish Shetty, Tianjun Zhang, King Han, Koushik Sen, and Ion Stoica. R2e:
Turning any github repository into a programming agent environment. In Forty-first International
Conference on Machine Learning, 2024.

10

https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2310.03302
https://arxiv.org/abs/2310.03302

376
377
378

379
380
381

382
383
384

385
386
387
388

389
390
391

392
393
394

395
396

397
398
399

400
401
402

403
404

406
407
408

409
410
411

412
413
414

415
416
417

418
419
420

421
422

[28] Carlos E Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and Karthik
Narasimhan. Swe-bench: Can language models resolve real-world github issues? arXiv preprint
arXiv:2310.06770, 2023.

[29] Carlos E. Jimenez, John Yang, Alexander Wettig, Shunyu Yao, Kexin Pei, Ofir Press, and
Karthik Narasimhan. Swe-bench: Can language models resolve real-world github issues?, 2024.
URL https://arxiv.org/abs/2310.06770.

[30] Emanuele La Malfa, Christoph Weinhuber, Orazio Torre, Fangru Lin, Samuele Marro, Anthony
Cohn, Nigel Shadbolt, and Michael Wooldridge. Code simulation challenges for large language
models. arXiv preprint arXiv:2401.09074, 2024.

[31] Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, Ruiqi Zhong, Luke Zettlemoyer, Wen-
tau Yih, Daniel Fried, Sida Wang, and Tao Yu. Ds-1000: A natural and reliable benchmark
for data science code generation. In International Conference on Machine Learning, pages
18319-18345. PMLR, 2023.

[32] Jiachun Li, Pengfei Cao, Zhuoran Jin, Yubo Chen, Kang Liu, and Jun Zhao. Mirage:
Evaluating and explaining inductive reasoning process in language models. arXiv preprint
arXiv:2410.09542, 2024.

[33] Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023.

[34] Wen-Ding Li and Kevin Ellis. Is programming by example solved by llms? Advances in Neural
Information Processing Systems, 37:44761-44790, 2025.

[35] Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with alphacode. Science, 378(6624):1092-1097, 2022.

[36] Zhigiang Lin, Xiangyu Zhang, and Dongyan Xu. Automatic reverse engineering of data
structures from binary execution. In Proceedings of the 11th Annual Information Security
Symposium, pages 1-1, 2010.

[37] Changshu Liu, Shizhuo Dylan Zhang, Ali Reza Ibrahimzada, and Reyhaneh Jabbarvand. Code-
mind: A framework to challenge large language models for code reasoning. arXiv preprint
arXiv:2402.09664, 2024.

[38] Chenxiao Liu, Shuai Lu, Weizhu Chen, Daxin Jiang, Alexey Svyatkovskiy, Shengyu Fu, Neel
Sundaresan, and Nan Duan. Code execution with pre-trained language models. arXiv preprint
arXiv:2305.05383, 2023.

[39] Jian Liu, Leyang Cui, Hanmeng Liu, Dandan Huang, Yile Wang, and Yue Zhang. Logiqa: A
challenge dataset for machine reading comprehension with logical reasoning. arXiv preprint
arXiv:2007.08124, 2020.

[40] Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated by
chatGPT really correct? rigorous evaluation of large language models for code generation. In
Advances in Neural Information Processing Systems, 2023.

[41] Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. Is your code generated
by chatgpt really correct? rigorous evaluation of large language models for code generation.
Advances in Neural Information Processing Systems, 36:21558-21572, 2023.

[42] Junwei Liu, Kaixin Wang, Yixuan Chen, Xin Peng, Zhenpeng Chen, Lingming Zhang, and
Yiling Lou. Large language model-based agents for software engineering: A survey. arXiv
preprint arXiv:2409.02977, 2024.

[43] Tianyang Liu, Canwen Xu, and Julian McAuley. Repobench: Benchmarking repository-level
code auto-completion systems. arXiv preprint arXiv:2306.03091, 2023.

11

https://arxiv.org/abs/2310.06770

423
424
425

426
427
428

429

431

432
433
434
435

436
437

438

440

441
442

443
444

445
446

447
448
449

451
452
453

454
455
456

457

459

460
461
462

463
464

465
466
467

469
470

[44] Xiao Liu, Hao Yu, Hanchen Zhang, Yifan Xu, Xuanyu Lei, Hanyu Lai, Yu Gu, Hangliang
Ding, Kaiwen Men, Kejuan Yang, et al. Agentbench: Evaluating llms as agents. arXiv preprint
arXiv:2308.03688, 2023.

[45] Stephan Lukasczyk and Gordon Fraser. Pynguin: Automated unit test generation for python.
In Proceedings of the ACM/IEEE 44th International Conference on Software Engineering:
Companion Proceedings, pages 168—172, 2022.

[46] Kaijing Ma, Xinrun Du, Yunran Wang, Haoran Zhang, Zhoufutu Wen, Xingwei Qu, Jian Yang,
Jiaheng Liu, Minghao Liu, Xiang Yue, et al. Kor-bench: Benchmarking language models on
knowledge-orthogonal reasoning tasks. arXiv preprint arXiv:2410.06526, 2024.

[47] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534-46594,
2023.

[48] Zohar Manna and Richard J Waldinger. Toward automatic program synthesis. Communications
of the ACM, 14(3):151-165, 1971.

[49] Alessandro Mantovani, Simone Aonzo, Yanick Fratantonio, and Davide Balzarotti. {RE-Mind}:
a first look inside the mind of a reverse engineer. In 31st USENIX Security Symposium (USENIX
Security 22), pages 2727-2745, 2022.

[50] Stephen Mell, Steve Zdancewic, and Osbert Bastani. Optimal program synthesis via abstract
interpretation. Proceedings of the ACM on Programming Languages, 8(POPL):457-481, 2024.

[51] Shen-Yun Miao, Chao-Chun Liang, and Keh-Yih Su. A diverse corpus for evaluating and
developing english math word problem solvers. arXiv preprint arXiv:2106.15772, 2021.

[52] Brad A Myers. Visual programming, programming by example, and program visualization: a
taxonomy. ACM sigchi bulletin, 17(4):59-66, 1986.

[53] Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, and
Pengcheng Yin. Next: Teaching large language models to reason about code execution. arXiv
preprint arXiv:2404.14662, 2024.

[54] Ansong Ni, Pengcheng Yin, Yilun Zhao, Martin Riddell, Troy Feng, Rui Shen, Stephen Yin,
Ye Liu, Semih Yavuz, Caiming Xiong, et al. L2ceval: Evaluating language-to-code generation
capabilities of large language models. Transactions of the Association for Computational

Linguistics, 12:1311-1329, 2024.

[55] Mihir Parmar, Nisarg Patel, Neeraj Varshney, Mutsumi Nakamura, Man Luo, Santosh Mashetty,
Arindam Mitra, and Chitta Baral. Logicbench: Towards systematic evaluation of logical
reasoning ability of large language models. arXiv preprint arXiv:2404.15522, 2024.

[56] Shishir G Patil, Tianjun Zhang, Xin Wang, and Joseph E Gonzalez. Gorilla: Large language
model connected with massive apis. Advances in Neural Information Processing Systems, 37:
126544-126565, 2025.

[57] Debjit Paul, Mete Ismayilzada, Maxime Peyrard, Beatriz Borges, Antoine Bosselut, Robert
West, and Boi Faltings. Refiner: Reasoning feedback on intermediate representations. arXiv
preprint arXiv:2304.01904, 2023.

[58] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. Program synthesis from polymor-
phic refinement types. ACM SIGPLAN Notices, 51(6):522-538, 2016.

[59] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems, 36:8634-8652, 2023.

[60] Rishabh Singh and Sumit Gulwani. Transforming spreadsheet data types using examples.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 343-356, 2016.

12

471
472
473

474
475

476
477
478

479
480
481

482
483
484

485

487

488
489

490
491
492

494
495
496

497
498
499

500

502
503
504

505
506
507

508
509
510

511
512
513

514
515
516

517
518
519

[61] Tarun Suresh, Revanth Gangi Reddy, Yifei Xu, Zach Nussbaum, Andriy Mulyar, Brandon
Duderstadt, and Heng Ji. Cornstack: High-quality contrastive data for better code retrieval and
reranking, 2025. URL https://arxiv.org/abs/2412.01007.

[62] Tarun Suresh, Shubham Ugare, Gagandeep Singh, and Sasa Misailovic. Is the watermarking of
IIm-generated code robust?, 2025. URL https://arxiv.org/abs/2403.17983.

[63] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A ques-
tion answering challenge targeting commonsense knowledge. arXiv preprint arXiv:1811.00937,
2018.

[64] Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. Syncode:
Llm generation with grammar augmentation, 2024. URL https://arxiv.org/abs/2403.
01632.

[65] Shubham Ugare, Rohan Gumaste, Tarun Suresh, Gagandeep Singh, and Sasa Misailovic.
Itergen: Iterative semantic-aware structured llm generation with backtracking, 2025. URL
https://arxiv.org/abs/2410.07295.

[66] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. Synthesizing highly expressive sql
queries from input-output examples. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 452-466, 2017.

[67] Chenglong Wang, Yu Feng, Rastislav Bodik, Alvin Cheung, and Isil Dillig. Visualization by
example, 2019. URL https://arxiv.org/abs/1911.09668.

[68] Anjiang Wei, Jiannan Cao, Ran Li, Hongyu Chen, Yuhui Zhang, Ziheng Wang, Yaofeng
Sun, Yuan Liu, Thiago SFX Teixeira, Diyi Yang, et al. Equibench: Benchmarking code
reasoning capabilities of large language models via equivalence checking. arXiv preprint
arXiv:2502.12466, 2025.

[69] Catherine Wong, Kevin M Ellis, Joshua Tenenbaum, and Jacob Andreas. Leveraging language
to learn program abstractions and search heuristics. In International conference on machine
learning, pages 11193-11204. PMLR, 2021.

[70] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang,
Junzhe Wang, Senjie Jin, Enyu Zhou, et al. The rise and potential of large language model
based agents: A survey. Science China Information Sciences, 68(2):121101, 2025.

[71] Yijia Xiao, Edward Sun, Tianyu Liu, and Wei Wang. Logicvista: Multimodal 1lm logical
reasoning benchmark in visual contexts. arXiv preprint arXiv:2407.04973, 2024.

[72] Yuxi Xie, Kenji Kawaguchi, Yiran Zhao, James Xu Zhao, Min-Yen Kan, Junxian He, and
Michael Xie. Self-evaluation guided beam search for reasoning. Advances in Neural Information
Processing Systems, 36:41618-41650, 2023.

[73] Navid Yaghmazadeh, Christian Klinger, Isil Dillig, and Swarat Chaudhuri. Synthesizing
transformations on hierarchically structured data. ACM SIGPLAN Notices, 51(6):508-521,
2016.

[74] Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig. Sqlizer: query synthesis
from natural language. Proceedings of the ACM on Programming Languages, 1(OOPSLA):
1-26, 2017.

[75] Kai Yan, Zhan Ling, Kang Liu, Yifan Yang, Ting-Han Fan, Lingfeng Shen, Zhengyin Du,
and Jiecao Chen. Mir-bench: Benchmarking 1lm’s long-context intelligence via many-shot
in-context inductive reasoning. arXiv preprint arXiv:2502.09933, 2025.

[76] Pengcheng Yin, Wen-Ding Li, Kefan Xiao, Abhishek Rao, Yeming Wen, Kensen Shi, Joshua
Howland, Paige Bailey, Michele Catasta, Henryk Michalewski, et al. Natural language to code
generation in interactive data science notebooks. arXiv preprint arXiv:2212.09248, 2022.

[77] Kexun Zhang, Danqing Wang, Jingtao Xia, William Yang Wang, and Lei Li. Algo: Synthe-
sizing algorithmic programs with generated oracle verifiers. Advances in Neural Information
Processing Systems, 36:54769-54784, 2023.

13

https://arxiv.org/abs/2412.01007
https://arxiv.org/abs/2403.17983
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2403.01632
https://arxiv.org/abs/2410.07295
https://arxiv.org/abs/1911.09668

520
521
522

523
524

526

527
528
529
530

[78]

[79]

[80]

Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang.
Language agent tree search unifies reasoning acting and planning in language models. In
Forty-first International Conference on Machine Learning, 2024.

Shuyan Zhou, Frank F. Xu, Hao Zhu, Xuhui Zhou, Robert Lo, Abishek Sridhar, Xianyi Cheng,
Tianyue Ou, Yonatan Bisk, Daniel Fried, Uri Alon, and Graham Neubig. Webarena: A realistic
web environment for building autonomous agents, 2024. URL https://arxiv.org/abs/2307.
13854.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu, Wenhao Yu, Ratnadira Widyasari,
Imam Nur Bani Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al. Bigcodebench: Bench-

marking code generation with diverse function calls and complex instructions. arXiv preprint
arXiv:2406.15877, 2024.

14

https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854
https://arxiv.org/abs/2307.13854

531

532

533
534
535

536

537
538
539

540
541

542

543
544

546
547
548
549
550

552

553

554
555
556
557
558
559
560
561
562
563

564
565
566
567
568
569

570
571
572
573
574
575
576
577
578

579

580
581

A Appendix

A.1 Case Study

In the below example, the model first invokes the ground-truth function with 10 more inputs, then
tries to synthesize the function, and then gets back the counter-example from the differential testing
oracle. Its second trial then passes the oracle’s test.

Prompt:

You are a software engineer tasked with implementing a blackbox Python function solution. Your
goal is to implement this function correctly, ensuring it works for all possible valid inputs, not just
the example inputs provided.

Your primary goal is to get the function implementation exactly right. Your secondary goal is to
minimize the number of function invocations and implementation attempts.

GIVEN EXAMPLES:

print(’Result ’ str(solution([1, 2, 3, 4, 51)))
print(’Result ! str(solution([1, 2, 2, 4, 51)))
print(’Result ’ str(solution([’a’, ’b’, ’c’, 'd’, ’e’1)))

print(’Result
print(’Result

1
2
3
4 str(solution([’apple’, ’banana’, ’apple’1)))
5:
print(’Result 6: ’
7.
8
9
1

str(solution([])))

str(solution([10, 20, 30, 40, 50, 601)))
str(solution([10, 20, 30, 30, 50, 601)))
str(solution([’x’, ’y’, 'z’1))

: str(solution([1, 1, 1, 11)))

0: 7 + str(solution(list(range(100)))))

print(’Result
print(’Result
print(’Result
print(’Result

+ o+ o+ + 4+

Corresponding outputs:

Result 1: True
Result 2: False
Result 3: True
Result 4: False
Result 5: True
Result 6: True
Result 7: False
Result 8: True
Result 9: False
Result 10: True

Strategy Overview:

You should work in two phases:

1. Exploration Phase: use function invocations strategically to fully understand the function’s
behavior.

2. Implementation Phase: only after a thorough understanding, attempt an implementation.

This is the first iteration. You must first reason and then decide between one of the following two
options:

1. Generate more function invocations in the same format as the examples. You can generate up to 20
additional function invocations across all iterations.

2. Generate an implementation of solution. You have only 1 debugging check total. If your
implementation is incorrect, you lose your check and are shown a counterexample. If you attempt an
implementation and have no debugging checks left and your implementation is incorrect, you cannot
take any more actions. This attempt will be considered your final answer.

Assistant:

I'll start with the Exploration Phase and generate additional strategic invocations to better understand
the function’s behavior over a wide range of inputs. I want to explore cases like unique negative and

15

582
583

584

585
586
587
588
589
590

592
593
594

595

596

597
598
599
600
601
602
603
604
605
606

607
608
609

610
611
612
613
614
615

616

617
618
619
620
621
622

624

625

626
627

628
629
630

632
633

non-negative numbers, duplicate negative numbers, duplicate empty strings, duplicate boolean values,
and unique special character strings. I also want to verify that single element lists should be unique.

INVOCATIONS:

print(’Result 11: ’ + str(solution([-1, -2, 0, 11)))
print(’Result 12: 7 + str(solution([-1, -2, -11)))
print(’Result 13: ' + str(solution([1, 1.0, 21)))
print(’Result 14: 7 + str(solution([(1,), (2,), (1,)D))
print(’Result 15: ' + str(solution([42])))

print(’Result 16: ’ + str(solution(["", "a", "b"1)))
print(’Result 17: ’ + str(solution(["", "", "b"1)))
print(’Result 18: ’ + str(solution([True, False, Falsel)))
print(’Result 19: ' + str(solution([’!’, '@, "#’, "$’1)))
print(’Result 20: ’ + str(solution([None, @, "None"])))

Prompt:

Here are the outputs of the function invocations from the previous iteration:

Result 11: True
Result 12: False
Result 13: False
Result 14: False
Result 15: True
Result 16: True
Result 17: False
Result 18: False
Result 19: True
Result 20: True

STRATEGY UPDATE: Based on the new data above, you should update your understanding of the
function and decide on your next action. You have 10 additional function invocations and 1 debugging
check left.

Assistant: Based on the input-output pairs I have analyzed, I infer that this function is intended to
evaluate whether all elements in a given list are distinct—that is, to determine if there are any duplicate
entries within the list. To implement this functionality, I propose using a pairwise comparison strategy.
By systematically comparing each element in the list with every subsequent element, it becomes
possible to identify any duplicates that may exist. This approach ensures thorough coverage of all
potential comparisons and provides a reliable method for detecting non-unique elements in the list.

IMPLEMENTATION:

def solution(lst):

Use a simple pairwise comparison approach
n = len(lst)
for i in range(n):

for j in range(i + 1, n):

if 1st[i] == 1st[j]:
return False

return True

Prompt:

The implementation you generated in the previous iteration failed for the following input (and
potentially other inputs):

Failed input: [1, 2, 3, 4, [5, 61, [5, 6]]
Ground Truth Function != Output From Generated Code:
"Error' != 'No Error'

This failure provides valuable information about a case you didn’t account for. You should decide

between generating more invocations to explore and debug the function behavior or generating one
final implementation. You have 10 additional function invocations and NO debugging checks left.

16

634
635
636
637
638
639

640

641
642
643
644

645

Assistant: Based on the error message, it appears that raising an error for this input would be the
appropriate response. To handle this effectively, a set-based approach might be more suitable than a
pairwise comparison approach. By converting the list to a set, I can efficiently detect unhashable
elements, as attempting this operation would naturally raise a TypeError for any such elements. Let
me proceed with implementing this approach to validate the reasoning.

IMPLEMENTATION:

def solution(lst):
Attempt to convert the list to a set.
If any element is unhashable, this will raise a TypeError as expected.
return len(lst) == len(set(lst))

This final implementation passes the differential testing oracle.

17

e46 A.2 Supervised Fine-Tuning Experiment Setup

647 Table 6 presents the parameters used for our supervised fine-tuning experiments.

Name Value
Teacher Model gpt-4o
Student Model LLaMA-3.1-8B-Instruct
Fine-tuning Context Length 32768
Learning Rate 1.00E-5
LR Schedule linear
Warmup Ratio 0.03
Epoch 3
Batch Size 8
Gradient Accumulation Steps 8
LoRA Rank 8
LoRA « 8

Table 6: LoRA Fine-Tuning Parameters.

18

	Introduction
	Related Work
	Method
	Problem Definition of Inductive Program Synthesis
	Interactive Evaluation Protocol for LLM Agents
	Benchmark Preparation
	Fine-Tuning on Synthetic Data

	Experiment Setup
	Results
	Main Results
	Do Initial Input-Output Examples Underspecify the Target Function?
	Ablation Study: Input-Output Queries and Oracle Feedback
	Performance of Fine-Tuned Models
	Case Study

	Conclusion
	Appendix
	Case Study
	Supervised Fine-Tuning Experiment Setup

