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Abstract

Anomaly detection is a crucial application in large-scale industrial manufacturing as it
helps detect and localise defective parts. Pre-training feature extractors on large-scale
datasets is a popular approach for this task. However, creating such large datasets is
expensive and time-consuming and requires careful investigation of technical and social
issues. While recent work in anomaly detection primarily focuses on the development of
new methods built on such extractors, the importance of the data used for pre-training
has not been studied. Therefore, we evaluated the performance of eight state-of-the-art
anomaly detection methods pre-trained using dynamically generated fractal images on the
famous benchmark datasets MVTec and VisA. In contrast to the literature that focused on
fractals’ transfer-learning ability, in this study, we compared models pre-trained with frac-
tals against ImageNet without fine-tuning. Although pre-training with ImageNet remains a
clear winner, the results of fractals are promising considering that this task required features
capable of discerning even minor visual variations and we can do that without fine-tuning
the weights, thereby lacking familiarity with the dataset. This opens the possibility for
a new research direction where feature extractors could be pre-trained with synthetically
generated abstract datasets overcoming the problem of privacy, basis and inappropriate
content, as no humans are pictured.
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1 Introduction

Identifying unusual structures in images is a challenging problem in computer vision with nu-
merous applications, including industrial inspection (Bergmann et al. (2019, 2022)), health-
care monitoring (Zimmerer et al. (2022); Menze et al. (2014)), autonomous driving (Blum
et al. (2019); Hendrycks et al. (2019)), and video surveillance (Liu et al. (2018); Nazare
et al. (2018)). Due to the rarity and complexity of determining the full specification of
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defect variations, most of the literature addresses the Anomaly Detection (AD) problem
unsupervised, where a model is only trained on anomaly-free images. However, obtaining
training data is expensive and time-consuming, and privacy concerns limit availability, espe-
cially in industrial and medical scenarios. Recently computer vision systems have expanded
greatly as large-scale datasets, such as ImageNet, have led to a shift from model-driven
to data-driven approaches (Kataoka et al. (2020)). For example, in AD, many current
state-of-the-art methods rely on deep feature extractors pre-trained on a proxy task on
large-scale datasets. In addition to the technical challenges and high costs associated with
acquiring and labelling these large datasets, questions have arisen over privacy, ownership,
inappropriate content, and unfair biases. This has resulted in ImageNet being restricted to
non-commercial applications, the 80M Tiny Images dataset (Torralba et al. (2008)) being
withdrawn, promising datasets such as JFT-300M (Sun et al. (2017)) or Instagram-3.5B
(Mahajan et al. (2018)) being unavailable for public use, and LAION-5B (Schuhmann et al.
(2022)), which was used to train the famous Stable Diffusion (Rombach et al. (2021)), being
withdrawn due to ethical concerns.

“What if we had a way to harness the power of large image datasets with few or none of
the major issues and concerns currently faced? (Anderson and Farrell (2022))”. Fractals are
complex geometric structures generated by mathematical equations, thus, anyone can pro-
duce the images making them open-source, without the necessity of massive manual labelling
and ethical or bias concerns. The work of Kataoka et al. (2020) was the first to introduce
the possibility of using fractals as an alternative pre-trining method for image recognition
tasks. In light of the promising results shown in image classification (Anderson and Farrell
(2022)) and 3D scene understanding (Yamada et al. (2022)), in this paper, we conduct
extensive experiments to examine the potential utility of using a synthetically generated
dataset composed of fractals for the detection and localization of industrial anomalies. This
study differs from the existing literature that mainly focuses on fractals’ transfer-learning
(fine-tuning) ability for supervised classification, we compared the AD methods pre-trained
with fractals against ImageNet without fine-tuning, introducing additional complexity to
the comparison as the model’s weights remain untuned, thereby lacking familiarity with the
dataset. Moreover, defect detection is a challenging task as normal and abnormal samples
look very similar but differ in local appearance, necessitating robust features capable of
discerning even minor visual variations, while classification tasks involve semantically dis-
tinct classes, simplifying the discrimination process. Our contributions are summarised as
follows:

• We conducted the first systematic analysis comparing the performance of AD models
pre-trained with fractals against ImageNet without fine-tuning.

• We analyze the impact of feature hierarchy and object categories in solving the AD
task, showing that low-level fractal features are more effective and emphasizing the
importance of anomaly type selection when considering fractal images.

• Our findings motivate a new research direction in AD, where there is the potentiality
to replace large-scale natural datasets with completely synthetic abstract datasets
reducing annotation labour, protecting fairness, and preserving privacy.
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2 Anomaly Detection for Industrial Inspection

Most unsupervised AD models can be divided into two main groups: (i) reconstruction-
based and (ii) feature embedding-based methods. In this paper, we focus on the latter.
Feature embedding-based methods rely on the ability to learn the distribution of anomaly-
free data by extracting descriptors from a pre-trained backbone (feature extractor) that
most of the time is kept frozen during the entire AD process. Anomalies are detected dur-
ing inference as deviations from these anomaly-free features, assuming the feature extractor
produces different features for anomalous images. According to Xie et al. (2023), feature
embedding-based methods can be divided into four categories: teacher-student (Wang et al.
(2021); Deng and Li (2022); Bergmann et al. (2020); Guo et al. (2023)), memory bank (Roth
et al. (2022); Defard et al. (2021); Lee et al. (2022)), normalizing flow (Gudovskiy et al.
(2022); Yu et al. (2021)), and one-class classification (Reiss et al. (2021); Li et al. (2021)).
For teacher-student models, during the training phase, the teacher is the feature extractor
and distils the knowledge to the student model. When an abnormal image is passed, the
teacher will produce features that the student wasn’t trained on, so the student network
won’t be able to replicate the features. Thus, the feature difference in the teacher-student
network is the most important principle in detecting anomalies during inference. Regarding
memory bank-based approaches features of normal images are extracted from a pre-trained
network and stored in a memory bank. Test samples are classified as anomalous if the
distance between the extracted test feature and the closest neighbourhood feature point
inside the memory bank exceeds a certain threshold. Normalizing flow is used to learn
transformations between data distributions. In AD, anomaly-free features are extracted
from a pre-trained network and projected by the trainable flow model to an isotropic Gaus-
sian distribution, in other words, the model applies a change of variable formula to fit an
arbitrary density to a tractable base distribution. During inference, the normalizing flow is
used to estimate the precise likelihood of a test image. Anomalous images should be out of
distribution and have a lower likelihood than normal images. For one-class classification,
the goal is to identify instances belonging to a single class, without explicitly defining the
boundaries between classes as in traditional binary classification.

3 Fractals Images

Fractal images are generated using Iterated Function Systems (IFS), composed of two or
more functions, each associated with a sampling probability. Affine IFS involves affine
transformations: ω(x) = Ax + b, where A represents a linear function and b represents a
translation vector. The set of functions has an associated set of points with a particular
geometric structure called attractor. Following the definition of Anderson and Farrell (2022)
and Kataoka et al. (2020), an IFS system S, with cardinality N ∼ U({2, 3, .., 8})3, defined
on a complete metric space X = (IR2, ∥ · ∥2) is a set of transformations ωi : X → X and
their associated probabilities pi:

S = (ωi, pi) : i = 1, 2...N (1)

which satisfy the average contractility condition. The attractor AS is a unique geometric
structure, a subset of X defined by S. The shape of AS depends on the function ωi, while
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the sampling probabilities pi ∝ |detAi| influence the distribution of points on the attractor
that are visited during iterations. Affine transform parameters are associated with the
categories of the synthetic dataset. Anderson and Farrell (2022) improved the sampling
strategy to always guarantee the contractility condition of S and produce fractals with
“good” geometric properties. An affine transform must have singular values less than 1 to
be a contraction, which can be imposed by construction. Thus, the authors used singular
values decomposition of A = UΣV T , where U and V are orthogonal matrices and Σ is
a diagonal matrix containing the singular values σ1 and σ2. By sampling σ1 and σ2 in
the range (0, 1), we ensure the system is a contraction. Regarding good geometry, the
authors empirically demonstrate that singular values’ magnitudes dictate how quickly an
affine contraction map converges to its fixed point under iteration. Small values cause quick
collapse, while values near 1 lead to “wandering” trajectories which don’t converge to a clear
geometric structure. They empirically find that given σi,1 and σi,2 be the singular values for
Ai, the ith function in the system, the majority of the systems with good geometry satisfy
1
2(5 +N) < α < 1

2(6 +N) with α being α =
∑N

i=1(σi,1 + 2σi,2)

4 Implementation Details

Our synthetic dataset, named “Fractals” for simplicity, consists of single-fractal images for
multi-class classification obtained by grouping 100,000 IFS into 1000 classes. We follow the
default configuration of Anderson and Farrell (2022). We trained ResNet18, WideResNet50
and WideResNet101 with the standard cross-entropy objective function for 100 epochs
using 1,000,000 training samples per epoch with an image resolution of 256×256 and batch
size of 512. For the anomaly detection, we used teacher-student methods RD (Deng and
Li (2022)), STFPM (Wang et al. (2021)), memory-based methods PatchCore (Roth et al.
(2022)), PaDiM (Defard et al. (2021)), the flow models FastFlow (Yu et al. (2021)), C-Flow
(Gudovskiy et al. (2022)) and the one-class classification methods PANDA (Reiss et al.
(2021)), and CutPaste (Li et al. (2021)). To facilitate reproducibility, we used Anomalib
(Akcay et al. (2022)) to train the anomaly detection methods, except for PANDA and
CutPaste deployed through the official code implementations. The overall framework can
be seen in Figure 1.

Datasets: To study industrial anomaly detection performance, our experiments are
performed on the MVTec (Bergmann et al. (2019)) and VisA (Zou et al. (2022)). MVTec
contains 15 sub-datasets of industrially manufactured objects. For each object class, the
test sets contain both normal and abnormal samples with various defect types. The dataset
is relatively small scale, where the number of training images for each sub-dataset varies
from 60 to 391, posing a unique challenge for learning deep representations. VisA contains
12 sub-datasets. The objects range from different types of printed circuit boards to samples
with multiple or single instances in a view.

Evaluation Metrics: Image-level metrics are used to assess AD algorithms’ classifi-
cation performance, whereas pixel-level metrics are used to assess their segmentation (lo-
calization) performance. These two types of metrics represent distinct capabilities of AD
algorithms, and they are both extremely important. Following prior work we use the area
under the receiver operator curve (AUROC) for both image-level and pixel-level anomaly
detection. To measure localization performance we also use the area under the per-region-
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Figure 1: We generate a dataset of IFS codes by sampling the parameters of the system
which are used to generate fractals images. The generated images are used to
train a computer vision model for multi-class classification. Finally, the model is
used as a feature extractor for unsupervised anomaly detection.

overlap (AUPRO). In contrast to the ROC measure which is biased in favour of large
anomalies, the PRO score weights ground-truth regions of different sizes equally to better
account for varying anomaly sizes, see (Bergmann et al. (2020)) for details.

5 Results

In this section, we analyze in depth the experimental results of the chosen AD algorithms.
Note that, except for CutPaste, none of the algorithms had the model weights fine-tuned.
In each table the reported accuracies are expressed in percentage, the best result for each
method is marked in red for ImageNet and blue for Fractals pre-training; in addition, each
cell contains the results for ImageNet/Fractals. In Table 1, we can see the average accuracy

MVTec VisA

AUROCsp AUPRO AUROCpx AUROCsp AUPRO AUROCpx

FastFlow 94.6/70.6 89.1/60.4 96.4/84.1 92.1/69.9 86.2/62.5 97.3/89.2

C-Flow 92.1/64.5 88.9/49.5 96.6/78.2 87.7/65.2 85.2/60.9 97.9/87.4

PatchCore 98.7/75.1 91.2/65.1 97.7/87.7 91.1/80.4 85.6/65.9 98.0/90.0

PaDiM 94.9/75.9 92.6/68.6 97.3/87.5 83.9/76.5 80.7/61.0 97.4/87.9

RD 98.4/73.1 93.2/61.8 97.3/81.4 94.2/74.3 90.9/65.7 98.4/83.4

STFPM 91.5/62.0 93.1/52.2 97.0/80.6 89.6/63.4 91.0/63.5 98.3/85.8

CutPaste 92.8/80.9 – – 87.3/79.2 – –

PANDA 86.4/57.4 – – 81.9/71.3 – –

Table 1: Average accuracy expressed in percentage for image and pixel level AUROC (AU-
ROCsp and AUROCpx) and AUPRO.

for the different methods on MVTec and VisA, for one-class classification methods we only
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compute the image-level accuracy, (for class-wise accuracy see Appendix A). The statistical
results from the table show that using fractals as pre-training reduced AUROC accuracy
by -24% and -14% at the image and pixel levels on MVTec, and by -16% and -11% at the
image and pixel levels on VisA. For ImageNet the best results remain between teacher-
student and memory-based methods. Fractals appear to work well with PatchCore most of
the time, while PANDA performs poorly when compared with CutPaste, possibly because
CutPaste is the only method that involves fine-tuning. When using AUROC metrics, using
fractal images leads to promising results both at the image and pixel level. The performance
drops when using AUPRO, indicating that small defects are not well localized. Meanwhile,
ImageNet weights can maintain good performance across all metrics. The qualitative results
can be found in Appendix D.

Figure 2 shows the filters from the first layer of ResNet pre-trained using different
methods. We can see that the weight learned by us (Fractals) shows simple patterns, such
as solid vertical or horizontal lines. This could mean that the model has learned more
basic features in the input data. In the purple box, we show the weights visualization
taken from the original paper (Anderson and Farrell (2022)) with the model trained with
multi-class and multi-instance. Multi-instance is a more advanced training where there are
multiple classes per image. Multi-instance prediction learns first-layer filters that are very
similar to those learned from ImageNet pre-training and also their multi-class weights show
more complex patterns meaning their model has likely learned to detect more intricate and
nuanced features in the input data.

Fractals ImageNet Multi-class Multi-instance

Improving Fractal Pre-training

Figure 2: Comparison of the filters from the first layer of ResNet18 pre-trained with Fractals
(left) and ImageNet (right). In the purple box, we can find two images taken from
Anderson and Farrell (2022) showing the first layer of ResNet50 learned using
fractals with multi-class and multi-instance prediction.

5.1 Comparison between object categories

In MVTec the 15 classes can be divided into textures (carpet, grid, leather, tile, wood) and
objects categories. Likewise, VisA classes can be divided into printed circuit boards pcb,
samples with multiple instances multi-in (capsules, candles, macaroni1 and macaroni2) and
single instance single-in in a view. In Figure 3 we represent the overall image level AUROC
accuracy for the different object categories. Focusing on Figure 3a ImageNet leads to good
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Figure 3: Spider chart representing average image-level AUROC grouping MVTec Ad and
VisA classes into different object categories.

performance for both textures in blue and objects in red for all the methods. The larger
blue area shows a higher performance for the texture category. Also with Fractals, we have
the same behaviour except for RD and PANDA with objects having respectively +1.9% and
+0.7% compared to textures. The bigger difference between textures and objects can be
seen for flow-based methods with +7.2% and +6% for FastFlow and C-Flow (see Appendix
B). Figure 3b shows the results for VisA where it is clear that for both ImageNet and
Fractals all the methods underperform for multi-in. Our intuition is that this behaviour
is more method-related rather than weight-related. The proposed methods are specialised
to perform well on MVTec which is composed of images with single objects in a view. For
ImageNet pcb and sinle-in have comparable performance, while for Fractals the results are
quite variable. Overall is clear that ImageNet is the winning dataset, however, Fractals’
results are quite promising considering that we are training on completely abstract images
without any fine-tuning.

5.2 Impact of feature hierarchy

Feature maps from ResNet-like architectures, which play an important role, can be divided
into hierarchy-level j ∈ {1, 2, 3, 4}. For example, using the last level for feature represen-
tation introduces two problems (i) the loss of more localized nominal information, as the
last layers of the network extract more high-level features, (ii) and feature bias towards the
task of natural image classification which has only little overlap with industrial anomaly
detection (Roth et al. (2022)). As pointed out by Kataoka et al. (2020) and Anderson
and Farrell (2022), models pre-trained on fractal images are unbiased when compared to
ImageNet, so we studied the impact of features hierarchy when using Fractals. We use
PatchCore and PaDiM which rely on j ∈ {2, 3} and j ∈ {1, 2, 3} for feature representation.
Figure 4 shows the average image-level accuracy on MVTec when considering different j.
Focusing on ImageNet (blue), for both methods, the results with different hierarchies are
quite stable, a similar trend can be seen also in of terms pixel-level accuracy (see Appendix
C). Nevertheless, there is not a huge bust in performance when combining three hierarchies
instead of two for both ImageNet and Fractals. This outcome is significant as memory-based
methods necessitate a large amount of memory during initialization, which increases with
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the number of features involved. For both methods, the best results are with j ∈ {1, 2}, this
behaviour could be seen even more when comparing pixel AUPRO meaning that low-level
features from fractals can help more than high-level features in solving the AD task. This
could be related to the fact that fractal structures cover more real-world patterns than Im-
ageNet (Yamada et al. (2022)) our intuition is that low-level features capture these simpler
patterns, that can be found in nature, rather than high-level features which are correlated
more to the complex geometric structure of the attractor AS .
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Figure 4: Comparison between ImageNet (blue) and Fractals (red) of the average image-
level AUROC when using different feature hierarchies.

6 Conclusions

This paper investigated the potential utility of using abstract, computer-generated fractal
images to pre-train feature extractors in unsupervised visual anomaly detection systems.
We conducted a systematic analysis of 8 state-of-the-art AD methods and tested their
performance on 27 object classes each having different types of anomalies. Experiments
reveal that memory-based methods and CutPaste seem statistically better than others and
their results vary depending on the type of objects’ class, emphasizing the importance
of anomaly type selection when considering fractal images. Although pre-training with
ImageNet remains a clear winner on this task, the fact that we were able to achieve relatively
good performance by learning weight from completely abstract images is quite stunning.

In future work, our studies may be continued in a variety of ways. First, as the learned
weights exhibit simple patterns, such as solid vertical or horizontal lines, multi-instance
training should be taken into consideration since it has proven to learn weights more similar
to ImageNet obtaining models that better generalize to the downstream tasks. Second, we
observe that in the literature little effort has been put into synthesizing abnormal samples
via data augmentation which is a difficult but important task. More attention should be
given to self-supervised methods like CutPaste since they involve fine-tuning, in line with the
fractals literature. Third, exploring fractals’ performance under few-shot learning should be
investigated. Fractal pre-trained weights could reduce data needed for fine-tuning benefiting
fields affected by limited data like medicine.
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Appendix A. Detailed Results on AD Datasets

This section contains a more detailed comparison of the obtained results that have been
referenced in the main part of the paper in Section 5. We include fine-grained performance
comparisons on all MVTec and VisA sub-datasets for all the proposed models. For MVTec
the corresponding result tables are 3, 4 and 5. In Table 3 we observe that PatchCore is
the winning approach followed by RD when using ImageNet as they both solve 7 of the
15 sub-datasets. With Fractals CutPaste solves 7 of the 15 classes achieving the highest
average image-level AUROC of 80.9%. For some classes Fractals surpass the performance
of ImageNet: grid when using CutPaste and PANDA, wood with FastFlow and toothbrush
with C-Flow, PaDiM, RD and CutPaste. In Table 4 we can see that PatchCore reaches
the heights pixel-level AUROC for both ImageNet and Fractals, followed by PaDiM. When
using the AUPRO, Fractals performance drops. As shown in Table 5 C-Flow is the methods
that have the biggest drops in localization performance when compared with the results in
Table 4. PaDiM reaches the highest AUPRO of 68.9%. Note that the AUPRO metric with
the carpet class for the FastFlow pre-trained with ImageNet is missing. Anomalib (Akcay
et al. (2022)), the repository used for the evaluation, led to a value of 1.21, which is a bug,
thus, we did not report any value.

For VisA the corresponding result tables are 6, 7 and 8. As shown in Table 6 when using
Fractals, PatchCore reached the best accuracy of 80.4% followed by CutPaste with 79.2%.
We have some cases where Fractals surpass ImageNet results: capsules with PatchCore
and PANDA, macaroni2 with CutPaste and PANDA, pcb1 PaDiM and CutPaste and for
pcb2 with PatchCore, PaDiM and CutPaste. Table 7 shows the pixel-level AUROC. For
ImageNet the best approach is RD for Fractals PatchCore. On average the pixel-level
performance differs around 11% between ImageNet and Fractals. Here, too, using AUPRO
metrics results in a performance drop as shown in Table 8.

Overall for both datasets is clear that memory-based methods seem the more suitable
when using Fractals, while flow-based methods are the ones with the lowest performance.
CutPaste works well with fractals reaching the first position on MVTec and the second on
VisA. It is clear that more work needs to be done with fractal images but the results are
promising.

Appendix B. Results on Object Categories

This section offers detailed numerical values for the object categories study provided in
Section 5.1. The results are included in Table 2. For MVTec the 15 sub-dataset can be
divided into textures (carpet, grid, leather, tile, wood) and objects (bottle, cable, capsule,
hazelnut, metal nut, pill, screw, toothbrush, transistor, zipper). For VisA the 12 sub-
classes are divided into PCB (pcb1, pcb2, pcb3, pcb4), images with multi-instance in a
view multi-in (candle, capsules, macaroni1, macaroni2) and image with single-instance in
a view single-in (cashew, chewinggum, fryum, pipe fryum).

Appendix C. Influence of features hierarchy

Here we show the pixel-level results of the analysis of the impact of feature hierarchy j in
Section 5.2. Figure 5 we find that for both ImageNet and Fractals there is a clear drop
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Models textures objects

FastFlow 99.4/81.2 92.2/65.3

C-Flow 96.1/76.3 90.1/58.6

PatchCore 98.7/82.0 98.7/71.7

Padim 98.8/79.5 92.9/74.1

RD 99.7/63.9 97.8/77.8

STFPM 98.9/63.5 87.9/61.3

CutaPaste 95.7/87.4 91.4/77.6

PANDA 86.9/52.4 86.2/59.9

(a) MVTec

Models PCB multi-in single-in

FastFlow 95.4/68.3 90.4/64.2 90.6/77.1

C-Flow 88.4/56.2 84.0/65.6 90.8/73.7

PatchCore 95.0/86.6 81.9/74.6 96.3/80.2

Padim 84.5/85.5 75.3/68.7 91.9/75.2

RD 97.5/84.5 88.9/68.7 96.2/69.6

STFPM 90.8/52.9 86.4/67.8 91.5/69.7

CutaPaste 92.5/88.9 82.1/73.0 87.2/75.6

PANDA 88.2/72.6 70.4/67.9 87.1/73.4

(b) VisA

Table 2: Image-level AUROC score. The average is obtained by grouping by object cate-
gories.

in performance with j ∈ {3, 4}. When using Fractals the best results are obtained with
j ∈ {2, 3} for PatchCore and j ∈ {1, 2} and j ∈ {1, 2, 3} for PaDiM. We can see that the
difference between the results using ImageNet and the results using Fractals is relatively
small. This difference increases when considering the AUPRO metrics, see Figure 6. When
using layers j ∈ {3, 4} with Fractals we reach an accuracy of 49.9% for PatchCore and 51.7%
for PaDiM. The best performance is obtained when using low-level features j ∈ {1, 2}. Since
AUROC is biased towards large size anomalies this behaviour could indicate a tendency of
fractals-trained models to underperform with small size anomalies.

PatchCore PaDiM
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Figure 5: Comparison between ImageNet (blue) and Fractals (red) of the average pixel-level
AUROC when using different feature hierarchies.

Appendix D. Qualitative results

In Figure 7 we can see some qualitative results on MVTec’s classes: bottle, cable, carpet,
hazelnut and wood. In the red box, we have the anomaly score and predicted segmentation
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Figure 6: Comparison between ImageNet (blue) and Fractals (red) of the average AUPRO
when using different feature hierarchies.

mask for ImageNet pre-training and in the blue box for Fractals. It is interesting to notice
that for cable the anomaly type is called cable swap so rather than a structural defect such
as scratches, dents, colour spots or cracks, we are facing a misplacement, a violation of
the position of an object which can be seen as a logical anomaly. We can see from the
figure that none of the methods both using ImageNet or Fractals can predict the correct
segmentation mask. We also observe that Fractals tend to fail when localizing anomalies
with low contrast with the background like for carpet. Figure 8 shows examples of images
from different classes randomly chosen from our Fractals dataset.

Class FastFlow C-Flow PatchCore PaDiM RD STFPM CutPaste PANDA

carpet 98.6/64.5 92.7/49.6 98.0/40.9 99.0/42.5 98.9/30.6 98.0/53.9 85.9/69.2 93.4/31.2

grid 99.8/58.0 96.1/82.0 97.5/93.7 96.9/78.5 100.0/68.3 98.3/46.0 98.3/100.0 52.0/54.4

leather 99.7/88.5 96.1/63.3 100.0/82.0 99.7/81.9 100.0/75.2 99.8/67.9 100.0/87.3 96.5/54.4

tile 99.9/95.6 99.9/92.7 98.8/95.6 99.5/97.3 100.0/60.9 98.6/74.0 94.7/84.8 96.8/65.1

wood 99.2/99.6 95.6/93.8 99.4/97.9 99.1/97.1 99.4/84.3 99.7/75.5 99.7/95.7 95.9/56.8

bottle 100.0/97.6 100.0/56.7 100.0/88.2 99.8/95.9 99.9/93.2 100.0/54.9 99.8/97.9 96.8/65.1

cable 92.9/55.6 92.0/45.9 98.8/52.2 93.2/61.4 96.2/58.6 91.3/43.9 90.6/85.8 84.5/54.9

capsule 94.7/42.1 90.4/61.6 97.8/73.4 91.9/70.8 97.6/78.3 57.9/56.5 83.5/78.1 91.8/71.8

hazelnut 97.9/97.6 99.6/85.7 100.0/92.0 94.1/93.9 100.0/89.5 100.0/90.8 97.2/71.3 88.5/61.3

metal nut 98.7/57.8 96.4/34.4 99.8/38.1 98.7/47.9 100.0/69.8 96.6/66.2 94.2/80.7 72.9/41.5

pill 96.4/79.5 82.4/76.5 93.1/75.9 92.3/77.2 96.7/72.4 81.0/77.4 89.1/71.0 81.0/65.3

screw 85.0/27.5 89.1/69.0 97.9/61.7 85.2/40.0 98.1/69.1 90.3/60.4 79.0/42.75 70.5/41.3

toothbrush 77.5/60.8 71.4/78.3 100.0/99.2 87.2/98.6 93.9/96.7 85.0/79.2 87.8/97.8 88.1/68.9

transistor 89.7/59.7 87.8/33.0 99.9/55.2 98.5/78.6 97.4/66.8 94.9/37.5 92.8/79.8 91.0/71.2

zipper 89.3/74.4 91.6/44.6 99.3/81.2 88.3/76.8 98.3/83.2 81.5/46.5 99.8/70.9 97.0/57.6

Model Avg 94.6/70.6 92.1/64.5 98.7/75.1 94.9/75.9 98.4/73.1 91.5/62.0 92.8/80.9 86.4/57.4

Table 3: MVTec image-level AUROC. Each cell carries the results for ImageNet/Fractals.
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Class FastFlow C-Flow PatchCore PaDiM RD STFPM

carpet 98.2/78.4 98.8/71.2 98.7/72.7 98.8/73.2 98.8/56.2 99.2/76.7

grid 98.6/85.0 97.4/72.2 98.0/82.3 96.7/69.6 99.3/88.3 99.2/69.5

leather 98.9/96.6 97.4/84.2 98.9/95.6 98.9/90.5 99.1/92.4 99.6/83.5

tile 95.7/87.1 95.8/76.0 94.9/85.9 94.9/74.2 95.4/69.0 97.1/76.0

wood 90.8/84.9 95.0/82.0 93.2/84.0 93.9/84.5 94.9/84.9 96.9/85.2

bottle 97.8/92.3 98.5/59.3 98.0/84.4 98.3/92.2 98.3/76.4 98.7/59.9

cable 93.8/78.2 95.6/68.3 98.0/84.3 97.2/89.0 96.4/53.9 94.9/73.8

capsule 98.7/85.5 98.7/90.8 98.8/95.2 98.5/95.0 98.7/94.3 97.6/95.1

hazelnut 95.3/95.9 98.2/95.7 98.4/97.1 98.6/97.9 98.8/96.5 99.1/95.2

metal nut 98.6/82.7 97.4/76.1 98.5/84.4 96.1/86.5 97.0/82.4 98.2/81.8

pill 97.5/85.3 98.0/90.7 97.5/94.6 95.2/92.7 97.4/91.2 95.8/88.0

screw 98.1/85.0 97.4/93.9 99.2/95.7 98.7/94.8 99.6/97.0 98.9/93.6

toothbrush 95.2/72.6 98.2/88.2 98.7/97.1 99.0/97.6 98.9/93.2 99.0/91.9

transistor 92.6/78.3 85.9/53.7 96.7/75.2 97.6/86.5 89.1/66.6 82.3/59.5

zipper 95.9/74.3 96.3/70.7 98.1/86.6 97.2/88.0 98.5/78.0 98.1/78.6

Model AVG 96.4/84.1 96.6/78.2 97.7/87.7 97.3/87.5 97.3/81.4 97.0/80.6

Table 4: MVTec pixel-level AUROC. Each cell carries the results for ImageNet/Fractals.

Class FastFlow C-Flow PatchCore PaDiM RD STFPM

carpet –/51.3 93.8/33.1 92.7/31.4 95.3/39.6 94.8/24.8 97.0/51.9

grid 95.1/63.2 90.8/40.3 90.1/60.7 89.0/41.1 97.3/70.2 97.0/31.6

leather 98.3/89.8 90.8/47.9 96.3/76.7 98.0/68.9 97.9/69.0 99.0/51.6

tile 87.4/72.1 90.2/63.3 79.6/69.0 86.3/64.3 87.5/45.1 92.4/49.5

wood 89.3/75.0 88.6/50.7 84.6/54.9 91.6/65.5 91.3/70.3 95.7/62.7

bottle 88.7/76.1 93.5/28.1 92.3/64.7 95.1/77.4 95.3/53.2 96.2/22.5

cable 80.3/38.6 84.8/29.9 91.1/46.8 88.5/62.5 90.1/41.4 89.0/30.4

capsule 92.4/59.3 91.0/73.9 92.3/75.1 91.1/77.6 93.0/81.8 91.1/81.9

hazelnut 95.2/89.7 95.1/86.2 94.4/87.0 95.0/90.1 96.3/90.1 97.6/87.6

metal nut 92.8/47.5 87.2/27.4 91.9/49.4 91.9/54.1 93.8/40.0 95.4/36.8

pill 91.3/68.9 93.4/65.0 93.8/83.8 94.4/85.6 96.2/82.2 95.1/72.7

screw 91.2/59.9 89.2/80.3 95.5/84.0 94.7/83.6 97.7/88.5 95.0/78.8

toothbrush 77.8/28.3 82.9/64.1 86.2/82.7 93.2/91.6 91.6/79.4 92.9/70.4

transistor 79.1/44.4 73.8/21.8 94.0/42.3 94.0/62.4 79.2/41.1 69.4/16.0

zipper 87.8/41.8 87.7/30.2 92.5/67.7 91.3/64.2 95.3/50.4 94.2/38.3

Model AVG 89.1/60.4 88.9/49.5 91.2/65.1 92.6/68.6 93.2/61.8 93.1/52.2

Table 5: MVTec AUPRO. Each cell carries the results for ImageNet/Fractals.
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Class FastFlow C-Flow PatchCore PaDiM RD STFPM CutPaste PANDA

candle 94.2/69.7 92.2/69.1 97.9/83.1 92.6/79.7 94.0/76.2 80.7/70.7 96.6/77.9 88.4/67.9

capsules 85.6/49.8 79.4/69.1 68.4/79.6 65.6/62.7 84.6/62.7 88.4/68.4 83.7/71.4 57.1/68.2

cashew 89.0/90.9 91.9/78.6 95.6/91.8 88.1/82.3 96.3/65.0 86.1/80.2 82.7/73.1 91.6/90.2

chewinggum 95.8/91.6 98.4/80.1 99.4/81.9 98.3/71.7 99.4/67.8 98.2/73.5 96.6/86.0 92.2/69.0

fryum 78.0/61.1 78.0/71.4 91.6/82.6 84.6/80.7 91.9/70.8 89.2/60.7 93.4/75.8 84.5/74.8

macaroni1 95.0/84.8 87.7/66.2 89.7/75.9 81.1/71.5 96.3/73.1 92.2/72.9 85.1/67.1 77.2/68.0

macaroni2 86.9/52.4 76.8/58.0 71.7/59.6 62.0/60.8 80.8/62.7 84.3/59.1 63.1/75.5 58.7/67.3

pcb1 95.2/72.4 90.9/54.6 95.1/89.8 83.2/83.3 97.0/62.9 87.6/36.0 89.4/92.7 87.0/59.5

pcb2 95.2/80.7 80.0/29.8 93.5/94.7 82.7/88.3 96.8/85.6 90.3/30.2 93.6/95.5 91.3/83.7

pcb3 94.4/50.5 85.6/56.6 91.9/71.1 78.9/76.5 96.5/93.2 90.0/64.0 89.7/72.6 78.1/64.3

pcb4 97.0/69.8 97.1/83.9 99.5/90.6 93.2/94.0 99.8/96.5 95.5/81.4 97.4/95.0 96.5/83.0

pipe fryum 99.5/64.8 94.8/64.5 98.5/64.4 96.7/66.1 97.3/74.6 92.6/64.3 76.3/67.3 80.1/59.8

Model AVG 92.1/69.9 87.7/65.2 91.1/80.4 83.9/76.5 94.2/74.3 89.6/63.4 87.3/79.2 81.9/71.3

Table 6: VisA image-level AUROC. Each cell carries the results for ImageNet/Fractals.

Class FastFlow C-Flow PatchCore PaDiM RD STFPM

candle 99.2/80.7 98.7/74.6 98.9/82.6 98.7/77.4 99.0/85.9 98.9/86.5

capsules 98.2/84.2 97.0/82.2 97.6/90.9 96.3/90.2 99.6/92.5 99.3/76.8

cashew 98.2/89.6 99.1/91.8 99.0/75.1 98.6/74.3 95.1/41.4 97.0/92.8

chewinggum 99.2/96.9 98.8/94.1 98.9/87.3 98.9/69.1 98.7/86.7 99.1/93.3

fryum 89.0/88.5 96.5/89.0 94.9/94.2 95.5/94.1 96.3/92.1 95.4/87.0

macaroni1 96.3/98.0 98.6/91.3 98.2/95.2 97.4/93.8 99.5/98.6 99.4/97.3

macaroni2 98.7/94.9 97.5/90.9 96.9/91.8 94.9/91.0 99.2/96.2 99.6/95.5

pcb1 99.7/94.0 99.1/87.2 99.5/98.4 98.7/89.6 99.6/31.1 99.4/47.7

pcb2 98.7/91.0 96.1/84.0 97.8/92.8 97.3/94.3 98.5/89.5 97.3/76.8

pcb3 93.5/85.4 97.3/86.2 98.2/92.7 97.2/96.1 99.0/95.0 98.1/89.3

pcb4 98.4/77.0 97.8/81.9 97.7/83.2 96.5/88.4 98.1/94.3 98.2/89.6

pipe fryum 98.3/90.7 98.6/95.8 98.8/96.0 98.9/96.9 98.7/97.2 97.9/96.7

Model AVG 97.3/89.2 97.9/87.4 98.0/90.0 97.4/87.9 98.4/83.4 98.3/85.8

Table 7: VisA pixel-level AUROC. Each cell carries the results for ImageNet/Fractals.

Class FastFlow C-Flow PatchCore PaDiM RD STFPM

candle 94.8/42.5 92.7/43.2 94.3/72.8 94.0/49.4 94.1/71.4 94.5/61.8

capsules 90.6/45.9 75.3/51.3 67.8/61.9 68.7/56.8 93.1/51.7 95.3/44.6

cashew 81.1/81.3 92.5/74.3 89.4/42.6 84.6/37.7 87.4/38.1 92.1/77.0

chewinggum 84.4/62.7 88.9/53.7 84.7/43.0 86.5/29.8 80.5/48.0 83.0/68.6

fryum 69.7/68.7 81.0/69.7 80.2/72.2 70.1/70.6 88.4/77.8 85.9/65.3

macaroni1 87.1/95.1 90.7/79.1 91.8/81.8 87.6/67.3 95.0/87.3 94.8/88.0

macaroni2 93.9/69.4 83.4/60.9 86.9/58.3 71.5/54.9 92.7/75.4 95.5/76.2

pcb1 92.5/64.9 88.1/49.7 89.9/77.8 87.5/74.4 95.6/18.0 92.3/14.4

pcb2 85.7/68.5 76.7/54.4 83.7/78.9 77.6/78.8 90.4/67.2 85.3/33.7

pcb3 79.6/42.1 73.5/64.9 80.4/78.5 70.6/80.7 91.0/88.4 89.6/77.1

pcb4 89.0/30.6 86.2/42.8 84.6/44.1 79.1/52.6 88.1/75.7 89.7/66.1

pipe fryum 86.1/78.0 92.9/87.0 93.4/78.5 90.5/79.2 95.0/88.9 93.7/88.9

Model AVG 86.2/62.5 85.2/60.9 85.6/65.9 80.7/61.0 90.9/65.7 91.0/63.5

Table 8: VisA AUPRO. Each cell carries the results for ImageNet/Fractals.
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 FastFlow PatchCore RD FastFlow PatchCore RD 

Figure 7: Qualitative visualization for the MVTec’s classes: bottle, cable, carpet, hazelnut
and wood. In the first column, we have the original image and the ground-truth.
In the red box we have the anomaly score and predicted segmentation mask for
ImageNet pre-training and in the blue box for Fractals.
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Figure 8: Examples of images from different classes randomly chosen from a list of 100k
generated systems used during our fractal pre-training.
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