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Nomenclature

Nuclear constants

Mean number of neutrons emitted by a fission event
Mean number of neutrons emitted by a source event
Capture rate by time unit

Fission rate by time unit

Total reaction rate by time unit

Moment of order of the number of neutrons emitted by the induced fission
Mean lifetime of neutrons

Diven factor of the fission of order 2

Diven factor of the fission of order 3

second order Diven factor of the source

third order Diven factor of the source

Probability the fission emits v neutrons

Probability that the spontaneous fission emits v neutrons during a source
event

Nuclear parameters

Ec

EF

Decreasing coefficient of the neutronic system

Mean number of neutrons generated by the sources by unit of time (neu-
trons/units of time)

Vector of the parameters of the system
spontaneous fission rate
Capture efficiency

Fission efficiency



NOMENCLATURE NOMENCLATURE

kers Multiplication factor

My, the leakage multiplication

S Intensity of the sources

Sy Intensity of the Poisson type source

Sk Intensity of the compound Poisson type source

Observations and model outputs

vrp Mean number of the neutrons present in the system at 7" knowing there was
0 in the system at t in presence of a source

Uy Mean number of the neutron present in the system at 7" knowing there was
1 in the system at ¢ in the absence of a source

V7., Mean of the number of neutrons present in the system in presence of a source
during the stationary regime

M Vector of the first three simple statistical moments, the model
M Estimation of the first three simple moments of Ny 4
M Vector of the first three simple empirical moments, the measures

G(x,t) Generating function associated to the probability distribution (Q,,(t))nen

M,  Mean number of g-combination of ¢ detections between ¢ and 7" when there
is a number of neutrons at ¢t with a stationary distribution and when there
is a source

V. IT «, Factorial moment of order k of the number of neutrons present in the system
in presence of a source during the stationary regime

v, ;7 Factorial moment of order k of the neutrons present in the system at T
knowing there was 0 in the system at ¢ in presence of a source

Uk  Moment of order £ of the neutrons present in the system at 7" knowing there
was 1 in the system at ¢ in the absence of a source

II,,(t) Probability that n neutrons be present at final time 7" knowing there was 0
at t in presence of a source

11, .. Probability that v neutrons are present in the system in presence of a source
and during the stationary regime

mn1(t) Probability of presence of n neutrons at final time 7" knowing the fact there
was 1 neutron at ¢ in the absence of a source

Tn(t) Probability of presence of n neutrons at final time 7" knowing the fact there
was v neutrons at ¢ in the absence of a source
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g(x,t) Generating function associated to the probability distribution (py,(t))nen

gn (x,t) Generating function associated to the probability distribution (p]H (t))jen
g,(z,t) Generating function associated to the probability distribution (py . (t))nen

Gr  Generating function associated to the distribution of the number of neutrons
present in presence of a source IT

G Generating function associated to the distribution of the number of neutrons
present in the absence of a source m

G17..(2) Generating function of the probability distribution (/1 )nen When the
stationary regime is established

Gr.00(2) Generating function associated to the probability distribution (7, a0 )nen
when the stationary regime is settled

my, Mean number of n-combination of n detections between ¢ and 1" when there
is a neutron at t in the absence of a source

Mean number of g-combination of ¢ detections between ¢ and T" when there
is a neutron at ¢ in presence of source

Nir Random variable representing the number of neutrons detected during the
interval [t, T

P,(t) Probability of counting n neutrons between ¢ and 7" knowing the fact there
is 0 neutron at time ¢ (with external source)

Pn,1(t) Probability of detecting n neutrons at final time 7" knowing the fact there
was 1 neutron at ¢ in the absence of a source

P, ,(t) Probability of counting n neutrons between ¢ and 7' knowing the fact there
is v neutrons at time ¢ (with external source)

Pno(t) Probability of detecting n neutrons at final time 7" knowing the fact there
was v neutrons at ¢ in the absence of a source

Q. (t) Probability of counting n neutrons on the interval [¢,T] knowing the number
of neutrons has stationary distributions (17, «)yen (With external source)

Xr  Random variable representing the number of neutrons present in the system
at T
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Chapter 1

Introduction

Le scientifique a une grande expérience en matiére d’ignorance, de doute et d’incertitude,
et cette expérience est d’une trés grande importance, je pense. Quand le scientifique ne
connait pas la réponse, il est ignorant. Quand il a une intuition de ce que le résultat est,
il est incertain. Et quand il est sacrément sir de ce que le résultat sera, il est encore
dans le doute. La connaissance scientifique est un ensemble d’affirmations a différents
degrés de certitude — certains plus incertains, d’autres a peu prés surs, mais pas
absolument certains.

Richard Feynman " The Value of Science,” discours a I'Académie nationale des sciences (Automne 1955)
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CHAPTER 1. INTRODUCTION

1.0.1 Contexte

Le contexte de la these est principalement la détection passive de neutrons corrélés
pour la stireté et les garanties nucléaires.

La stureté est le moyen pour empécher les incidents nucléaires et protéger ’environnement,
le public et les travailleurs des risques d’exposition aux rayonnements. Les garanties
nucléaires sont une fagon de vérifier que chaque état remplisse les accords inter-
nationaux sur le nucléaire en ce qui concerne la production d’explosifs nucléaires.
Les méthodes de détection passives permettent d’obtenir la connaissance de 1’état
du systéme neutronique sans manipulation supplémentaire [Ens+98]. Cela arrive
pendant le controle d’une installation nucléaire ou lorsque 1'on assure sa streté.
Du fait des interactions aléatoires (en particulier lors des collisions), le fait de
détecter des neutrons sera considéré comme un processus aléatoire. Ici, nous sommes
spécifiquement concernés par les mesures de corrélations temporelles des neutrons.
D’autres sujets d’intérét sont la comptabilité matiere, la physique des réacteurs, les
mesures de réactivité, I'interprétation des benchmarks sous-critiques, la réactivité
des réacteurs sous-critiques (réacteur hybride piloté par accélérateur - ADS) [PP0S].
La comptabilité matiere se réfere a 1’évaluation et I'enregistrement de la quantité
et du type de matériaux nucléaires présents dans les installations. Les benchmarks
sous-critiques aident les spécialistes en streté a vérifier les données nucléaires. En
ce qui concerne la physique des réacteurs, il y a deux types de fluctuations du
flux des neutrons : le bruit a puissance nulle et le bruit a puissance non-nulle. Le
bruit a puissance non-nulle résulte des fluctuations macroscopiques comme les vi-
brations mécaniques des barres de controle. Dans les réacteurs a puissance nulle, la
source d’aléa est due a des phénomenes microscopiques, e.g. réactions nucléaires, fis-
sion. La détermination de la réactivité d’un assemblage nucléaire sous-critique peut
étre établie par I'utilisation de deux méthodes standard, Feynman-alpha et Rossi-
alpha. Ces méthodes sont basées sur I'analyse statistique de la liste des instants
de détection, qui permet de déterminer les parametres neutroniques d'un systeme
fissile.

1.0.2 Motivations

Le but de ce travail est I'estimation de parametres nucléaires a partir des mesures
de corrélations neutroniques. Il s’agit d’'un probleme inverse avec des observa-
tions bruitées, ce n’est pas une exception a la citation de Feynman. La physique
des systemes neutroniques fournit quelques intuitions du comportement des ob-
servations, alors nous serons incertains comme suggéré par la remarque de Feyn-
man. Comme l'indique ce point de vue, il est nécessaire de quantifier le niveau
d’incertitude : la quantification d’incertitude apparait comme un moyen adéquat.

Les données expérimentales sont une liste du nombre de détections durant des
intervalles de temps de méme durée. Une analyse statistique basée sur les moments
du nombre de détections est effectuée pour I'inférence sur les parametres.

Les neutrons de fission sont produits par paquets (entre 2 et 3 en moyenne).
Les neutrons provenant d’une méme fission sont corrélés en temps. L’émission des
neutrons sources est un processus de Poisson composé. Lors de la détection, il va y
avoir un exces de variance a la loi de Poisson. Ce fait est exploité par la méthode

12



CHAPTER 1. INTRODUCTION

de Feynman. En général, du fait des corrélations neutroniques, les moments d’ordre
supérieur a la moyenne contiennent de l'information a propos du systeme.

Comme nous ne cherchons pas qu’une estimation ponctuelle, mais plutot la dis-
tribution complete des parametres, nous considererons l'inférence bayésienne et les
méthodes de Monte-Carlo par chaines de Markov (MCMC) d’échantillonnage de la
distribution a posteriori des parametres.

En ce qui concerne les calculs directs des parametres, un modele simple ou
I’espace des phases est réduit a un point unique est mis en ceuvre. Avec ce modele
ponctuel, les moments ont des expressions analytiques et peuvent étre calculés de
maniere efficace et rapide. Cette these est structurée comme suit.

Dans un premier temps, nous rappelons ’état de I'art des bases de probabilités,
du modele ponctuel du neutron et ses équations, de la quantification d’incertitudes
et des problemes inverses.

Puis, dans une seconde partie, nous établirons les expressions des observations
que 'on obtient a partir des instants de détections : les moments empiriques de
la distribution du nombre de neutrons détectés. Apres, dans une troisieme partie,
nous étudierons le probleme inverse associé, i.e. connaissant les observations quels
sont les parametres et leurs incertitudes. Cela sera fait par 'utilisation de méthodes
MCMC telles que ’algorithme de Metropolis-Hastings avec adaptation de matrices
de covariance.

Finalement, nous pourrons conclure quant aux apports amenés par la these et
ce qui peut étre poursuivi apres ce travail.

13



CHAPTER 1. INTRODUCTION

The scientist has a lot of experience with ignorance and doubt and uncertainty, and this
experience is of very great importance, I think. When a scientist doesn’t know the
answer to a problem, he is ignorant. When he has a hunch as to what the result is, he is
uncertain. And when he is pretty damn sure of what the result is going to be, he is still
in some doubt. Scientific knowledge is a body of statements of varying degrees of
certainty — some most unsure, some nearly sure, but none absolutely certain.

Richard Feynman " The Value of Science,” address to the National Academy of Sciences (Autumn 1955)
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CHAPTER 1. INTRODUCTION

1.0.3 Context

The context of the thesis is mainly the passive detection of correlated neutrons for
nuclear safety and safeguards.

Nuclear safety is the means to prevent nuclear accidents and protect the envi-
ronment, the public and the workers from excessive radiation risks. Safeguards are
a way of verifying that each country complies with the international agreement on
nuclear materials concerning the production of nuclear explosives. Passive detection
methods allow to know the state of a neutron system without additional handling
[Ens+-98]. This happens in particular during the control of a nuclear installation or
when ensuring its safety. Due to random interactions (especially when colliding),
the action of detecting neutrons will be considered as a random process. Here, we
are specifically concerned with neutron time correlation measurements. Other area
of concern are material accounting, reactor physics, reactivity measurements, inter-
pretation of subcritical benchmarks, monitoring the reactivity of subcritical reactors
(Accelerator Driven Systems - ADS) [PP08|. Material accountancies refers to the
evaluation and recording of the quantity and type of nuclear material present in
an installation. The subcritical benchmark helps the safety specialist to verify the
nuclear data. In reactor physics, there are two types of neutron flux fluctuations :
zero power and power noise. Power noise results from macroscopic fluctuations such
as mechanical vibrations of the control bars. In zero power noise reactors, the source
of randomness is due to microscopic phenomena, e.g. nuclear reactions, fission. The
determination of the subcritical reactivity of a nuclear assembly can be established
by using two standard methods, Feynman-alpha and Rossi-alpha. These methods
are based on statistical analysis of the time detection list, which makes it possible
to determine the neutron parameters of the measured fissile system.

1.0.4 Motivations

The aim of this work is the estimation of nuclear parameters from neutron correlation
measurements. It is an inverse problem with noisy observations, this is not an
exception to Feynman’s quote. The physics of the neutron provides some clues
about the behaviour of the observations, then we will be uncertain as the Feynman’s
remark suggests. As this viewpoint indicates, it is necessary to quantify the level of
certainty: uncertainty quantification appears as a good choice.

The experimental data is the list of the number of neutrons detected during time
intervals of the same duration. A statistical analysis based on the moments of the
number of detections is performed for parameter inference. Fission neutrons are
produced by bunches (between 2 and 3 on average). Neutrons from the same fission
are correlated in time. The emission of source neutrons is a compound Poisson
process. In the detections, there will be an excess of variance compared to a Poisson
process. This fact is exploited in the Feynman method. In general, due to the
correlations, the moments of higher order than the mean contain information about
the system. Since we are not only looking for point estimates but also the probability
distribution of the parameters, we will consider Bayesian inference and Markov chain
Monte Carlo sampling (MCMC) of the a posteriori distribution. With regard to the
direct calculation of the parameters, a simple model where the phase space is reduced
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to a single point is implemented. With this point model, moments have analytical
expressions and can be calculated efficiently and quickly. The thesis is structured
as follows.

First, we recall the state of the art on the basic probability, neutron point model
and neutron equations, uncertainty quantification and inverse problem.

Then, in a second part, we will establish the expressions of the observations that
we obtain from the detection times: the empirical moments of the distribution of
the number of detected neutrons. Then in a third part we will study the associ-
ated inverse problem i.e. knowing the observations, what are the parameters and
their uncertainties. This will be done using MCMC methods with the Metropolis
algorithm and covariance matrix adaptation.

Finally, we will conclude on the improvements made by the thesis and what could
be continued after this work.

This chapter presents the tools needed to define the direct problem of neutron

counting, and also consider the neutrons present in the system. Then, in the next
chapter, we will study the direct problem of neutron counting i.e. knowing the in-
puts of the model considered, what are the observations. Then, in the last chapter
we will consider the corresponding inverse problem, i.e. knowing the observations
of our model what the inputs are. This chapter also provides the tools to study the
inverse problem.
First, we recall some elementary probabilistic tools such as generating functions,
Markov chains on integer states, continuous time Markov chains and their ergodici-
ties. Then, we recall the basics of neutron physics and state the neutron equations
to obtain the expression of the simple moments of the joint process of the number
of neutrons present in the system at time ¢ and the neutrons detected during [0, ¢].
Thus, the tools needed to correctly define the direct problem are presented. Then,
we will present the tools for obtaining an answer to an ill-posed inverse problem
in the Hadamard sense. In a first part, we will present methods for solving the
mean-squares problem, such as the Tikhonov regularisation. In a second part, we
will present Bayesian methods for sampling the a posteriori distribution of inputs
knowing the observations. The sampling methods are Markov Chain Monte Carlo
(MCMC) methods.

1.1 Discrete probabilistic tools

First, we present the basic discrete-time tools needed for the direct neutron counting
problem.

In our context, the neutron point model, we will consider probability distribu-
tions with finite moments.

1.1.1 Basic probability distributions

From a probabilistic point of view, the branching process of fission can be modeled
by elementary distributions [PS12; Hagl0]. Here are some examples.
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We now define the Bernoulli distribution, the binomial distribution and other
elementary discrete distributions.

Definition 1.1.1. Bernoulli distribution
A random variable X has a Bernoulli distribution of probability € € [0, 1] when

PX=1)=¢
{ 0)=1-¢ (L.1)

P(X = 1) refers to the probability of success of the probabilistic experiment, and
P(X =0) of failure.

Example 1.1.2. Here € could be the probability that a captured neutron is detected
(i.e. the detector efficiency); or the probability that a neutron let alone in the system
induces a fission, in the absence of a source (cf. 1.136).

In [Hag10], we use the Binomial distribution in order to compute the probability
for detecting n neutrons in the interval [0, ¢]

Definition 1.1.3. Binomial distribution
A random variable X has a binomial distribution of parameters n, € when its dis-
tribution is given by

n

P(X =k) = <k)ak(1 —e)"k 0<k<n. (1.2)

It can be seen as a Bernoulli experiment of parameter ¢ repeated n times. P(X = k)
15 the probability of k successes during n independent Bernoulli experiments.

Then we define the Poisson distribution

Definition 1.1.4. Poisson distribution
The distribution of a Poisson law of parameter X, P(\), is given by

)\k
P(X =k):= Ee_A,‘v’k €N (1.3)
Remark 1.1.5. The Binomial distribution can be approximated by a Poisson dis-
tribution of parameter X = en using the Stirling formula when € — 0, n — 400 and

en = O(1).

n—-+o0o

Finally, we introduce a continuous random variable.

Definition 1.1.6. Exponential distribution
A random variable X is said to have an exponential probability distribution of pa-
rameter A > 0 when its probability density function is

The basics of probability for stochastic neutronics can be found in [PE0S8], more

details on probability can be found in [Bre69; Fel7l; GMT19]. Simple definitions
can be found in [Basl19].
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1.1.2 Generating functions

In this study, we will consider probability distributions on the integers that is why we
choose to use generating functions. The generating function of probability distribu-
tions will enable better computation of the characteristics of the current processes.

In this context the usual random variables will be integer valued; the generating
function is a tool dedicated to the study of this kind of random variables.

Definition 1.1.7. Generating function
Let X be a random variable with nonnegative integer values, with probability distri-
bution P(X = k)ren, the associated generating function is

Gp, (2 Z HFP(X = k),Vz € [0,1] (1.5)

and so, for all z € [0,1], Gp,(2) = E[z¥].

We can also consider the link between generating function and the probability
distribution.

Proposition 1.1.8. Probability and generating function

Let X be a random variable with nonnegative integer values, with probability distri-
bution P(X = k)gen and generating function Gp,(z). The probability distribution
can be expressed in function of the generating function through

1|J0"Gp,
]P’(X:k):H[ azf] VkeN (1.6)
2=0

Then we can define the moments of a random variable, more precisely those that
will be used in this work.

Definition 1.1.9. Moments of a distribution
Let X be a random variable on N with probability distribution P(X = k)ken
The simple moments of X of order [ is

Zkl , VIl e N*. (1.7)

The [-th factorial moments of X 1s
M, =EX(X—-1)--- (X =1+1)],Vle N". (1.8)

Let Gp,, be the generating function associated to the probability distribution of X.
Then, we can define

K]P’X = lOgG[pX (19)
Then we can also define the binomial cumulants of X of order |
1| \
F]P’X,l = l [8 lKPX] ,W € N (110)
z=1
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These three versions of moments are equivalent and can be deduced one from
another.

Proposition 1.1.10. For a random variable X on N with probability distribution

P(X = k)ken, and Gp, associated generating function.

X is integrable if and only if Gp, is differentiable in z = 1 at left. Then we can

compute the mean of X

72
z=1

More generally, forl € N*, the random variable X (X —1)--- (X —1+41) is integrable

(i.e. X admits a factorial moment of order 1), if and only if Gp, is | differentiable

i z =1 at left, and we then have

E[X] = (1.11)

J
EX(X-1)---(X=141)] = % —5Gry (1.12)
z=1
In particular, for the simple moments
& %)
E[Xz] = 8 2G]P>X + a GPX _17 (113)
& 0 o .1
VCLT’[X] 8 2GIP’X &GPX — @GIP’X (114)
z=1 z=1 z=1
and
> Fox 0 o)
E[X?] = 5 3GPX _1+ % —5Grey + % —Gp, . 2 EGPX B (1.15)

The proof of this proposition is in the annexes.

The following provides a characterisation of the generating function.

Proposition 1.1.11. The generating function characterizes the law
Let X andY be two random variables with probability distribution Px and Py. Then

Gpy = Gpy, (1.16)

if and only if X and Y have the same distribution.
Proof. Two power series are equal if and only if their have the same coefficients. [

We will consider several distributions and their generating functions.

Proposition 1.1.12. For two independent random wvariables X and Y on N with
probability distribution P(X = k)ken and P(Y = 1)ien, and Gp, and Gp,, associated
generating functions. Then

Gpy.y = Gp,Gp, (1.17)
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Proof. Using the Cauchy product is the key of the computations. O
Example 1.1.13. When X ~ P(A) and Y ~ P(u), then

G]PXJrY = E[ZX+Y]
= E[z¥|E[z"] by independence
_ M=) a1

(1.18)

_ OHm-1)

That is the generating function of P(X + ), then by uniqueness of the generating
function and the property 1.1.8 X +Y ~ P(A+ p).

The proposition 1.1.12 will be useful for the analysis of the generating function
of Ny the distribution of the number of neutrons detected during a time gate
t. In this context, we will start from the distribution of the number of neutrons
present in the system (in the absence of a source, in presence of a source and during
the transitional phase; or in presence of a source when the stationary regime is
established).

1.2 Discrete-time stochastic processes

Now we introduce some discrete time stochastic processes such as the branching
process and then the discrete Markov chains for the description of the neutronic
system.

In order to have a more specific approach of the system we consider, we need to
have a clear definition of the Markov processes. On the one hand with discrete time
Markov chains, then on the other hand with continuous time Markov chains.

We define the symmetric random walk (cf. [Mé03])

Definition 1.2.1. Symmetric random walk on Z4
The sequence of random variables (X, )nen- is called a random walk on Z* when

k
Xp=Xo+ Y Z (1.19)

=1

where Z; € 7% refers to the successive moves that are independent and identically
distributed. If the walk is only possible to its neighbors, the walk is said simple.
Moreover, if the movement to each of its nearest neighbors occurs with probability
2—1d the random walk is said symmetric.

This example will be taken as a counter example when talking about the ergod-
icity of discrete-time Markov chains.

1.3 Discrete-time Markov chains

In a first time, we define the Markov chains on integer states, give some properties
and define time-continuous Markov chains that will be the basis of our neutronic
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model. Here all the set of states will be named F'C'S and for the whole chapter
FCS = N which is the context of our application. The notation FCS could refer
to a more general view with a finite or countable set, and all the following results
related to Markov chains will be true, the interested reader can consult [Bre69].

Definition 1.3.1. The sequence of random variables Xy, Xy, --- will be named
Markov chain if for all state sequence {xg, x1, -+, Tpi1} € FCS,

P(Xk+1 = xk+1|Xk = Tk, " ,XO = $0) = P(Xk+1 = .Tk+1|Xk == xk) (120)
that we will call the Markov property. We define the conditional probability
pr(2|2) = P( X1 = 2| Xy = 1) (1.21)
the probability of jumping from state x to state x’ at step k + 1.

A noteworthy property of the Markov chains is the following:

Property 1.3.2. Let Xy, X1, --- be a Markov chain and let {xg, x1, -+, Tpi1, Tpio} €

FCS be a state sequence then

P(Xgto = Tpo, Xpy1 = Tog1| X = Tpy -+, Xo = 20) = P(Xpg2 = Tpyo, Xpr1 = Tpp1 | X = )
(1.22)

Proof. We use the Bayes formula
P(AN B|C) =P(A|BNC)P(B|C), (1.23)
with the Markov property.
Thus we have
P(Xpi2 = Trro, Xpp1 = T |[ X = g, - -+, Xo = 20)
= P(Xii2 = Tppo| Xpp1 = Tog1, Xo = g, - -+, Xo = 20)P(Xpy1 = Tpy1 | Xo = 2, -+, Xo = 0)
= P(Xiy2 = Trp2| X1 = Tpp1, Xi = ) P(Xp1 = 21| X = 21

= P(Xji2 = T2, Xip1 = T | Xy = 1)

(1.24)
O
Definition 1.3.3. Homogeneous chain
A Markov chain is homogeneous when Yk € N,V(2', x) € FCS,
pi(@’|z) = p(a'|) (1.25)
Moreover, the initial distribution is the quantity
po(z) :==P(Xo = x) (1.26)

If a Markov chain is homogeneous, then the distributions of its transitions can be
represented by its transition matriz (P ;)w zercs2. The transition matriz describes
the probability of transition from x to x’

P, . = p(a|z), (1.27)
and satisfies to

V(z',x) € FCS* Py, >0, andVx € FCS, Y Py, =1 (1.28)

z'eFCS
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Then we can introduce the example of the branching process (see [Mé03])

Definition 1.3.4. Branching process

Let X,, the random wvariable representing the population size at time n, then Xq is
the number of individuals at the beginning. Let Y, ; the random variable representing
the number of direct successors of individual © < X,, at time n. The dynamics of the
population size is

Xn
Xn—i—l = ZYn,i (129)
=1

where the sum s null when X,, = 0 and the Y, ; which are i.1.d random variables on
N. Then the chain X,, forms a homogeneous Markov chain on N, with transition
matriz P;,; where

Pog=1, Piy =P() Yo, =), V(i,j) € N* x N (1.30)
k=1

The fission will be modeled as a branching process.

In the following, we consider that the Markov chain is homogeneous
The two elements we have introduced enable us to deduce the evolution of the model.

Proposition 1.3.5. A model consisting of a Markov chain with stationary transition
probabilities is completely defined when the transition probabilities and the initial
distribution are given.

Proof. By using the conditional probability formula by recurrence

P(Xk+1 = Tpt1, Xk = Th, "+ , Xg = 370)
=P(Xjt1 = g1 | Xi = g, - -+, Xo = 20) P(Xy = 2| Xpm1 = -1, -+, Xo = 20) - - - P(Xo = 20)
(1.31)

V{l'o, Ty, ", iL‘k+1} < FCS ]

1.3.1 Some general properties of the Markov motion

We recall here the set of states x will be FFIC'S = N.
Definition 1.3.6. For a subset A of FCS, we define

p(Alz) = 3 plyle) (1.32)

yeA
The non-empty set A will be said closed when
p(Alz) =1 (1.33)
for all x € A.

Definition 1.3.7. Irreducible motion or states
The motion or states will be said irreducible when the set of states does not contain
2 or more disjoint closed sets of states.
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Definition 1.3.8. We define the k-th transition probability as,
P(X) € AlXy = z) .= p®(A]z) (1.34)

which is exactly the probability of going in k steps from x to A C FCS. Then the
k-th transition probability is defined by:

p (@ |z) = P(X}, = 2’| X = ) (1.35)

These k-th transition probability can be obtained from the first transition prob-
ability by an important identity: the Chapman Kolmogorov equation.

As example, we show how to obtain p® (2/|z), 2,2’ € N (the same goes for FC'S).

Proof. As the system of events {X; = y},y € N is complete, we can apply the
formula

P(Xy =2 |Xg=12) = » P(Xy =2 X; =y|X; =)

=) P(Xy = 2| Xy = y)P(X; = y|Xo = ) )

Yy

This enables us to deduce

=> p('y)p(ylz) (1.37)

In the same manner, we can deduce by recurrence:

P = 3 ) (1.38)

which is a particular case of the Chapman-Kolmogorov equation for the discrete
states. O

We will call in the following

Definition 1.3.9. The transition from state x € FCS to state ' € FCS, labeled
x — ' exists when 3k € N* such as

p® (2! |z) > 0 (1.39)

Then we will say the transition x — x’ is possible. If each transition from x to x’
and ' to x is possible then we will claim the state x and x' communicate and we
will note x <> o’.

Property 1.3.10. If for each state couple x € FCS and 2’ € FCS, at least one of
the transitions x to x' or x’' to x is possible, then the motion is irreducible.

Proof. Suppose we have two closed disjoint state sets A; C FFC'S and A, C FCS.

Then starting from any state x in A;, we stay in A; (the same goes for 2’ in Ay)
because A; is closed. This means x — 2’ and 2’ — = are not possible, because if we
start in  we will stay in A; and we can not go to x’. This concludes the proof. [J
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By
BQ \\\
Bg
B;
Bs
B4 /
Figure 1.1: Periodic motion of a Markov chain on By, --- , By

1.3.2 Stability of a Markov system

Let us start from the integer state x € F'C'S at time zero and observe the motion
of the resulting system. We wonder if that process will converge to a stationary
limiting process in the following sense. More precisely, the question we are asking
is the stability one: Will the system, independently of its initial state, converge to
a limit distribution?

In a more precise way, we wonder: Does it exist a limiting probability p(A) such
that

P (Alz) = p(A) (1.40)

when k£ — oo for all starting states x € FCS?

When the answer is yes, we will call the system stable.

We remark the stability aspect is a property depending only on the transition prob-
ability and not on the initial condition because the definition is accurate for all the
starting states x € F'CS. In order to analyse the stability, we will focus on the
transition probability.

Definition 1.3.11. Periodic motion

Let d € N be the largest integer such that A C F'C'S can be decomposed into d disjoint

parts, By,--- , Bg each of which is closed under the d-step transition probability. Let

d € [1,d]. Consider x € By such that there exists an integer k where p® (z|z) > 0;

then we define k as a period of x. We consider d, = ged{k period on x}. The chain
k

1s periodic on the integers D which are multiples of d,. Moreover, when x <> y,
d, = d,. Consider the system cycles among the By, -, By. If the starting state is
in By, then the next state will always be in the same one of the other sets, say Bs,
then from Bs in one step it can only go to Bs, and so on. Finally, from By it has
to go back to By. Thus, we have the motion we see in the figure 1.1.
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We can see there is no chance to get stability when the motion is reducible or
periodic.

When the motion is reducible, let A;, Ay be two disjoint closed sets of states.
Then Vx € FCS,
0, S A2

1.41
1, .TeAl ( )

P (Afe) = {

Now, we suppose the motion to be periodic where d = 2 is the period, and claim
that the motion is alternate between two sets By and Bs.

Remark 1.3.12. A motion is said periodic of period d = 2 if FCS s reducible in
2 disjoint closed parts By and By such that

p(2)(Bl‘ZIf) = 1, Yz < Bl,

1.42
p?(By|z) =1, Yz € By (1.42)
Then, for k even,
0,r € B
®(By|z) =< > 1.43
P (Bilz) {1,x€Bl, (1.43)

and 0 and 1 are reversed for the k£ odd.

These probabilities can clearly not converge when £ tends to 4o0.

That is why we will suppose in the following the motion is irreducible and non-
periodic.

When the system is stable, then the motion settles and has long term properties.
This can be interpreted by the fact that for any set of states A the proportion of
time spent in A tends to a limiting value given by p(A) for any starting state.

Theorem 1.3.13. Let II(A) be a probability distribution such that

1Ay = 3" p(Al) H(x) (1.44)
for all A C FCS where p(Alz) is the transition probability of the chain.
Then if II(A) is used as an initial probability distribution for the chain, i.e.
P(Xy € A) = 1I(A), (1.45)
then the sequence of integer states has the same distribution. In other words,
P(X, € A) =1I(A), (1.46)
for all k € N.

Proof. In order to prove this, we proceed by recurrence. We give here the idea
enabling us to get the recurrence relation: we compute the distribution of X; using
the conditional probability rule,

P(X; € A) =Y P(X; € A|Xp = 2)P(X, = z) (1.47)
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the right part of the equation is exactly II(A) = > p(A|z)I(x).
In the same manner, we know that

P(X; € A) = P(X; € AIX; = 2)P(X; = x) (1.48)

but as we have already established P(X; = z) = [I(z), by the use of the same
argument, we can deduce that

P(Xy, € A) =1I(A) (1.49)
Thus, by recurrence, we can deduce the announced result. O
Definition 1.3.14. Any measure II satisfying to 1.44 is called an invariant mea-

sure. Furthermore, when the measure Il is a probability, it is called a stationary
distribution.

For the proof of the two following results, we will refer to [Bre69]

Theorem 1.3.15. When the chain is irreducible, there is at most one stationary
distribution.

We can find the following theorem in [Bre69] p. 172.
Theorem 1.3.16. Let A C FCS a set of states. For an irreducible chain, non-

periodic with transition probability p(Alx) such as for two states x € FCS and
y € FCS that communicate, x <>y, one of the two alternatives holds:

o Fither 1.44 has no solution, and for each finite set K and state y € FCS

P (K|y) =0 (1.50)

e 1.44 has a solution II(A), and for each starting state y

p®(Aly) — 1I(4) (1.51)

We precise what it means. How a system can be instable? Only if it tends to
+00, because the first point of the previous theorem states that for all finite sets of
points B and initial distribution

P(X), € B) = 0 (1.52)

This implies that the probability of finding a particle outside any finite set of points
tends to 1 if the system continues for quite a long time.
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1.3.3 Recurrence times

As the states of the Markov chains are assumed to be counted on the integers, there
is a beautiful theory highlighting the ins and outs of the asymptotic behaviour of
the chain.

The theory is based on the simple observation that if the system begins at a state
x € FCS, then at each return of the system to this state the whole system can be
considered as starting again at the start independently of what happened previously.
We illustrate the usefulness of this idea as follows: Let r, be the probability that
the system, beginning from z, returns to state x € FC'S. Of course 0 < r, < 1.

Property 1.3.17. If r, < 1, then the system returns to the state x € FCS at
mazimum a finite number of times a.s.

The reader is referred to [Bre69] for a proof.
Definition 1.3.18. If for a state x € FCS,

o 1, < 1, we will say the state is transient;

o v, =1, we will say the state is recurrent;

Property 1.3.19. Ifr, =1 for a statex € FC'S, the system starting fromxz € FCS
returns to x € F'C'S, infinitely often a.s.

The following introduces filtration and stopping time, what can be found in
[Bod20].

Definition 1.3.20. Filtration
Let (£2, A, P) a probability space. A filtration of A is an increasing sequence F =
{Fn}n>o of sub-c-algebras of A such that,

FoCFH C---CA (1.53)

Thus, we claim (£2, A,F,P) is a filtrated probability space.
In particular, if (X,)n>0 s a random process. Then the sequence

Fo=0(X;,i<n), n>0, (1.54)
is called the natural filtration of the process (X )n>o0-

Definition 1.3.21. Let F = {F,},>0 a filtration of A. The process { X, }n>0 is said
adapted to the filtration F if X,, is F,,-measurable for all n > 0.

Definition 1.3.22. Stopping time
A stopping time T (for the filtration F = {F,, }n>0) is a random variable with values
i N Uoo such that

{T'=n}eF,,¥n>0 (1.55)

Let F,, = 0(X;,i < n) the natural filtration of X. Let n € N. The variable 1ip—p
can be expressed as a function of the n+ 1 first observations

1{T:n} = ¢n(X07 T 7Xn> (156)
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where ¢, is a measurable function. We recall an important class of stopping time,
corresponding to the first time of reaching the state A

Ty = inf{X, € A} (1.57)

n>0
by convention inf () = oco.

Definition 1.3.23. For a Markov chain { Xy }ren, when the distribution of the initial
value Xg 18 po, we denote

IED/J«O(Xl = X1, ,Xk = xk) = Z M0(1’>]P(X1 = T1," " ,Xk = l’k‘Xo = .T)
zeFCS

(1.58)
We can also define
Definition 1.3.24. Previous o-algebra to T
Let T a stopping time and A € A. A is called previous event to T if:
Vne N, AN{T =n} € F,. (1.59)

The set of the previous events to T is a sub-o-algebra of A. This is called previous
o-algebra to T' and this is denoted Fr.

Now, we can state the strong Markov property

Theorem 1. Strong Markov property
For a stopping time T" of the Markov chain X, and an element B of Fr

Puo({ X1 =21, , Xrgw = 2} N B{Xr = 2} N{T < +o0})

CP(X, = a1, X = mul Xo = D) (Bl{Xp = 2} N {T < 4oo}) O

Proof. Let B an event in Fr. Then for all integer n, the event B N {T = n} is
determined by {Xo, -, X, }. Then we can establish for all k£ € N*

Puo({XT-i-l =21, , Xryp = IEk} NBN {T = n} N {XT = ZB})
=P, ({Xns1 =21, , Xppr = ;e N BOA{T = n}N{X, = z})

= P(Xl =Ty, 7Xk = $k’X0 = x)]P)/m({XTLJrl =Ty, " ,XnJrk = .Tk} NBN {T = n} N {X = x})

(1.61)

thanks to the conditional probabilities’ equation, and the Markov property applied
at time n. Then we sum all of these equations on n € N* and we obtain
Pu({Xry1 =1, Xpy = o} N BN { Xy = 2} N{T < +o0})

1.62
:P(X1:$1,"' ,Xk:xk‘Xo:(E)]P)ND(BH{XT:.T}Q{T<+OO}) ( )

In order to conclude this theorem, we rebuild the conditional probabilities by divid-
ing the two members of the equation by P,,({X1 =2} N {T" < +o00})

PMO({XTJrl =Ty, " 7XT+k = l’k} N B‘{XT = :C} N {T < +OO})

=P(X, =21, , Xy = 24| Xo = 2)P,, (B{ X7 = 2} N {T < 400}) (1.63)

]
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Definition 1.3.25. Return time

Let x € FCS be a recurrent state. Starting from x, we define Tl(m) the first recurrence
time (or return time) as the first time that the system returns to the state x.

In the same way, we define the second time of recurrence; which is TQ(I) the time of
the second return.

This enables us to define the sequence of return times Tl(w),Tz(x),Téx), e

We can express

T = inf{X, 0w , =} and Ty =0 (1.64)
7=>1

k—11J

Theorem 1.3.26. The sequence Tl(x),TQ(x),Téx), -+« 18 constituted of i.i.d. random
variables.

Proof. The sketch of proof is based on the following ideas:

e Each time the system returns in x € F'C'S, it restarts as if it started from the
beginning. Thus, the probability distribution of TQ(I), the time needed to get
back to x from its first restart, should be as the distribution of Tl(x).

e These times are independent, because as they return to the state x the time
to get back does not depend on the time to return the first time.

O
Definition 1.3.27. We denote t(z) = E[T\")].
We will say the state x s
e positive-recurrent if t(z) < +oo, and
o null-recurrent if t(x) = co.
By the law of large numbers, we find the mean
T 4. 4T
! , I — t(x) as. (1.65)

i Jj—+o0o

We can find different applications of this result. Especially to the unbounded
symmetrical random walk where all the states are non-recurrent.

Definition 1.3.28. Certain transition
A transition of a state ¥’ — x is said certain if, starting from a state ' € FCS,
there is a probability 1 that the system goes through the state x € FCS.

Theorem 1.3.29. Let x € FCS and 2’ € FCS two states.

e [f the transition x — x' is possible, and if x is recurrent, then ' is recurrent
and each v — x', ¥’ — x is certain.

e And x and z’' communicate, then they are either both transient either both
positive-recurrent, or either all null-recurrent.
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This theorem is important, its proof (cf [Bre69]) enables us to establish the
following scheme:

/
~ Recurrent states 1

Transient states S

S | Recurrent states 3
. ‘

/ N
/

Recurrent states 2 N

@\
\x\ LV/"\‘?i
\ Recurrent states 4

S~

I Transient states

Figure 1.2: Disposition of the recurrent and the transient states with respect to the
theorem 1.3.29

We summarize what indicates the scheme [Bre69].

e If the motion is irreducible, then either all the states are transient or there is

only one closed irreducible set of recurrent states surrounded by any number
of transient states.
If there is only a finite number of transient states, then the system starting
from any transient state must eventually enter into the set of recurrent states.
But, if there is an infinite number of transient states the system may never
enter into the recurrent states.

1.3.4 Ergodicity

We are still in the case of F'C'S = N.

We recall that a distribution satisfying 1.44 is called an invariant measure and
that a stationary distribution is a probability distribution satisfying 1.44.

We introduce now the theorem of existence of an invariant measure

Theorem 2. Fxistence and uniqueness of an invariant probability distribution
For an irreducible Markov chain on F'CS the two following sentences are equivalent

e the chain is positive-recurrent

o there exists an invariant probability distribution IT
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Moreover, the invariant probability distribution is unique and given by

(z) = -, Vo€ FCS (1.66)

E,[T{"]
Proof. Proof can be found in [Bod20). O

Remark 1.3.30. When the Markov chain is irreducible and null-recurrent we can
show that there exists an invariant measure, but it can not be normalized. As ex-
ample, the measure II(x) = 1 is an invariant measure for the symmetric random
walk on Z (see 1.2.1). Some irreducible and transient Markov chains can admit no
mvartant measure.

Theorem 3. Ergodicity for a positive recurrent Markov chain

Let X a positive-recurrent and irreducible Markov chain on FCS. Let II be its
unique invariant probability distribution.

Let f a function of FCS in R which is integrable with respect to II, i.e. Erp[|f|] =
> wercs |f(@)|H(x) < oco.

We assume the initial data X is distributed by p on FCS.

The means along the trajectories converge almost surely

—1
1
7 Z f(Xe) = Eplf] (1.67)
k=0
Proof. Proof can be found in [Bod20]. O

1.4 Continuous-time stochastic process

Secondly, we recall the basic continuous-time tools needed in order to define the
observations of the direct problem of the neutron count.

Definition 1.4.1. Counting process
A counting process is an increasing process (Ni¢)iso, cadlag (right continuous with
left limits) with values in N such that Ny = 0 and satisfying

o N, is integer valued (N; < +00),

Example 1.4.2. The fact of counting neutrons using a detector is a counting pro-
cess.

Definition 1.4.3. Poisson process
Let (7;)ien+ be a set of i.i.d random variables following a law E(N).
Let Ty =0, T; = 23':1 7j, © > 1, the Poisson process associated to the jump times
(T5)52 s
Ny:=card{i>1st.T; < t},Vt>0. (1.68)

Property 1.4.4. Property of the Poisson process
Let (Ni)i>o0 be a Poisson process.
For all ty < --- <t,, (N, — Nyi,_,)j—y are independent of law P(\(t; —t;-1)).
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Example 1.4.5. The jump times of a Poisson process consist of a point process.
This process will be important in the neutronic system considered because the source
emission is a modeled as a Poisson process in some cases, or a compound Poisson
process.

Example 1.4.6. Poisson process and generating function
We can consider a Poisson process of intensity A denoted (Ny)i>o, then

At)*
P(N; = k) = %e_M (1.69)
Then applying the expression of a Poisson distribution, the generating function as-
sociated to this distribution is

Gy, = Gppy = M7 (1.70)

Now we introduce the compound Poisson process, and so the Poisson process
that is a particular case of the compound Poisson process.

Definition 1.4.7. Compound Poisson process
A compound Poisson process is a random process indeved by time, which can be

written
Ny
Z=30
i=1

where (Ny)iejo,4+00] 15 @ Poisson process and (Y;)ien is a sequence of random variables
independent and identically distributed and independent of Ny.

Example 1.4.8. [t is interesting to notice that when we take Y; = 1, Vi € N, we
recover a Poisson process

Z, =) 1=N, (1.71)

1.5 Continuous-time Markov process

We recall the reader that the exposed results in this part comes from the reading
of [Bre69]. We consider here FFC'S = N , more precisely we will consider time-
continuous integer-valued Markov processes.

We define the continuous time Markov process as follows.
Definition 1.5.1. Given a stochastic process X = {X;}i>0, the finite-dimensional

distributions of X are the distributions of all the vectors (Xy,, -, Xy,) for all 0 <
ty<--- <ty and k € N.

Now, we make explicit the definition of a continuous time Markov chain.
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Definition 1.5.2. Considering a device moving from state to state in continuous

time, where FC'S = N. For { X, }o<, the state at time t, we can model the considered
system by a Markov process if for all times 0 <ty <ty <--- <t <tand0<T,
P( X, =2'| Xy =2, Xy, = xp, -+, Xyy = 1) = P(Xyyr = 2| Xy = ), VE, 7 >0,
and state xq,xs,- -+ , T, 2,2 € FCS.

(1.72)

This statement is the generalization of the Markov property to the continuous time
case.
Then a system that satisfies this property is called a continuous time Markov chain.

We can also consider the stationary transition probability,
Definition 1.5.3. A Markov process will be said having homogeneous probability
transition p,(z'|x) when

pr(2|2) = P( Xy, = 2| Xy = 2), VE, 7 >0, and states z,2’ € FCS.  (1.73)

Property 1.5.4. Specifying this transition probabilities p,(x'|x) for allt > 0,Vzx,z" €
FCS and the initial probability completely determines the distribution for a Markov
process.

Now we ask: What condition must a set of functions defined for all t > 0, x, 2’ €
FCS satisfy to be transition probabilities of a Markov process?
There are two evident conditions:

pe(2'|z) >0 (1.74)
> plllr) =1 (1.75)

The third condition is less evident.
How to pass from a state x to a state ' in a time ¢7 We use the argument of the
intermediate states, so we take into account all the states by which the system can

go.
That is why, we consider

P( Xy, =2, X, =y|Xo =2) = P(Xyp, = 2| X, = y)P(X, = y|Xo = 2)

= pi(2'|y)p-(yl2) (1.76)

In this case, the transition probabilities must satisfy the continuous time Chapman-
Kolmogorov

Pear(a'z) =Y pe(@|y)pr(yl2) (1.77)

Finally, we want to control the possibility that the system leaves the state .
What can be translated in the following manner:

liﬂf)lpT(x]x) = 1,for all z € FCS (1.78)
Theorem 1.5.5. A set of functions p,(x'|x) is said to be transition probabilities for

a Markov process without instant jumps if, and only if, the conditions 1.7/, 1.75,
1.77 and 1.78 are satisfied.
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1.5.1 The infinitesimal transition scheme

To be more precise on the Chapman-Kolmogorov equations:

pei-(@'|2) =Y pu(@[y)p-(y|o) (1.79)

It is notable that if we have the knowledge of the transition probabilities p;(2'|z)
for all 2/, € FCS and t € [0, d] then we can obtain the transition probabilities for
all times.

Taking t,7 € [0,4], t + 7 € [0,26] and so we obtain the transition probabilities
for double size interval.

We repeat the procedure in order to know all the transition probabilities.
As knowing the transition probabilities for small times enables us to determine it
for all times, we will focus on the infinitesimal transition scheme.
We make the assumption that for dt small transition probabilities can be given by

par(y|z) = q(ylz)dt + o(dt),y # x (1.80)

Of course, as

> palylr) =1, (1.81)

then by summing on y # =z,

par(z|z) = 1—dt > q(ylz) + o(dt)
YAz (1.82)

=1—dtQ(z) + o(dt)

where Q(z) = >, ., q(y|z). The constants q(y|z),y # x governs the infinitesimal
transition scheme.

1.5.2 Forward and backward Chapman-Kolmogorov equa-
tions

Let [to, t] be a fixed time interval and 2/, x € FCS.
As a particular case of the Chapman-Kolmogorov equations, we dispose of

P(X =2|X,, =12) = E P(X =2 X, = y)P(X, =yl X, = .
(Xirar = 2| Xy ) (Xerar = 2'| Xy = y)P(X; =y to ) (1.83)

Y

Using the infinitesimal transitions given by the previous diagram, we have
P(Xevar = 2’| Xy = ) = P(Xpyar = 2'| Xy = 2)P(X, = 2'| Xy, = 2)
+ Z ]P)(Xtert = xl‘Xt = y)P(Xt = leto = :L’)
y#a’

= (1 - Q(2)dt)P(X, = 2'| X}, = )

+dt Y g2 |y)P(X, = y| Xy, = z) + o(dt)
y#x

(1.84)
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Moving the P(X; = 2/|X;, = x) to the left, dividing by dt then letting tend
dt — 0, we obtain the forward Chapman-Kolmogorov equation:

iP(Xt = 2| Xy, = 1) = —Q(2)P(X, = 2| Xy, = ) + Z q(@'|y)P(X; = y| Xy, = )

dt <
(1.85)

For the backward equations, we start again from the Chapman-Kolmogorov equa-
tions

P(Xy = 2’| Xy, = 2) = ZP(Xt =2, Xigrate = Y| X4y = @)

Y (1.86)
= Z ]P)(Xt - wllXto-&-dto - y)]P)<Xto+dto = y|Xt0 = .73)

Y

Moreover, the infinitesimal transition scheme are given by

q(ylz)dlo + ofdto), if y # =

1 — Q(z)dty + o(dty), if y=a (1.87)

]P)(Xtoerto = y|Xt0 = 'T) = {

Then we understand that
P(X; = 2| Xy, = 2) = P(X; = 2| Xy, = @) + dio Z q(ylz)P(Xs = 2| Xigaty = y)
y7#x
—dto Y q(ylr)P(X; = &'| Xigaty = ) + 0(dto)

yF#
(1.88)

By a limited expansion of P(X; = /| X4, 1ar, = y) and P(X; = /| Xy rar, = ),
we obtain

P(X, = 2| X, = 1) = P(X; = 2| Xprar, = ) + dbo Y _ q(yla)P(X, = 2| X, = )

y#T
—dto Y qylx)P(X; = 2| Xy, = x) + o(dto)
yF#x
(1.89)
This enables us to deduce
- ]P)(Xt = x/’Xto—i-dto = 517) - ]P)(Xt = $,|Xto = 37)
/ dto / (1.90)
= qyle)P(X, = ' X;, = y) = P(Xy = 2| X3, = ) Y alylz) + o(1)
y#e yre

But, we made the assumption the motion is homogeneous in time (cf. [PE0S]),
we have

d d
_d_tO]P)<Xt = $/|Xt0 = .[L') = %]P)(Xt = .I'/|Xt0 = .[L') (191)
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Finally, we obtain the Chapman-Kolmogorov equations by letting dt, go to 0,

d ! ! /
TP =X, =2) = Y q(ylo)P(X, = 2/ X,, =) = P(X, = /| X, = 2) ) q(ylr)
y#T y#T
(1.92)

1.5.3 Continuous time Markov chain behaviour

The following results and evidence are from [Bre69].

First, we give the waiting time definition for a given state in the set of states

Definition 1.5.6. Waiting time
Let x be a state in the set of states FCS. Given Xy = x, the waiting time of the
continuous time Markov chain (Xi)i>o is

T, =inf{t > 0, X; # x} (1.93)

For a given x in the set of states, we can obtain the distribution of T, as follows.
The probability that there is no transition during the time interval of duration dt is
approximately

P(no transition during dt| Xy = z) = 1 — Q(z)dt (1.94)
Then the probability that the particle leaves the state x during this time interval is

P(the particle leaves state « during dt| Xy = z) = Q(z)dt (1.95)

Thanks to the Markov property and the stationarity of the transition probabilities,
we know that the situation is the same for a particle in a state x at time t as it is
for a particle starting from the state x at time zero.

Proposition 1.5.7. Let x in the set of states, T, the waiting time in state x has an
exponential distribution with parameter Q(x).

Then we can consider a particle moving on time-continuous Markov chain. The
time of motion can be considered of several sub-intervals of length dt, dt’, etc...
Then after dt we consider independent trial of transition with probability Q(x)dt
and no transition 1 — Q(z)dt. And so the particle remains at state = until the trial
occurs as a transition.

Now we can question ourselves about the possibilities for the particle motion
after transition x. The skeleton of the chain is

0, y==x
p(yle) = § gl (1.96)
o Y7

We recall that

Q(x) = qlylx), (1.97)

y#z
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thus the quantity q&f)) is, for the terms of order o(dt), the probability of transition

to state y at time dt given that a transition has occurred in this time. Thanks to

S plyle) = 1 (1.98)

yF#x

the p(y|z) are one-step transition probabilities of discrete time Markov process.
These are called first — jump probabilities. Let Y be the position of the particle
after its first transition out of its initial state x. We now show the independence of
the position Y and the waiting time T},

Proposition 1.5.8. Let x € FCS. Y and T, are independent and
PY = y|Xo=2) =p(ylz), yeFCS (1.99)

Proof. Consider y # x. We have

P(Xt+dt = y,t + dt > Tz Z t)
P(t +dt > T, > 1)

But X 4 = y implies ¢t 4+ dt > T,. This simplifies the numerator of the previous
expression

P(Xt+dt = y,t+dt > Tx Z t) = ]P)(Xt—‘f-dt =Y, TCE 2 t) == P(Xt-‘rdt == y’Tx Z t)]P)(Tx Z t)
(1.101)
Using the Markov property provides
P(Xepar = y|Te > t) = P(Xerar = y|Xe = x) = q(y|z)dt + o(dt) (1.102)
Reinjecting this result into 1.101 and using
P(t +dt > T, > t) = Q(z)e” *@idt 4 o(dt) (1.103)

provides

x)dte @t 4 o x)+o
P(Xppar = ylt+dt > T, > t) = qg&))ed_tcg(m)t o :O(%) = qgélx))jo(gl)) = p(ylz)+o(1)
(1.104)

Letting dt — 0, we conclude
P(Y = y|T, =t) = p(y|x), vt > 0.

This enables us to conclude also that Y and T, are independent and the distribution
of Y is p(y|x). O

In summary, a continuous-time Markov chain moves from state x to state y with
probability p(y|z) and each transition time T, is distributed with an exponential
distribution of parameter Q(z). These two processes are independent of each other.

Proposition 1.5.9. Let (Y;);>0 be a Markov chain with the infinitesimal generator
p(ylx) (with p(z|x) = 0 Vz). Conditionally to (Y;);>o0, let Ty = 0 and (1})j>1
be a sequence of independent random wvariables with exponential distribution with
parameter Q(Y;_1). Let X, = Y; if S0 Ty < t < ST Then (Xy)iso is a
continuous time Markov process with the infinitesimal scheme q(y|x) = Q(x)p(y|x).
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1.5.4 Ergodicity

We consider time-continuous integer-valued Markov processes, so we are in the case
of FC'S = N, the skeleton of the chain is p(y|z) and the waiting time distribution 7,
is given by the exponential distribution of parameter Q(z). The notion of invariant
distribution for the continuous time Markov process can be defined as follows.

Definition 1.5.10. Invariant measure for a continuous time Markov process
A probability distribution IIor such that

> qlely) lor(y) = Q) Her(x) (1.105)
y#T

for all x € FCS s called an invariant distribution.
Indeed, if ITo7 satisfies (1.105), then

> B(Xa = alXo = y)er(y) = 1-Q(2)dt] Her(x)+)_ q(zly)dtior(y) = Her(z)
yeFCS y#x

We make the assumption that the skeleton p(y|z) is irreducible and positive
recurrent, and that Q(z) is bounded from above by a positive constant. Let ITg(x) be
the invariant distribution for the transition probabilities p(x|y) [it satisfies ITg(x) =

> yercs Ply) Is(y)]. Then

s(2)Q(x) !
ZyGFC’S s(y)Q(y) ™

is clearly an invariant distribution for the time-continuous process.

Her(x) = (1.106)

As in the discrete case, we can define the first recurrence time 7T: l(x).

Definition 1.5.11. Return time
Starting from x, we define T the first recurrence time (or return time) as the first
time that the system returns to the state x:

TW = inf{t > T,, X, = z} (1.107)

The stationary distribution of a continuous time Markov process is related to
the mean waiting time and mean return time as follows [Bre92, p. 345]

Theorem 4. E, [Tél)] < 400 for all x if and only if the Markov process has a unique
wnvariant distribution, which is then given by

, Vo e FCS 1.108
£, (7] (1.108)

HCT(.%’) =

Then we get the ergodicity of the continuous time Markov chain

Theorem 5. Ergodicity of a continuous time Markov chain

1
lim —
t—+oot

/0 f(Xs)ds =Ep_ [f], as. (1.109)

We now expose the stochastic neutronics aspects of the problem. We will apply
the Markov chain theory to our problem.
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1.6 Stochastic neutronics

In this section, we present the neutron phenomena in order to establish our direct
problem, in the context of neutron counting.

In most applications, only the average neutron population is taken into account.
However, for the study of neutron time correlations, it is necessary to take into
account the phenomenon of neutron fluctuations (cf. [PE0S]).

Historically, the Feynman moments have been considered [FHS56; FI67]. In our
context, we will consider the first three simple moments of the neutron population
and the number of detections during a time interval.

In a first part, we will establish the elementary neutron processes. Then, in a
second part, we will explain how to obtain the stochastic equations for the number
of neutrons present in the system (in the absence of a source or in the presence of a
source), and for the joint process of the number of neutrons present in the system
in the presence of a source and the number of neutrons detected during [0, 7.

1.6.1 Basic of neutron physics
Point model approximation

The point model is a simple model in neutronics, which is useful in this work to
quickly calculate the simple moments and obtain the a posteriori distribution of the
system parameters knowing the measurements of a nuclear system (thanks to the
Bayes theorem).

Definition 1.6.1. The point model approzimation

The medium s infinite, homogeneous and isotropic. The detector is also infinite
and homogeneous. The neutrons are point particles moving at the same speed. In
addition, the life of the neutron is considered to end with capture (with or without
detection) or fission. Neutrons are produced by fission and by Poisson or compound
Poisson sources. This involves a branching process. It is important to consider the
correlation over time [HC85]. In neutronics, two detected neutrons are called cor-
related if they belong to the same fission chain, produced by induced or spontaneous
fission.

Remark 1.6.2. Delayed neutrons are a subject of interest [Bre16]. They are ne-
glected here because we focus on correlated neutrons detected during a time interval
much shorter than the average lifetime of delayed neutron precursors.

As the medium is infinite, there is no neutron leakage. However, leakage can be
taken into account as a capture or when a neutron does not induce fission.

Reaction rates

Now, we define the microscopic and macroscopic cross-section to define the reaction
rates.

The intuition of neutron microscopic cross-section is
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Figure 1.3: Microscopic cross-section intuition [Reu03]

This is the area of the circle with radius r + R where r is the radius of the
incident particle and R of the target. This defines the probability of interaction of
the neutron with the atomic nucleus under consideration.

Definition 1.6.3. Cross-section and reaction rates

Let N be the atomic density of the medium (that can be epzressed in nb/cm?) and
o (that can be epzressed in cm?) the effective microscopic cross-section of the con-
sidered reaction. The macroscopic cross-section

Y =No (1.110)

is equal to the probability of reaction per unit length traveled by the neutron at the
speed v and

A=0X (1.111)

is the number of reactions per unit time (s~!), i.e. the reaction rate.

The occurrence of nuclear reactions and source events are Poisson processes.
The reaction rate \ is the intensity of the considered Poisson process; it is also the
average number of events per time unit.

We will specify the rate of capture and fission reactions later.

We can now consider all elementary neutron processes such as fission, capture,
source, detection and introduce the concept of criticality.

Capture

In our system, a neutron ends its life by fission or capture. When a neutron is
captured, it may involve detection.

Neutron capture is when a neutron is killed in an absorption reaction. An ex-
ample is the radiative capture of a thermal neutron by a plutonium isotope.

n +2 Pu =2 Pu + y

We will see that capture reactions are also used for neutron detection.

The capture reaction is sterile; it has no descendant.
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Definition 1.6.4. The capture rate by unit of time is

Ac = capture rate per unit of time (1.112)

We can then define fission and its parameters.

Fission

Fission occurs when a neutron collides with a fissile isotope such as U or 239 Pu.
This fissile isotope is split into two fragments, with the production of new neutrons.
The reaction can be written as

n+44 X —5! FP1 452 FP2 + o neutrons + Energy

where 2°X refers to the element X with A* the nucleons number Z its proton

number; the fission reaction provides two fission products where 2{FP1 refers to the
element F'P1 with 4! nucleons and Z1 protons, and 22FP2 refers to the element
F P2 with 42 nucleons and Z2 protons.

In the case of 23U the energy released by a fission is 207 MeV. For fast neutrons,
the most likely emission energy is 0.75 MeV, their average energy is about 2 MeV.

We define the reaction rates as

Definition 1.6.5. Fission and total reaction rate, neutron decay constant «
The fission rate per unit time is

Ap := fission rate per unit of time (1.113)
The rate of reactions by unit of time is

AT = A+ Ao (1.114)

Definition 1.6.6. The probability distribution of the number of neutrons produced
by a fission is as follows,

fv = Probability that the induced fission emits v neutrons (1.115)

where v goes from 0 to the maximum number of neutrons emitted by the fission Vimaz,
and

Vmazx
vi=> vf, (1.116)
v=0
is the mean number of neutrons emitted by one fission event. When a fission occurs,
v neutrons are emitted on average. Moreover, we can consider the moments of
fission process

vivr—1
VQ::Z%JCV

v (1.117)

viv—1)(v—2
P S U 1

v

For the fission distribution, we can use the Terrel distribution [Ter57], a truncated
and discretized Gaussian distribution.
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Definition 1.6.7. Diven factor
The second and third order Diven factors of the fission probability distribution [Div+56],
[OYS00] are

21/2 67/3
D2 = ﬁ, D3 = ? (1118)
Finally, we can define
Definition 1.6.8. Neutron decay constant
The neutron decay constant is
Q= A7 — UAF (1.119)

« is the number of neutrons destructed per unit of time minus the number of
neutrons created per unit of time.

Source

The considered neutron sources are (&, n) and spontaneous fission.

An (o, n) source is a Poisson source, i.e. the times of the source events form a
Poisson process, and each source event produces one neutron. An example of (o, n)
source is the (Am,Be) Source. It is made by mixing radioisotopes of americium with
beryllium. Alpha particles emitted by americium interact with beryllium to produce
neutrons.

(o, n) reactions are as follows. An alpha reaction occurs with Am. And then the
beryllium stabilises by producing a neutron

soe+) Be — n 442 C

These reactions enabled Chadwick to demonstrate the existence of the neutron in
1933.

The other example is spontaneous fission sources: [BFG11] provides the following
observations. When we consider the really heavy nuclei, most of them are artificial,
it may happen the electrostatic forces between protons can be stronger than the
nuclear forces. In this case, the nucleus splits into two parts, called fission fragments,
and emits a certain amount of neutrons.

N X —hL FP1 422 FP2 + n neutrons

This phenomenon, called spontaneous fission, is another way of building neutron
sources. A spontaneous fission source event produces a random number of neutrons,
generally ranging from zero to eight neutrons. As an example, ?*?Cf emits an
average of 3.73 neutrons per source event. Neutron production by spontaneous
fission is a compound Poisson process.

The source processes are Poissonian. The system under consideration can be in
the presence of different types of sources: Poisson and compound Poisson sources.
Thus, the first emits one neutron per source event, the other several.
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Definition 1.6.9. The source can be composed of two types: a Poisson type source
of intensity Sy and a source of compound Poisson type of intensity Sp. Then S can
be defined as the total intensity of the sources, taking into account the Poisson and
the compound Poisson type sources. More precisely,

S« :=intensity of the Poisson type source
Sr :=wntensity of the compound Poisson type source (1.120)

S :=total intensity of the sources

Therefore, we can conclude
S=5«+SF (1.121)

The time of emission of the sources is distributed by a Poisson process of intensity
S. We also have

S := mean number of neutrons generated by the sources by unit of time (1.122)

The unit of this quantity is in the number of neutrons emitted per unit time (n.ms=*).
The probability distribution of the number of neutrons emitted by a spontaneous
source event is given by

fu.s := Probability that one spontaneous fission emils v neutrons (1.123)

where v goes from 0 to the mazximum number of neutrons emitted by the source
Vmaz,s- Lhe mean number of neutrons emitted by a spontaneous source event of the
compound Poisson type source is

Vmazx,S

vsi= Y vfys. (1.124)
v=0
Then, we have, B
S = Sy + UsSk (1.125)

As previously, we can define

Vmazx,S V(]/ . 1)
V2g = Z Tfu,s

S (1.126)
-— v(r=1) -2

V3g = Z ( é( )fy,S
v=0

Therefore, the probability of occurrence of a source event during the interval
[t,t+dt] is given by Sdt. As before, we obtain the formulas for the second and third
order Diven factors of the source: Dsg, Dsg.

More precisely, a source event occurs with probability Sdt during the time in-
terval dt. Given there is a source event, the probability that one neutron is emitted
by the («,n) source is S—é"; and the probability that the spontaneous fission emits

neutrons is %F (which emits a random number of neutrons, with mean vg).

Example 1.6.10. An example of spontaneous fission source is **2C'f of intensity
2.34 102n.g7 .57 [al.98]. Other examples are **° Pu of intensity 1.02 103n.g~ .s71
and 83U 0.0136n.g7 .57
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t0 tmax
I 3I1 I2I3I4I2I3I
S ——

T

Figure 1.4: Measurements of the number of neutrons detected during a time gate T
between to and tmaz: Nl,[O,T] = 37 NQ,[O,T] = 17 NB,[O,T] = 2, ce

The fissile mass is proportional to the intensity of the spontaneous fission source.

In the system, the proportion of spontaneous fission will be qualified by

Definition 1.6.11. The spontaneous fission proportion is given by

UsSFE

= 1.12
* S« + VsSp (1.127)

Therefore, x € [0, 1].

Remark 1.6.12. Note that this parameter only exists when the system is in the
presence of the source. It makes sense when there is at least one source of type
(x,n) or spontaneous fission.

Detection

There are different types of neutron detectors. In this work, we consider capture
detectors. They are used to count the number of neutrons captured in a sensitive
material. In general, the material chosen is helium-3 [TL15]. The proton that
emerges from the reaction causes an electric current. These detectors can be used in
list mode (e.g. [Hum18]). During a time interval of duration T},qs, each detection
time is stored as a list in a file (see Fig. 1.4).

By processing this time list file, we can extract the number of counts during time
intervals of different durations (time gates T') and calculate the empirical moments
of the corresponding distributions. Detection efficiency can be defined as the average
number of detections per capture in the system (capture efficiency e¢).

Definition 1.6.13. We define the capture efficiency as

‘&“c := Probability that a captured neutron is detected‘ (1.128)

An estimator of this quantity is

. number of detections during [0, T
o= : (1.129)
number of captures during [0, T

We define the fission efficiency ep as

‘5F := number of detections per induced fission in the system‘ (1.130)
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An estimator of this quantity is

. number of detections during [0, T]
p o= , ! (1.131)
number of fissions during [0, T

Therefore, we can define

Proposition 1.6.14. The capture and fission efficiencies are linked by:
ACEC = AREFR (1.132)

where Ac (resp. Ap) is the capture rate (resp. fission rate) per unit of time, and ep
the fission efficiency.

Proof. The result can be deduced from the previous definitions. O

We will consider the observations during a time gate 7"

colt) = {507 it eln.T] (1.133)

0, else.

Remark 1.6.15. When ¢ = 0 this means that the detector is closed.
Moreover, ec(t') = ecH1(t — t')H1(T — t') where Hy is the Heaviside step function.

Criticality

To illustrate the qualitative behaviour of the neutron population in a fissile system,
we obtain, in the point model approximation, the average neutron number equation.
Let n; := E[X}] the average number of neutrons present in the fissile system at time
t. The equilibrium equation taking into account the creation and disappearance of
neutrons during a time interval [¢,t 4 dt] is

{nt—i-dt =1+ gdt + D)\thnt — )\Tdtnt, (1 134)

Ni=0 = No

Then the average number of neutrons is the solution of the differential equation

d _
Ent + any = S (1135)

We can define
Definition 1.6.16. Multiplication factor
UAp

kepr = B (1.136)

15 the mean number of children of a neutron.
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The mean lifetime of neutrons is

= — 1.1
0 jw (1.137)

Using these notations, the decay constant can also be written as

. 1—kfeff

; (1.138)

«

Definition 1.6.17. For a neutron population, reactivity can be defined from the
multiplication keys

keps — 1
pi= ’l;f— (1.139)
eff

Remark 1.6.18. In nuclear physics one typically expresses reactivity with per cent
mille (p.c.m.) which means the actual value has to be multiplied by 107°.

The behaviour of the fissile system is characterised by the coefficient kesyr, o, or p.

For an initial population of a system without external sources, Figure 1.5

_ —at _ Fegr=ly
ng = noe” ¥ = nge” ¢ (1.140)

+ Super-criticality

Ny

Criticality

no

Figure 1.5: Evolution of the average population of neutrons present in the system
in the absence of source n, = E[X] in function of the regime
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Then, kepr < 1, (o > 0, p < 0) the mean population is decreasing, the system
is sub-critical.

kerr =1, (¢ =0, p = 0) the mean population is constant, the system is criti-
cal (note that the Galton-Watson theory (see [Har02]) ensures that the population
almost surely goes to zero except in the trivial case Ac = Ap = 0).

kegr > 1, (o < 0, p > 0) the mean population is increasing, the system is
super-critical.

For an initial population of a system with an external source, Figure 1.6

We note the different regimes.
If a0, ng = (no— g)e’at + §
If a =0, ng=ng+ St

Super-criticality

Criticality

O |

t

Figure 1.6: Evolution of the mean number of neutrons present in the system when
an external source is present n; = E[X;] in function of the regime

The Figure 1.6 shows the evolution of the average population of neutrons present
in the system at t in the presence of a source

e in sub-critical regime, the mean population stabilizes to g,
e in critical regime, the mean population grows linearly,

e in super-critical regime, the mean population grows exponentially.

We will consider the joint process of the number of neutrons present in the system
at time ¢ and the number of neutrons detected during a time gate of duration ¢, for

a sub-critical system. We will study two phases: the transitory regime and the
stationary regime.
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The measurements are performed, during the stationary regime. This gives us
the number of neutrons detected during a time gate ¢

Nio,g := the number of neutrons detected during the time interval [0,t]  (1.141)

We will use the results of [PE0S8] 3.2 in order to establish the expression of the
generating function of the distribution of the number of neutrons in the presence of
a source.

In the context of the point model approximation, we consider the process of the
number of neutrons present in the system and the joint process of the number of
neutrons present in the system and the number of neutrons detected during a time
gate t: (Xt, N[O,t])-

The number of neutrons present in the system at time ¢ X; is a Markov process.
We can establish the Chapman-Kolmogorov equation for the number of neutrons
present in the system.

The number of neutrons detected in the system during a time gate ¢ Ny 4 is not
a Markov process. Indeed, this quantity needs to be associated to the number of
neutrons present in the system (X;, Ny ) to be Markov.

1.6.2 Stochastic neutronic equations

We want to establish the Chapman-Kolmogorov equations for the number of neu-
trons present in the system (in the absence of a source or in the presence of a
source), or for the joint process of the number of neutrons present in the system and
the number of neutrons detected during a time gate ¢ in the presence of a source.
The aim of the computations is to obtain the expression of the three first moments
of the joint process (number of neutrons present in the system at time ¢, number of
neutrons detected during the time interval [0,¢]) in the case of sub-critical reactor
with a stationary distribution with a source.

To obtain the expressions for the moments of the various quantities of interest, we
will consider the transition scheme of the considered Markov process. Then the
backward Chapman-Kolmogorov equations (ODE) give the expression for the gen-
erating function [Bel65; Pa58; Pa62; Reu03| for the considered cases, and then we
deduce the equations of the moments. The use of the forward Chapman-Kolmogorov
equations could also be considered, but it provides a PDE which is more difficult to
solve, so the use of the backward Chapman-Komogorov equations is recommended.

Another approach to the calculations considers the moment of the distribution
of the number of neutrons detected between 0 and 7" knowing the fact there was 0
neutrons at ¢t € [—o00,0]. This approach is not developed here, but is close to the
experimental process.

The full calculation of the analytical formula can be found in the appendix and
is presented in the next chapter.

Remark 1.6.19. When we consider the forward equation, the associated generating
function must take into account the number of neutrons present in the system at t
and the number of neutrons detected during [0,t]. Then the associated generating
function has two spatial variables.
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We define

Definition 1.6.20. The stochastic process representing the number of neutrons in
the system is as follows

X := number of neutrons present in the system at t (1.142)

We sum up the dynamic of the system in the absence of an external source by
the infinitesimal transition scheme for fission or capture

Transitions Probabilities
/ n+v—1 nAp fodt fission, v #£ 1
n ——n 1 —=nAp(3_,4 fv)dt — nAcdtnothing or fission
\ n—1 nAr fodt + nAcdt fission or capture

Figure 1.7: Table of infinitesimal transitions for the problem with fission or capture

The infinitesimal transition scheme for a compound Poisson source is

Transitions Probabilities
/ n+v Sfusdt source emits v neutrons, v # 0
n
\‘ n 1—Sdt nothing

Figure 1.8: Table of infinitesimal transitions for the problem with a source (Poisson
or compound Poisson), remember that we assume fo g =0

X; the number of neutrons present in the system at ¢ is time-continuous
Markov process In this paragraph, we will show X; is a time-continuous Markov
process using the characterisation 1.5.7.

Proposition 1.6.21. X; is a time-continuous Markov process. The skeleton of X;

is, forx € N
AP fy—zt1+Sfy—a,s ;
., ify>x
ayle) = 4 f(m) ’ (1.143)

and, conditionally to Xo = x, T, the waiting time between two transitions of the
skeleton has the distribution

T, ~ Exp(Q(x)), where Q(x) =5+ x)\p(z fo) +zAe (1.144)
v#1

Proof. Thanks to the characterisation 1.5.7, we know a time-continuous Markov
chain is characterised by its skeleton and the parameter of the exponential distribu-
tion of the jump process. The set of states of X; is defined by the values taken by X;.
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Thanks to the infinitesimal transition schemes for the problem with fission and cap-
ture (see Figure 1.7), and the problem with source (see Figure 1.8) the infinitesimal
transition scheme of the process X; is given by

TAF fy—as1dt + S fy—z sdt, ify>uax
pat(ylr) = § 1 = 2Ar(32, 4 fo)dt — Sdt — z)cdt, fy== (1.145)
:L')\Ffodt —+ m)\cdt, if Yy=x— 1

Then, thanks to the characterisation of the skeleton of a time continuous Markov
process (see eq. 1.96), we have

xAnyfqul‘i‘Sfyfz,S lf
R y>x
q(ylz) = {Wfﬁﬁ(ﬁf) el (1.146)
0w ify=ao-1

Conditionally to Xy = z, the waiting time between two transitions of the skeleton
is distributed by the exponential law of parameter Q(z) = S+ 2Ar(>_, fv) + 2o

T, ~ Exp(Q(x)) (1.147)
[

And so X; is a Markov chain time-continuous. We will show the same kind of
result for (X, Njg ).

The processes X; and (X;, Njg ) are used in order to prove their continuous-time
behavior. For the analytical computations, we will consider X and (Xr, N 7).

Definition 1.6.22. Let Ny, be the number of neutrons detected during the time
interval [0, t].

Let (X, Npg) be the stochastic process representing the number of neutrons present
in the system at t and the number of neutrons detected during the interval [0,¢].

(Xt, Njo,g), the joint number of neutrons present in the system at ¢ and
detected during a time gate t is time-continuous Markov process In this
paragraph we will show (X, Njgy) is a time-continuous Markov process using the
characterisation 1.5.7.

Proposition 1.6.23. (X;, Nj) is a time-continuous Markov process of skeleton,
for (z,n) € N?

x/\ny—z+1+Sfy—z,S

ify>x andm=n

Q(x) ’
zAgeg fy=z—1landm=n-+1
a(y,mlz,m) = { 9@ Iy (1.148)
zAc(l—ec) . _ 1 d _
—0m ify=x—1andm=n
0, else

and T(; ny the waiting time between two transition of the skeleton has the exponential
law

Tian) ~ Exp(Q(x)), where Q(z) =S + a:)\p(z ) +x)he (1.149)
v#1
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Proof. Thanks to the characterization 1.5.7, we know that a continuous Markov
chain in time is characterized by its skeleton and the parameter of the exponential
distribution of the jump process. The infinitesimal transition scheme of (X¢, Njo4)
is deduced from

TAF fy—at1 + S fy—zs, fy>zandm=n
TAcEC, ify=cx—landm=n+1

mle.n) = 1.150
pdt(y | ) I’Ac(l_SC)a lfy:x_landm:n ( )
0, else
Then the skeleton of the process is
minyzé(lS;Sfyz,S7 lf y > T and m=n
zAcec ify=r—landm=n+1
_ ) Q@) 1.151
,m|z,n - '
Q(y ’ ) :c)\Ffo-ig()\xc)‘(l €C)’ if Y=z — land m=n ( )
0, else

The waiting time between two transitions of the skeleton is distributed by the ex-
ponential law of parameter Q(z) = S +zAr(}, 4 fo) +2Ac

Tam) ~ Exp(Q(x)) (1.152)

]

As we consider continuous-time Markov processes, we can settle the Kolmogorov
equations that govern the evolution in time of the distributions we will consider,
they also characterize these equations. More explicitly, we consider

e 7,(t): The distribution of the number of neutrons present in the system at
time 7' given the fact there was 1 neutron at time ¢ in the absence of a source

e [I,(t): The distribution of the number of neutrons present in the system at T’
given the fact there was 0 neutrons at time ¢ in the presence of a source in the
transitional regime

o [, ~: The distribution of the number of neutrons present in the system at 7'
given the presence of a source at t during the stationary regime

e p,(t): The distribution of the number of neutrons detected during [t, T given
the fact there was 1 neutron at time ¢ in the absence of a source

e P,(t): The distribution of the number of neutrons detected during [¢t, T] given
the fact there was 0 neutrons at time ¢ in the presence of a source in the
transitional regime

e (Qn(t): The distribution of the number of neutrons detected during [t, 7] in
the presence of a source in the stationary regime
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Number of neutrons present in the system

Population induced by one initial neutron We are now dealing with the
distribution of the number of neutrons present in the system at 7T given the fact
there was 1 neutron at time ¢ in the absence of a source ,(t).

By taking a backward point of view (considering scheme 1.7), we take into ac-
count the neutrons that provide the output of the system in the absence of an
external source. First we focus on the number of neutrons present in the system,
then we will focus on the number of neutrons detected in the system.

Definition 1.6.24. Probabilities of presence in the absence of a source
The probability of detecting n neutrons at time T knowing the fact there were v
neutrons at time t in the absence of a source is

Tnu(t) := P(n neutrons present at T|v neutrons present in the system at t)
(1.153)

We will focus here more on

mn(t) = mn1(t) = P(n neutrons present at T'|1 neutron present in the system at t)
(1.154)

Remark 1.6.25. During sub-critical regime, in the absence of a source, the system
turns off. It means the number of neutrons present in the system decreases.

So during a time dt, we observe what happens to neutrons between ¢ — dt and ¢

e nothing may happen

e there may be a capture (event with probability Acdt which decreases the num-
ber of neutrons present by 1)

e there may be a fission (event with probability Ardt which changes the number
of neutrons according to the fission distribution)

then we can deduce

Tt — dt) = (1= Ap()  fi)dt — Aodt)ma(t) + (Ap fodt + Acdt)ma o)
i#l
+ )\ngdtﬁng(t)
+ )\ngdtﬁng(t)
+ Ap fndtmnm(t) + o(dt)

(1.155)

It is difficult to obtain the solutions of these equations directly. A simple way
to overcome this difficulty is to use the generating function method. We define the
generating function associated to m,(t), n € N.
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Definition 1.6.26. We will also obtain the generating function of the number of
neutrons present in the system in the absence of source

(@, t) = ma(t)a” (1.156)
Moreover, we define

Gro(T,t) = T (t)a" (1.157)

Now, we can establish the property

Proposition 1.6.27. The generating function gr; can be expressed as

Gri = Gh (1.158)

Proof. We show g i(t) = ¢g%(t). By definition,

mji(t) = > Ty () () -+ - 75,(2) (1.159)

jl,"' ,ji such that j1++‘72:‘7
ThuS, mlﬂtiplying by 2" and addlng over n € N* gives
eilt) = 650 (L.160)
0

We multiply by ™, sum on n, and use the equation for the generating property

Gri = G (1.161)

Then the generating function equation is

o :
~Sr@ ) = ~(r ; fi+ A0)gn(w,t) + (\nfo + Ac)ga(w,1) + Ar Z figr(@,1), ge(2,T) =1

(1.162)

Definition 1.6.28. We introduce the mean of the distribution m,(t), the distribution
of the number of neutrons present in the system in the absence of a source.

Ur(t) := [%] = nm(t) (1.163)

the mean number of the neutrons present in the system at time T knowing there
was 1 in the system at t in the absence of a source. In the same manner, we can
introduce the factorial moments of order 2 and 3 of this distribution

1 _ng,r_ B > n(n—1)
wel)i=5 |G | - Z —5 () o
- Se=l = 1.164
1|Pg, > — -2
nelt) o= 2| 20| yonln VA
L dr=1 n=3
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More generally, we can consider

Vi (£) = % [%kjgl _ i nn—1)- 'I‘f(” —kt D OVkeN  (1.165)

We obtained the Chapman-Kolmogorov equation for the distribution of the num-
ber of neutrons present in the system at T knowing the fact there was 1 neutron in
the system at time ¢ in the absence of a source. Now we can compute the equations
for the moments v; »(t),i € [1,3].

a agw agﬂ' 977 z—l

Then evaluating in x = 1, we obtain

A _ N
~2E — —(r Z fi + A + A Z ifiVn
1#1 1=2 (1167)

= —AclUx + AF Z(l — 1) fiUx

i

That becomes

dVx
d_’/t = e, (T = 1 (1.168)

Differentiating a second time the differential equation verified by g., we obtain

9 Pgx P gx P gx
~ g (@) )\F#Zlfﬂr)\c o I (a, t>+AF;zﬂ< 3 (2, 8)gr (2, 1)
9= 2 -2
-1 t e t
= D 2, 1) 65w, )
(1.169)
However by definition
1 aﬂqw
Von = 5 [ 81’2 ] . (1170)
And so we can deduce
d
— gl = —(Ar Z fi A van + Ap(Dvan + 1a02)
7l (1.171)
= (/\F Z(l — l)fZ — )\C)Vz,ﬂ- + Vz)\Fﬁ?r
i£1
Which becomes
d
%VQJ = Vg — 1/2)\}:‘572” V277r(T> =0 (1172)
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Starting again from the differentiate equation on g, differentiated 3 times with
respect to x

88397r 8397T z 8297T agﬂ i—
T T Or 2 fe “FZ’ﬁ( g e O
00r\3 ;3
(=)~ 2)(F5) g% )
(1.173)

Evaluating in x = 1, we obtain

d

—— s = (Ar > (i = 1) fi = Ao)vsx + Ap(20a0 T + v373) (1.174)

1#£1

What becomes

d

% = O./l/gﬂT — )\F(QVQVQ,WDW + Vgl;;;), 1/377F(T) = O (1175)

V3

,TT

These equations will be solved in the next chapter, the whole computations are
in the appendix.

Population induced by an external source Then we can consider the distri-
bution of the number of neutrons present in the system at 7' given the fact there
was 0 neutron at time ¢ in the presence of a source in the transitional regime I7,(t).

The probability that n neutrons are in the system at final time 7" with v neutrons
at time ¢, in the presence of a source is noted I, ,(t) We consider the events

e A, ; = {there is a source, there is v neutrons in the system at t,
we detect j neutrons between ¢ and 7'},

e 3, = {there is no source, there is v neutrons in the system at ¢,
we detect j neutrons between ¢ and T'}.

We have
Aon—jNByj, j=0,---,nis a partition of A,, (1.176)
and Ay ,—; and B, ; are independent.

Then, I1,,,(t) can be decomposed as
t)=> mu(t) L, (1) (1.177)
=0

We consider a compound Poisson neutron source of intensity S = Sr (S« = 0).
The probability of one source event during dt is Sdt. Each source event produces v
neutrons with the probability f, s.
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Thanks to the scheme 1.8, we know the possible source events during the time
interval [t — dt,t] are : no emission with probability 1 — Sdt, or one source emission
producing v =1, 2, 3,--- neutrons with probability Sdtf, s.

Vmaz S
IT,(t — dt) = (1 — Sdt)IT,(t) + Sdt Y fusI.(t) + o(dt) (1.178)

v=0

Considering a (o, n) source and a compound Poisson source would have meant
adding a Sxdtll, 1(t) term in our calculations.

Then dividing by dt and making it tend to 0, we obtain the Kolmogorov backward
equation for the source problem.

d Vmaz S

— 1T (t) :5*( ; fy,snn,,,(t)—ﬂn(t)), I1,(T) = 0,0 (1.179)

Definition 1.6.29. The generating function of the number of neutrons present in
the system with source is

Gz, t) = i I, (t)z" (1.180)

By 1.177 and 1.179 we obtain

oG et
L t) = S{(1= 37 fusgi(= )G (1) (1181)

v=0

where gr(z,t) = > 2 m(t)z". Knowing the initial condition thHTl Gz, t) =1,
—

we can integrate the previous backward equation in order to find the Sevast’yanov

formula for the number of neutrons present in the system in presence of a source

T VYmaz,S
G (2 t) = exp(S / (Y fosgi(zt') —1)dt) (1.182)
t v=0
By doing a change of variable s =T — ¢/, we obtain
T—t VYmax,S
Gr(z,t) = e:xp(S/ ( Z fo.sgu(z, T —s) —1)ds). (1.183)
0 v=0

Then when t — —o0

Vmazx,S

Grpnle) = eanls [ (3 fusghleT=0)-vit)  (Lis)

In the following, S = S will refers to the intensity of the source and Sy = 0.
Definition 1.6.30. When the stationary regime is established, we note

11, o := the probability that v neutrons are present in the system in the presence of a source.
(1.185)
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Definition 1.6.31. We introduce the mean of the distribution (I1,,(t))n.

- f: nIT,(t) (1.186)

the mean number of neutrons present in the system at T' knowing there was 0 in the
system at t in presence of a source. When it comes to the use of the mean number of
neutrons present in the system in presence of a source during the stationary regime
we will use

= il . (1.187)
n=0

In the same manner, we can introduce the factorial moments of order 2 and 3 of
this distribution

ileep] Snm-1)
V2,H(t) T 2| On2 X - 2_; Tﬂn(t)
- St 1.188
1|0°Gpy n(n—1)(n—2) ( )
Vs,ﬂ(t) 5| o - Z 6 I 1)
L dx=1 n=3

The same definitions works for (I, s )ven.

We take back the Chapman-Kolmogorov equation

oG

5 = —SGH+S;fV,SGHg;; (1.189)

By differentiating with respect to x we obtain

PGy aGH GH , 0g=
— il = 51 Snys +Gﬂua ) (1.190)

Finally, by evaluating in = 1, we have

dv
—% — 7487, (t), pp(T) =0 (1.191)

The equation 1.190 differentiated with respect to x is

6826*]] 82GH 82GH P aGH OGr 1 azgw v—1 0Gr o o
_& Or2 - SZfVS Int o V%gﬂ’ +GH (@ 5 9= +( _1)(%) Ir )
(1.192)
Because
2
0 8GH 5 0g¥ B 32GH 5 8GH 897r o 1 (3297r 0gr V9
%( ox gﬁ+GH8$>_ Ox2 G 2 ox &E G 8$2+(V_1> Or I
(1.193)

57



1.6. STOCHASTIC NEUTRONICS CHAPTER 1. INTRODUCTION

Where

dVQ,H
dt

= DsS(ﬂHDW + VQ’ﬂ—) + VQSSD?” V2,H(T> =0 (1.194)

Differentiating the equation 1.190 three times with respect to x, we obtain

209Gy 53(;]7 Snyg(aSGH v 5, 0G0

ot oa® o 97 TV o ap I
(2 (2
+an/<a—gg,g%‘l +3(v - 1)%%25;97’;‘2+ (v — 1)(1/—2)(%‘;;)3 y=3
——Sa;ierSZV:fys 8;5?{79;
T S (5
+Gpv aj;g;—1+3 ( —1)%255% ;‘2+u(u—1)(y—2)<%if>3 v=3

Dividing by 6 and evaluating in x = 1, we obtain

d

— VeIl = S(VQ,HDWﬂs + v(varls + D2128) + U3 p s + 2Unls nlas + Viiss), 1/37H(T) =0

(1.196)

The moments in the stationary regime are the limits of the one of P, () by taking
t — —o0

Ergodicity of X;, and some properties of the chain The expression

T VYmaz,S
Grp(x,t) = exp (5/ (D fusgila,t)) - 1)dt'>
t v=0

will enable us to conclude the ergodicity of the chain X;.
First, we recall that

Vmaz,S Vmaz,S

Z fl,,gg;(l',t,) —-1= Z fu,S(gZ(xvt/) - 1) (1197)

v=0 v=0

since (fy,s)v is a probability distribution.

By definition, we know
D ma(t) > nm(t) = e (1.198)
n#0 n#0
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So the quantity mo(t) satisfies the inequalities

1> mo(t) =1= Y mu(t) > 1= nma(t)

n#0 n#0
1) (1.199)
Z 1 — e—a(T—t)

and then converges to 1 when T"'—t — 4-00.
Moreover, we can add

0 S 1— Wg(t) S 1+ Z <Z) (_1)k+le—ak(T—t) — <Z) (_1)k+16—ak(T—t)
1
(1.200)

the last right member of the equation is the sum of integrable functions when
T —1— +oo.

Definition 1.6.32. Two functions f, g are said equivalent in the neighbourhood of
A when v — A, when
. @)

lim o =1 (1.201)

it will be denoted f(x) ~ g(x).

z—A

Then, in first approximation

ge(t) = a"ma(t) o~ mo(t) (1.202)

——00

Then, when T'— t — 400

01 g < 3 () cuprte (1.203)

Then G y(z,t) has a non-trivial limit when 7" —¢ — +oo0. This proves that the
process X, is ergodic.

Stationary regime

Then we can define the stationary regime of the neutronic system

Definition 1.6.33. For k.yr < 1, the stationary regime is when the ergodicity for
X is achieved, which is the case thanks to the previous subsubsection.
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Number of neutrons detected

Detections induced by one initial neutron We are now working on the dis-
tribution of the number of neutrons detected between ¢ and T given the fact there
was 1 neutron at time ¢ in the absence of a source py(t).

Definition 1.6.34. Probabilities of detection in the absence of a source
The probability of detecting n neutrons between t and T knowing the fact there were
v neutrons at time t in the absence of a source is

Pnu(t) := P(n neutrons detected between t and T|v neutrons present in the system at t)
(1.204)

We will focus here more on

pn1(t) = P(n neutrons detected between t and T|1 neutron present in the system at t)
(1.205)

The neutrons present in the system are counted when the detector is open, i.e.
during [¢, 7.

During [t — dt, t]
e nothing may happen

e there may be a capture with detection (event with probability Acecdt which
decreases the number of neutrons present by 1 and increases the number of
neutrons detected by 1)

e there may be a capture without detection (event with probability A\c(1—ec)dt
which decreases the number of neutrons present by 1)

e there may be a fission (event with probability Apdt which changes the number
of neutrons according to the fission distribution

We establish the backward Chapman-Kolmogorov equation for the counting
probability p,(t), by taking into account the probabilities py, . ().

palt —dt) = (1 — (\r Z fi) = Ae) dt) Pu(t) + Apdt Y fupnu(t)

+ Acdt(e’-j(jénJ + (1 — 80)5,1,0) + O(dt),

pn(T) = 571,0
(1.206)
which becomes
dpy, iy
Czl)t ( )+)\Tpn )\Fnypnu +)\C(505n1+(1_50)5 )a pn(T) = 0On0

(1.207)

As previously, we use the generating function
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Definition 1.6.35. The generating function associated to the distribution (pn(t))nen
s given by:

gz, t) =Y a"pa(t) (1.208)

n=0
In the same manner, we define the associated generating function to the probability
distribution (pn,u(1))mv)en2

g, t) ==Y a"puu(t) (1.209)

Property 1.6.36. In order to find 1.207 from the generating equation function, we

will use
0 =220 yn,v) e N x N (1.210)
PraAt) =200 | Bam _0’ v ‘
and
11]d"
pn,l(t) = ﬁ [%] _O,Vn eN (1211)

The equation in x = 0, enables us to obtain the probabilities from the generating
function.

We remark

Pau(t) = > Pra(t) -~ P, (1) (1.212)

k1, .,k such that k1+...+k,=n
then
g =9’ (1.213)

Then, from the generating function expression as well as the equation 1.207, we
can deduce the following result

Vmazx

—%(m,t) + Arg(z,t) = Ap ; fog” (z,t) + Ae(ecx + (1 — ec)), g(x,T) =1

(1.214)

Remark 1.6.37. One of the first interests of using the generating function is to
transform the term p,,(t) of 1.207 by g* in 1.214. This last equation is simplified
from this fact.

By a power series expansion of g in 1, we find the formula

g(z) =) (v - 1)1“l [%1 (1.215)

By identifying the general terms of the power series, we derive the following defini-
tion.
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Definition 1.6.38. The combinatorial moment m, is the mean number of n-combination
of n detections between t and T when there is a neutron at t in the absence of a
source.
On the other hand, the evaluation in x = 1 enables us to obtain the moments of the
distribution concerned.
1({d"g
my(t) == oy [(%n] x 1,Vn eN (1.216)

We will also compute the combinatorial moments of n detections for v neutrons
present at initial time.

1|d"¢" .
M (t) 1= o [ S ] ,V(n,v) € Nx N (1.217)
=1

Then we can compute the equations for the moments m,(t),n € [1, 3].

For the moment of order 1, by differentiating the equation 1.214 with respect to
x then evaluating in x = 1, we obtain

[e.9]

d
—%(t) + Arma(t) = Ap Y vfoma(t) + Acee, ma(T) =0 (1.218)
v=0
which becomes
dm1 _
_W(t) —+ ()\T — )\Fl/)ml(t) = Acec (1.219)
but, as a = A\y — Apv, we can deduce that
1 dmy AFEFR
= t) = 1.220
~EL )+ ma(r) = 2 (1.220)
Moreover, we know the fact that
A _
« - AT — VAR
1 1
= ﬂﬁ/\)\_TF 1 (1.221)
1
=

_ A
because p =1 — e
The knowledge of the differential equations enables to obtain the simple moments
in the absence of a source, we need to compute them.

Computing the simple moment of order 1 in the absence of a source, we will
solve the differential equation in the next chapter.
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Differentiating two times the equation 1.214 with respect to x then evaluating
in x = 1, we obtain

1 dms vy
e - < =0 1.223
7 + ma p17m1’ ma(T) ( )

Deriving three times the equation 1.214 with respect to z then evaluating in
r = 1, we are in presence of

1d 1
—a% +mgz = _—plj(V?,m? + 2V2m1m2)7 m3(T) =0 (1'224)

Remark 1.6.39. Similar notations for different types of moments will be used later.
Their expressions will follow the same type of reasoning.

Detections induced by an external source Now we can consider the distribu-
tion of the number of neutrons detected between t and T' given the fact there was 0
neutrons at time ¢ in the presence of a source in the transitional regime P,(t). We
still consider S = SF the intensity of the source and Sy = 0.

Definition 1.6.40. P, (t) is the probability of detecting n neutrons between t and T
knowing the fact there were O neutrons at time t in presence of a source.

Similarly, P, . (t) is the probability of detection of n neutrons between t and T know-
ing the fact there were v neutrons at time t in presence of a source.

During the infinitesimal time interval [t — dt, t] there can be no source event with
probability (1 — Sdt) or one source event with probability Sdt. A source event gives
birth to v neutrons with probability f, s.

Using the backward formalism of the Chapman-Kolmogorov equations applied
to P,(t) we can deduce

Vmax,S

Pyt —dt) = Po(t)(1 — Sdt) + Sdt Y fo.sPau(t) + o(dt) (1.225)

v=0

Dividing by dt and making it tend towards 0, we obtain

dPn Vmazx,S
—— () = =SPu(t) + 5 > fosPas(t), Pu(T) = 0ng (1.226)
v=0

We consider the events

e A, ; = {there is a source, there are v neutrons in the system at ¢,
we detect j neutrons between ¢ and 7'},

e B, ; = {there is no source, there are v neutrons in the system at ¢,
we detect j neutrons between ¢ and T'}.
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We have
Aojn—j N Byj, j=0,---,nis a partition of A, (1.227)

and Ap,—; and B, ; are independent.

Then, we obtain

By (t) = ij,u(t)Pn—j(t) (1.228)

dPn n M
~Srw = ( 7 Puit) S Fusmrlt) - Pn<t>> (1.229)
=0 v=0
Using equation 1.229, we obtain the equation of associated generating function
G(z,1):

{_‘3—%,@ = SG(a (L fusg(@.1) — 1) (1.230)

Gz, T)=1

We deduce the Sevast’yanov formula, i.e. the generating function expression:

Vmazx,S

Gz, t) = exp(/t S(Y " fusg’(z,s) — 1)ds) (1.231)

Definition 1.6.41. The combinatorial moments of the counting distribution are
given by:
ING

g

1

= (1.232)

z=1

The generating function associated to the distribution induced by one initial
source event is:

9r =Y fusg” (1.233)
v=0

We already have an expression of the evaluation in z = 1 of the following ex-
pression

oG ™=t Ogr
— = —(x, T — 1.234
o /0 S o (x, s)dsG (1.234)

Then evaluating in x = 1

My (t) = 1S / (T — 5)ds (1.235)

Then, we can look forward to

T—¢ T—t
% - /0 588255 (x,T — s)dsG + / %(SE, T - 5)d5§ (1.236)

0 x Ox
by definition of G.
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But

Ymaz,S

6?2g x,t) g
F:L’Z &U Z fVS zt)

v=0

iy & A
= Z VfV,S (a—xggyl(x,t) + (V - 1) (8_53) gVQ(:U?t))
v=0
azg Ymaz,S - ag 2 Ymaz,S s
= @ Z vfsg (ZL’,t) + (‘9—x Z V(V - 1>fu,Sg (l‘,t)

v=0 v=0
(1.237)

This enables us to obtain

2
aQG T—t 829 Ymazx,S o ag Vmaz,S s

X

v=0 v=0
T—t ag Vmax,S 2
+ </0 S@m( ; vivsg' (x,T s))ds) G
(1.238)
evaluating in x = 1, we obtain
T—t
My(t) = / S(ma(T — 8)vs +mi (T — s)vas)ds
0
2
1.239
( DT_t Svsma (T — s)ds) ( )
+ 2
83G 6 =t 82gp 6gF 8G
= & oG
gr
/ s)dsG—l—S/O S 522 (x,T — s)ds o (1.240)

2
( 3gp x, T — s)ds) g—i

because %G T_t S%(Jv, T — 5)dsG.

To conclude, we obtain

@ - /T_t Sa3.gF
ord  J, or3

Tt g2
gr
T —
+ (3/0 T2 (x, s)ds +

(x,T — s)dsG
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Evaluating the previous expression in x = 1 and using the results of the annexes
A.2.5, we obtain

it = |  S(7sma(T — 5) + 2vasm (T — 8)ma(T — s) + vasm(T — s))ds
+ (/0 ) S(wsma(T — 8) + vogmi (T — s))ds + é (

T—t

Svgmq (T — s)ds) )Ml(t)

0

(1.242)

Neutron detection given the presence of a source in the stationary regime
Finally, we take into account the distribution of the neutron detected during [¢, T]
given the fact of the presence of a source in the stationary regime @, (t).

By doing a power series expansion in 1, we get the formula

G(z) =) (v - 1)?% [%l (1.243)
Which gives
G(z) =) (x—1)’M, (1.244)

where M, refers to the mean number of combinations of p detected neutrons (cor-
related and uncorrelated).

Definition 1.6.42. By identification of the general terms of the power series, we

can deduce that
1|0PG

Definition 1.6.43. We define

Qn(t) := P(n neutrons detected on [t, T]|(I1,00)ven)

the probability of counting n neutrons during the interval [t,T] knowing the number
of neutrons has stationary distribution (11, )ven.

By definition, we know that

Qn(t) = 11y 00 P (t)pj0 (1) (1.246)
§=0 v=0
This enables us to get
Qult) = 3 Pass(t) Y Huoepiat) (1.247)
7=0 v=0

As previously, it is appropriate for us to introduce a new object
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Definition 1.6.44. We define
=D Mooopjn(t)
v=0

We note G the generating function associated to Q,(t). Henceforth, we can write

=D 4"y Passlt)py (1)

=33 wipaep) (1.248)

n=0 j=0

(S (et

as we are in the presence of a Cauchy product.

As a result, we dispose of an equation on the generating function G of the distribution
of the count number on the interval [t,T]| knowing the number of neutrons has a
stationary distribution (17, ).

G(z,t) = Gz, )Gy (9(z, 1)) (1.249)

Remark 1.6.45. The generating function associated to pﬂ

4 (t) is computed by the
following way

t)=> IHgle,t)’ =G _(9(z,1)) (1.250)

Thus, the generating function associated to (@, (t))nen enables us to obtain the
associated distribution and its moments.

Derivating one time

G aG iy dg o
%(x,t) B (x,t) Vzoﬂyoog z,t)" + G(z,1) yzouﬂyooax(x,t)g(x,t)
oG oG dg -
[a—m] (t) = s (t) + [%] ()Y vIT,
=1 r=1 r=1 v=0
(1.251)
And so,
E[Nin] = Mu(t) = Mi(t) + vy ma(t) (1.252)
Then we compute
FG G 0G 09 9G 11 Pg0G. 09,0 Cl1
o2 012 2 Cll(9:1) + 28_(9_ (‘995 (W ox (%) Ox? (9:%))
e 0G 09 0 1 | 099G 99,59 Gl 00
02 2 Cl19:1) +2%% or +a O 0.:1: (%) Ox? (9:%)
(1.253)
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This enables us to deduce

Mo(t) = My(t) + vpp  Mi(t)ma(t) + v ma(t) + vy g7 omi(t) (1.254)

The expression of the simple moments as a function of the (M;);=1 2 is

E[N{ ) = 2Mo(t) + M (t) (1.255)

The equation 1.249 enables us to make this computation from this knowledge on
(HZI,OO>V€N7 g and G.

960G, | #Gon.
or3  ord e 9, ox? 0x O

e e ‘G
2<82G6‘g H,oo+8G<829 Mo | <0g> H,oo>>

or2 0r  Ox Or \ 02 Or Or Ox?
RCEL LT N GV Y ST )
Or O0x? O or® Ox Or 0x?  Ox?

LG (g 262GH’°°+G 2@@82GH’00+ a9 333GH,OO
Oox \ Or ox? Or Ox? Ox? ox ox3
Which we can simplify by

>rg oG
P wGU,o@(g,ﬂ

G (PG 0006 s 0G (Fg0Cns , (09 PG,
or? or O or \ 0r?2 Ox or Ox? (1.257)

Lo P9 | 3@@8201100 (2 ‘Par
oxr3 Ox Ox Or?  Ox? Ox ox3

Evaluating the previous expression in z = 1, we obtain

Ms = M3+ (M2m1+M1m2)—|—V Mlm%—H? ms—+2v. mimeo-+v. m:{’
H,oo 2,H,oo H,oo Z,H,oo 3,H,oo

(1.258)
That is better to write

Ms = M; + ﬂHpO(Mle + Mims + m3) + VZ,H,oo(Mlm% + 2m1m2) + VS,H,oom?
(1.259)

The expression of the simple moments as a function of the (M;)i=123 is

E[Nj gy] = 6(Ms(t) + Ma(t)) + M(t) (1.260)

The basics of these computations can be used in order to measure the margin
to criticality in reactor cores, in accelerator driven system, in nuclear safeguards

[PE08; Nag21].
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In a more elaborated model [Sax17; SWE16; JEMSE1S] et al. considered the
time and space evolution of neutron using the backward master equations in order
to compute the distributions of the number of neutrons detected in the presence of
a source. In [MP22], the authors use a combination of low-order count probabilities
and low-order statistical moments. This combination is optimal. They are useful in
order to reconstruct distributions valid for all count number.

A classic approach is to consider the binomial cumulants and the Feynman mo-
ments.

1.6.3 Feynman moments

We will consider here the number of detections during [0, ¢].

During the Manhattan Project Feynman et al. [FHS44; FHS56] suggest the use
of what becomes the second order Feynman moments Y5(¢) in order to determine
the Diven factor of order 2. The key idea of this process is to consider the excess of
relative variance to the mean of Njg .

E[(Njo,y — E[Npg))?]

Yalt) = E[Njo,4]

—1 (1.261)

This quantity enables to characterize the system when there are fissile materials.
Neutrons are correlated when they belong to the same fission chain.

Since we want to identify the different parameters of the system, we can consider
the variance excess compared to a Poisson law.

Then this quantity is null when the neutrons are not correlated.

The Feynman function can be generalized by considering the number I,(t) of
combinations of p correlated neutrons.

Definition 1.6.46. We introduce the following function
Ka.@ (@) == logG(z,t) (1.262)
We define the binomial cumulants as

1| & .

Then Kq, ) () is the generating function of the factorial cumulants of the number
of neutrons detected during a time gate t.

In our context, we will consider I (t), I5(t) and I5(t).

Remark 1.6.47. The I,(t) are the binomial cumulants of the number of detections.
Since G(z,t) = G(x,t)G 7 (9(x,t)), we can deduce
K =logG = logG + logGy  (9(z,1)) (1.264)
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Then we consider

= logG 1.265
Kﬂ,oo = logGﬂyoo (1.265)
Then,
Definition 1.6.48. We define
p!Fp(t)
Y,(t) = 1.266

Remark 1.6.49. In practice, the Feynman factors of order greater than three are
not commonly used because their measurements are too noisy. When the efficiency
of the detector is high, the moment of order four can be considered.

The analysis of the triples was introduced by [F167].

The average detection number of correlated p-uples is calculated by integrating
the one-initial source event moment with the source strength.

The Feynman moments can also be written using the centered moments

p(t)
(1.267)
pa(t) o L ope(t)
=" T Y
where
u(t) :E[N[Ot}]
pa(t) == E[(Njg — E[Njo])’] (1.268)
pa(t) == E[(Njg — E[Njo])’]

are the centered moments of order 1, 2 and 3 of Njg,. We will use Y5(¢) in order to
refer to the Feynman moment of order 2, the Feynman moment of order 3 Y3(t) is
also called X of Furuhashi.

Within the point model approximation, the Feynman moments can be written in
closed form. In the point model approximation, in the case of a spontaneous fission
source, during the stationary regime and for a time gate of duration ¢ we have the
following analytical expressions for Y and Y3 (from [FHS44| and [FI67])

erDy UgDog 1—e
Bll) == (“XP VD, ) (1—7)
2
—at

e2.Ds ( 55D33> ( 3— de~ot 4 ze—zcvt)
N 1-
P vDs 2at
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Furuashi and Izumi extended the notion to the order 3 using the factorial cumulants
of the neutron counts distribution. We can define

D D
Yz,oo — ERpL2 (1 _ pr 25)
p

VDQ

2
erDo vsDas e2.Ds vsDsg
Y300 :=3 1-— — 1—
3, ( —p2> ( Xp oD, ) i Xp oD,

Remark 1.6.50. Furuashi et al. [FI67] developed Y3 taking into account the delayed
neutrons.

(1.270)

The Binomial moments M, can be calculated from the binomial cumulants I7,
by using the Panjer recurrence formula [Pan81; SJ81] applied to compound Poisson
distributions. Factorial moments can also be used as in [B685], that was corrected
by [PEP09].

1.6.4 Panjer formula
For I,(t)

Starting from the equation

aa—i(x,t)z{/t Saag—jds}c;( ) (1.271)

Using a Taylor formula in z = 1 of the generating function GG in order to obtain
the moments, we dispose of

a—i( (x — 1)"Mn> = /t S(a—i Z(m — 1)Pm} )dt Z(x —1)7M,

n=0 p=1 q=0

Z (z—1)"'M, = <ip(x—1)p_1[’p) i x—1)"M, = ip(x—l)p_lfpi(x—l)qM
n=1 p=1 q=0 p=1 q=0

;(nMn> (x—1)" :Z(ZpFMn p> (x — 1)

p_

(1.272)
By identification the general term of the power series, we conclude that
nM, = T,M, (1.273)
p=1

Using this formula we can express the Feynman moments in function of the M;.
My=1
M, =17
2My = I My + 21
3Msz = I5My + 2I5M, + 313

(1.274)
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Then we conclude

L, _M
Yo=2p =25 - My
Fl Ml (1.275)
V3 =6 = 6= — 6M, + 2M?
TN M 2+ 2

We can get use of more detailed models by using 3D Monte Carlo transport
codes like MCNP-6 or Tripoli-4.

1.7 Uncertainty quantification and inverse prob-
lems

Uncertainty quantification will be used in order to tackle the inverse problem. These
techniques are at the interface of probability, statistics and numerical analysis.
[Garl7; Sull5] are good sources of these developments.

Here, two sources of error can be considered: the noise measurements and the
model imperfection. These errors cause variations in the outputs, and in general
they are of the same order of magnitude. This can be explained by improvements
in measurement techniques and theoretical knowledge of physical phenomena; mea-
surement techniques are used to improve knowledge about the model and conversely
knowledge of the model enables for more accurate measurement tools. All of this is
explained in 1.3 part of [Tar05].

A direct problem is defined as follows

Definition 1.7.1. Given an input p € P of a model M : P — Y, we obtain y the
observations such that

y = M(p) (1.276)

In the context of this work the direct problem we consider is 3.6.

An inverse problem is the reciprocal of the direct problem [Sull5]

Definition 1.7.2. Given the observations y, we want to determine the input p* of
the model M such that

y = M(p*) (1.277)

According to Hadamard, a problem is said ill-posed when one of the following
statements occurs

e The solution does not exist
e The solution is not unique

e The solution depends discontinuously on the observations (An arbitrary small
perturbation of the observations can cause an arbitrary large perturbation of
the solution)
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In many physical applications, the inverse problem is ill-posed, especially in our
case.

We now assume the detector provided yos € V. Then the problem can be
reformulated as minimizing of the square norm

argmin||yops — 1\/[(p)H2 (1.278)

peP

In neutron noise measurements, the detector provides noisy observations yus €
Y. The number of neutrons detected during a time gate ¢ is Ny, the associated

vector of the model is
E[Njo,4]

M(p) = E[N[%) t]]
E[Njg.4]

we define the covariance matrix of the observations

Definition 1.7.3. The covariance matrixz of (N[’E)J])kzl,g is

E[N? - E[N]>  E[N% —E[N|E[N?] E[N%] — E[N]E[N?]
Cov(p) := | E[N*] —E[NE[N?] E[NY]-E[N?? E[N°] - E[N2E[N?]
E[NY] - E[N|E[N?] E[N°] — E[N?E[N?  E[N®] — E[N?]?
(1.279)

We made several measurements of Njg,, then the observations are the vector of
the empirical means

[N[Ot]]
Yobs = [ [Ot]] (1.280)

E[ND |

where, for n € N*,

Z 1[04 (1.281)

The Central Limit theorem claims that, for n realisations of Ny

Yove ~ N(M(p), - Cov(p) (1.282)

So, we can deduce
Yobs = M(p) + 1 (1.283)

where 7 ~ N(0, 1Cov(p)).

1.7.1 Tikhonov’s regularisation from linear to non-linear

When the problem is linear (p € R” and y € R®) it can be expressed as
Mp =y (1.284)
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where p is the unknown, the classical method in order to solve this kind of problem
is the least square [Tar05]
argmin|ly — Mpl||? (1.285)
P

where || - || refers to the Euclidian norm. [Tar05] highlights the fact that the calcu-
lations of this method are simple despite a lack of robustness (the strong sensitivity
to a few large errors in the set of data). Some pathological cases occur when the
linear operator M is not invertible or even ill-conditionned. Then there are plenty
of solutions.

As explained in [Garl7; Sullb], we have

Theorem 1.7.4. Set of solutions
We define the set of solution S of the problem 1.285, then

p € S if, and only if, M (y — Mp) =0

We need to define the pseudoinverse of a matrix.

Definition 1.7.5. Let M be a matriz of dimension s X r of rank ri. The pseudoin-
verse can be defined by different manners

M* = lim(M'M + 61)"'M7,
6—0

(1.286)
MT =VvVyXtul,

where UXVT is the singular value decomposition of M, so V and U are unitary

matrices, and X is a rectangular diagonal matriz containing the singular values of

M in the diagonal (0;)i=1,; X is the rectangular diagonal matriz with the values

(aii);il on the diagonal.

Then S can be characterized by

Proposition 1.7.6. Let M be a matriz of dimension s X r of rank ri. The set of
solution of 1.285 is of the form

S={Mty+ Z aivi,a; ERi=rp+1,--- r} (1.287)

1=ri+1

where M7 is the pseudoinverse of M and v; is the i-th column of V, with UXVT the
SVD decomposition of M. This means that the set of solutions to the least-square
problem is of the form My plus an arbitrary vector that is in the kernel of M.

The vector M1y can be written in explicit form as a function of the SVD of M
by

Tk
Mty =S Yy, (1.288)
i—1
where y; are the coefficients of the decomposition of y in the orthonormal basis u;
(the columns of U)

Y=y, yi=y u (1.289)

=1

74



CHAPTER 1. INTRODUCTION 1.7. U.Q. AND INVERSE PROBLEMS

and then the residual error is

ly —=Mp|*= > v} (1.290)

i=rE+1

Among all the solution to 1.285, we can choose one particular solution which is
the one with minimal norm

Definition 1.7.7.
pLs := argmin||p|| (1.291)
PES

This solution is given by
prs = M'y (1.292)

When the vector y comes from p*, y = Mp*, then

pLs = M*Mp* (1.293)

Using the SVD of M = UXV?T, by decomposing the p* in the basis of the
columns of V

p' = ip?Vm p; =Vi'-p (1.294)
i=1
then we have .
PLs = Y _pVi (1.295)
i=1
then the estimation error is
Iprs — p||* = Z (P})*. (1.296)
i=r+1

Hence, we cannot rebuild the components that are in the kernel of M (which is
coherent with the fact that they disappear in the observations). But we can build
all the other components.

Now, we search a solution of the problem 1.285, but we observe

Yobs =Y + 1 (1.297)

where 7) is a vector of noise. As an example, we will consider 1 as a vector of i.i.d.
components, Gaussian centred and of variance oy,es.

If we apply the formula 1.292, we find
Pls = My, (1.208)

we would like to find prs = M*y. We would like the error ||p] s —prs||? to be small
when o2,., is small. This is not always true. The error is centred and of variance

= 0—7%165
BlllpYs - pusll’) = > 7% (1299
=1 ¢
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This shows that when M has small singular values then the quadratic error of
estimation can be colossal.

To show this, we compute

Tk

3 —(“;’_"’)] (1.300)

=1

E[llp7s — prs|l’] = E[|[M y[*] = E

But Un is a centered Gaussian vector with covariance matrix o2, ,UUT = o021

The random variables (u;-n); are centered Gaussian with variance o2, which gives

the result.

When the data comes from p*, y = Mp*, then the error term contains a biais
term and a variance term

Ell[p7s — p*II’] = lIpLs — p*II> + E[|Ip]s — pLs||’] (1.301)
with .
Ips —p*II7 = > (})° (1.302)
i:Tk-‘y-l
and
2 — O-?nes
E[|p7s — prsll’] = Zl o (1.303)

This is not satisfactory.

In order to give priority to coherent solutions of the problem 1.285, we introduce
a regularisation term in the minimisation of the norm: this is the regularisation of
Tikhonov
argmin|ly — Mpl||* + | Rp|® (1.304)
P
the operator R is often chosen as ald. This improves the conditioning of the system
and focuses on the solution with low norms. This operator represents the prior
knowledge on what the solution should look like, e.g. the expert instructions.

Then the solution minimizing the norm is
p=M"'M+R'R)"'M"y (1.305)

Remark 1.7.8. When the regularization matriz is vanishing (i.e. R — 0) we find
the Moore-Penrose pseudoinverse [Sull5] bottom of page 95.

Now we provide some examples with linear problem.

Example: L? regularisation, the ridge regression. We set P = R” and Y = R,
M(p) = Mp where M is a s x r the matrix of rank 7. Let o > 0. We are looking
for

argmin(|ly — Mpl[* + o||p||*) (1.306)

p

Since M”M + al is positive definite, there is a unique solution to the minimiza-
tion problem 1.306 denoted by

Po = (MM + ol)"'M"y (1.307)
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Using the singular value decomposition of M = UXVT where u; is the i-th column
of U, v; is the i-th column of V and o;, called singular values, the eigenvalues of
MM, then we obtain

Tk

A 0 T
=S = iy =V 1.308
Pa=D  —5 —yiViyi =iy (1.308)

i=1 !

When y = Mp* with p* = . piv;,p; = v! p*, then y; = o;p}. Then
Tk

~ * aQ *
Po— P = Z p; Vi (1.309)

2
o; + o
— 0i t

the correct solution is obtained when o = 0.
When y = Mp* + n, with n ~ N(0,02,.,1), then, we find

Tk

~

Q *
bo= 2 ryaPivit

=1 7

Tk
> gV M= vin ( )

As the n; are i.i.d with law N(0, 02,.,)

E[[|[pa — p[I] = E[|[Pa — E[Da]lI’] + |[E[pa] — p*|I*
S o} 2 S o7 12 (1.311)
2 L ap

i=1

The variance term does not explode when the singular values are small, it is
2
majored by 2Zzes uniformly in (oy);% ;.
Letting a little bias, we reduce drastically the variance.
We are looking for the « in order to minimize E[||pa — p*||*]

The optimal a depends on p* and M, it exists and is strictly positive. This
shows that regularization is profitable.

For the L° regularization, we dispose of

IMp — y|* + |pl|o (1.312)

where ||pllo = Y%, 1p.#0. A solution is said sparse when |[p||o is small (cf.
[Sull5] p. 97). We look for an optimal solution, which is also sparse. This kind of
problems are numerically hard.

L' regularization, LASSO (Least Absolute Shrinkage and Selection Operator)
regression [Tib96|
IMp —y|* + allpls (1.313)

with ||p|l1 = Y%, |pi| For some good matrices (with the restricted isometric prop-
erty, RIP, see annexes A.1.2) the solution of the regularized L' problem is the same
as for the L° one. This kind of problem is numerically hard but not impossible (in
particular when the solution is sparse).
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In practice, we choose o such that ||y — Mp,||* =~ E[||n]|?] = so2,., we do not
look for the adjustment of the model with a precision superior to the level of noise.

This is called the Morozov’s discrepancy principle (cf. [Sch93]).

The Bayesian viewpoint enables to get the distribution of the parameters p given
the observations y, which is more interesting than the Tikhonov regularization,
which only provide a point estimation. The research of the mode of this a posteriori
distribution can be reformulated by a minimization problem of a regularized square
norm minimization. The Bayesian approach enables how to consider the penalization
term, and to refine the results by giving more information on the structure of the
solution.

1.7.2 Bayesian inverse problems

We consider two finite dimension spaces ' P = R” and YV = R® and we have some a
priori information about the parameters whose a priori distribution is .

We are still in the context of noisy observations

Yobs = M(p) + n (1314)

The modelling of the problem may lead to different points of view.

(Gaussian case

We dispose here of P = R" and ) = R*. Moreover, we suppose that the a priori
distribution g of the parameters p is Gaussian N (myg, X) and that the random
variable n which represents the observation noise

Yobs = M(p) + 1 (1.315)

also has a Gaussian law N(0, ), where I is an invertible matrix. The Bayes’
theorem states that the a posteriori distribution of the parameters p knowing the
observations y.»s has the form

1 1
py (Blyoss) 2 cxp(—5 [y — M(p)| [} — 5 lp — mol ;) (1316)

where ||y]| |% =y I 'y. We remark in the general case the a posteriori distribution
is not Gaussian, except when the model M is linear.

If we focus on the mode of the a posteriori distribution, which is the most likely
value of p, then we find the maximum a posteriori.

argmin[yo: — M(p) |3+ [[p — mal[3; (1.317)
p

We get back the minimization problem of regularized mean square. Moreover, the
Bayesian formulation provides more than the MAP. The a posteriori distribution can

!The infinite dimensional case can be found in [Tar05]
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sometimes be computed and explicitly characterized (as example when M is linear
as we will see below), but it is also possible to sample p, by a MCMC technique
(as example Metropolis-Hastings) easily, because we dispose of an expression of its
distribution up to a multiplicative constant.

Under determined problem

We take into account P = R" and Y = R with » > 1, and the observations are
in the form
Yobs = M P +1 (1.318)

for some M € R". We suppose the noise Gaussian n ~ N'(0,~?) and pg ~ N(0, Xy).
Then py ~ N(my, X) and

Yobs 1
_ M, ¥ =3 —
M = S MM 0T I MTE,M

SZoM(ZM)T (1.319)

When the observation noise gets small

m' =limm, = ﬂZ‘OM
Y o Y MTX,M ’
i ™ (1.320)
T _ s T
2T = Q%Z =230 —MTEOM XoM(XyM)

We obtain XTM = 0 and m, M = yos. The fact that XM = 0 shows that the
knowledge on p in the direction of M becomes certain. In the direction non-collinear
to M, the uncertainty remains, with a degree that is determined by an interaction
between the properties of the prior and the observation operator.

Over determined problem

We take into account P = R and ) = R® with s > 1, and the observations are
in the form

Yobs = Mp+77 (1321)

for some M € R*. We suppose the noise Gaussian n ~ N (0,~*I) and po ~ N(0,53).
Then py ~ N (my, o) and

MT 2
My = 9 _—2 Y 97 02 = 2 ,2")/ B (1322)
V2o, + [[M]]| V2o, + |[M]]|

When the observation noise gets small

MTy
+ = ) = —-——— + 2 = ) 2 =
my = lyz_r}ré my = ™M (™) lwz_% o°=0 (1.323)

The point my is the solution of the mean square error of the linear overdeter-
mined problem y = Mp

+

My

= argmin |ly — Mp||? (1.324)

pER
Equilibrated problem
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We suppose that P = R" = ). Moreover, we consider M € C*(R",R") and the
equation y = M(p) has a unique solution p = N(y). Moreover, there exists C' > 0
such that Vy,d € R"

[ly = M(N(y) +0)[[* = Cmin(1, [|3]]*) (1.325)

We suppose the a priori to be Gaussian po ~ N (my, 0¢) and the noise of observation
to be n ~ N(0,721)

When noise of observation tends to zero, the a posteriori distribution converges
weakly to on(y) when v — 0. The uncertainty disappears, and the prior as no
influence. More information at page 202 of [Tar05].

Linear case

We assume P = R" and Y = R®. Moreover, we consider the model to be linear
M € M, s and the observations are

y = Mp + 7 (1.326)

We assume the observation noise is centered and of covariance I" (we do not suppose
the noise to be Gaussian). We want to establish a link between the mean square
problem and the estimation of p knowing y. We begin by characterizing the best
estimator of p knowing the observations y. The following definition defines what
the best linear unbiased estimator (BLUE) is

Definition 1.7.9. Best Linear Unbiased Estimator The BLUE (Best Linear Unbi-
ased Estimator) is, among the linear unbiased estimators of p knowingy , the one
that minimizes the mean square error E[||p — p|[?].

Then we have the following property

Proposition 1.7.10. Best Linear Unbiased Estimator
When MTT™'M is invertible, the best linear unbiased estimator of p given'y is given

by
p=MT'MMy (1.327)

This estimator has for covariance matrix

El(p—p) (p—p)) =M T'M)™ (1.328)

Proof. First, we check the estimator 1.327 is unbiased
E[p] = (M I 'M)"'M'I"'Mp =p (1.329)
and its covariance matrix is 1.328
E[(p—p)(®—p)'] = (M I'M)"M' I HI(M T "M)""M )T (1.330)
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Then, we take into account an arbitrary linear estimator p = Ly, and we write
L=(M"I"'M)"'"M”"I" ! + R. If we suppose that this estimator is unbiased, then
we would have RM = 0. The covariance matrix of p is:

E[(p —p)(p—p)'] = LIL"
=M™M'r'M) Tt + MMM IR (1.331)
+ROM T M)"'M'rHT + RIR”

As RM =0,
(MT M) 'MIT IR = M M) T TMIRT = MTT M) T (RM)T = 0,
(1.332)
and then
E[(p —p)(p —p)'] = (M T'M)"! + RIR”. (1.333)

As RIRT is a positive semi-definite matrix, we have E[(p—p)(p—p)’] > M7 'M)~L.
Then using the trace we obtain

E[[p —p[*] = Tr(E[(® — p)(p — p)']) = Tr(M"T"M)™") + Tr(RIR") (1.334)

the last term is positive since it is the sum of the eigenvalues of a positive definite
matrix and a positive semi-definite matrix. O

This implies that the BLUE exists and is unique, minimizes also Ep[||p — p||*].

The following proposition makes the link between the linear inverse problem and
the minimisation of the normal equations of a weighted mean square problem.

Proposition 1.7.11. Let M € M, and I' € M,, be the invertible covariance
matriz. We define

1
J(p) = 5IIMp ¥} (1.335)

p € argmin J(p) iff M'T'M)p = My (1.336)

pPER”

Proof. If p is a minimiser of the quadratic form J(p) then it is a critical point.
However,

1
J(p) = 5 ("M 'Mp — 2p"M' Iy 4y I y), (1.337)
then
VJ(p)=M'T"'Mp-M"Ty, (1.338)
what concludes the direct reasoning. Conversely, when p satisfies the normal equa-

tions, then

. 1, . . .
Va, J(b+a) = S((B+ QMM +q) -2 +q) M Ty +y'Ty)
— IA)TMTrlMIA) + qTMTFIMq + yTrly
1 .
= §HMPH2 +J(p)
(1.339)

which is always greater than J(p), what proves the reciprocal. ]
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Combining the two previous results, we obtain the Gauss-Markov theorem:

Theorem 1.7.12. Under the condition of the Proposition 1.7.10 the BLUE p given
by 1.327 is the estimator of the mean square

) . 1
p = argminJ(p), J(p) = 5lly — Mp||1 (1.340)
peR’!‘ 2

Finally, we underline the gradient and the Hessian of J(p) are

VJ(p) = MTI'Mp — My,

1.341
V ®VJ(p)=MITM, ( )

We can notice the second identity claims that the inverse of the Hessian matrix of
J s the inverse of the covariance matrix of the BLUE 1.328.

In the case where M7 T7'M is not invertible, then we use the estimator
p=M"T'M)"M Iy, (1.342)

where N1 is the pseudoinverse of N. However this solution has some disadvantages
such as instability.

Linear and Gaussian case

We assume the observation noise to be Gaussian 7 ~ N(0, ") with an invertible
covariance matrix I. When MTI™'M is not invertible or is invertible but ill-
conditionned, we need an a priori law pp on p in order to regularize the problem.

Proposition 1.7.13. We suppose the observation noise to be Gaussian and the
prior Gaussian, with invertible covariance matriz. Then the a posteriori law py, on
p knowing y is N'(my, X) with

my = (M T "M+ X)) "M T 'y + $5'mg )

1.343
¥y = (MTF—IM_I_ Eal)—l ( )

In an equivalent manner, we can reformulate the result with the Woodbury formula
(see linear algebra dedicated annexes A.8).

Proof. py has for density

1 1
my (p) ~ exp(=5|ly = Mpl|— 5llp — mo|[%;) (1.344)

Developing the square we find the argument of the exponential is a quadratic form
in p we can put in the form (up to a multiplicative constant):

1
my (p) ~ exp(—5lp — my|[%) (1.345)
O
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The best estimator of p (in the sens it is unbiased, and it minimizes the mean
square error among all of the estimators of p) is the BLUE

p=m,. (1.346)

It is a consequence of the Gaussian nature of the joint law of (p,y) (which comes
from the Gaussian nature of the a priori distributions and the observations) that
the conditional expectation of p knowing y (which provides the best estimator) is
linear in y, see A.1.4, and that is also the mode of the a posteriori distribution, i.e.

the MAP:

b = argmin_|ly ~ M]3+ 5 Ip —mol[3, (1.347)
pPER”

We examine what the a posteriori distribution p, becomes when the observation

noise becomes tiny. We recall p refers to the parameters.

If r > s and Ker(M) = {0} (over-determined problem case), and if I'= %I}, then

1ty converges weakly to 5m;r when v — 0 with

+

my

= argminl||y — Mp||2FO (1.348)

PER”

The uncertainty disappears and the prior do not play any role.

If s < r (under-determined problem), M € M, ; of rank r, and I" = 72[}, then
it exists an invertible matrix My € M,., and an orthogonal matrix Q € M, s such
that

M = (M, 0)Q" (1.349)

The matrix Q is in the form Q = (Q; Q2) with QI projection on O = Ker(M)
and projection on O+. We write

Li; L
T y—1 1,1 Lo
b)) = o 1.350
Q 0 Q <L{2 L272) ( )
Then py converges weakly to A'(my, 2) when v — 0, when
z _
s -a(2), 7 - Qi a3
— OTn L /I _y-1yT —1T y—1 .

z=Qi My 'y, and z' = —Ly L,z + L, ,Q5 2y 'my. In a more equivalent manner,

one can claim jy converges weakly to d, ® N(z', Ly 3) which is a probability distri-
bution on @ @ O+. This shows that, in the limit of a small observation noise, we
can determine with certainty the solution in O+, but uncertainty remains in O.

Moreover, the prior plays a role in the a posteriori distribution in this limit.

~ In the context of neutron noise measurements, we dispose of the observations
M which are the estimated moments of Njgy. Moreover, the Bayes theorem [Tar05]
states

P(p|M) xP(M[p)  P(p) (1.352)

a posteriori distribution likelihood a priori distribution

where the likelihood and the a priori distribution are as follows
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1. Thanks to the CLT, given the parameter p the measures are Gaussian with
mean M(p) and covariance ~Cov(p) where M refers to the expression of
the exact simple moments of the distribution of Ny, Cov(p) the covariance
matrix of the three first simple moments, n the number of realizations.

This gives explicitly

P(NI|p) o 1 e~ 3 '(M-M(p))Cov(p)~" (M-M(p))n (1.353)
\/det(%Cov(p))

which is the expression of the likelihood up to a multiplicative constant. The
computation of Cov(p) needs the expression of the simple moments up to the
order 6, and this is too complex to be computed analytically. So we will use
the empirical covariance matrix Cov.

1

o~} "(M-M(p))Cov™ ' (M-M(p))n (1.354)
det(:Cov)

P(M]|p) o

2. The a priori distribution is assumed to be uniform on [ec min, €Cmaz] X [Kmin, kmaz) X
[Smin, Smax] .

Our goal is to sample the a posteriori distribution 1.352. We will use two different
methods: a discrete sampling with a regular mesh and Adaptive Metropolis with
Covariance matrix adaptation.

Consistency of Bayesian methods from a frequentist perspective

The following considerations come from [Sull5].

In this sub-sub-section we will search to show, with large amount of data, the
Bayesian method finds the right answer for any a priori distribution (under some
technical restrictions), in the sense of the a posteriori distribution is concentrated
around the real value of the parameter.

We consider the following situation:

e we dispose of the a priori distribution uo on P

e the output is in the form y = M(p*) + n where n has a known probability
distribution and p* is unknown

e we observe N outputs yi,--- ,yn, corresponding to n independent realisations
of

We want to that the a posteriori distribution of p knowing the n observations con-
verges to a Dirac measure in p* when n — 4o00.

In order to simplify, we suppose o and the law of 1 are absolute continuous with
respect to the Lebesgue measure on P and ), respectively and have for probability
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distribution 7y and p respectively. Then the likelihood of the outputs given the
parameter p then is

n

L{ys,-+,yalp) = [ [ uly: = M(p)) (1.355)

=1

First, we can study the convergence of the likelihood maximum. Then, we have
the following property

Proposition 1.7.14. Consistency of the Mazimum Likelihood Estimator
We suppose

e P is compact, M 1is continuous and injective, p is continuous and strictly
positive.

e Yy, .Y, are i.i.d. and have the lawY = M(p*) +n. Then the mazimum
likelihood estimator

p € argmaxL(Y1, -, YN|p) (1.356)
peP

converges in probability to p* when n — +o0.

The maximum likelihood estimator could not exist for a certain N or not be
unique. But, from a certain rank, it exists and for all chosen versions, it verifies the
consistency theorem.

In order to have a refined result, we will suppose the following regularity condi-
tions

e P is compact and p* is in the interior of P
e M is injective and C? class (at least around p*)

e 1 is strictly positive and C? class, and verifies 9y, logu € L'(Y) and 9, ,,logu €
LY(Y)

e The Fisher matrix defined by 1.358 is invertible

We then study the normality and efficiency of the maximum of likelihood

Proposition 1.7.15. Under the stated regqularity conditions, the estimator of the
likelthood maximum s asymptotically normal and satisfies

VN(py —P*) = N(0,1x(p")) (1.357)

in law, where the Fisher matrixz of information of size (r,r) is defined by (fori,j €

[1,r]?):

[ Olog(u(y — M(p)) dlog(u(y — M(p))
Ir(p)is = /n Opi Op;
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Finally, the following theorem (Bernstein-von Mises theorem) shows that the a
posteriori distribution of p knowing the data becomes normal and efficient asymp-
totically (i.e. its asymptotic covariance matrix is the Fisher information matrix)
when N — +o00.

An intuition of the theorem of Bernstein-von Mises can be found in [Nic13].

We study here the normality and efficiency of the maximum a posteriori (MAP)

Theorem 6. Bernstein-von Mises
Conditions of reqularity of M and p, when my is continuous and strictly positive

in the neighborhood of p*, and when we note uyn the a posteriori law of p knowing

Yy, -, Yn, then
1

P(|luny — N(pw, NIF(p*))HTV > €) (1.359)

We recall here what is the total variation

| =vllrv := sup [u(B)—v(B)| (1.360)
BEB(R)"

where B(R)" refers to the Borel algebra on R)" and when u, v have density p, and
Py, then || —vllry = 5llpu — pollr-

The Bernstein-von Mises theorem shows that, when the a priori distribution has
a strictly positive density, the a posteriori distribution concentrates around the real
parameter p* with whom were drawn the data.

1.7.3 MCMC Sampling methods, Bayesian sampling

In practice, we have measurements lasting 1 hour, which is large in front of the time
gate duration (in ms) which is proportional to é Then the statistics on the empirical
moments is computed with a high number of realisations. And so the support of
the a posteriori distribution on the inputs knowing the data is really thin. Since
we want to sample this a posteriori distribution, we can use two strategies : an
explicit sampling on a regular tensorised grid and normalised sampling or a MCMC
sampling.

First, we can consider the regular tensorised and normalised grid sampling. It
can be used in dimension 1 to 3. But, in dimension 4 and more this computation is
too complex and cost effective when it comes to compute an a posteriori distribution
with a really thin support, the grid must be dense. It is equivalent to compute a 4
or 5D integral.

To overcome these defects we use MCMC methods. Classic MCMC methods such
as the Metropolis-Hastings will fail to correctly sample the distribution because of
the thinness of the support. Then we suggest tackling this issue with Metropolis
algorithm with an adaptation matrix covariance using the last accepted points (see
chapter 3).

While the resolution of the problem requires computing a 5D integral, what
can be really cost-effective, the use of Markov Chain Monte-Carlo is more subtle
method in order to get the a posteriori distribution of the parameters p knowing
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the observations y.us. This a posteriori distribution will be the target distribution
of the Monte-Carlo by Markov Chains algorithm. And so we get a sample of the
target distribution 7. Moreover, the Markov chain Monte-Carlo algorithm has only
one unique stationary distribution (up to a multiplicative constant) and this is the
target distribution.

Algorithm 1: Pseudocode of the independent sampler algorithm
0

Initial proposition pg ~ u

for 1 = 1, Nyaziter do

® qiy1~ p’

e Computation of the local acceptation rate using the likelihood of the
proposal and the previous accepted point

7(Qi+1)
() )

a(qi+1, pi) = min(1,

Then p;+1 = qi+1 with probability «; pi;+1 = pi; with probability 1 — a.

The independent sampler has a low acceptation rate when the support of the
target distribution is small. A classic MCMC method is the Metropolis-Hastings
algorithm, which is the following algorithm

Algorithm 2: Pseudocode of the Metropolis-Hastings algorithm [RS94]

Initial parameter pg, chosen uniformly on ®2:1[pk,min7 Pk, maz)

for 1 = 1, Npaziter do

e Proposition q;+1 ~ N (pi, C;) as instrumental law, with C; a covariance
matrix.

e Computation of the local acceptation rate using the likelihood of the
proposal and the previous accepted point

7(Qi+1)
() )

a(qi+1, pi) = min(1,

Then p;+1 = qi+1 with probability «; pi;+1 = p; with probability 1 — a.

This algorithm will be enhanced by a matrix covariance adaptation in the Chap-
ter 3 because the support of the likelihood we want to sample is really thin.

The advantage of the MCMC methods is to provide the uncertainty about the
input parameters, which is faster than computing a rD integral. [For09]
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Chapter 2

The neutron noise direct problem

We recall the general form of the direct problem

M:R> — R?

p — Mi(p) 21)

where p = (ec, kess, S,x,a) with S = Sp refers to the intensity of the source,
S« = 0 and M;(p) = E[IN}, 1] where Njj 1y, j € [1;3] refers to the j-th power of the
distribution of the neutrons counted during [¢, T in the stationary regime (see Def
1.6.33 of the state-of-the-art). This allows us to study the outputs of our model as
a function of the inputs. We will distinguish three different types of regimes:

e in the absence of a source,
e in transitional regime with an external source,

e in stationary regime with an external source.

And we will also consider two groups of neutrons: the number of neutrons present
in the system X7 at time 7" and the number of neutrons detected Ny 7 during a
time gate T — t.

We will check the theoretical formulas for the first three moments of the distri-
bution considered

e 7,(t): The distribution of the number of neutrons present in the system at
time T given that there was 1 neutron at time ¢ in the absence of a source

e [I,(t): The distribution of the number of neutrons present in the system at 7'
given that there were 0 neutrons at time ¢ in the presence of a source in the
transitional regime

o /], »: The distribution of the number of neutrons present in the system at 7’
given the presence of a source in the stationary regime.

e p,(t): The distribution of the number of neutrons detected during [¢, 7] given
that there was 1 neutron at time ¢ in the absence of a source
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e P,(t): Distribution of the number of neutrons detected during [t,T] given
that there were 0 neutrons at time ¢ in the presence of a source in transitional
regime

e (),(t): The distribution of the number of neutrons detected during [¢t, T| given
the fact the presence of a source in stationary regime (i.e. when II,  is the
number of neutrons present in the system)

We will also consider factorial cumulants which allow us to calculate the first three
moments of the number of neutrons present in the system at time 7" knowing that
there are 0 neutrons present in the system at time t in the presence of an external
source and in stationary state. Thus, the outputs of the point model will be verified
numerically. A sensitivity analysis can be found in [PMO7].

There are at least two functions of the moments of the distribution of the number
of neutrons detected during a time gate N r) that can be taken into account for
the a posteriori calculation of the parameters: the simple moments (E[N[Z;f,T]])iG[[l;?)}]
calculated from the number of neutrons present in the system X; and the number
of neutrons detected during a time gate [¢t,T], and the Feynman moments from the
equations on the moments of Ny 7).

We recall that the full calculation of the analytical formulas can be found in the
annex.

2.1 The process of the number of neutrons present
in the system

Calculation of the distribution of neutrons present in the system at time
T knowing that there was 1 at time ¢ and in the absence of an external
source

We recall here the equations on the transition probability from the state-of-the-art
(deduced from equation 1.155), the reader is also referred to the annexes A.2.3

_% =—(Ar ; fi+ Ac)mn(t) + (Arfo + Ac)mno(t)
+ Ar famn2()
+ Ar f3mn3()
+ e

+ )\Ffm’/T’VL,V'muw (t)

From which we can obtain the equation on the generating function from the state-
of-the-art (deduced from equation 1.162)

_ 9=

2 (0,0) = O Y Fi+A)gn )+ O fot )bl 0-4Ar Y fighla, ) (2:2)

i£1
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Deriving with respect to x, we obtain

a agﬂ _ ) 8g7r . agﬂ' i—1
E% = ()\F;fz‘l')\C)%"‘/\Fzz:Zfz 8:]5 9r (t)

Since we are in sub-critical regime a > 0, in the absence of a source, the number
of neutrons decreases to 0, as there is only induced fission and detection.

We begin our calculations with the first three moments of the neutrons present
in the system at T knowing that there was 1 at time ¢ and in the absence of an
external source. By deriving 1.162 with respect to z and evaluating in x = 1 we
are able to access the average number of neutrons present in the system at time T
knowing that there was 1 neutron at time ¢.

Proposition 2.1.1. The average number of neutrons present in the system at T
given that there was 1 neutron at time t in the absence of a source is

Un(t) = e T0 (2.3)

2

In the same way, we can calculate the moments of order 2.

and thus

Proposition 2.1.2. The second order factorial moment of the number of neutrons
present in the system at time T knowing that there was 1 neutron in the system at
time t in the absence of a source is

19

20

Moreover, we calculate the differential equation of 13, to deduce its analytical
expression.

vor(t) = e~ (] — gmT=1) (2.5)

This enables us to deduce

Proposition 2.1.3. The third order factorial moment of the number of neutrons
present in the system at T given that there were 1 neutron at t in the system in the
absence of a source is

—a(T—t) 2 1 — —2a(T—t)
€ 14 €
() = (L et TR ) 2)

Moreover, its asymptotic value when T —t — +00 s

29

These expressions conclude the calculation of the moments of the neutron distri-
bution present in the system in the absence of an external source. Now we calculate
the moments of the neutron distribution present in the system in the presence of an
external source.
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Calculation of the neutron distribution in the system at 7" knowing that
there was 0 at ¢t and in the presence of an external source

We propose to calculate the first three moments of the distribution (17, o )nen. We
recall S = Sp refers to the intensity of the source and S, = 0.

Proposition 2.1.4. The first moment of the distribution of the number of neutrons
present with the source is

1 — e—a(T—t)
vppt) = vsS———— (2.9)

In addition, when the stationary state is established, we have

755 (2.10)

VIl =,

Proposition 2.1.5. The second moment of the distribution of the number of neu-
trons present with the source is

veS 1 — —a(T—t) 7aS 1— —2a(T'-1)
vy () = sS4 22— ° | = ES(EE 4+ ) S | ——

« —pU « —p 2a
(2.11)
In addition, it can be noted that
S s 0252
UQ,H,oo = 5(1/5 —pD + Vgs) —I— 2Sa2 (212)

Proposition 2.1.6. The third moment of the distribution of the number of neutrons
present with the source is

1 — efa(Tft)

(0%

(555)2 vgS 1) 551/2532 vgS V22 V3
t) = —
VSI[() [( 2c ( o +3—pﬂ)+ 2ce +—,05<—,017+ 2)

i 5S)? vgS 1% UglegS? V2 v 1— 672a(T7t)
o (LS g e ) PeesST g6 Mg, 0
Q a —pU Q@ (—pv)? —pv 20
[ ((755)? 7sS 30519552
4 <(VS ) (VS 13 V27)_ Vslas )
2cv « —pU 2a
UgS V22 V3 1 — 673a(T7t)

3x

L (B 90gS 2 4 s
—pv - —pv 2 —puU

(2.13)
The third asymptotic moment of the distribution of the number of neutrons present
with the source is

S vs , U3 Valag vsS S [ 1» 17%5 3
1/37]100 = 3—a (_py(_py + 1/3) + mpY +v3s | + T_ Vg P + 195 | + 60
(2.14)

91



2.1. THE PROCESS OF THE NUMBER OF NEUTRONS PRESENT IN THE
SYSTEM CHAPTER 2. DIRECT PROBLEM

2.1.1 Factorial Cumulants

Here we define the multiplicity rates from V. Multiplicity Mathematics, section H.
[al.98].

Definition 2.1.7. Multiplicities rates
We define the rate of singles, doubles and triples as the average number of detections
of 1 among n for i = 1,2, 3 respectively, more precisely

Singles = Z nQn(t)

neN*

Doubles := Z @Qn(t) (2.15)
neN*

Triples := Z n(n - 1(2(71 —2) Qn(t)
neN*

The use of factorial cumulants is the simplest way to calculate observations. It
is used in [PPO08], generally converted into singles, doubles and triples [al.98]. These
will be used to calculate the first three moments of X;.

We define the generating function of the factorial cumulants as follows

Definition 2.1.8. Let the following quantity be
Kp(z,t) :=log(Gp(w,t)) (2.16)

This leads us to

Proposition 2.1.9. The generating function of the factorial cumulants is

T—t ©°

Kp(a,t) = s/ O fusgi(z, T —s) — 1)ds (2.17)
0 v=0
Proof. Using 1.182
T—t ©0
Gra.t) = con(S [ (O fusgle.T =)= )i (2.18)
v=0

Since Ky(z,t) = log(G 7(x,t)) then

T—t ©°©

K (e, t) = s/ (> fusgllw, T — 5) — 1)ds (2.19)

0

Moreover,

Definition 2.1.10. The binomial cumulants are given by

_ 1 (oK T fus (s
I, t) "E( — (t))m_s /0 ZO il ow x:1(T—s)ds (2.20)
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But also,

Definition 2.1.11. The moment of order n of the distribution of neutrons present
in the absence of a source in the system at T knowing that there were i neutrons at
t s

andlt) = =2 340 = 1) (= D) 2:21)

A direct calculation shows

Proposition 2.1.12.

n!

Vrni() = (%) ) (2.22)

Proof. We use again the proof of the proposition By differentiating n times the
previous equation with respect to z and dividing by n! we obtain the expected
result. O

Then, we define

Definition 2.1.13. For i € N*, we define
VYmazx,S

VSri = Z fV,S'Vﬂ',i,Z/ (223)

v=0

where Ug, ag, V35 are defined in the equations 1.124 and 1.126 of the state-of-the-art
in the source subsection.

Proposition 2.1.14. The first three moments vz ,i(t),n € [1;3] have the property
VSw1 = UslUx
VSr2 = VsV n + VoS> (2.24)

- — -3 —
VSr3 = UsUx + 1V35U;5 + 2U25Ux Vo 1

Proof. By definition, we can deduce

dg’. _ Z-%gz‘—l
ox ox 7"
1%g:

i
2 02 2

159, _ 1<31?ﬂg“ 3 -2 T 1y —2) (ai) gfr”’>

6 0x3 6\ 037" or Ox? ox
(2.25)

By evaluating in z = 1, we find

Vrelyv = Vip

viv—1) ,
Vrov = Vg + TUK (226)
— (v -2

Vr3y = Ulp + 4 é(y )1773; +v(v— 1)1

This allows us to conclude the result. O
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We can therefore deduce

Proposition 2.1.15. The first three asymptotic binomial cumulants are given by

UgS
FH,l,oo -

o
S 1%
Moo = 5, (VS—_ o ’/25> (2.27)

Proof. We refer the reader to the appendix A.2.2 to understand the calculation of
integrals.

0
By differentiating the generating function three times, we obtain
m=KpGn
G = (Kp+KfH)Gpp (2.28)
" " / 1 13
Where
Voo = L1l
I—Q o0
Volleo =LMoot —5— (2.29)
113 o0
VS,H,OO = FH,S,OO + FH,OOFH,Z,OO + 67
So, we have
_ UgS
M=y
S 1 n n %52
v = —\|\Uvs——+v
21100 ™ 94 S—pl7 25 202
S vs |, U3 Vol9g vsS S [ s 1?%5’3
Vs Il o0 = 3a (—pl/(—pV )+ —pv s |t o 2a VS—pl? s 6a3
(2.30)

From now on, we propose to obtain the first moments of the distribution (Qn(t))n,
the distribution of the number of neutrons detected in the time interval [¢,T] given
the presence of a source and during the stationary regime.
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2.2 The joint process of the number of neutrons
present in the system and the number of neu-
trons detected in [t,T]

In order to study the inverse problem, we need to have a forward problem as well-
defined as possible. Here we compute some functions of the distribution of the de-
tection number Np; 77 the measures. We then consider the joint process (X7, N, [t,T])
which is a time-continuous Markov process.

In order to obtain the measurements, here the moments of the number of detec-
tions in the presence of a source, we start with the following explicit formula

G(x,t) = Gz, t)Gy (9(z, 1)) (2.31)

from the state-of-the-art equation 1.249. It goes without saying that we proceed in
a progressive way; the expression of the moments of G are heavy.

Each of the moments considered will be calculated from the corresponding gen-
erating function. To this end, we recall how to calculate (for example, from the
master equation it verifies).

Simple moments in the absence of a source

We start by calculating the first moment of g.

Proposition 2.2.1. The moment of order 1 of the detection number on the interval
[t, T] in the absence of a source, defined in equation 1.216, is

EF

E[Ntz]@nw). = ma(t) = _—pp(l — e ) (2.32)
As a result, we know that
1 829” viv—1
Moy =5 [ 52 ] i = %m% + vmgy (2.33)

This allows us to conclude

Proposition 2.2.2. The moment of order 2 of the detection number on the interval
[t,T] in the absence of a source, defined in equation 1.216, is

2
%% —a(T— —2a(T— EF —a(T—
E[N[%,T]](pn(t))n — 2(—[);)3(1 —2a(T — t)e (T—t) _ o=2a(T t)> + —pﬂ(l _ea(T t))
(2.34)
We can notice
5 — V25%7 1 — 20(T — t)e—T—t) _ —2a(T—) 2.35
ma(t) = (_pﬂ)g( o Je € ) (2.35)



2.2. POP. AND DETEC. CHAPTER 2. DIRECT PROBLEM

For the following calculations, we define

Definition 2.2.3. The constants

3
A=y —E_
{ Loy (2.36)
Bi=vy—ps

are functions of the nuclear parameters p, er and the moments of the fission process
(57 b, V3) :

The only thing left to do is to calculate ms.

Proposition 2.2.4. The moment of order 3 of the detection number on the interval
[t,T] in the absence of a source is

E[N[?t,T]](

Pn

+ (2(3A + B) +4aB(T — t))e—2a(T—t) +(—A+ B)e—Sa(T—t))

LR ()T — oo _ g2a(T-1)
(—pv)3
4+ EE (1 emalT)

_py

D) 6( - %(—2(A +B) 4 (—(3A 4+ B) 4+ 2a(T — t)(3A + B) + 20°B(T — t)?)e~T—1)

(2.37)
We recall that ms, defined in equation 1.216, is

(—2(A 4+ B) 4 (—(3A + B) + 2a(T — t)(3A + B) + 20°B(T — t)?)e~ (T~

2(3A + B) + 4aB(T — t))e 2T

(
(—A + B)e3T=0)
(2.38)

with the quantities A and B introduced earlier.

Remembering that these moments are involved in the calculation of the moments
of G (we can find an expression for 1.249) and allow us to solve our problem.

Considering the equation 1.249, we see that the calculation of the moments of G
requires that of G.

Simple moments in the presence of a source

We consider the number of neutrons detected during [¢,7] in the presence of a
source knowing there was 0 neutrons at time ¢.In the equation 1.249, we obtained
the formula of Sevast’ yanov

“+oo

G(z,t) = exp(/t S(Z fusg”(x,s) — 1)ds). (2.39)

v=0
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with S = Sp refers to the intensity of the source and Sy = 0. We calculate the
partial derivative of order 3 with respect to z of G, so we will calculate that of G up
to order 3 also.

As previously

Proposition 2.2.5. The moment of order 1 of the detection number on the interval
[t, T] in the presence of a source, defined in equation 1.232, is

EF 1 —e o=
E[N[t,T}](Pn(t))n = Ml(t) = DSS—_W (T — t) — T (240)

Proof. To do this, we need the differentiation of 2.39 and evaluate it in x = 1. More
details in the appendix A.2.8. O]

Proposition 2.2.6. The moment of order 2 of the detection number on the interval
[t, T] in the presence of a source is

2 _ —a(T—1) _ o—2a(T—1)
_ 1% m 1—e 1—e
E[N? = 2WeS—L T — ¢+ 2T —t)e T —
[Nie. 1)) (Pait))n = 20s o) +2( Je = + 50
£2 1 — e—a(T—t) 1 — e—2a(T—t)
QWosS—L | T —t—2
+ 2115 (—pp)? o + %0
2
1 — —a(T—t) 1— —a(T—t)
N gsss_F_{T_t_e—} WSS_F_{T_t_ e
—pU o —pU o

Moreover, we know that Mo, defined in equation 1.232, is

2 _ —a(T-t) 1 — —2a(T-t)
— V2€F —Oc(T—t) 1 e e
My(t) = vgS T—t+2(7T—1 —
2(t) = 7s (—pv)3 2 Je « * 2
e2 1 — e—a(T—t) 1 — 6—204(T—t)
S—E T —t-2
T vas (—pr)? a * 2a
2

1 1 —a(T—t)
+ = assg—F{T S }

2 — o

(2.42)

Proof. Let us continue our successive differentiations and evaluations in z = 1 in
the annexes A.2.4. O

Proposition 2.2.7. The 3 order moment of the number of neutrons detected over
the interval [t,T] in the presence of a source ]E[N[i;T]]Pn(t) and M3(t) are given by
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the equations

Sv
IE[N[?;’T]](pn(t))n = 6( — TS ( —2(A+B)(T—t)— (3A+ B)

1 — e—a(T—t)

«

1— —a(T—t)
—2B3A+ B)(T —t)eo@H -2 —C )
(0%
1 — e—a(T—t)
L 2B(—a(T — )2 0T _ (T — )=o) 1 22—
«

_ ,2a(T—t) _ o—2a(T—1)
+2(3A + B)12— — 2B((T — t)e~ 2T _ lme ™7 62 )
« «Q
1— e—Sa(T—t)
“A+B)——
+ (=A +B) ™
3 — e—a(T—t)
ValF —a(T—t) l—e
2955 T—t)+2(T—1t -3
+ 2195 (o) (( )+ 2( )e o
1— 6—3a(T—t)
_ T _ t 72Q(T7t)
(T'—t)e + ™
3 1 — e—a(T—t) _ €—2a(T—t) 1 — e—Sa(T—t)
S T—-t—3 3 —
T ss (—p )3( a + 20 3o )
2 1— e—a(T—t) 1— 6—2a(T—t)
" <_SS<—25>3<T ST = e - ) - )
2 1l—e a(T—-t) 1 — €—2a(T—t)
S T—t—-2
+ 125 (_py)Q( = + 5o )
2 SQ 52 1— e—a(T—t) EF 1 — e—a(T—t)
[l | R
€ 1] — e—aT=t) | _ g=2(T~1)
6 7gS——E_ T —t +2(T —t)e T — 2 -
i ( o || 70 a 2
52 1 e—a(T—t) 1— e—2a(T—t)
S—L T —t—2
+ Vas (—p0)? o + %0
2
1 53 1 — e T
—|vgS——< T —t—
- 2 vs —pl/{ «

(2.43)
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and also, the expression of Ms, defined in equation 1.232,

Ms(t) = —g ( A+ B)(T —t)— (344 B)— eaa(T”
— 2(3A+ B)((T — t)e T — 1—%‘”‘”)
+2B(—o(T — )% T — (T — t)e™T) 21—67“(“))
+2(3A+ B)F%z?(ﬁt) —2B((T — t)e—Qa(T—t) B 1—%2"@‘”)
+ (A~ B)l_%:mt))
+ 20255 % ((T )+ 2T — et 3L = e:(T_t)
(T — t)e 2T 4 1—%{‘?”‘“)
+ V3SS%(T i 31 — eaa(Tt) N 31 — 62;a(Tt) 1 egia(Tt))
+ (1/55%@ —t+2((T — t)e—“(T—t) _ 1— e:(T—t)) B 1 — e;zx(T—t))
+ stS%(T —t—2 1- eaa(Tt) n 1-— 62(2:(Tt))
i ﬂ§652 (—éjpy(T —i 1_+Q(T_t))2> VSS(fZD) (T —t) - “%W

(2.49)

Proof. Tt only remains for us to differentiate 1.236 in order to obtain our results, for
explicit computation see annexes A.2.4. ]

To conclude, we have computed the first three moments of the generating func-
tion G required for the computation of the three first moments of the generating
function G. All that remains is to get on with the real purpose of this part: the first
three simple moments of the number of detections on an interval [¢,7T] in the pres-
ence of an external source and when the number of neutrons present in the system
has a stationary distribution.

Simple moments in the presence of a source when the neutron number
has a stationary distribution

We recall S = Sp refers to the intensity of the source and S, = 0.

Proposition 2.2.8. The simple moment of order 1 of the detection number in the
presence of a source and when the neutron number has a stationary distribution
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(I1)00)v, defined in equation 1.245, is

E[N. 1)@ (1) (2.45)

when T — t is the length of the time gate considered.

Proof. We differentiate the composition of generating functions, the details are in
the appendix A.2.4. O

Proposition 2.2.9. The simple moment of order 2 of the number of detections in the
presence of a source and when the number of neutrons has a stationary distribution
(I 00)0 18

2
E[N2 =282 (T — )2 4 5gS—E (T —t
[(Nit)@ayn = V5 (—pV2)2( )"+ s —pD( ) »
2 vy 1 — e o(T=1) (2.46)
22— (vsS—= + 1S || T —t—
(—pr2) (—pv) o
and also, Ma, defined in equation 1.245, is
Mo(t) = Lp2s2SF (2
= —U —
’ 277 (—pus)?
% g 2 s\ (7 1 — e (T=Y) (247)
= -
o2\ ) T a
Proof. The same techniques as previously are used, see annexes A.2.4. O

Proposition 2.2.10. The third simple moment of the number of neutrons detected

1 — efa(Tft)
a(T —t)

in the presence of a source and when the number of neutrons has a stationary dis-
EF erDs

tribution (I1, )y 18
2
=7) (T_t)3< —p?) <l_p )(Heﬂ(m_?

R —a(T—t) 2) —2a(T—t)
( L, ) ( | _3-de + 2

vsDog
Do

E[NG1](@ut). = 7sS

)

€FD3
PE

—2
72Ds

20(T — t)

2 1 — —a(T—t)
+ 6(_2“;)2 (VSS(_V;y) + ms) (T - €T> (;755(_5;”) (T — 1)+ 1)
+ Dgsf’)i(T — 1) + GDESQi(T — )2 4 2058 (T — 1)
(—pp)? (—pp)? (—pD)
(2.48)

where the above variables are expressed at the end of the computation. Due to too
large size, the expression of Ms, defined in equation 1.245, can be found in the
annexes A.2.4.
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Proof. The reader is referred to the annexes A.2.4. ]

These expressions can be checked by Monte-Carlo simulations of X; or (X, Njg4)
using the next algorithm 3, or by using the explicit Euler method on each of the
corresponding differential equations stated in the state-of-the-art or the annexes.
In the following, we will be dealing with different test-cases in order to check the
analytical formulas of the considered moments, then the forward problem of neutron
counting will be settled.

2.3 The ”Counting” code, a MC code in the point

model approximation

In the point model approximation, we established the Monte-Carlo code 3, which is
a kinetic Monte-Carlo code (a good introduction can be found in [Vot07]).

Algorithm 3: Couting code, the Monte-Carlo code in the point model
approximation, generating a TimeList file

)\C,loc;

)\F,loc;

S5

for ¢« = 1, Number of realizations do
t=0;

Xi=1;

>\C - XtAC,loc;

Ar = XidAFloc;

L=S+ o+ Ar;

while ¢t < t,,4: do

u ~ U0, 1];
log(u
dt = ——gL( );

CALL Simulations of either the source, the fission, the capture (with
or without a detection) (algo 4);

Ac = XiAcoe;

Ar = Xt)\F,loc;

L=S54 X+ Ar;

Storage of the values of X; and t for post-treatment;

t=1t+dt;

end

end

The algorithm 3 allows verifying the analytical formulas of the different moments
by the Monte-Carlo method. More precisely, this code provides the detection times
of the counts and the number of neutrons present in the system by the Monte-
Carlo method, and thus a Time List file that can be analysed (in the presence or
absence of a source). After processing the Time List file, we implemented the explicit
Euler method for each of the quantities of interest (see next checks) and verified the
analytical expressions with it.
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Algorithm 4: Simulation of the events: source, fission or capture (with or
without a detection)

ol = %;

ps = S *1nvl;
po = A¢ * invl;
pPr = Ap * invl,;

u ~ UI0, 1J;
indiceprocessus = Li0.ps] (u) + 21[Ps,ps+pc]<u> 31 pstpe.] (w);
if indiceprocessus == 1 (Source) then
% Computation of the random number of neutrons emitted by the
source;
Call number_of_emitted_neutrons_by_the_sources(nu);
X = Xy + nu;
else if indiceprocessus == 2 (Capture) then
X=X —1;
u ~ U0, 1J;

z_compt = 1jg o1 (u) + 210 17 (w);
if x_compt == 1 then
Storage of the time of detection;
Number of detections = number of detections+1;

else if indiceprocessus == 3 (Induced fission) then
% Computation of the random number of neutrons emitted by the
fission;

Call number_of_emitted_neutronsby _the_fission(ne);
Xt = Xt + ne — 1,
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Another part of the code provides the processing of the Time List file and the
analytical and explicit Euler checks. It also provides detailed statistical analysis
output, particularly for the direct problem.

The following section provides numerical checks and more details on the explicit
Euler method used (see also A.2.8).

2.4 Numerical experiment from the direct prob-
lem

2.4.1 A first case

The parameters of the point model for the first case are

S* =70 n.ms™!
pr=—1
p'=1]¢5=0,2510"2 (2.49)
x*=0
a* =2ms!
where p* = —1 corresponds to k7;, = 0.5. All calculations will be performed in

ms~!. The measurements are made for a duration of 3600 s. Spontaneous fission

emits a maximum of 1 neutron, induced fission emits a maximum of 7 neutrons
(with the Terrel distribution [Ter57] cf. appendix equation A.297) and the nuclear
constants are

7 2,53108 v 1
D, | = | 0,81168 Das | = |0 (2.50)
Ds 0,51843 Dss 0

The ”Counting” code 3 provides the Monte Carlo realisations obtained by the
algorithm 3, the analytical formula and the explicit Euler resolution of the ODE for
the previously introduced quantities such as

o vf(t), of(t), vy z(t), (see state-of-the-art eq. 1.191, 1.194 and 1.196 respec-
tively for the ODE and eq. 2.9, 2.11 and 2.13 for the exact formula)

e U3 .(t), (see state-of-the-art eq. 1.175 and eq. 2.7 for the exact formula)

e my(t), E[N?],. 1), E[N?],, ), and induced quantities e.g. E[N?],, @ —]E[N];n(t)
(see state-of-the-art eq. 1.222, 1.223 and 1.224 respectively for the ODE, and

eq. 2.32, 2.34 and 2.37 for the exact formula)

o Mi(t), E[N?p, ), E[N?]p, @, and induced quantities (see appendix eq. A.207,
A.209 and A.211 respectively for the ODE, and eq. 2.40, 2.41 and 2.43 for the
exact formula)

e My(t), E[N?]g, 1), E[N?g,# and induced quantities (see appendix eq. A.212,
A.213 and A.214 respectively, and eq. 2.45, 2.46 and 2.48 for the exact formula)
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35

30 1

251

104

—— Mean number of neutrons present in the system as a function of the considered time (MC)
—— Mean number of neutrons present in the system as a function of the considered time (Euler)
01 —— Mean number of neutrons present in the system as a function of the considered time (Exact)

0 10 20 30 40
Time

Figure 2.1: vpp(t), t is in ms

All these calculations allow the results of the direct problem to be verified for the
case under consideration. These checks can easily be done on another case. As some
of these checks are really strong, we are sure that there is no problem.

Moments of the number of neutrons present in the system We recall
that we were talking about equations about the number of neutrons present in the
system at time T" knowing there was 0 neutrons at time ¢ in the presence of a source.
Here, we are talking about the number of neutrons present in the system at time ¢
knowing there was 0 neutrons at time 0 in the presence of a source. The aim of this
consideration is to have only a time length ¢ in the computations.

We first calculate the average number of neutrons present in the system (cf.
figure 2.1). As shown in equation 2.9, the average of the number of neutrons present
in the system at time ¢ converges to a stationary average value (cf. Prop 2.1.4) where
vg =1, 8 =T70n.ms ' a=2ms ! Inthe figure 2.1, we observe that the asymptotic
value is 35, which is in agreement with our calculations. The Euler scheme (for the
equation 1.191) and the exact formula are in agreement. On the other hand, we
consider 1 MC realisation of duration 36s. Convergence can be achieved for a higher
number of MC realisations.

We then calculate the standard deviation of the number of neutrons present in
the system (cf. figure 2.2). We recall the expression of the standard deviation as a
function of v, r7(t) and vpp(t).

o) = /20 11(0) + 7p7(t) — 73,1 (2.51)
We recall the asymptotic value 2v, ;7 = g(ﬁsf—;j—i-uzs)—i- 17%52 and 2 = %. Then,
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Standard deviation

—— Standard deviation of the number of neutrons present in the system as a function of the considered time gate (MC)
—— Standard deviation of the number of neutrons present in the system as a function of the considered time gate (Euler)

—— Standard deviation of the number of neutrons present in the system as a function of the considered time gate (Exact)
L

0 10 20 30 40
Time

Figure 2.2: o7(t), t is in ms

using the numerical values for this case, we conclude that o oo =8, 42 which is the
approximate value of o o when we plot the figure. We consider 1 MC realisation
of duration 36s.

The third order moment of the number of neutrons present in the system in the
presence of a source has a complex expression. We will check this expression at
different levels.

In Figure 2.3, the exact curve and the Euler explicit curves coincide. Then we

3 3

have checks, with v, 77— VH and vy 7 — YII ”2 11 v H

and VH,; 21T in Vs IT-

. Because there are components

First, we plot the curve of v, j7(f) with the exact, explicit Euler formula (for
the equation 1.196) and with an MC estimate. The figure shows that the exact and
explicit Euler curves are in agreement, the MC estimate fluctuates around the exact
asymptote vy 1y . As a first approach, the exact asymptotic value in this case is

Vs [Too & 7786 19 which is approximately the asymptotic value we observe on figure

2.3 (we still used 2 = 222 and %).

v (®)
Then we calculated the figure 2.4 because v, H( ) has a component ]% . Since

¥y

c— We are interested in the

we want to check the asymptotic value of vy ry(t) —

long-term behaviour of this expression. We have Vs [Too — 11 = ) ~ 640, 36 which
is the approximate asymptotic value that we can see in the figure 2.4. This figure
shows that the exact and explicit Euler expression (adding the results of the different
schemes) converges to the same value, and that the MC estimate fluctuates around
this expression. This could be a correct verification, but we will go further.
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T
—— Moment of order 3 of the number of neutrons presents in the absence of a source in function of the considered time gate (Euler)
—— Moment of order 3 of the number of neutrons presents in the absence of a source in function of the considered time gate (Exact)
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Moment of order 3
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Time gate

Figure 2.3: v, r7(t), t is in ms
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Figure 2.4: v, r7(t) — %7, tis in ms
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Figure 2.5: v, r7(t) — , t is in ms

We also observe the asymptotic value of v, j7(t) more precisely, thanks to the

v H(t)'/z, 7w

3 . Then we will consider the

formula of cumulants, there is a component

. vr®v, 7 ) )
expression v, r7(t) — ———==—. At first sight, the expression should be calculated

using the log, then we obtain the figure 2.5, and we observe that the MC estimate
fluctuates around the asymptotic value of the exact curve. We compute the asymp-

VH,OO’;2,H,OO ~ 4387

totic values v, ;7 — 21 which is approximately the value seen

when zooming in on the figure 2.5.

This allows us to verify numerically the first 3 moments of the distribution of
the number of neutrons present in the system in the presence of a source at time 7T’
knowing that there were 0 neutrons at ¢ in the presence of a source I1,,(t). We now
propose to present the results of numerical experiments on the distribution of the
number of neutrons detected in the absence or presence of a source.

Neutron number moments detected in the absence of a source

We recall the empirical moments of N7,Vj € N* are computed thanks to

Nb
_ j
E[N] = > N (2.52)
k=1
where Nb is the number of realisations and Ny is the k-th realisation of N as in
figure 1.4. When we are in the absence of source the system turns off, then we

compute Nb times this extinction and take into account the empirical number of
detections.
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—— Mean number of the number of neutrons detected in absence of a source in function of the considered time gate (MC)
Mean number of the number of neutrons detected in absence of a source in function of the considered time gate (Euler)

0.000 . . . . )
—— Mean number of the number of neutrons detected in absence of a source in function of the considered time gate (Exact)
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Time gate

Figure 2.6: Moment of order 1 of the number of detected neutrons in absence of a
source as a function of the length of the considered time gate m;(t), t is in ms

—

We will also compute the confidence interval for the quantities E[N7] — E[N}J as
shown in the annexes A.4.1.

The first moment in the absence of a source is shown in figure 2.6. The Monte

Carlo (MC) curve is made with 10 realisations and there is a large 0, ) = /E[N?],,) — E[N]?

corresponding, then the confidence interval at 95% is of order &~ 15%. The MC av-
erage does not have much fluctuation for large values of the time gate because
the number of neutrons detected is quite the same due to the characteristics of
the case. The 95% emﬁiri\cal confidence intervals are calculated by computing the

empirical moments E[N7], ) and the corresponding standard deviation 5,4 =
\/E[ﬁﬂ-'];(t) - E[@(t) and we plot the bar E[@(t) + 2%?—\/]%(;) where Nb is the
number of MC realisations. Moreover, when the order of the moment is equal to 2
or 3, we want to check at a higher order. In particular, there is a E[N}/ in E[N7] for
the distribution under consideration, we make sure that E[N7] — E[N}’ converges to
a unique solution for the three plotted curves.

In the following figures, the exact and explicit Euler curves are superimposed. The
checks E[N'] — E[N]* (for all the considered distributions p,(t), Pu(t), Qn(t)) the
MC curve is taken by subtracting the MC estimation of E[N]* to the MC estimation
of E[N?]. We underline the fact that, in these cases, the confidence interval compu-
tation is non-trivial, the details of the computations are made in annexes A.4.1.
First, the equation 2.32 claims m;(¢) has the asymptotical value f—gg ~ 4,01.1073
what we observe on the figure 2.6. The second simple moment of the number of
neutrons detected is in figure 2.7. The equation 2.34 shows the asymptotic value
of E[N?],, ¢ is 2% + £& ~ 4.05.107° which is consistent with the asymptotic
value in figure 2.7. Moreover, in the equation 2.37 we can see there is a component
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—— Moment of order 2 of the number of neutrons detected in absence of a source in function of the considered time gate (MC)
0.000 Moment of order 2 of the number of neutrons detected in absence of a source in function of the considered time gate (Euler)
: —— Moment of order 2 of the number of neutrons detected in absence of a source in function of the considered time gate (Exact)
0 1 2 3 4 5 6
Time gate

Figure 2.7: Simple moment of order 2 of the number of detected neutrons in absence
of a source in function of the length of the considered time gate E[N?], ), ¢ is in
ms

E[N]? oy in E[N?],, ) when T — ¢ is large, so we observe the asymptotical value
on figure 2.8. The equation 2; 2513 + =5 — (£5)? ~ 4,03.107° which confirms the

asymptotical value of E[N?], ) — E[N ];n(t). Finally, we present the third simple
moment of the neutron distribution detected in the absence of a source with an

initial neutron (cf. 2.9). The figure 2.9 shows the asymptotical value of E[N?],, ),

which can be computed as 6(A + B + (VQ&IS ) + =5 ~ 4,11.10~° which confirms the

asymptotlcal values of E[N?], ) in figure 2.9. Slnce there is a component E[N]?

in E[N?],, ). We compute the difference E[N?],, ) — E[N]
haviour of ﬁgure 2.10. We recall 6(A+ B+ (VQp‘Ef)g) + =5 — (£5)° ~ 4.11.107° which

confirms the asymptotical values of E[N?], ¢ — E[N ]gn(t) in figure 2.10.

pn(t)
and observe the be-

We can then conclude that the simple moments of order 1 to 3 of the detected
neutron number distribution are valid thanks to the explicit Euler, the analytical
formula and the Monte-Carlo comparison.

We now consider the numerical checks of the simple moments of the number of
neutrons detected in the presence of a source of the distribution (X, Ny ).

Moments of the number of neutrons detected in presence of a source
We remain in the configurations of the case presented at the beginning of the sec-
tion.

Using the Monte Carlo code ”Counting” 3, we present the following results of mo-
ment calculations in the transitional regime. We plot the analytical formula, the
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Figure 2.8: E[N?],, ) — E[N]7 ), t is in ms
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Figure 2.9: Simple moment of order 3 of the number of detected neutrons in absence
of a source in function of the length of the considered time gate E[N?], ), t is in
ms

110



CHAPTER 2. DIRECT PROBLEM 2.4. NUM. EXP.

0.008 -

0.006

0.004

Simple moment of order 3

0.002

—— E[N"3]-E[N]**3 (MC)
E[N~3]-E[N]**3 (Euler)

0.000 1 —— E[N~3]-E[N]**3 (Exact)

0 1 2 3 4 5 6
Time gate

Figure 2.10: E[N?], ) — E[N]?

pu(t)? t is in ms

MC representation (with confidence interval 95%) and the explicit Euler. We have
considered 100 MC realisations of 36s duration. We can observe satisfactory results
for these simple moments.

We recall here that the curves of the exact formula and the explicit Euler scheme
are superimposed. Moreover, on each curve representation, the [0;0,01] part is not
well-fitted to the other curves, this is due to the fact that the smallest time gate
considered is T'— t = 0,01ms. Taking into account smaller time gates will allow
obtaining a more accurate curve around 7' — ¢ = Oms. This detail has no impact on
the overall verification performed here.

Regarding the stationary regime, the ” Counting” code proceeds as follows: we let
the MC code computes the number of neutrons present in the system until ¢ >> é
and the detector is open.

The first moment of the number of neutrons detected is given in figure 2.11. We
recall that the equation 2.40 has a linear part and an exponential part, i.e. when
T —t is low both quantities count, when 7" — ¢ >> é the linear part is dominant.

The second order simple moment of the number of neutrons detected is shown
in figure 2.12. We recall the equation 2.41 has three different behaviours: a linear
part, a quadratic part and an exponential part. When 7" — ¢ >> é, the quadratic
behaviour is dominant. The figure 2.12 confirms the quadratic formula is dominant
when T' — t is large. Moreover, the equation 2.12 shows there is a component
E[N]3, ¢y in E[N?]p, ). Then, we use the following figure to confirm this. We plot

E[N?|p, ) — E[N]3, ;) in figure 2.13, and we observe only the linear behaviour as

expected when T — ¢ >> 1 (we removed the quadratic part). The exponential

behaviour is still present when 7' — t << é
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Figure 2.11: M;(t), ¢ is in ms
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—— Moment of order 2 of the number of neutrons detected in presence of a source in function of the considered time gate (MC)
—— Moment of order 2 of the number of neutrons detected in presence of a source in function of the considered time gate (Euler)
—— Moment of order 2 of the number of neutrons detected in presence of a source in function of the considered time gate (Exact)
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Figure 2.12: E[N?]p, ), ¢ is in ms
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Figure 2.13: E[N?] —E[N]% ), t is in ms
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Figure 2.14: E[N?]p, (), t is in ms
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Figure 2.15: E[N?|p, ) — E[N]?I’Dn(t), t is in ms

Finally, we can obtain the third-order simple momentum of the number of neu-
trons detected in figure 2.14. We recall the equation 2.43 shows four different
behaviours: a linear, a quadratic, a cubic and an exponential behaviour. When
T —t>> L we see clearly the cubic behaviour of E[N?]p, .

Then, we want to confirm the exact expression, to do so we plot E[N3] Pa(t) —
]E[N}:;’Dn(t) in figure 2.15. When 7" — ¢ >> é we expect a quadratic behaviour, the
figure 2.15 confirms.

In conclusion, we have shown that the exact expressions of the simple moments
of order 1 to 3 of the distribution of the number of neutrons detected during a time
interval ¢ are true and that they have a specific behaviour depending on the regime
we consider.

Simple moments of the number of neutrons detected when the number
of neutrons present in the system follows its stationary distribution

In the following we present our verification of the first three simple moments of the
number of neutrons detected knowing that the number of neutrons present in the
system has a stationary distribution.

The results for the simple moment of order one are given in the figure 2.16. The
equation 2.45 shows a linear behaviour with a slope of vgS _5—;; ~ (.28 which is
confirmed by the figure 2.16.

In figure 2.17 we show the simple second-order momentum of the neutron dis-
tribution detected in the presence of a source and with a stationary distribution.
The equation 2.46 shows E[N?]q, () has three different behaviours: a linear term, a
quadratic term and an exponential term. As before, the quadratic term is dominant
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Figure 2.16: E[N]q, ), t is in ms

when T'—t >> é This is confirmed by the shape of the curve in figure 2.17.

The quadratic behaviour is dominant when 7" — ¢t >> é, to confirm the linear
term, we plot E[N?]q, ) —E[NT;, ) in figure 2.18. And so the figure shows a linear
term of order vgS _5—55 as previously.

Finally, we present in figure 2.19 the results for the simple third-order moment
of the distribution studied. The equation 2.48 shows four behaviour: a linear term,
a quadratic term, a cubic term and an exponential term. When T — ¢t >> é, we
observe this cubic behaviour in figure 2.19.

To confirm the quadratic term in E[N?]q, ) we plot E[N?|g, ) — E[N], ) in
figure 2.20. We observe a quadratic behaviour and this confirm the expression of
E[N?|q, ) — E[N]3, ;) thanks to the figure 2.20.

In order to check more precisely M (t), we plot the theoretical 80% prediction
interval (cf. figure 2.21 which computed by M cpact(t) £+ 1.30¢,, (t)).

In the figure 2.21, we dispose of the theoretical 80% prediction interval for M (¢).
This means that for every 10 MC realisations of M (t) 8 realisations should be in
the prediction interval (the orange interval). In this case, 2 of the 10 MC realisations
are outside the prediction interval.

To conclude, the analytical expressions for the first three moments of (X¢, Njo4)
have been verified numerically.

Feynman moments

The correlated Feynman moments are calculated from the simple moments. The
results for the second and third order Feynman moments are shown in the following
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Figure 2.17: E[N?|q, ), t is in ms
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E[N~3]_{Q_n(t)}
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Figure 2.19: E[N?]g, (), t is in ms
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Figure 2.20: E[N?]q, ) — E[N]}, ), t is in ms
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E[N]_{Q_n(t)} on a measurement interval [T_inter,T_max]
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Figure 2.21: Theoretical 80% prediction interval for M; and 10 realisations, ¢ is in
ms

figure 2.23 and 2.24 respectively. The empirical Feynman moments are estimated
by Monte-Carlo simulations: we first calculate

—

E[Np]

E[NG | (2.53)
E[N} ]

Where, for Nyeatisations € N*7

T e S

1,[0,t
Nrealisations =1 [0,

— 1 N’realisations

(2.54)

As shown in the figure 1.4, the realizations are calculated by storing the detection
time (the red bars) over a measurement time between Ty and T4, by subdividing
them into time gates of length ¢ providing the number of neutrons detected during
the [-th time gate of length ¢: N (o 4.

Then the empirical Feynman moments are calculated using the transition formula
(annexes A.2.7)

- E[N2.]
Va(t) = —2% — E[Npg] - 1
]E[N[Qﬂ]
_ E[N3 | — 3E[N2 |ENog] + 2E[Noa®  E[NZ.
Va(t) = [ [o,t]] [ [o,t]] [ [Qt}] [ [O,t]] 3 [/[it]] —]E[N[Oﬂ]—l)

E[Np.4] E[Np.4]
(2.55)
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Figure 2.22: Measurements of the number of neutrons detected during a time gate
T between to and tmaz: Nl,[O7T] = 3, NQ,[O,T] = 1, N3,[O,T] = 2, ce

The Feynman moment of order two, on figure 2.23, measures the difference in
moments with respect to a Poisson process. In this case x = 0, the source is a
Poisson process and there is induced fission, then Y5 o = El;# ~ 8,24.107% which
is small and this is what we observe: the exact curve increases to a constant value,
the Monte Carlo estimate shows large fluctuations from the orange curve.

Y 2(t)

—— Feynman moment of order 2 (MC)
0.061 —— Feynman moment of order 2 (Exact)

0.02

0.00

—0.02

Feynman moment of order 2

—0.04

—0.06

0 1 2 3 4 5 6
Time gate

E[(N-E[N])?g, )

Figure 2.23: Ys(t) = E[N]g. (1)

— 1, ¢ is in ms

The Feynman moment of order three, on figure 2.24, measures also the difference
to a Poisson process. The source is still a pure Poisson process, x = 0, then Y3 =

2
3 (% — 5%}# ~ 2,04.10~* which is small and the observations show that the

exact curve is constant, the Monte Carlo estimate shows large fluctuations from the
orange curve.
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Figure 2.24: YE)’(t) - ]E[N}Qn(t)Q w13 E[N]QMt)Q -

— 1, tis in ms

The fluctuations of the two Feynman moments show that they are really difficult
to use from this point of view, in contrast to the simple moments of order 2 and 3
in the figure 2.16 to 2.19, which are easier to use. This example illustrates the need
to consider simple moments in our calculations rather than the Feynman moment.
The following case present an example where the Feynman moment is more useful.

2.4.2 A second case

The first test case was used to verify the calculation of the direct problem with
different methods. A second test case is defined where the physical parameters are
those that will be used, in the next chapter, to calculate the a posteriori distribution
of the parameters.

We consider the following set of parameters

S 70 ms~!
keff 0, 95
p=|cec | =]025.102 (2.56)
X 0
a 2 ms™!

we recall that kepp = 0,95 <= p = —0.05263157894.

The induced fission material is 23U,

Nuclear mater ) ) )
The source is poissonian.

The nuclear constants are

v 2,4130 Dg 1
D, | = [0,7992 Das | = |0 (2.57)
Ds 0,4819 Dss 0
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Figure 2.25: E[N|g, ), t is in ms

The measurement time is equal to 36s.
For a time gate T' = g , there are 12000 time gates of duration 1. We consider three
observables, which are the average count and the Feynman moments of order 2 and
3. The calculation of these observables using the test case parameters is shown in
the following figure 2.25, 2.26 and 2.27 respectively.

The mean E[N]q, ) is represented in figure 2.25. As the number of MC realisa-
tions is very high, the exact and MC curves are superimposed. The following figure
shows further details.

The figure 2.26 is the plot of the Feynman moment of order 2 Y5(¢) with exact
formula and MC estimation. The MC estimation of Y5 is noisy and tends to be 5%
close to the exact formula (for ¢ € [0,0.013]). Then the MC estimation are 20%
close to the exact formula (for t € [0.013,0.02]). These fluctuations are centred
but correlated in time. Since kcrr = 0,95 there are more correlations than in the
previous case.

The figure 2.27 is the plot of the Feynman moment of order 3 Y3(¢) with exact
formula and MC estimation. The MC estimation of Y3 is noisier than for Y5 because
it uses the moment of order 3 E[N?]g, . For ¢ € [0,0.03] the MC estimation of
Y3 is around 20% of the exact value of Y3, then the MC estimation gets noisier
and noisier, the fluctuations can go to 200% of the exact value for ¢ = 0.019. As
previously, the fluctuations are centred but correlated in time.

The calculated covariance matrix of the three measurements is:

1,09887.10~% 1,81672.10"2 0, 27707
Cov(M(p)) = [ 1,81672.1072  0,33449 5 57235 (2.58)
0, 27707 5,57235  100,24600
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Figure 2.27: Y3(t), t is in s
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with python, we obtain the following associated eigenvalues

A\ 1.00557.102
Mo | = [ 2.35786.10~° (2.59)
A3 2.49747.1072

Python provides also the conditioning of the covariance matrix Cond(Cov(M(p))) =
4956145.66857.

As the ratio between the maximum and minimum eigenvalues is ~ 107 the as-
sociated quadratic formula is degenerate. Therefore, sampling the distribution a
posteriori is rather difficult.

2.4.3 A third case

We present a last test case whose parameters are as follows

S 70 ms—!
k:eff O, 95
p=|c | =]025.1072 (2.60)
X 0
a 2 ms~!

we recall that kepp = 0,95 <= p = —0,05263157894.

The induced fission material is 23U,

Nuclear mater ) . ]
The source is poissonian.

The nuclear constants parameters

7 2, 5304 7s 1
Dy | = |0,8119 Das | =10 (2.61)
Ds 0,5187 Dss 0

The Diven factors correspond to a normalized fission distribution.

The measurement time is 3600.10% ms i.e. 1 hour. Considering two time gates
T = i and T = %, there are 72.10% time gates of length 77 and 72.107 time gates
of length T5.

The mean and Feynman moments of order 2 and 3 are presented in figure 2.28,
2.29 and 2.30 respectively. We draw almost the same conclusions as for the previous
case, except the time of measurement is 100 times higher than for the previous case.
On the figure 2.29 we can see that the Feynman moment of order 2 is still noisy. On
the figure 2.30 we can see the fluctuations goes higher for the previous case.
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Figure 2.30: Y3(¢) with two vertical indication on T'= 2 and T =2, ¢ is in s

2.5 Neutronic code check

The main objective of this section is to compare the Feynman moments of order 1
to 3 on two cases with two neutron codes: MCNP6 and Tripoli-4. The comparison
will allow verifying the observed asymptotic values.

MCNP6 (see [Goo+13]), which stands for Monte Carlo N-Particle transport, is
a code developed by the Los Alamos laboratory since the Manhattan Project to
simulate nuclear physics processes, 37 types of particles in particular the neutron
transport equations and the evolution of gamma rays.

An MCNP file contains the following information

Case
System geometry
Precise composition of
the system (present el-
ement, density, etc...)
Type of data we want
to compute (Tally)

Then MCNPG6 provides a ptrac file. This file is used to retrieve the timelist file
using ”ap2list” (see algorithm 5).
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Algorithm 5: Pseudo-code of ap2list
Initialisation of the number of subdivisions of the file nb_batch, t_max the
time of the experiment;
Index of the previous mother index settled npsp = 0;
Reading of the ptrac file;
Computation of the length of the file: imaz;
Building the TimelList file;
for : = 1,7max do
Read the index of the mother nps and the detection time tg;
if t; > 0 then
if nps # npsp then
L u ~ U0, 1];

t_source = u*t_max;

Convertion for MCNP

(time in MCNP is in 10™®s to convert in ms ¢t_d * 10~°ms):
t’.d = t_source + t.d * 107° ;

npsp = nps ;

Updating additional variables for next loop;

Sorting of the detection times in increasing order;

Writing the detection times in nb_batch files;

Exhaustive details can be found in [Goo+13].

Tripoli-4 is a general purpose transport code, it calculates the transport of elec-
trons, neutrons, positrons, photons by the Monte Carlo method in 3D geometries.
The main fields of application are radiation protection, criticality safety and reactor
physics. A variance reduction technique is implemented, but it will not be useful
here. Exhaustive details can be found in [teal7]. All the work with Tripoli-4 was
done with Davide Mancusi whom I thank again for his advice and help.

More precisely, we will use the analog mode here. This allows similar calculations
to be made with respect to collisions and the transport between collisions. This
calculation does not provide criticality calculations, and only the neutron or photon
can be considered as a particle type in this context (the two cannot be considered
together because photons produced by the reaction induced by neutron interactions
are not yet available).

The results of the code are stored in the file track.roots which is a branch tree
resulting from the Tripoli-4 calculation. In the generated branching tree, we call
"mother” the primary neutron of an induced fission chain. In order to process the
tracks.roots file, we used post-traitement.py which is summarised in the following
algorithm 6.

2.5.1 Modelisation of the data of a first case
We study the data of the spherical case
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Algorithm 6: Pseudo-code of post-traitement.py

Importation of ROOT, etc...;

Loading of the library "libtripoli4ddepletion.so”;

Loading the tracks.roots file of the corresponding case;

Initialisation of simulation directory, the batch number and the number of
particles;

Open TimeList file to fill with the counts;

for batch_key in batch_keys do

Initialisation of batch_dir, packet_keys, new_batch = True;

for packet_key in packet_keys do

Consider the current batch;

if new_batch then

n_particles += batch.size();

new_batch = False;

n_tracks = batch.getNbtracks();

for i in n_tracks do
Compute the properties of the mother of the points its position,

time and energy of the point
(x_mother,y_mother,z_mother,t_mother,e_mother);

for j in z_range(n_points) do

point = track.GetPoint(j);

Affectation of the position, time and energy of the point
(XaYaZ7tve);

Computing the time of detection on the *He of the current
point in the TimeList file;
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&5

Figure 2.31: Scheme of the first case

The composition of the different layers are

220 f: Spontaneous fission source, compound Poisson type (thickness 0.01cm)

Air: The neutron passes through it almost without any interaction (thickness
19.99cm, 0.0013g/cm?)

CHs: The neutron collides with the polyethylene atoms to give rise to a ran-
dom walk (thickness 2cm, 0.9 g/cm?)

3He: enables to capture the neutron by the reaction (thickness 2cm, 0.001g/cm?)
SHe +9n —] H+3 H + 765keV

(thickness 2cm)

Details of the Tripoli-4 file are given in the annexes A.2.12.

The advantage of polyethylene is that it slows down the neutron on its path to
facilitate its capture and detection in the 3 He.
In practice, we obtain the detection times through the presence of electrodes at the
interface between the polyethylene and Helium-3. The outputs of the code can be
processed as follows thanks to dedicated routines (see algorithm 5 and 6).

Physical data extraction of the test case

We have given the geometry of the simulation, we now exploit the results.
Tripoli-4 allows access to the energies after their emission or before their detec-
tion (via post-traitement.py allowing the processing of tracks.root files, i.e. the file
containing the branching trees of the fission process). Thus, we search for the distri-
bution of neutron energies after their emission or before their detection, we obtain
the following histograms:
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Figure 2.32: Histogram of neutron energies in MeV after emission in linear scale,
for a batch number 500 and size 100
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For a batch number 500 and Size 100 with a radius of CH_2 22., of He_3 24., of CH_2 26.

Figure 2.33: Histogram of neutron energies in MeV just before detection in log scale,
for a batch number 500 and size 100

In order to better understand the correlation between the energies associated
with a neutron before its detection and its detection time, we display the following
diagram
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For a batch number 500 and Size 100 with a radius of CH_2 22., of He_3 24., of CH_2 26.
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Figure 2.34: Diagram of the log of the detection times in function of the log of the
energies in MeV of neutrons just before detection

Thus, we note that a large majority of the detected neutrons have low energy
and low to high detection times.
Furthermore, in order to observe more precisely the average energies of the neutrons
before their detection or just after their emission as a function of the number of
neutrons emitted by the source, we draw the following diagrams

For a Batch number 100 and Size 100 with a radius of CH_2 22., of He_3 24., of CH_2 26.
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Figure 2.35: Diagram of the log of the neutron energies in MeV just after the
emission as a function of the number of source particles emitted
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For a Batch number 100 and Size 100 with a radius of CH_2 22., of He_3 24.,, of CH_2 26.
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Figure 2.36: Diagram of the log of the energies in MeV before their detection as a
function of the number of source particles emitted

It can be seen from the two previous figures that the average value of the neu-
tron energies considered has approximately the same value (red dot), whatever the
number of neutrons emitted by the source.

Thus, the average value of the neutron energies considered does not depend on the
number of neutrons emitted by the source.

The histograms of the neutron energies just after emission and before detection
suggest that they may be Gaussian distributions. To do this, we use the kernel
density estimate (KDE) to confirm this hypothesis. We have the following graphical
representations:
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Figure 2.37: Scatter plot of the log of the energies in MeV before their detection as
a function of the neutron energies just after the emission

We recall the formula of the kernel density estimation

p(x) = #ZK(X;’Q) (2.62)

where x € RY, d € N* the dimension of the considered mesh, the Gaussian peaks
are positioned at the x; € R? and

Ky) =]] L % (2.63)

We provide a representation of this kernel density estimation in the following
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ernel Density Estimation of the energies of the neutrons at emission and before detection02E
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Figure 2.38: Kernel density estimation of the log of the energies of the neutrons
detected as a function of the energies before detection

—— Kernel density estimation of the neutrons at emission
0.8 I Histogram in linear scale of the neutrons at emission

8 10

Kernel Density Estimation of the neutron energies at emission

Neutron energies at emission

Figure 2.39: Kernel density estimation and histogram of the energies of the neutrons
just after the emission
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0.5 —— Kernel density estimation of the neutrons before detection
I Histogram in linear scale of the neutrons before detection

IHI|I I
-5 0

Neutron energies before detection

Kernel Density Estimation of the neutron energies before detection

Figure 2.40: Kernel density estimation and histogram of the energies of the neutrons
just before detection

Processing of the file of the detection times
Finally, we construct the detection time histogram from the timelist file produced

by post-traitement.py (used to process the tracks.root files, i.e. the file containing
the branching trees of fission)

80000 B Histogram of the number of detections in linear scale
70000
60000
50000
40000

30000

20000

10000
0 MM“. boovww o iowowe s e

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025 0.0030 0.0035
For a batch number 500 and Size 100 with a radius of CH_2 22., of He_3 24., of CH_2 26.

Figure 2.41: Detection time histogram in linear scale for 50000 sources particles

We assume that the corresponding distribution is exponential. In order to ap-
proximate the parameter of the exponential distribution.
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For a batch number 500 and Size 100 with a radius of CH_2 22., of He_3 24., of CH_2 26.

Figure 2.42: Histogram of the detection times in log scale and associated cumulative
distribution function

In order to better understand the number of neutrons in the logarithmic scale
representation, we plot the cumulative distribution function of the corresponding
distribution. By drawing a vertical line at the end of the first part of detected neu-
trons, at the intersection of this line with the graph of the cumulative distribution
function we notice that 70% of the neutrons correspond to this part of the exponen-
tial distribution. There is therefore a small proportion of neutrons that should be
taken into account in the model with a second exponential.

The detection time file provided by the codes allows us to make a comparison
between the different Feynman moments (MCNP, Tripoli and the asymptotic values
given by the point model).
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0.301 —— Theoretical mean number of detections in function of the time gate -
—— Empirical mean number of detections in function of the time gate (MCNP6) -~
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Figure 2.43: Mean number of detections as a function of the time gate, ¢ is in s
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—— Feynman moment of order 2 in function of the time gate (MCNP6)
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—— Asymptotical value of the Feynman moment of order 2 for MCNP:0.483
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Figure 2.44: Comparison of the Feynman moment of order 2 calculated with MCNP,
Tripoli as well as asymptotical value in the point model approximation (green), ¢ is

s
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0.3571 —— Feynman moment of order 3 in function of the time gate (MCNP6)
—— Feynman moment of order 3 in function of the time gate (Tripoli-4)
0.3071 —— Asymptotical value of the Feynman moment of order 3 for MCNP:0.194
- M ] h ‘
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Figure 2.45: Comparison of the Feynman moment of order 3 calculated with MCNP,
Tripoli as well as asymptotical value in the point model approximation (green), t is
ins

Remark 2.5.1. The same set of parameters p is calculated with different nuclear
data; the Terrel distribution for MCNP and Freya for Tripoli-4. The asymptotes for
MCNP and Tripoli-4 in figure 2.44 and 2.45 are very close because only one element
is considered: *2C'f and the spontancous fission distributions are similar.

Details of the calculations of the asymptotic values of the Feynman moments
can be found in the state-of-the-art, see section 1.6.3.
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2.5.2 Modelling of the data of the second case

As before, the spherical case where a uranium solution is placed in the centre:

&5

Figure 2.46: Scheme of the second case

The composition of the different layers are

o UHE: Mixture composed of 90% #U and #8U, the 10% left being reserved
to water (thickness 14cm)

e Air: The neutron passes through it almost without any interaction (thickness
19.99cm, 0.0013g/cm?)

e ('Hjy: The neutron collides with the polyethylene atoms to give rise to a ran-
dom walk (thickness 2cm, 0.9 g/cm?)

e 3He: enables to capture the neutron by the reaction (thickness 2cm, 0.001g/cm?)
3He 4.0 1 3
sHe +) n —; H+7 H + 765keV

(thickness 2cm)
Tripoli-4 file details are given in annexes A.2.12.

The interest of polyethylene is to slow down the neutron in its trajectory to
facilitate its capture and detection.
In practice, we obtain the detection times through the presence of electrodes at the
interface between the polyethylene and Helium-3. The outputs of the code can be
processed as follows thanks to dedicated routines (see algorithm 5 and 6).

Physical data extraction of the test case

We make progress by analysing the neutron energy distributions just after emission
and just before detection.
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For a batch number 100 and Size 100 with a radius of CH_2 22., of He_3 24., of CH_2 26.

Figure 2.47: Histogram of the neutron energies just after the emission

As the previous graph does not allow a correct visualisation of the neutron energy
distribution just before detection, we use the logarithmic scale.

0.401 Il Histogram of the neutrons energies almost before detection in log scale
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Figure 2.48: Histogram of the neutron energies just before detection in log scale

As in the first case, we study the diagram showing the detection times as a
function of the neutron energy just before detection.
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For a batch number 100 and Size 100 with a radius of CH_2 22., of He_3 24., of CH_2 26.

é’ -6 Energy diagram of the energies of the captured neutrons
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Figure 2.49: Diagram of the log of the detection times as a function of the log of
the neutron energies just before detection

To further investigate the data on neutron transport through polyethylene, we
plot the neutron energies against the number of neutrons emitted by the source.

For a Batch number 100 and Size 100 with a radius of CH_2 22., of He_3 24., of CH_2 26.

1
e - Energies of the detected neutron in function of the number of the neutron emitted by a source pal

2 0 . Emprlcal mean of the energy given the number of emitted neutrons by the source
g
> L]
0]
c
K
g -5 . . '
[} [
2
g o-. "! ® .
(0] ' .
210 - -,;“ A B -
S [} e V o3 ] ° H
S) ..oo!’l .2 . .
0 ! o o .
$ HEHE
B | |I' I I '
C
o '
(]
£ LR D
%5 —20 .
D
o
° L]

0 20 40 60 80 100
Number of emitted neutron by the source

Figure 2.50: Diagram of the log of the neutron energies as a function of the number
of neutrons after emission
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For a Batch number 100 and Size 100 with a radius of CH_2 22., of He_3 24.,, of CH_2 26.

1
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Figure 2.51: Diagram of the log of the neutron energies as a function of the number

of neutrons before detection

As we have conjectured that the distribution of neutron energies just after emis-
sion and before detection are Gaussian, we try to approximate the distribution of
the energy pair considered. To do so, we use a method of estimating the density of

the nucleus, as in the first case.
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log of the energies of the neutrons after emission
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Figure 2.52: Scatter plot of the neutron energies before the detection in function of

the energies of the neutrons just after the emission
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Kernel Density Estimation of the energies of the neutrons at emission and before detection
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Figure 2.53: Kernel density estimation of the energies of the neutrons just before
detection and of the energies of the neutrons just after the emission

Furthermore, for each type of energy considered, we plot the KDE method in
dimension 1 and compare it to the marginal distribution of the couple distribution.

0.6
—— Kernel density estimation of the neutrons at emission

—— Histogram in linear scale of the neutrons at emission

8 10 12 14
Neutron energies at emission

Kernel Density Estimation of the neutron energies at emission

Figure 2.54: Comparison of the histogram of the neutron energy just after the
emission, of the 1D KDE method and of the marginal distribution
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Figure 2.55: Comparison of the histogram of the energy of the neutrons just before
detection of the 1D KDE method and of the associated marginal distribution (2D
KDE)

TimelList file processing
Finally, we elaborate a histogram of the detection times from the TimeList file

provided by post-traitement.py (allowing the processing of the tracks.root file, i.e.
the file containing the branch trees of the fission)

As before, we plot the histogram of detection times aided by the python functions

I Histogram of the number of detections in linear scale
10000
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0 0.0000 O.OOOSMW 0.0010 0.0015 0.0020 0.0025

For a batch number 100 and Size 100 with a radius of CH_2 22., of He_3 24., of CH_2 26.

Figure 2.56: Histogram of the detection times in linear scale
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The appearance of the histogram also suggests that the actual distribution is an
exponential distribution.
Thus, the log scale histogram 2.57 shows two behaviours of the neutron detection
times. There is an exponential asymptote for short detection times and another
asymptote for longer detection times. Furthermore, we plot the associated cumu-
lative distribution function, so the total proportion of neutrons detected can be
read.

—— Histogram of the number of detections in log scale

—— Repartition function associated
8
6
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Dl )

2
0

0.0000 0.0005 0.0010 0.0015 0.0020 0.0025

Figure 2.57: Histogram of the detection times in log scale and associated cumulative
distribution function

We note that, contrary to the first case, the detected fast neutrons are in low
proportion (24%, read on the graph of the cumulative distribution function). This
is due to the fission and thickness of the UHE mixture.

The detection time file provided by Tripoli allows us to establish a comparison
between the different Feynman moments given (MCNP, Tripoli) and the asymptotic
values predicted by the point model approximation.
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Feynman moment of order 2 in function of the time window (Tripoli-4)

—— Asymptotical value of the Feynman moment of order 2 for MCNP:6.99

—— Asymptotical value of the Feynman moment of order 2 for Tripoli-4:8.88
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Figure 2.58: Comparison of the Feynman moment of order 2 with MCNP, Tripoli
and with the values given by the point model approximation

Remark 2.5.2. The same set of parameters p is calculated with different nuclear
data; the Terrel distribution (see [Ter57]) for MCNP and Freya for Tripoli-4 (see
[VP15]). The asymptotes for MCNP and Tripoli-4 in Figure 2.58 are then different

because of the two different elements present and their Diven factors.

Finally, we can conclude after studying the results of this comparison that
MCNP6 and Tripoli-4 provide similar Feynman moments.

To conclude this chapter, we have established the analytical expressions for the
first three moments of the distribution of the neutrons counted between T and t
during the stationary state and verified them by using a Monte-Carlo code in the
neutron point model approximation.
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Chapter 3

The neutron noise inverse problem

3.1 Inverse problem

The general form of the direct problem is as follows

M:R> — R?

p — Mi(p) (8-1)

where

p=| « (3.2)

M(p) = | B[N, (3.3)

is the vector of observations of the simple moments of the distribution Ny, of
the number of neutrons detected during a time gate t. Most often, the first three
moments are taken into account. However, when the ec range is large enough, the
fourth order moment can be considered.

We recall

e c¢ is the capture neutron detector efficiency

kesy is the effective multiplication factor eigenvalue of the system

« is the prompt neutron decay constant

S is the intensity of the source, i.e. the number of neutrons emitted per unit
of time

x is the proportion of spontaneous fission source neutrons, it is equal to 1 for
a pure spontaneous fission source and 0 when there is only an (o, n) source
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The first three parameters are related to fission and detection, the last two are
related to source characteristics.

Remark 3.1.1. Another parameter p can be expressed in terms of the multiplication
factor p = ]%k’;—fff_l and will be considered in the following.
From the relation A\pep = Acec, we can deduce e (average number of detections per
neutron capture) is related to the fission efficiency ep (average number of detections
per fission) thanks to the relation

k ke

(1— %)gc = %gF (3.4)

In the context of this study, we will consider an inverse problem with only three
parameters to recover

Definition 3.1.2. Given the observations y, we want to determine the input p* of
the model M such that

y = M(p") (3.5)
where s ;
M:R° — R
3.6
p — Mi(p) (3:6)
with
ec E[Npo4]
p=|Fkess M(p) = | E[Nj ] (3.7)
S E[N[%’t]

To this end, we first recall the work of [al.98] where the analytical resolution of
the Bohnel equations [B685] was proposed in order to solve the inverse problem.

Remark 3.1.3. The interested reader can consult [Shi+19] to have a complete
nomenclature of the notation of neutronics.

Another way is to consider minimising the square norm of the difference between
the observations and the model, i.e. to find

argminlly — M(p)|? (3.8)
P

We focus on the behaviour of this norm with one parameter, two parameters and
three parameters. Then, we will also take into account the covariance matrix of the
measurements in quadratic form that determines the least-squares misfit function
3.8.

The least-square problem 3.8 is a non-convex optimization problem. We will con-
sider the simulated annealing method in order to have an estimate of the position of
the minimum of ||y — M(p)||>. In a second part, we will use Bayesian methods and
MCMC sampling methods on the cost function ||y — M(p)||?, the Bayesian methods
provide the a posteriori distribution of the parameters of the system given the ob-
servations ply. The MCMC sampling methods are the Metropolis-Hastings (MH)
algorithm, the version of [HST99; HST01] and the MH algorithm with covariance
matrix adaptation (CMA) in order to sample the a posteriori distribution of p|y.
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3.1.1 Analytical inversion method

In the Bohnel method, four unknowns are deduced from the measurements of the
number of singles, doubles, and triples counts (see next definition). In [PEP09]
Pazsit provided a rigorous derivation of the solution. A complete view of the notation
dealing with this question can be found in [Shi4+19]. We expose here how to proceed
in our case.

We recall first the Bohnel method, which is dealing with an equivalent problem
of the problem 3.6. This method is used to solve analytically the following inverse
problem. Some details can be found in [Hum16].

Remark 3.1.4. We recall the stationary regime is established when, for kerr < 1,
the ergodicity for X; is achieved. This is the same thing as in the state-of-art, see
1.6.33.

Here, we define the output that will be used in the current problem.

Definition 3.1.5. Let a time gate of duration t. We consider here the stationary
reqime 1s established. We introduce the singles count detected during t given the
stationary regime Nic(t), the number doubles correlated counts Nac(t) during t
given the stationary regime, and the number triples correlated counts N3 c(t) during
t given the stationary regime, where the singles counts rate is Singles, the doubles

correlated counts rate is Doubles and the triples correlated counts rate is Triples
(cf. Chapter 2)

Nic(t) .= Singles = Z nQn(t)

neN*
Na,o(t) := Doubles = %; ”(”T_”Qn(t) (3.9)
N3 o(t) :== Triples = Z nin = 13(71 - 2>Qn(t)

neN*

where Nic(t) = E[Npyl. A neutron is considered to be a leak when it does not
induce fission, in the point model approximation this refers to capture of a neutron.
Leakage efficiency is

‘ec := Probability that a captured neutron is detected‘ (3.10)

According to [Ser45], the leakage multiplication of the system is

M7y, :=the number of neutrons that escape permanently from the active material

when a single neutron is introduced as a primary source,

(3.11)
This term reflects the fact that not all the new neutrons produced by induced fissions
escape from the sample. Instead, some will be captured in the sample. We also define
the quantity

Sa
x &/ 12
a oS (3.12)
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Then the input parameters of the Béhnel equations are

Ec
PBohnel = Qg (313)

SF

The reader will notice that in this subsection the input parameters are noted
PBshner but are different from those of the problem 3.6.

From the definition, we can deduce

Proposition 3.1.6. Multiplication leakage

We have
1 — FKesr
M = Y (3.14)
]._ keff

Proof. We recall the equation of the mean (eq. 1.135 from the state-of-the-art)

d _
%nt + any = S (315)

where S = Sy + 75Sp. During the stationary regime

d
then
S
ng = —
a p—
SO 1. e
= , where § = — is the mean lifetime of the neutrons (3.17)
1 — keys T
B S
Ar(1 = Kegy)
The rate of capture (leak) is
_ A
)\cnt = AT S
1 - k:eff
ok ) (3.18)
= Y~ S = MpS by definition
L= Kegy
Then by identification
1 — Fesr
My, = z (3.19)
1 - keff
O

For further computations, we define
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Definition 3.1.7. The asymptotic Feynman moment of order 3 Y3 is the sum of

the two quantities
2
D vsD
Y3900 i= <6F2 2) (1 — Xpyf QS)
P I/DQ
(3.20)

The link with the Feynman equations neutron multiplicity counting is

Proposition 3.1.8. We can establish

2Ny ot
() = 5t
Nico(t)
(3.21)
Y},(t) _ 6N37c(t)
NLc(t)
Proof. This result is established thanks to
pl(T —t)

Y, (T —t) = —————= 3.22
from the state-of-the-art, section Stochastic neutronics, stochastic neutronics equa-
tions, Feynman moments. O

We can establish the results
Proposition 3.1.9. Bohnel equations and direct problem
The direct problem of the Bohnel equations is
M:R* - R3
3.23
PBoshnel MBb'hnel(pBb'hnel) ( )
where
Ec
M
PBshnel = aL (3.24)
SF
15 the parameter vector of the point model and
Singles
MBb'hnel(pBéhnel) = Doubles (325)
Triples
where the Bohnel equations are
Singles = ec MpvsSp(1 + ax)
ZM2S Mg —1
Doubles = %TLF(VQS + (14 ox) _L Valg)

Triples =

2
e M3S Mp—1 M —1
C—LF<V3S—|— L 1 ((1+Oéx)7/3ﬂg+3y25yz)+3< I7L 1 ) (1+Oéx)95)

(3.26)
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Proof. The number of single counts is
Singles = S E—F_
= €CMLS

We use the following variable
Sa

vsSE
then since S = S, + 7sSp, S = vsSr(1 + ax).
We deduce the first equation of Bohnel

Ox =

Singles = ec MpvsSp(1l + ax)

The number of double correlated counts is

. Yoo
Doubles = —Sznglgs 2
Singles ep Dy < I/SDQS)
= 1 —xp—
2 p? VDo

To express this quantity in the variables 1, M we use

My, -1 kegr 1
v—1 1_keff v

what enables to deduce

We can deduce the second equation of Bohnel

Mp -1

g2, M?S
C—“(VZS+(1+QX) S VUs)

Doubles =

The number of triples correlated counts is

SinglesYs o

Triples =
riples 5

We use Tripless

2
. SinglesYs s Singles [ ep Dy vgDog
Triplesy := o = 1—xp i)

6 6

We also use T'ripless

Tripless :— SinglesYs 3o  Singles < B 5%D3)

6 6 03
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Then we can decompose equation 3.34 into two different parts

SinglesYss o SinglesYs s o ‘ .
Triples = g 668 S200 4 29 668 23 — Tripless + Tripless (3.37)
But
2
— p3 = 5C’M ﬁl/g (338)
Moreover
72 —
vgDsg B 1 v—1 V38
xP 2D 1+ ay (ML — 1) V3Ug (3-39)
Then
SM3ES Mg —1
Tripless = SCTLF(V?,S + (1 + ax) 17L— 1 V35Us) (3.40)

Finally the third Bohnel equation is

6 v — v—1

2
3 M3S M;p —1 M; —1
Triples = Sl (V3S — 1 ((1 + ax)vsvs + 3rass) + 3( L ) (1+ Oéx)l/5>

(3.41)
To sum up, the proposition is established. O

Moreover, we know that

Proposition 3.1.10. The asymptotic Feynman equations
The asymptotic Feynman equations are

v _ erDy 1 —x vsDas
200 = T oD, (3.42)

2
erDs vsDas e2.D; vsDsg
Y300 =3 1— — 1-—

These equations were established in the state-of-the-art, the first chapter.

Now we can solve analytically the inverse problem

Proposition 3.1.11. Bohnel inversion equations, and another inverse problem
Knowing the direct problem of Bohnel equations 3.23, the inverse problem of Bohnel
equations knowing the observations

Nl,o(t)
Yovs = MBéhnel(pBb'hnel) = NZ,C(t) (343)
N3 ()

we can deduce the parameters Ppshnel.-
Now, we consider ax known. The inverse problem is the following : knowing the
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mean E[Njoy] and the asymptotical Feynman moments of order 2 and 3 Y2 00, Y300
as observations

E[N[Qﬂ]
Yobs = M(p) - Yv2,oo (344)
Y3 00
we want to recover the parameters p. Then, considering a; = f’;gzs, as = 952%”35 , a3 =
3D2, p € [0,1] is the solution of
x(xaiz — agaz)p® + (xa1(1 —22) +az)pz — 1 =0 (3.45)
Then the inversion procedure provides
solution of equation 3./
p pQYQ,oo
p=|er| = D (3.46)
IS E[Njg 4]
F TeTEt
-t

From this last results we can deduce kesy and ec.

Proof. We can consider the analytical inversion using the quantities ElNp t]} , Y200, Y300

In order to use the analytical inversion, we consider
 Yie
2
3Y5

2
(a2 (1) 223 )
- 2 2
<—D> (1 Xp”%?) (3.47)
(1 - Xﬂ”i%S) ~ Pigh (1 - Xp”§V%35>
- 2
(1 Xp”ig35>

Considering a1 = %, s = 17;%335, as = 3[)%% we have
1— — 1—
L= (1 —xpar) — pas(1 — xpas) (3.48)
(1 —xpa1)?
Then the reactivity p is the solution of the equation
x(xaiz — agaz)p® + (xa1(1 —22) +az)pz — 1 =0 (3.49)
Knowing p we can deduce
1
Kepp = 77—
1—p
M= 1
P (3.50)
1 — et
M | 4
" T ke
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Then, depending on the application, we have to consider different subcases.

e When x = 0, the source is only Poisson type (Sp = 0). So z > 1, p = 152,
303

then kepy = ;72— and so Mp = 1+ %

e When x = 1, the source is compound Poisson (Sx = 0). So z < 1.

D3s
3DZ,

If kerr = 0, there is no induced fission z =
1t o

If kepp — 1, 2 = 1 for all x.

Most of the time, there is only one solution p € [0, 1] for one (z,x). But in
some cases, there can be two admissible solutions.

a plot of z in function of k.f; can help to have a better understanding of these cases.

The Bohnel equations can be deduced from the equations of E[ [o,t]], Y2 00y Y300
and conversely. In the case where ayx is known, we now have an analytical inversion
method. O]

Application
Now we consider again the case with the point model parameters

St =70 n.ms™!

pr=—1
p'=| e, =0,2510"2 (3.51)
x* =0
a* =2 ms!
where p* = —1 corresponds to kZ;; = 0.5. All the computations will be done in

ms~!. The measurements are done for a time duration 3600 s. The spontaneous

fission emits at most 1 neutron, the induced fission emits at most 7 neutrons (with
Terrel distribution) and the nuclear constants are

7 2,53108 v 1
Dy | = |0,81168 Dos | = [0 (3.52)
Ds 0,51843 Dss 0

In the present case x = 0, the equation 3.47 becomes

Ds
=1-p— 3.53
P P32 (3.53)
which is equivalent to
Ds I
—=1-z
P3D2
1—» (3.54)
P= "Dy
3D2
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thanks to the fact that p =1 — k y

1 I 1-=z
kerr 3
1 -2 1 (3.55)
gpr s
D3
3D32
ke = 3.56
if 2 oo (3.56)
Moreover 2y,
P Y2 00
= ’ 3.57
EF D, ( )
and because of the equation 3.4 we dispose of
p2Y2,oo
=1
ef
And finally, we can deduce the intensity of the source
]E[N[O t}]
Sr = 3.59
P ey (3.59)
In the current case, we have the numerical values
E[Njo 4] 0.28086 t
Yobs = Y. = | 8.24294 1073 (3.60)
Y3 0o 2.57305 1074
Then
D3
gy = 3D32
sop + gy — 1 (3.61)
= 0.50000
Also
o P Y200
Dy(57% — 1) (3.62)
=0.25 1072
And finally
SF E[N[O t]]
VS_—pl,t (3.63)
= 70.00000
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To sum up
kesy 0.5000
p=|¢e | =102510"2 (3.64)
Sk 70.00000

We conclude that the results of the analytical inversion are exact, but the obser-
vations are noisy in practice.

We can consider noisy observations, and try to recover (kefr, Sk, ec). For a time
gate t = %, we have the following MC realisation using ”Counting” (see Chapter 2,
algo 3)

E[Np 4] 1.3871428966522217
Yobs,,mc = | Ya(?) = | 0.10204351973567416 (3.65)
Ys(t) 0.13522437794891484
With these values, we obtain the numerical result
kers 7.30428 1072
pivc = | ec | = | 4.86016 102 (3.66)
S 927.242536

This set of values is inoperable in practice. Moreover, we compute the following Lo
norms |[s||a = />, |si|?
IM(p*) = Yobs,1,1c||2 = 1.118423

3.67
llp* — p1,mcl|2 = 42.75962 ( )

Remark 3.1.12. We can obtain negative values for Ys(t), which provides absurd
results.

We use again the code ”Counting” 3, each new launch of the code the pseudo-
random seed is changed, and it provides independent realisations of the first exper-
iment. We obtain

E[Npo4] 1.42714
Yobsomc = | Ya(t) = [ 5.83425 1072 (3.68)
Ys(t) 0.34410
With these values, we obtain the numerical result
keyy 7.95818 1073
pPovc = | €c | = 0.49774 (3.69)
Sr 2.85338

This value is also not useful in practice. Moreover, we compute the following Lo
norms

[IM(P*) — Yobsomcl|lz = 1.19779

3.70
Ip* — p2,mc|]2 = 67.1502467 (3:70)

Moreover, we can compute the Ly norms
||Yobs,1,m0 — Yobs,2,mc|]2 = 0.21712 (3.71)

||P1.0vic — P2mc]]2 = 24.39338
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tO tmax
I 3I1 I2I3I4I2I3I
S —

T

Figure 3.1: Measurements of the number of neutrons detected during a time gate T
between to and tmaz: Nl,[O,T} = 3, NQ,[O,T} = 1, NS,[O,T] = 2, cee

The equations 3.67 and 3.70 provide the order of magnitude of the deviation at
M(p*) of the observations generated by the ” Counting” MC code 3. Both quantities
[|IM(p*) — Yobs1.mc||2 and || M(p*) — Yobs 2,mc||2 are quite the same order of magni-
tude, i.e. 1.1 or 1.2 respectively. This means that the noise in yops,mc = M(p*) + €
is small and almost the same here. Furthermore, we can consider the difference in
norm Lo of the corresponding parameters ||p* — p1.amcll2 and ||p* — p2.amc]|2, these
two quantities are not as close as the noise, they are more different and the equa-
tion 3.71 confirms it. This highlights the fact that analytical inversion using noisy
observations is not robust enough to be used in practice.

3.1.2 The observations

In this chapter, the observations y.s are provided by the Monte Carlo ”Counting”
code 3 or taken as M(p*) where p* refers to the actual parameters of the current
system. It can also be experimental data provided in a Time List file.

As indicated in Figure 3.1, the realisations of Njo 7y are calculated by storing
the detection times (the red bars) over a measurement time between ¢y and ¢4, by
subdividing them into time gates of duration 7' providing the number of neutrons
detected during the [-th time gate of length T": N o 7y.

Then, we can define the observations y.s = M to refer to the Monte Carlo
estimates of the first three simple moments of Ny

Yobs = M

E[Npa)

E[N{ 4]

= M(p*) + ¢

(3.72)

Where, for Nyeatisations € N*,

— 1 Nrealisations

E[N/

0.4 N;

L00.] (3.73)

Nrealisations =1

and € is the noise of observations.

These estimates will be taken into account when estimating the moments for the
whole of this chapter. The notation M will refer to these estimates when they are
mentioned.
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3.1.3 The mean square error, a first consideration for the
inverse problem

In the first part, we will study the influence of p on several norms.

We consider here the parameters of the point model

e, =0,25.1072
pr==
pr=| a*"=2ms! (3.74)
S* =70 n.ms™!
x*=0
where p* = —1 corresponds to k7;, = 0.5. One spontaneous fission emits at most 1

neutron, one induced fission emits at most 7 neutrons and the nuclear constants are

% 2,53108 Ug 1
D, | = | 0,81168 Das | = |0 (3.75)
Ds 0,51843 Dss 0

An inverse problem with the reactivity p

In order to study the influence of p on the outputs of our model, we will focus on
several cost functions. In this particular case, it will be clearer whether the inverse
problem is well posed: this means that we can recover p* using the observed cost
function. We recall the value p* = —1.

We first study the cost function Cost;.

& IM () — My, )|
Costi(p) = Z XG0 : (3.76)

Jj=1

where M,(t) is the estimation of ENio.nWio.n =V Mo,y =#D1 -+ 5 [2, +00[ using the

7!
Monte-Carlo code ”Counting” 3 in the point model approximation and M,;(p,t) =

where G is defined in the state-of-the-art (see Chapter 1 or index of

. =1
notations).

We have considered three different time gates which correspond to

1
=~
«
ty= 2 (3.77)
(6%
10
ty = —
a
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The MC code ”Counting” 3 provide the observations

0.13716
yobs(tl) =1 0.15689
0.19797
0.27432
yobs(tg) = 10.35703 (3.78)
0.55324
1.37286
yobs(tg) = | 3.28714
9.70429
the associated covariance matrices are
- 1.86592 107° 2.38450 10™° 3.484340 107°
Cov(tl) = | 2.38450 10~® 3.51872 10~° 5.98092 10—°
3.48440 10~° 5.98092 107° 1.15613 10~
- 7.61549 10~° 1.23055 10~* 2.41304 10~*
Cov(tg) = 11.23055 107* 247872 10~* 5.81751 10~* (3.79)
2.41304 10~* 5.81751 10~* 1.54774 1073
- 2.00344 1073 7.41644 1073 2.90106 102
Cov(ts) = | 7.41644 1073 3.26067 102 0.14227
2.90106 102 0.14227 0.670244

Figure 3.2 shows the evolution of the cost function Costy(p) for p € [—2; —0.16]
and three different time gates. We have chosen to draw the logarithm of the cost
function because we can observe the minimum. We can observe that the three curves
have a similar behaviour but that the minimum is more or less accentuated. This
variation of level can be explained by the variation of the time gate. Indeed, the
simple moments of order 2 and 3 are very noisy, the curve of the simple moments in
function of the time gate ¢ is erratic and thus the cost function Cost(p) is minimal
on the cost function p + ¢; where ¢, is an estimation error induced by the noise ¢
(see eq. 3.72).

First consider the curve for t3 = % in Figure 3.2. The minimum of this function
is approximately p*40.05, so the minimum of this function is relatively well-marked
with a small bias of 0.05.

The minimum of this curve is at p* 4+ €;, which is consistent with the fact that
the observations are noisy.

We note the convergence to the p solution by improving the precision of the
in MJ(t),Vj € [2,+oo[ so we

mesh. By definition, there is a component M;.l!(t)
study the second cost function

M)
4!

> M (p,t)
)| [2 +i || M;(t) — — (M;(p,t) = =5)IP

M () — 2522

[ M (t) — Mi(p,t)
M (t)]2

Costs(p) =

(3.80)
where M,(t) is the estimation of E[N[O’”(N[O’”_l.?m(N[O’”_j+1)], J € [2,+00[ using the

Monte-Carlo code ”Counting” 3 in the point model approximation.
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Cost_1 in function of rho

—— For a time gate t=0.49939135999999223
—— For a time gate t=0.9993829499999751
—— For a time gate t=4.9993156699994685

7.51

5.0

2.5

0.0

Cost 1

—2.5]

—5.0;

—7.5]

-2.00 -1.75 -150 -1.25 -1.00 -0.75 -0.50 -0.25
rho

Figure 3.2: The log of 25:1 % for p in [—2; —0.16]

Figure 3.3 shows less information than the previous cost functions. Since the
simple moment of order j has a @ component, the rest of the cost function
considered is not sufficient to estimate the real parameter p*. This shows also the

error depends on the time gate ¢ but is not monotone in .

To conclude for this part, we considered two cost functions with the moment of
the distribution Ny, they have different minimums. The curve showing the most
information to conclude is for t3 = %. We can choose the first cost function in
our calculations because the second one does not provide enough information. This
could be useful when minimising a square norm, such as in the simulated annealing

use.

Influence of the type of moment

Still considering p and trying to obtain p*, we want to study the influence of the
time gate using the following cost function

1K) — M.t
Cos 3.81
ol Z ||M1< N (881)

where t; = é, to = % and t3 = % and Mj (t) is the estimation of E[N[O’t](N[O’t]_;?m(N[O’” _jH)], j €
[2, +oc[ using the Monte-Carlo code ”Counting” 3 in the point model approxima-

tion.

Knowing the outputs of our model and the chosen time gates, we draw the
Figure 3.4. The three configurations correspond to the consideration of the three
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Cost_2 in function of rho

17.5{ —— For a time gate t=0.49939135999999223
—— For a time gate t=0.9993829499999751
15.01 _ For a time gate t=4.9993156699994685
12.5]
NI10.0
§ 7.5
5.0
2.5
0.0 -
-2.00 -1.75 -150 -125 -1.00 -0.75 -0.50 -0.25
rho
. . 2 () MI(pt) | (1o
. ) IM(8) =M (p,t)]|2 3 M) ———=—(M;(pt)——L7)l| .
Figure 3.3: The log of NG + 2 imo 0, for p in
18 () =252
[—2; —0.16]

moments M;(t), j € [1,3] and thus we observe that there is a curve which provides
more information than the others; the green curve is flat and does not provide any
information, the orange and blue curves are sharper, but the blue one is the sharpest.
This means that we have to consider the moment of order one or two to get the best
estimate of p*. We still have the effect of the erratic behaviour of M.

We can see that the orange curve correctly estimates p* = —1.

Using a covariance matrix

In order to take into account the covariance between the measurements, we compute
the covariance matrix of the measurements, more precisely we will consider the
empirical covariance matrix of the observations (which we obtain from the Monte
Carlo realisations). This covariance matrix allows us to have a good approximation
of the shape of the a posteriori distribution, in particular it controls the width of
the a posteriori distribution which can be really degenerate when the number of
realisations of Ny is high.

We recall the shape of the covariance matrix, we will apply it to the neutron
counts distribution Ny .
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Cost_3 in function of rho

5_
O_
m
...:I
3
O -5
_10
—— For the moment of order 1
—— For the moment of order 2
—151 —— For the moment of order 3

-2.00 -1.75 -150 -1.25 -1.00 -0.75 -0.50 -0.25
temps

Figure 3.4: The log of 327 _, ”Ml(ﬁg){l(ﬁjl)l(ﬁ’”"'2 for pin [~2;—0.16] and [ = 1, 2 or 3

Proposition 3.1.13. The empirical covariance matriz of X; = (N})r=13 is

- E[N?]—E[N]2  E[N3] —E[N|E[N? E[N*] — E[N]E[N?]
K = Cov(X;) = | B[N —B[NE[N?] E[NY —E[N??2  E[N°] - E[NYE[N?]
E[NY) - E[ME[N?] E[N°] - E[NIE[N?]  E[N] - E[N?)?

(3.82)
Definition 3.1.14. Let n € N*, the norm associated to a matric K € PD(R) is
lyllk = y'K™ 'y, for any vector y € R™. (3.83)
where PD(R) refers to the set of positive-definite matrices on R.

This norm defines a quadratic form.

Thanks to the chapter on the state-of-the-art (and 8.2.1 [Garl7]), when the
likelihood is a Gaussian distribution N (M(p), Cov(p)), it is known that the a
posteriori distribution fiposterior has the form

2
15 0bs =M(P) 150y (p)
2

Hposterior (p) ~e %log(det(Cov(p))). (384)

The computation of the covariance matrix requires to compute the exact simple
moments up to the order 6, and this is too much complicated. So we suggest use the

— — =1
empirical covariance matrix Cov, and this is efficient because Cov ~ — Cov(p*)~},
when the number of realisations tends to infinity n — +oo (see A.4.2).

And then when we focus on the mode of the a posteriori distribution, we find
the maximum a posteriori (MAP):

argmin||y.ps — M(p)||? (3.85)

pPERS Cov
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Quadratic norm with covariance matrix of the measures in function of rho

102/ —— For atime gate t=0.49939135999999223
—— For a time gate t=0.9993829499999751
10°1 —— For a time gate t=4.9993156699994685

1072

H
<
IN

10°°

10—8,

-2.00 -1.75 -150 -125 -1.00 -0.75 -0.50 -0.25
rho

Juadratic norm with covariance matrix of the measures

Figure 3.5: || M(t) — M(p,t)||% for p in [~2; —0.16]

2
1%

The norm associated with the covariance of the measurements is considered in
Figure 3.5. We observe three curves linked to three different time gates t1, t2, t3. As
before, we observe a noise on the minimum of the curve, which can be explained
by the noise in M. The curve corresponding to the time gate to = % allows us to
estimate p* precisely.

Now we will consider a point estimation of p* with this norm because the mini-
mum is the best emphasized.

3.1.4 Simulated annealing

We introduce here a classical optimization method: simulated annealing (more de-
tails are given in [KGV83; Kir84]). It was introduced by Metropolis et al. as an
adaptation of the Metropolis-Hastings algorithm. This algorithm is designed to
search for the global minimum of functions, but it does not give information about
the uncertainty on the parameters (as do the Bayesian-MCMC methods). Here we
study this algorithm and analyse the efficiency of the algorithm.

The simulated annealing algorithm is inspired by metallurgy, where the tem-
perature of the medium is successively cooled and warmed in order to decrease the
energy of the medium.

In this algorithm, the temperature pattern, the energy and the density must be
specified. And must be adapted empirically to the considered problem.

Thus, the algorithm is initialized with a point with the initial energy, this en-
ergy is calculated with the energy scheme. And the initial temperature is chosen
arbitrarily in the definition domain. The density allows taking into account or not
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the new neighbour.

First, we choose the temperature pattern as

Definition 3.1.15. Temperature choice
At the iteration number i, the current temperature is T;, we use T;—1 and a coefficient
T such that

T, = mrT;_1 where T4 < 1

Then, the temperature decreases. We made the choice of 7p = 0.9999 and the
algorithm converges in our case, in 3D the temperature needs to be slow, and this
choice enables slow decreasing for the present case.

Secondly, with regard to the choice of the new neighbour
Definition 3.1.16. Choice of the new neighbour

We choose the new neighbour Pnew with a Gaussian distribution centred on the cur-
rent point

Pinew ™~ N(pja fTaCQ(pmaIJ - pmin,j)2]

in each component, where [Dmin.j, Pmaz,;| Will specify the research interval and frac
is the scale adaptation factor.

Then we compute the energy scheme as

Definition 3.1.17. Energy of for the simulated annealing
For p = (ep, S, p) the energy is chosen as

E(p) = |[M(t) — M(p,t)||? (3.86)

Cov
where t 1s the considered time gate.

We have implemented an energy version using the empirical covariance matrix
in the definition of the norm.

Definition 3.1.18. Density function of the temperature
For two energies E', E, the density in function of the temperature is the following

. 1 when E' < F

(& T

To sum up, at each new iteration the algorithm cools the temperature thanks to
the temperature scheme 7', propose a new neighbour p,.., compute the acceptation
rate thanks to the energy scheme E and the density with the Metropolis rule:

e we compute the variation of energy of the current point p and ppew: Ap =
E(p) — E(Pnew)

e When the variation of energy is negative, the new point pne, is taken into
account

e Else, the new point ppeyw is accepted with probability P(E(p), E(pPnew), T)
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Moreover, we will use an adapting factor frac in order to have an acceptation
rate between 0.25 and 0.5:

e If the acceptation rate is smaller than 0.25, then frac = 0.99 frac,

e If the acceptation rate is larger than 0.5, then frac = 1.01frac.

Then we cool down the temperature, and the next iteration of the algorithm is
executed.

Finally, we obtain a point estimate of the solution of our optimisation problem.

More precisely, we have

Algorithm 7: Pseudo-code of the simulated annealing for the inverse prob-
lem
Initilization of :
-the current point, its energy;
-the temperature;
for i = 0,iMaz do
Update the temperature T; = 7p71;_1;
Choice of a new neighboor ppey in a ball centered in p;
if P(E(p), E(Pnew), T) > u where u ~ U[0; 1] then
Store the evolution of the energy and the number of selections;
P = Prew;
Z‘acc,loc = iacc,loc + 1)
end
f ¢ = 0(mod 1000) then

lace,loc ,

tZace = 500
If 0.25 > txgee, then frac = 0.99frac;

If txgee > 0.5, then frac = 1.01frac;
iacc,loc = 07

If frac > 1, then frac = 1;

If frac < 107, then frac = 1074

o

end

end

Now, in the case where the parameter x = 0, we study the performance of
simulated annealing with the following complexity levels:

e One parameter is unknown

e Two parameters are unknown

e Third parameters are unknown

For the whole study of the simulated annealing, we consider the following entries:
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a time gate t = %, and the set of parameters is

e =0,25.1072
pr=-1
p’ = a* =2ms! (3.88)
S* =70 n.ms™!
x*=0
and in this context -
~(ElNpa] 1.38714
M= |E[NZ,] | = [ 345286 (3.89)
e 11.03000
E[NG 4]

estimated with MC code ”Counting” 3 and the covariance matrix of measurements

- 2.18385 1073 8.91485 1073 4.14834 1072
Cov = | 8.91485 1073 4.63091 102 0.25866 (3.90)
4.14834 1072 0.25866 1.65500

this matrix is positive definite, and the conditioning is 14320.71261 and its eigen-
values are 1.69663, 1.18474 10™*, 6.74996 10~3. We now analyse the result of the
simulated annealing algorithm applied to the neutron multiplicity counting problem.

One unknown parameter

First, we look for one parameter and the other two are fixed.

To verify that the simulated annealing is well coded, we use it to solve the inverse
problem in 1D as follows.

For this subsubsection we will consider 107 iterations of the simulated anneal-
ing, with an initial temperature Ty = 107, and the initial value of the parameter
Smazjtming At the end of the computations the algorithm provides the following
results

Unknown parameter S
Research interval [0, 1000]

Obtained parameter || 68.81691

Expected parameter 70

which is a deviation of 1.18309 to the real value of S.

The evolution of the energy as a function of the number of selections is shown in
Figure 3.6. First, in the output file we can see there are 86 873 acceptations among
10 000 000 iterations, in fact the 86 873 first acceptations happen in the 8 1072
fraction of first iterations, the algorithm reject always after. In the Figure 3.6, the
energy decreases before 58 000 iterations and then stabilises until the solution is
well approximated. We can see many fluctuations in the evolution of the energy
in function of the number of selection, this is due to the use of the adaptation
factor frac, the convergence to the minimum of the quadratic form correspond to
the diminution of the energy. The simulated annealing is designed to traverse the
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Plot of the log of the Energy in function of the number of iterations
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Figure 3.6: Log of the energy of S as a function of the number of selections using
the simple moments of order 1 to 3

energy landscape in such a way that it does not get stuck in a local minimum or
saddle point and finally finds the global minimum (when it exists). In figure 3.7, the
simulated annealing finds the minimum, the function is convex in a neighbourhood
of its minimum. This landscape is nice in 1D, but it will more complex to handle
in 2D and 3D. On the Figure 3.7, the value that the simulated annealing finds is
closed to 70 and is well-marked so the algorithm has not many difficulties to find
the minimum of E(S).

We provide here the same kind of results for kc.s¢ and e¢, to be exhaustive.

For keyr, the Figure 3.9 shows the energy in function of the value of kcsr. The
curve is well picked around k.ry = k¥, the curve is also less curved in this region than
before. As before, there are many fluctuations of the value of F(k.ss) because the
algorithm visits the whole energy landscape. As showed in algorithm 7, the factor
frac is used to adapt the proposition law in order to have a local acceptation rate
between 0.25 and 0.5, which guarantees we explore as much as possible the energy

landscape.

Unknown parameter kegy
Research interval 0,1]
Obtained parameter || 0.48895

Expected parameter 0.5

Concerning the Figure 3.8,in the output file we can see there are 110 890 accep-
tations among 10 000 000 iterations, this is due to the fact that the 110 887 first
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Scatter plot of log of the Energy in function of S
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Figure 3.7: Log of the energy as a function of S using the simple moments of order
1to3

Plot of the log of the Energy in function of the number of iterations
16 A

14 4

12 A

10 -

log of Energy
)

o
1

0 20000 40000 60000 80000 100000
Number of acceptations

Figure 3.8: Log of the energy of k.sf as a function of the number of selections using
the simple moments of order 1 to 3
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Scatter plot of log of the Energy in function of k_eff
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Figure 3.9: Log of the energy as a function of k.rs using the simple moments of
order 1 to 3

acceptations happen in the 8 1072 fraction of first iterations, the last three accepta-
tions happen in the remaining iterations which implies the algorithm is stuck fast.
In the Figure 3.8, the energy decreases before 78 000 iterations and then stabilises
until the solution is well approximated. The same kind of issue happen for e¢.

Finally, we also obtain interesting results for ec. The energy landscape of ¢
(see Figure 3.11) is the most marked. The minimum of this landscape is easier to
estimate with simulated annealing, which is why there are fewer fluctuations in the
evolution of the energy as a function of the number of acceptances (see Figure 3.10).

Unknown parameter ec
Research interval [0,1]

Obtained parameter | 2.45816 1073

Expected parameter 2.51073

Finally, we can conclude the estimation of one parameter with the simulated
annealing is achievable easily because of the energies landscape in function of the

parameter.

Two unknown parameters

Still considering the same case (M and Cov from MC estimation) as before, we
use the three first simple moments with 107 iterations, initial temperature 107 and
the initial parameters are (“2ezif®mini 5 ¢ [1:3] for a time gate t = L. We
still consider the parameter of the simulated annealing as before (rp = 0.9999,
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Plot of the log of the Energy in function of the number of iterations
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Figure 3.10: Log of the energy of e¢ as a function of the number of selections using
the simple moments of order 1 to 3
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Figure 3.11: Log of the energy as a function of e¢ using the simple moments of order
1to 3
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log( 0.1+energy(k_eff,S) )
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Figure 3.12: The log of energy as a function of (kesf, S) using the three first simple
moments, ec = €,

etc...). First, we will plot the energy landscape as a function of the two parameters
considered (considering that the last one is known) and zoom in to see what is
interesting in the neighbourhood of the real values. Then we analyse the behaviour
of the energy as a function of the number of acceptances.

We specify that the energy landscape is drawn with an explicit mesh with 100
points in each direction, and the remaining parameter is set to the exact value of
the parameter. Zooming in on the energy landscape is done by changing the domain
boundaries still with 100 points in each direction.

Figure 3.12 shows that the minimal points are not well distinguished. We there-
fore need to zoom in, as shown in Figure 3.13. This Figure shows there is a whole
range (kegyr,S) is minimal, and the minimum is not well-defined, thus the simulated
annealing has difficulties to find the minimum. We add the figure 3.13 could be
enhanced in order to show the simulated annealing result and the point p* are in
the same valley, but the simulated annealing result is deeper in the valley. The
difficulty to find the minimum can be overcome, but it will be done in the Bayesian
method part.

Then the simulated annealing ends with the results in the following table.

Unknown parameters keyr and S
Research interval [0, 1] x [0, 1000]
Obtained parameters | (0.82588,28.58705)

Expected parameters (0.5,70)

The evolution of the energy in function of the number of acceptations is presented
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Figure 3.13: Zoom on the log of energy as a function of (k.ys, S) using the three first
simple moments, ec = ¢ showing the relative position of the result of the simulated
annealing and p*

in the Figure 3.14. The output file shows 80947 acceptations among 10 000 000
iterations. As in 1D, this is due to the fact that the algorithm accept in the 8 1072
fraction of first iterations and then reject. We observe the energy fluctuates then
stabilises, this means the simulated annealing is over. The same goes for the next
computations.

As before, we draw the same conclusions about the energy landscape for (S, e¢).

Unknown parameters S and e¢
Research interval [0,1000] x [0, 1]

Obtained parameters || (5.88253,2.92955 10~?)

Expected parameters (70,2.5 1073)

We plot the evolution of the energy as a function of the number of selections (cf.
Figure 3.17). We also observe the energy fluctuates around a constant value, then
decreases to a constant value (a larger number of iterations confirms the algorithm
stays a long time in this area).

The two previous numerical experiments show the simulated annealing has lots
of difficulties finding the real value p*. It is due to the shape of energy landscape,
where there is a portion of surface that is minimal. This issue is also present in 3D.
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Plot of the log of the Energy in function of the number of iterations
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Figure 3.14: Log of energy in function of the number of acceptations using the three
first simple moments, ec = €
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Figure 3.15: The log of energy as a function of (S,e¢) using the three first simple
moments, kepr = ks,
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Figure 3.16: Zoom on the log of energy as a function of (S, e¢) using the three first
simple moments, kerr = k7,
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Figure 3.17: Log of energy in function of the number of acceptations using the three
first simple moments, kerr = k7,

174



CHAPTER 3. INVERSE PROBLEM 3.1. INV. PROB.

Three unknown parameters

We still consider the same case (M and Cov from MC estimation) as before, we
use the three first simple moments with 5 108 iterations, initial temperature 107 and
the initial parameters are (2mesizfmind - j ¢ [1:3] for a time gate t = 2. We still
consider the parameter of the simulated annealing as before (7p = 0.9999, etc...).
First, we will plot the projection of the energy landscape as a function of the two
parameters considered (the projection is made in the last direction) and zoom in to
see what is interesting in the neighbourhood of the real values. Then we analyse the
behaviour of the energy as a function of the number of acceptances.

Simulated annealing provides

Unknown parameters keyp, S and e¢
Research interval [0, 1] x [0,1000] x [0, 1]

Obtained parameters | (0.94259,99.33642,2.54623 10~*)

Expected parameters (0.5,70,2.5 1072)

The curve in Figure 3.18 shows the evolution of the energy as a function of the
number of selections by the algorithm. Here there is 198 882 acceptations among
5 10% iterations, the algorithm accept regularly during the 20% iterations of the first
iterations and then reject almost every time. We observe the algorithm search and
goes to a decreasing state.

Plot of the log of the Energy in function of the number of iterations
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Figure 3.18: The log of the energy in function of the number of selections using the
three first simple moments of Q,(t)

We can observe the energy landscape E(kess,S,ec) by fixing kepp = kj;p or
ec = €. The Figure 3.19 provides a global view of the energy landscape of (keyy, S)
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when ec = €, on this Figure we can see the different position of the real set of
parameter p* and the result of the simulated annealing pSimulated annealing - The pegylt
needs to be specified by Figure 3.20, when ec = ¢, i.e. for the figure (a), we
observe the real parameter is in a valley and not the simulated annealing result. If
the algorithm search in the landscape E(kerf, S,cc), so it has difficulties to find p*
in the landscape (a). We obtained the figure (b) for the results of the simulated
annealing, we see the result is in a valley but not the real parameter (kes¢, S). This
underlines the difficulty for the algorithm to find p*. The Figure 3.21 provides a
global view of the energy landscape projected on (S, ec) with ks = k7 ;, we observe
we need more precision to have a better understanding of the two positions of p*
and pSimulated annealing - The details of figure 3.22 (a) show the real point p* and the
result of the simulated annealing seems on the same valley, the figure (b) shows the
same fact. The point p* and pSimulated annealing 516 a4t the two extreme of the observed
valley, to have a coherent result with the system observed p*, this technique will be
done in the next sections.

To conclude on this use of the simulated annealing, the energy landscape we are
dealing with is really difficult to tackle because of the previous statements.

log( 0.1+energy(k_eff,S) ) log( 0.1+energy(k_eff,S) )
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Figure 3.19: Log of the energy landscape of (keyy, S)
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Figure 3.20: Zoom Log of the energy landscape of (keysys, S)
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Figure 3.22: Zoom Log of the energy landscape of (S, e¢)

Except in 1D, the simulated annealing hardly obtains a minimum consistent with
the system we observe. The energy landscape shows a range of probable values of
the p parameters. In its minimality domain, the simulated annealing does not know
which direction to choose. We could have used a strategy to lead the simulated
annealing to the right minimum. In order to obtain an a posteriori distribution
of the parameters knowing observations (the measurements) we will use Bayesian
methods and sample the a posteriori distribution with MCMC methods. In this
case, a good strategy to sample a degenerated distribution is the use of adaptation
of the covariance matrix (CMA).

3.1.5 Use of Bayesian methods

We want to obtain an a posteriori distribution of the parameters p knowing the
observations ys. To this end, we use Bayesian methods. Then we will use MCMC
samplings such as the Metropolis algorithm with adaptive proposal and Metropolis
Hastings with Covariance Matrix Adaptation.

In our context, the support of the a posteriori distribution can be very thin
and the classical MH algorithm fails when sampling the a posteriori distribution of
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three or more parameters. To overcome this difficulty, we will consider the MCMC
method with adaptation to sample the proposed distribution.

Explicit sampling of the a posteriori distribution

A simple approach to obtain the explicit sampling of the a posteriori distribution is
to use a compactly supported a priori distribution in the domain [e¢min, £Cmaz] X
(kmin, kmaz] X [Smin, Smaz] and to compute the a posteriori distribution over each
point of a regular mesh. There are N, points in each direction. The total number of
evaluations of the direct model (defined by the equation 3.6) is therefore N3. We also
calculate the moments of the distribution in order to have quantitative information:
mean and variance to compare with the MCMC results.

In addition, this method is useful when checking the next MCMC method with
another sample when the number of parameters is low (typically less than or equal
to 3). However, it becomes too expensive in terms of computation time when the
number of parameters increases.

Bayesian methods in neutron noise

Bayes inference for neutronics appears in Verbeke et al. [VP15; Verl6; VP16]. In
particular, [Verl6| consider the point model approximation using [VP15] where the
input parameters are

M
pPp=1 ¢c (3.91)
UsSFE
where M = —L— is the multiplication of the system. The output of the case consid-

1=k,

ered in [Verl6] isf Jiche distribution @, (t). Then, using the code BigFit, the best set of
parameters that fits the distribution @, (¢) of the measurements is determined. They
also compute the Feynman moments of order 2 and 3 in order to confirm the results.
The measurements are computed with Tripoli-4 using Freya. The code BigFit was
developed in Livermore, further details about it are in the patents [PSR10; PSR12].
The authors present the results on several test cases, such as a PuOs ball and a
BeRP ball. The computation of the posterior distribution is done on a uniform grid
with explicit sampling.

This method enables to obtain the a posteriori distribution of 2 and 3 parameters
knowing the observations. The use of BigFit when the a posteriori distribution
is computed is costly, and the method is limited to three parameters. The next
methods will be used in order to get the a posteriori distribution of three parameters
knowing the observations p|y.s, but can also be used for more parameters, thanks
to the use of a more involved Markov-Chain Monte Carlo sampling method.
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Haario et al. MCMC methods

Haario et al. have proposed two alternative versions of the MH algorithm for sam-
pling distributions.
The first was proposed in the article [HST99].

The aim is to sample the a posteriori distribution of the parameters

P = (p1,p2,p3)- (3.92)

and we define P1,min = €C,min, Pl,mazr = €C,max, P2,min = kmim P2 max = kma;r, P3min =
Smin, P3maz = Smaz Lhe target distribution is denoted 7.

The next algorithm is the Adaptive Proposal Metropolis algorithm. This algo-
rithm is built with the basis algorithm 2 (see state-of-the-art) in order to sample the
a posteriori distribution taking into account a sample of the last accepted points.
More precisely, the algorithm generates a sample of a given number of last accepted
points, concatenate these points, compute the associated empirical covariance ma-
trix and use it in order to make the next proposition of the Metropolis-Hastings
algorithm and adapt the width of the covariance matrix in order to propose in the
support of the target distribution more often.

For C; = [px_m, - , Pk, we recall that m = % Z;C:k—H P;.
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Algorithm 8: Pseudo-code of the Adaptive Proposal Metropolis (AP) al-
gorithm

The integer H > 1 is settled. We consider the sample S of the concatenated
H last accepted points.
Initialisation of

e The empirical acceptance T qe

The target acceptance rate xq;

The initial scale factor of the instrumental law frac

The frequency of update of the scale factor Nasc 1

The burn-in phase duration Vg,

The number of iteration of the algorithm N,,qziter

The initial parameter pg is chosen with the uniform distribution over
®2:1 [Pk,mm, pk,max]

for i =1, Ny, do
e We use as instrumental law
Qi1 ~ N (pi, frac’Ce) (3.93)

where q;+1 the proposal, p; the last accepted point,
Cri = diag(((prmaz — Pkmin)?)3—;) the diagonal matrix with diagonal
elements ((Pkmaz — Pkmin)>)s—1-

TIle burning phase generates a sample of length k > H (H is fixed, and so k

iS) in Rd {p17 to apk}a
for ©+ = Ny, + 1, Npagiter do

e We compute the covariance matrix of the last H selected points

C; = C; — E[C/] (3.94)
1 -~
R, = —C/C;;

® Qi1 N(pi, f7“a02Ri);

e Computation of the local acceptation rate using the likelihood of the
proposal and the previous accepted point

W(qi-f—l))
m(pi)

a(qi+17 pZ) = mm(l,
Then p;+1 = q;+1 with probability a; p;+1 = p; with probability 1 — a.
e We update the scale factor when i = 0( mod Npsc1). The scale factor frac

fracl80frac exp(xrate — Tobj)

Number of acceptations

Lrate =

Number of iterations
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MH-CMA algorithm

The principle of the covariance matrix adaptation (CMA) is to consider the last
points accepted by the Metropolis-Hastings algorithm, and to propose a new neigh-
bour with a Gaussian distribution centred on the last point accepted by the algo-
rithm and with the covariance of the concatenated accepted points. The difference
between the next algorithm and the algorithm 8 are : the covariance matrix update,
and we consider all the accepted points.

We use this approach because the a priori distribution can be very degenerate
so that the classical MH fails the sampling. We then choose to use the CMA to
take into account the previous points of the distribution and to control the width of
the proposal law. Thus, the points calculated are in the support of the a posteriori
distribution 7.

We have implemented the Metropolis-Algorithm with covariance matrix adap-
tation of [AT08] and [HSTO1]. As previously we consider the parameter p and we
consider the same parameter bounds pimin = €cmin, DPimaz = ECmazs P2min =
Emin, D2maz = Kmazs P3,min = Smin, D3.mar = Omaz 1he target distribution is still
denoted 7.

We first initiate

e The empirical acceptance x,qze.

e The initial scale factor of the instrumental law frac

The target acceptance rate Tobj

The frequency of update of the scale factor Nyc
e The burn-in phase duration Ny,

e The initial parameter pg is chosen with the uniform distribution over ®i:1 [Dk,min, Pkmaz]
Iteration 1 — 7 + 1

1. During 7 < Ny, , we use as instrumental law
Qit1 ~ N (pi, frac*Cy;) (3.95)

where q;41 the proposal, p; the last accepted point, Cy = diag(((Pkmaz —
Pramin)®)ie1)-

2. After the burnin we use the instrumental law as in algorithm 4 of [AT08]
Qi+1 ~ N (pi, frac*C;) (3.96)
where C; is defined by 3.99.

3. Finally, we compute the acceptance rate a using the likelihood ratio of the
proposal and the previous accepted point

’/T(qi-l-l) )

(o) (3.97)

a(Qi+1, pi) = min(l,
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4. The acceptance-rejection criterion

u ~U(0,1])
If w<a(qit1,p:) then ;41 is accepted: piy1 = Qi1 otherwise pit1 = pi
(3.98)
is applied

5. We update the scale factor when i = 0( mod Nysc1). The scale factor frac

frac = frac exp(Trate — Tobj)
Number of acceptations

Prate = TNumber of iterations

This is an algorithm with global scaling and vanishing adaptation, so that the
ergodicity of the algorithm is achieved. Here the vanishing factor is v; = %, it must
be chosen such that ) .v; = +o0o (explained in [AT08]), more explanation in the
next paragraphs.

The covariance matrix is updated as in [Miil0]

Pit1 = (1 = yip1)Pi + Yit1Pi (3.99)
Ciy1 = (1 = 7%41)Ci + Y1 (pi — D1)" (Pi — D1)

The work of [GRG96] provides an analysis of the Metropolis-Hastings algorithm

regarding the acceptance rate. Then we choose frac = 27% where d = dim(p) as

suggested in [GRGY6].

The empirical covariance matrix and the mean of the proposal are updated as follows:
The target zop; = 0.234 is chosen thanks to [GRG96]. As the a posteriori distribution
can be highly degenerate, the use of C and the global adaptation of the factors allows
the distribution to be well sampled, even if it is highly degenerate.

The target distribution is really degenerate, it is difficult to sample it with a
classical Metropolis-Hastings algorithm. The best algorithm we can have is an algo-
rithm whose exploration law is equal to our target distribution.To sample this target
distribution, we use a vanishing factor 7; (here ~; = %) so that the exploration dis-
tribution coincides with the target distribution. The vanishing factor +; will tend to

zero so that the exploration law fits the target distribution well.

We have seen that the algorithm works well in the cases studied, but the more
parameters we take into account, the more difficult the algorithm becomes. The
MCMC methods provide a sampling of the distribution of the parameters p given
the observations of our system M.

In the following, we present the results of the calculation of the posterior distri-
bution obtained on test cases. Two numerical methods are used. The first one, the
explicit method, is deterministic and based on the discretisation of the calculated
distribution on a regular grid. In the second method, the distribution is sampled
using an MCMC algorithm. The explicit method becomes very expensive when the
parameter space is large. It is used for verification of the MCMC method when the
number of parameters is less than or equal to three. The advantage of the MCMC
method is that it can be used at a reasonable cost when the number of parameters
is greater than three.
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3.2 Inverse problem: posterior distributions

3.2.1 A posteriori distribution of (k.f¢, ¢, S) given the three
first moments of N for k.;r = 0.95

These results were presented in [GHH21]. The input parameters and the global case
specifications correspond to the second case studied in the direct problem. More
precisely, the observations are calculated using the model with the exact parameters.

Yobs = M(p*) (3.100)

where the expected parameters are

ez, 0,25 1072
p* = k::ff =10,50r0,75 or 0,95 (3.101)
S* 70 ms~!

The a priori distribution is uniform over a bounded parameter domain. We use
the following limits for the a priori distribution

€Cmin = 0,1 1072
€Cmaz = 0,4 1072

3.102
kmaa: =1 ( )
Smin =20
Simaz = 200

The measured function of interest is Ny when the time gate is 7" = 10 ms and
for three duration measurements Ty,eqs = 36, 360, 3600 s. We also considered a
neutron decay constant ay = 2 ms~! and the following fission multiplicity data:

D = 2.4130 g =1
Dy = 0.7992 Dys =0 (3.103)
D3 = 0.4819 D3s =0

The initialization parameters of the AM algorithm are

Lrate = 1
Top; = 0.234
Ny, = 107

N
MC ’ 1)
10000

Nyen = maz(

Regarding the explicit sampling, there are N2 points in the grid with N, = 400.

In order to observe the effect of measurement duration and criticality levels on the
shape of the posterior distribution of the parameters, calculations are performed for:
Trneas = 36, 360 and 3600s. For each measurement time, the following multiplication
factors are considered: kery = 0.5, 0.75 and 0.95.
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Remark 3.2.1. In the following, the acronym 3P3M refers to the inverse problem

M:R} — R?

b & M(p) (3.105)

where p = (¢, kess, S) and M(p) refers to the three first simple moments of Qn(t).

Tineas = 368 Trneas = 360s Tneas = 3600s
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Figure 3.23: A posteriori distribution for (k.rs, S) using 3P3M with explicit sampling

We can compare it to the result using the MCMC method
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Figure 3.24: A posteriori distribution for (kesyr,S) using 3P3M with MCMC sam-
pling

We can also observe the a posteriori distribution for (k,e¢)
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Figure 3.25: A posteriori distribution for (kesr,ec) using 3P3M with explicit sam-
pling

We can compare these results to the MCMC method results
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Figure 3.26: A posteriori distribution for (kesf,ec) using 3P3M with MCMC

When the width of the time gate is short 77 = i, there will be no corre-
lated counts, and thus no information beyond the first moment (average number
of counts). When the time gate is large 1o = % the proportion of correlated detec-
tions saturates, but the number of gates is smaller for a given total measurement
time. In the following, we will consider two time gate widths: T7 = é and T = %.
The use of several time gates could give access to a fourth parameter, the time
constant of the prompt neutron «.

We present here the results of taking into account two different time gates T} = é
and Ty = %. We recall that we consider the following set of parameters.

Since the simple moments have a different behaviour according to the considered
regime (T —t — 0 or T'—t — 400) cf. chapter 2, the direct problem, we make the
hypothesis that the a posteriori distributions will have different profiles.

Moreover, we consider an improvement of the previous MCMC method in or-
der to properly plot the a posteriori distribution of the p parameters knowing the
observations M(p*).

From now, we consider Cov(p) = Cov(p*) in the problem 3.85, computed using
ntcOb_cov2 (see annexes).
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A posteriori distribution of (k.rs,cc,S) given the three first moments of
N[O,Tl] fOI’ Tl = i

For a time of measurements of 3600s, we consider the parameters

S 70 ms~!
keff 0, 95
p-=|cc | =]025.10? (3.106)
X 0
a 2 ms~!

we recall that kerr = 0,95 <= p = —0.05263157894.

The fissile material is 2*°U.

The source is poissonian.

Nuclear mater {

The nuclear constants for nuclear parameters

% 2, 4130 D 1
Dy | = [ 0,7992 Dys | = [0 (3.107)
Ds 0, 4819 Dss 0

The results of the numerical experiments here and for all subsequent numerical
experiments, the first three moments and the covariance matrix, are calculated using
the software ntcOb_cov2 (see annexes). This computer program solves the moment
equations in the point model using deterministic methods.

We consider the observations for a time gate 77 = é = % ms, provided by
ntcOb_cov2.
1,0930
Vobs = M(p*) = | 2,7777 (3.108)
9,5764

The covariance matrix is

0,2198306.107% 0,90818.107¢ 0,51613.107°
Cov(p*) = [ 0,90818.107% 0,47888.107> 0,32488.10~* (3.109)
0,51613.107° 0, 32488.10~* 0,25484.1073

with python, we obtain the following associated eigenvalues

A1 2,59098.10~*
A | = [ 1,60808.10-% (3.110)
As 7,34625.10°7

Python provides also the conditioning of the covariance matrix Cond(Cov(p)) =
99308, 89421.

The spectral deviation and the Cov(p) conditioning are high, which means that
the a posteriori distribution is degenerate. It is therefore difficult to sample.

The MCMC method use Ny, = 107 and the explicit samplings use N, = 400.
We considered an a priori on the parameters as previously on [e¢min, € maz] X
[keff,min; keff,max] X [SMZTU Sma:p}-
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Figure 3.28: Marginal distribution of k.;s and e¢

We observe the a posteriori distributions
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Figure 3.27: Marginal distribution of k.fy and S
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The results are the same with explicit sampling or MCMC methods. As before,
we can observe that the a posteriori distribution is really thin due to a measurement
time of 3600s and a high level of subcriticality, kefr=0.95. We observe that the
input parameter p* is in the support of the a posteriori distribution.

A posteriori distribution of (k.fs,ec,S) given the three first moments of

N[O,Tz] fOI‘ T2 = %

The set of nuclear parameters is the same as before, and the parameters Ny, = 107

and N, = 400 of the MCMC method and explicit sampling remain the same.

For a time of measurements of 3600s, we consider the observations for a time

gate Ty = % = 5ms.

Yobvs = M(p*>

10,930

= [ 142,38

2143, 7
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0,31832.107* 0,81587.1073 0,18297.10~!
Cov(p*) = [ 0,81587.107 0,22680.10~" 0, 54756 (3.112)
0,18297.10~* 0, 54756 14,185

with python, we obtain the following associated eigenvalues

A 1,42061625.10"
Ao | = | 4,48725675.10~7 (3.113)
A3 1,54892527.1073

Python provides also the conditioning of the covariance matrix Cond(Cov(p)) =

35077411, 03653.

As before, the spectral gap and the conditioning of Cov(p) are high, which
means that the a posteriori distribution is degenerate. It is therefore difficult to
sample.

We observe the a posteriori distributions
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Figure 3.29: Marginal distribution of k.;s and S
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Figure 3.30: Marginal distribution of k.r; and ec

We draw the same conclusions as above.
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Figure 3.31: Measure of the N, o7, and Ny o1, between to and taz

The results are the same with explicit sampling or MCMC methods. As before,
we can observe that the a posteriori distribution is really thin due to a measurement
time of 3600s and a high level of subcriticality, kefr=0.95. We observe that the
input parameter p* is in the support of the a posteriori distribution.

Comparison with the a posteriori distribution for 77 and T5.

3.2.2 A posteriori distribution of (k.rs,ec, S) given the three
first moments of Ny 1), Ny, for 11 = é and T, = % for
kerp=10.95

We consider the observations in the context of the previous case, with the observa-
tions associated with 7} = é and Th = % for Ny, = 5.107.

The observations are

1,0930

2, 7777

M(p*, T1)\ | 9,5764
) = | 10,930 (3.114)

142, 38

2143, 7

As the Figure 3.31 shows, we consider two time gate T and T, which intersec-
tion is empty such that the corresponding observations M(p*,T1), Cov(p*)r, and
M(p*,T3), Cov(p*)p, are uncorrelated.

As the measurements with the two gates are uncorrelated, the covariance matrix
is block diagonal

Cov(p*)Tl7T2 = diag(Cov(p*)TI, C0V<p*>T2)
0,2198306.1075 0,90818.107% 0,51613.107
0,90818.1076  0,47888.1075 0, 32488.10~* (0)
0,51613.1075  0,32488.10~* 0,25484.10~3
0,31832.10~* 0,81587.10~* 0,18297.107*
(0) 0,81587.1073 0,22680.10* 0, 54756
0,18297.10~1 0, 54756 14,185
(3.115)
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where diag(A, B) is diagonal matrix formed of A and B in the diagonal of the block
matrix.
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Figure 3.32: Marginal distribution of k.fy and S
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Figure 3.33: Marginal distribution of k.r; and ec

3.2.3 A posteriori distribution of (k.f¢,e¢, S) given the three
first moments of Ny where T = é or T' = % and
kepr=0.5

We now consider the case where the criticality is lower, i.e. kepp = 0.5. It is then
expected that the a posteriori distributions are less degenerate and therefore easier
to sample for Ny, = 5.107. We considered 1000 points on each direction for explicit
sampling.

We want to have a better view of the impact of considering two different time
gates in a case where the a posteriori distribution is wide, so considering two time
gates in different regimes (in the establishment of the regime or during the steady
state) will give more information on the parameters to be estimated.

First, for a time of measurements of 3600s, we consider the following system for
a time gate T' = é
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S 70 ms~!
Keyy 0,5
p'=|¢c | =|0,251072 (3.116)
X 0
o' 2 ms!

we recall that kepp = 0,5 <= p=—1.

) The induced fission material is ?*°U.
The nuclear mater is ] ) ]
The source is poissonian.

The nuclear constants for nuclear parameters

v 2,53108 Ug 1
Dy | =10,81168 Dys| =10 (3.117)
Ds 0,51843 Dsg 0
The corresponding observations are
0, 14043
Yobs = M(p*) = | 0,16058 (3.118)
0,20382

The associated covariance matrix is

0,19563.10~7 0,25177.10~7 0,37637.107"
Cov(p*) = [ 0,25177.10~" 0,38033.10~" 0,67808.10~" (3.119)
0,37637.10~7 0,67808.10" 0, 14152.107°

We considered a uniform a priori distribution on each parameter [0; 1] x [0; 400] x
[0;0,01]. Moreover, we specified with a Gaussian a priori on ¢ of mean 3.1072 and
standard deviation 1073. This a priori choice was considered thanks to the first
results without a Gaussian a priori, which were not conclusive because the marginal
distribution on (kesy, S) showed that (kess, S) = (€, €), where € is small, had a high
probability. This was counterintuitive. Indeed, when € — 0 the system detects no
neutron, so the average number of neutrons detected should be 0 as well as the
second and third order simple moments: no detection provides observations that
are 0.

First, we observe the 1D marginal distribution of each parameter. We can see
that each marginal distribution corresponds to explicit sampling and MCMC sam-
pling. The statistical noise is smaller than the aliasing noise (here the fact that the
mesh is not refined so that the likelihood plot is well done) and therefore the MCMC
sampling is more accurate than the explicit sampling.
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Figure 3.34: Marginal distribution of k.ry with explicit sampling (black) and MCMC
sampling (red)
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Figure 3.35: Marginal distribution of S with explicit sampling (black) and MCMC
sampling (red)
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Figure 3.36: Marginal distribution of e with explicit sampling (black) and MCMC
sampling (red)

We have obtained the following mean and standard deviation for the MCMC
sampling:

y E[(kers — Elkess[M])?|M] = 0,84720.107"
Elkess|M] = 0,47937 \/ [(Kesy [keyr|M])2M]

E[S|M] = 74,412 (3.120) \/]E[(S — E[S|M])2|M] = 38,431
Elec|M] = 0,27933.107° \/]E[(gc — Elec|M])2|M] = 0,10082.10 2
(3.121)

We have obtained the following mean and standard deviation for the explicit
sampling:

Y E[(kes — E[kess|M])2|M] = 0,85346.10~"
E[k.s;|M] = 0, 48266 \/ [(keps — Elkers|M])2M]

E[S|M] = 74, 651 (3.122) \/JE[(S — E[S|M])2|M] = 40, 788
Elec/M] = 0,27389.10~ \/]E[(sc — Elec|M])2[M] = 0,10094.10 2
(3.123)

These numerical values provide qualitative results, more accurate than those of
the 1D or 2D marginal distributions.

The 2D marginal distribution on kes¢ and S (in the next figure) shows that the
a posteriori distributions on (k.rs,S) are concentrated around the real value of the
point and decrease when k.sr and S increase, the Gaussian a priori on ¢ flattens
out the a posteriori distribution when k.s¢ and S are too small or too large. The 2D
marginals show that the shapes of the curves are the same with MCMC or explicit
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sampling. We can observe that the MCMC distribution has some statistical noise,
and that the explicit sampling has aliasing problems. These aliasing problems can
be overcome by using regularisation techniques.

The actual parameters p* are indicated by a black cross, and show that the
actual parameter is highly probable.

NAPPE(P1,P2) MCMC NAPPE(P1,P2) DETERMINISTE

2\

(a) MCMC sampling (b) Explicit sampling

. o
06 08 1 02 0z
Keif Keif

Figure 3.37: Marginal distribution of k.;s and S
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4 s

* ke
(a) MCMC sampling (b) Explicit sampling

Figure 3.38: Marginal distribution of k.sy and ec

The marginal distribution on kesy and ec also shows that the true parameter p*
is in the support of the posterior distributions (which are the same but plotted by
two different methods).

Then, for a measurement time of 3600s, we consider the same system as before
for a time gate T = %.

The corresponding observations are
1,4043

M(p*) = | 3,3868 (3.124)
10,165

The associated covariance matrix is

0,19649.107° 0,75127.1075 0, 30420.10~4
Cov(p*) = | 0,75127.1075 0, 34313.10~* 0,15688.10~3 (3.125)
0,30420.107* 0,15688.103 0, 78938.1073
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As previously, we consider a Gaussian a priori on ¢ with mean 3.1073 and
variance 1073,

First, we observe the 1D marginal distribution of each parameter. We can see
that each marginal distribution corresponds to explicit sampling and MCMC sam-
pling. The statistical noise is smaller than the aliasing noise.
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Figure 3.39: Marginal distribution of k.r; with explicit sampling (black) and MCMC
sampling (red)
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Figure 3.40: Marginal distribution of S with explicit sampling (black) and MCMC
sampling (red)

197



3.2. POSTERIOR DISTRIBUTIONS CHAPTER 3. INVERSE PROBLEM
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Figure 3.41: Marginal distribution of e with explicit sampling (black) and MCMC
sampling (red)

We have obtained the following mean and standard deviation for the MCMC
sampling:

V(e IV — Elk|NT))?] = 0,84000.10"

Elkesf|M] = 0, 46896

E[S|M] = 72, 762 (3.126) \/IE[(S|1\7I — E[S|M])?] = 23,656
Elec|M] = 0,27800.102 VEl(ec|N — E[ec[NI))?] = 0.95636.10
(3.127)

And for the explicit sampling:

{0 — 0, 47358 VEllkers — Blless[M])2[N] = 0,92548.10"!

E[S|M] = 76,137 (3.128) \/IE[(S — E[S|M])2|M] = 42,643
Elec[M] = 0,27300.10~2 VEl(ec — Eleo|N])2|M] = 0,10107.102
(3.129)

We draw the same quantitative conclusions (shape of the curve, influence of the
Gaussian a posteriori, position of p*).

We observe the 2D a posteriori distributions
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Figure 3.42: Marginal distribution of k.rs and S
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Figure 3.43: Marginal distribution of k.;s and e¢

We draw almost the same conclusions as for T' = é, except that the most probable
points are less probable than for the previous time gate (the a posteriori distributions
are normalised). The a posteriori distributions of the two time gates have common
values in their support, and we hope to obtain more information by combining these
two results. This is the objective of the next subsection.

3.2.4 A posteriori distribution of (k.ss, ¢, S) given the three
first moments of Njyr,), N7, where T; = é, T = % and
kepr = 0.5

Now that we have obtained the results for two distinct regimes, we will consider
the product of the a posteriori distribution of the two previous experiments for
Ny, = 5.107, always considering 1000 points in each direction for explicit sampling.
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The observations are

0, 14043
0, 16058
0,20382
1,4043
3, 3868
10, 165

Yobs = M(p*) = (3.130)

Since the measurements associated with the two time gates are not correlated,
the covariance matrix is

Cov(p*>T1,T2 =
0,19563.10~" 0,25177.10~" 0,37637.10~7
0,25177.10~7 0,38033.10~7 0,67808.10~7 (0)
0,37637.10~7 0,67808.10~7 0,14152.107°
0,19649.107° 0,75127.107° 0, 30420.10~4
(0) 0,75127.107° 0,34313.10~* 0, 15688.1073
0,30420.10~* 0,15688.1073 0,78938.1073
(3.131)

First, we observe the 1D marginal distribution of each parameter. We can see
that each marginal distribution corresponds to explicit sampling and MCMC sam-
pling. The statistical noise is smaller than the aliasing noise.

1D Marginal P(k_effly_obs)

P(k_effly_obs)
- =
|

w
T

Figure 3.44: Marginal distribution of k.ry with explicit sampling (black) and MCMC
sampling (red)
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1D Marginal P(Sly_obs)

0.03 : : , ‘ \

— Explicit sampling | |
0.025— — MCMC

0.005— =

1 L 1
0 200 400 600 800 1000

Figure 3.45: Marginal distribution of S with explicit sampling (black) and MCMC
sampling (red)
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Figure 3.46: Marginal distribution of e with explicit sampling (black) and MCMC
sampling (red)

We have obtained the following mean and standard deviation for the MCMC
sampling:

. _ A2 INAT — -1
ik 1] — 0, 48026 VEl(kess — Elke NN = 0,69752.10

E[S|M] = 69, 441 (3.132) VEI(S — E[S|N])2|M] = 20, 656
o . i
Elec|M] = 0,28338.10 VEl(ec — Elec|NIJ)2|NT] = 0,92588.10~
(3.133)
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And for the explicit sampling:

VElkers — Blless[M])2 N = 0,82327.10""

Elkerr|M] = 0, 48723

E[S|M] = 74,019 (3.134) \/IE[(S — E[S|M])?|M] = 40,178
Elzc|/M] = 0,27424.10~° \/E[(gc — E[ec|M])2|M] = 0,10101.10~2
(3.135)

We draw the following conclusions: for 77 = % and Th = %, MCMC sampling
is better than explicit sampling. But the standard deviation for each parameter is
smaller than for T} and T3, so the approximation is better, an improvement of order
10! is made with this approach.

(P1,P2) MCMC MARGINAL

03

025
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1015

01

005

(a) MCMC sampling (b) Explicit sampling

Figure 3.47: Marginal distribution of k.;s and S
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Figure 3.48: Marginal distribution of k.r; and ec

We provide the Figure 3.49 and 3.50 in order to have a better comparison of the
marginals for 17 = é, T = % and (11, T5).

The results of the MCMC sampling using (71, 7%) in subfigure (c) of Figure 3.49
and 3.50 are as follows.
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With three equations, such as the equations of the first three simple moments of
Nijp,, we can expect to find at most three parameters. When there are more than
three parameters to estimate, we have to find a way to calculate more. Taking into
account the Feynman moment of order 4 could have been considered but only when
ec is high. We recall that the equations of E[Ny ], Ya(t), Y3(t) depend on t. So
here we will consider two observation regimes: ¢ << é and t >> é Both regimes
can be taken into account in order to cross-check the information, thus obtaining a
better estimate of plyops. We will explain this in the following paragraphs.

Considering the 1D marginal distribution for k.s; of the MCMC sampling with
(T1,75), we know that the mean of this 1D marginal distribution have a mean of
0,48026 and a standard deviation of 0,69752.107" (where the mean is 0.47937 and
the standard deviation is 0,84720.10~! for 71, and 0,46896 and 0,84000.10~! for
T5). So regarding the MCMC sampling, the 1D marginal distribution of k.s; with
(T1,T>) is a better estimation of k,, = 0.5 than with 71 or T5 alone because the
mean is closer to the real value and the standard deviation is smaller than for the
two other time gates.

The same kind of result can be observed for S and ¢. So, regarding the 1D
marginal distribution, the use of (71, 7%) is more recommended than 73 or T3 alone.

For the 2D marginal distribution of k.;s and S, we notice that the mode of the
a posteriori distribution has a higher probability in figure (c) than in figures (a) and
(b). Thus, the marginal distribution over k.ss and S is more concentrated, and thus
gives a better estimate of p*.

In the same way, we can analyse the marginal distribution of k.rs and ec, we
also notice that the mode is more likely than the two previous figures.

We can conclude that considering two time gates (71, 7%), in this case, enables
to gain information through the marginal distributions. As the Figures 3.23, 3.24,
3.25 and 3.26 shows, the a posteriori distribution is wider when k.s is low and the
time of measurements T),eqs is low, so considering the two regimes when 7' >> é
and T' << % provide more information in these cases rather than when ks is high
and the time of measurements T},cqs is high. In these last cases, considering 7' >> é
and T << é provide no significant information gain.

As the behaviour of the simple moments depends on the regime considered (see
Chapter 2), we conjectured that the corresponding posterior distributions are not
the same, and that we can obtain more information by considering observations
from the two previous posterior distributions.

This is confirmed by the observations, as before the true parameter p* is in the
support of the a posteriori distribution. This technique allows us to gain information.

What is interesting in the applications.

3.2.5 Influence of the prior distribution

Due to physical assumptions, we restrict the prior to a uniform distribution added
to a Gaussian a priori on £¢. In fact, our p* parameters are bounded:

e The intensity .S is non-negative since the spontaneous fission produces neutron.
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An upper bound can be found using the mean of the neutron detected M;(1).

Physicists empirically observe %(Cl) <S< 10ME;C(1).

The spontaneous fission rate x is by definition in [0, 1]

Since the system is sub-critical (stationary), the multiplication factor k¢ of
the system is between 0 and 1 (strictly lower than 1)

The efficiency of the detector ¢ is a probability, so it is in [0,1]. By the
relation A\cec = Arer and ¢ < 1 we can deduce ep < i—i where the last ratio
is supposed to be known.

The decreasing coefficient of the system « can be estimated using the fit of Y5
with the formula of the point model

Thus, with these physical considerations, we have a uniform a priori distribu-

tion over the domain studied added to a Gaussian a priori on €¢, the a posteriori
distribution sampled is then more accentuated around the real value p*.

When we have other information provided by measurements (gamma spectroscopy,

X-ray, expert opinion etc.) they can be taken into account in the a priori distribu-
tion. Therefore, they modify the a posteriori distribution.

The v spectroscopy and the 3 He neutron detection are independent because they

are performed by different methods and by different people.

The ~ spectroscopy gives information on the efficiency, which makes it possible

to reduce the search area.
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Chapter 4

Conclusion

4.1 Conclusions

The main objective of this work was to develop a methodology for inferring nu-
clear system parameters with uncertainty quantification from neutron multiplicity
count (NMC) measurements. The chosen method is based on Bayesian inference
and Monte Carlo Markov Chain Sampling (MCMC) of the a posteriori probability
distribution in the parameter space. A second objective was to study the direct
problem and derive the point model equations for the first three moments of the
neutron count distribution.

This thesis has been structured as follows. In the first part, the state of the
art chapter, we recalled some basics about random processes (like Markov chains),
inverse problems and neutron physics.

Then, in the chapter on direct problems, we established all the analytical ex-
pressions of the first three moments of the distribution of the number of neutrons
present or detected

e in the absence of a source,
e in transitional regime with an external source,

e in stationary regime with an external source.

Then, we verified and compared numerically these expressions with the analytical
expression using the explicit Euler method and Monte Carlo estimation in three
different cases. In addition, the accuracy of the point model approximation was
checked against the MCNP6 and Tripoli-4 simulations.

In the chapter on the inverse problem, we examined several numerical meth-
ods for recovering the parameters of the p system knowing the y.»s observations.
This methodology has been applied on several test cases in order to verify its effi-
ciency. We also considered measurements using two time gates of different duration,
allowing to obtain more accurate a posteriori distributions and to have a better
characterization of the considered system.

In summary, in the direct problem, we have fully established the analytical point
model expressions for the first three moments of the distribution of neutrons present
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and detected in the system during the steady state. Some specific test cases have
shown the difference between the point model neutron approximation and the more
accurate calculations performed with MCNP6 or Tripoli-4.

On the other hand, the inverse problem on the considered cases has shown that
the use of MCMC methods with adaptation of the covariance matrix allows to
compute the conditional a posteriori distribution of p|yes. In addition, the use of
the length of two time gates gives more accurate information.

4.2 Perspectives

The calculations of the a posteriori distributions were performed using three param-
eters, namely the multiplication coefficient, the source intensity and the detection
efficiency. Using two uncorrelated time gates, future work could include inference
of the five point model parameters, namely the previous three plus the fast neu-
tron decay constant and the spontaneous fission source proportion. In this case,
explicit sampling fails and the use of MCMC sampling is mandatory. In the cases
presented, we used synthetic measurements obtained by Monte Carlo simulations.
The application of the method to real measurements will be considered.

In order to have a direct model that is faster than MCNP-6 or Tripoli-4 and
more accurate than the point model approximation, the use of Gaussian process
metamodelling will be considered.

We can also consider a non-informative prior on the p parameters, such as the
Jeffreys prior.

The v spectroscopy can be used in the Gaussian prioritisation of data as it is
independent of other measurements (see [HM17] for use of  spectroscopy to obtain
a prior on £ and for further details see also [MMO08; MM10; AF12; BFA11; Fav04]).

AR
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Un vieil adage latin t’aidera, je I'espére, comme il m’a aidé. Quid est hoc eternitate :
qu’est-ce que ceci au regard de I'éternité 7 Aussitot cette question posée, tu pourras
prendre du recul et faire la part des choses. Tu discerneras alors entre leurs parts
d’ombre et de Iumiére. Certains de tes objectifs te paraitront pour ce qu’ils sont, tout a
fait vains. D’autres brilleront d’un éclat jusqu’alors caché parce que tu verras leur
dimension d’amour.

Soeur Emmanuelle "Vivre a quoi c¢a sert ?" Flammarion, 2004
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Appendix A

Appendix

A.1 Note on the state-of-the-art

In this section, we provide here the clues in order to prove 1.1.10. The reader is led
to notice we can also express the variance in function of the partial derivatives of
the generating function.

2

& 0 0
2 2
=1 =1 =1
Since Var[X] = E[(X — E[X])?] a variance is always positive.
Proof. proof of Prop 3.4.3 of MAP 361 [GMT19] + We know that
_QG = nP(X =n)=E[X] (A.2)
5 CF =>n =n)= '
L r=1 n>0
Moreover -
&
520 = > n(n—1)P(X =n) = E[X(X - 1)] (A.3)
dz=1 n=>0
What provides
& 0
21 _ -
]E[X ] = 2 Gp + 8QJG]P ~ (A4)

In the same way

%GP = Zn(n—l)(n—?)P(X =n) = E[X(X—-1)(X-2)] = E[X?-3E[X?*]+2E[X]
=1 n>0
(A.5)
What provides

oK o8 o) 0
31 | Y v = _9|l =

E[X]— a:L’?’GP 1—1—3 3332GP+8$GP ~ 2 81;GP ~ (A.6)

O
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A.1.1 Markov chains on finite set of space

We present here some results necessary to the existence of the invariant measure for
a Markov chain on a finite set of space, the reader is invited to read [Bod20]. This
subsection in useful for the ergodicity of the discrete-time Markov chains 1.3.4.

Theorem 7. For an irreducible Markov chain X on a finite set of space, the unique
wvariant probability distribution II is given by

(z) = Vz € FCS (A7)

E,[T\"]

A.1.2 Linear algebra

We present here the Woodbury formula that is useful in Bayesian and inverse prob-
lem subsection of the state-of-the-art 1.7.2.

Lemma A.1.1. Woodbury’s formula
Let B € GL.(R), A € M, 4(R), and C € GLs(R) such that ATB™*A + C~1. Then
the matriz B + ACAT is invertible and we have:

B+ACA"=B'-B'AATB'A+C ) 'AB™ (A.8)
Now we define some clues for the Tikhonov regularisation, see 1.7.1.
We define the meaning of s-sparse

Definition A.1.2. p is said s-sparse when

Ipllo <'s (A.9)

And here are some clues about the RIP (Restricted Isometric Property), men-
tioned in the state-of-the-art dealing with Tykhonov’s regularisation. The idea was
introduced by E. Candeés and T. Tao in [CT05] for proofs of theorems in the com-
pressed sensing field, and we can find more considerations of this field in [SF13], on
p. 22 we can find

Definition A.1.3. RIP
Let 05 € (0,1) be what we call the restricted isometric constant of a matrizx M, by
definition this is the smallest real such that

(1= 45)llpl3 < [[Mpl[3 < (1+3,)[Ipl[3, for all s-sparse p (A.10)
In an informal way, M 1is said to satisfy the RIP if the restricted isometric constant
0s is small for s sufficiently large.
A.1.3 Classical methods of estimation in statistics

The following theorem is useful in the state-of-the-art 1.7.2.
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Theorem A.1.4. Gaussian conditioning theorem

Let <Y1> be a random Gaussian vector (with Y1 of length r1 and Yo of length rs):

Yo
Y, 751 Rii Rip
L =N , ' ’ A1l
( (Y2) ) < (,uz R2,1 R2,2 ( )
with the mean vectors 1 and ps2 of length r1 and r2, and the covariance matriz Ry
of sizer1 Xr1, Rig of size 1 X1y, Ro1 = R1T72 of size ra X1 and Rao of size ra X ro

invertible.
Then the law of Y1 conditionally to Yo is Gaussian

L(Y1|Y2 =y2) = N(m1 + RiaRy5(y2 — p2), Rii — RipR55Ra1) (A.12)
This theorem show that the Bayesian analysis reduces to linear algebra.

A.2 Direct problem: proof of the propositions
and lemma

The reader can find the computations of the different moments necessary to the
study of the direct problem, the chapter 2.

Before these computations, we recall some tools.

A.2.1 Some key integrals

First, we recall some basic integral

T kas _ —ka(T—-1)
1
/ o ko(T—5) gg _ o—hoT [e_] T VkeN (A.13)
t

Hence,

T —a(T—t

1 — (T—-t)

/ e T=9gg=-_¢
t

(0%
T _ ,2a(T—t)
/ e 20T =) s = tme ™ 7 (A.14)
£ 2a
T _ ,3a(T—1)
/ €—3o¢(T—s)dS _ 1 €
¢ 3a

Then we recall here some important integrals computations. The first is the

following
T—t =t T—t
/ —ase  *ds = |se™ — / e *ds
0 0 (A.15)

0
= (T —t)e oD

1 — e—a(T—t)

«
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The second is

T—t =t T—t
/ —2ase 2% ds = | g2 —/ e 2% s
0 0 0 (A.16)
1— e—2a(T—t)
—_ T —t 72a(T7t) -
( Je 500
Finally, we have
T—t =t T—t
/ —as?e ¥ ds = | 27" — 2/ se” “%ds
0 0 0 (A.17)
—a(T—t
= (T - t)2e—a(T—t) + Qﬁe—a(T—t) — 21_6—()
o o?

A.2.2 Cumulants of the distribution of presence

In order to compute the asymptotic values vy (eq. 2.1.4), v, 7 (eq. 2.12),
Vs [T (€. 2.14) we need in part 2.1.1 of chapter 2 we will use the following
integrals. In the following S = Spr will refers to the intensity of the source and

Sa = 0.

Starting from

T—t
I (t) = 5’/ Ven(T — s)ds (A.18)
' 0
So,
FH,l(t) = Sll(t) = 1755[1(15)
o —a(T—t) (A.19)
— 53516—
o

In accordance with line 1 of eq. 2.27, we deduce the asymptotical value

vgS
Iy =22 (A.20)

o

Moreover,

Iyp,(t) = 7sSL(t) + 1as S (t)

_ 1] 1— eia(Tft) 1— eiQO‘(T*t) 1 — 67204(T7t)
= vgS 17( - + v9gS— (A.21)

a 2a 2a
ve 1 — e—a(T—t) v 1 — e—Qa(T—t)
— 7eS 2 + (1255 — sS—)
—pU o —pU 2a

In accordance with line 2 of eq. 2.27, we deduce the asymptotical value

S 1%)
r =—|v A.22
200 = 5, (Vs 7 + V2s> ( )
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Also

Iyp4(t) = 7sSIs(t) + vss ST (1) + 2125811 2

S 1 ] 1/227 1 — e—(T-1) B 21 — e 2(T~1) . 1 — o—3aT—t)
—pYV. —pv o 2a 3a
v 1 — e d(T=t) 1 _ o=3aT—t) (A.23)
+ 2 ( o 3o ))
1 — e 3T v 1 — e 2(T—t) | _ p=3a(T—1)
+ U3g S 4 2wpg S —— _
3a —pv 20 3

Finally, in accordance with line 3 of eq. 2.27, we deduce the asymptotical value

S| vs , Vs Val2g
r. -2 , , A.24
H,S,oo 30[(—p17(—pﬂ+yd)+ —p77 + 35 ( )

These values are then used in order to compute v oot Valloor V3Ileo

A.2.3 Moments of the distribution of presence w,(t) and
[T, (t)

This subsection refers to the computation of the moments of the distributions ,(¢)
and I7,,(t).

Moments of the distribution ,(t)

We present here the details of computation of the three first simple moments of
mn(t), as in subsection 2.1

For a presence distribution 7, (), we denote

1{gx
Vpr(t) = [ o ] (A.25)
rx=1

For the three first moments of the number of neutrons present in the system, we
dispose of

E[N](z. (1), = 7(1)
E[N)r (0, = 20x(t) + (1) (A.26)
Jmn()n = 6(v3(t) +v24(t)) + ()

=
g

Now, we provide a proof of the analytical expression and property 2.1.1 of I (t).

Proof. Differentiating the equation 1.162 with respect to z

_ 90 _ _ | 99x - 0gr i
o ()\F;fz-i-)\c) = +AF;zfz g (1) (A.27)
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Then evaluating in « = 1, we obtain

dv. . SN
_E = —()\F Z fi+ )\C)Vﬂ + Ap sziyw
i =2 (A.28)

= — AUy + AR Z(l — 1)]"}177T

i

That can become

dVx
d—”t = Dpar (A.29)
As a result, we have
U (t) = Constantee® (A.30)

Using the final condition, we have the knowledge that
1 = 0(T) = Constantee®” (A.31)

Which enables us to deduce (eq. 2.3)

Un(t) = e TD (A.32)
And thus
O

Now we provide a proof of the analytical expression and properties of v, (1)
Proof. Starting from 1.172, we are in the presence of a linear differentiate equation
of the first order with associated homogeneous equation

O var = (e = Ar Y0~ D) (A3
— Vg = — 17— i)V = Q9 .
ot 2, c F : 2, 2,
i#£1
A solution of this differentiate equation is

Vo = Cstee™ (A.35)

type.
Remark A.2.1. By definition vo(T) =0 and so Cste(T) = 0.

Using the constant variation method in order to obtain the general solution of
the equation 1.172

Cste'e® = —p\pi? (A.36)
This equation becomes
Cste! = —pge 20Tt — o \pe 20T 0t (A.37)
By integrating
aT _ Jat 1 — —a(T—t)
Cste(T) — Cste(t) = eSS W (A.38)
a o
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Using the initial condition, we can deduce

1 — —a(T—t)
Cste(t) = vorpe T ‘ (A.39)
!
Which finally leads us to the following result
1 — —a(T—t)
Vor = Vg)\pe_o‘(T_t)eT (A.40)
But ”22F = VQ)\TiI;)\F = 7/2%17/\/\7,1;71 = _”—;17, and so we obtain eq. 2.5
_ Y2 a1 1 — g—alT—1) A4l
Vor —pﬂe (1—e ) (A.41)
From this fact,
r2)
m

Finally, we provide a proof of the analytical expression and property of vs ,(t)

Proof. Starting from 1.175, we dispose of the same type of differential equation as
the one checked by s -, the same goes for the solution of the associated homogeneous
differential equation

v3n = Cstee™ (A.43)
The variation constants method leads us to the following equation
Cste'e® = —)\F<2V257rl/2,7r + 1/3177?.)
2
_ _)\F<2 VQ_e—Qa(T—t)<1 . e—a(T—t)) + I/3€—3a(T—t)) (A44)
What gives us so
2
C«Stel _ —)\F(Qii(€_2aT€at _ €—3aT€2at) + V3€—304T620¢t) (A45)
By integrating, we obtain
V2 eaT _ eat eQaT _ 620415 e2aT
Cste(T) — Cste(t) = —\w(2 2 —2aT _ ,—=3aT —3aT
ste(T) ste(t) F( _—pﬂ(e — ¢ —on )+ vse
(A.46)
Using the condition at time 7', we obtain
I/2 1 — e—a(T—t) 1 — e—2a(T—t) 1 — e—2a(T—t)
Cste(t) = A\pe T (22 — AT
ste(t) = hee T (222 (—— ) ) (A7)
Finally, by multiplying the previous results by e®*, we can deduce eq. 2.7
—a(T—t) 2 1 — —2a(T—t)
e V) —a(T—1)\2 €
=(t) = 1— A48
inlt) = e (L= ) ) (A48)
and
(10
O

The three first moment of 7,(t) are now computed and can be used in the
following.
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Moments of the distribution I7,(t)
In the following S = S will refers to the intensity of the source and Sy, = 0. We
now compute the moment of the distribution I7,,(¢). Then we provide the proof of

the analytical expression of the first simple moment of (17,00 )nen

Proof. From the equation 1.191, we know that

B B - T (eaT _ eat)
v(T) —vpp(t) = —vsSe Y (A.50)
Then we obtain the eq. 2.9
1— e—a(T—t)
v(t) = vsS——— (A.51)
o
And so, we obtain the eq. 2.1.4
_ UgS
= 2= A.52
Voo =~ (A.52)
O

Now we dispose of the expression of 77(t) and vy _.

Then we provide the proof of the analytical expression and property of v, r7(t).

Proof. Starting from 1.194

—a(T—t)

e 2

ov. 1—
oIl _ —a(T—
. ) — S S a(T-t)
ot vs5(Ps o ‘ —pU

o qVsS _ _
— VSS( - + pﬂ)(e aTeat_e 2aT62at)+stS€ 2aT62at

Integrating between 1" and ¢, we obtain

= aT at 2aT 2at
vgS 12 ) _ar€™ —e _2aT€ " —E€
e — e —_—

1) = v 1t) = =7sSCEE+ — o) o o

2aT 2ait
—2aT7 ¢ — €

2a

)

— 1ngSe
(A.54)

What enables us to deduce the eq. 2.11, by the use of A.51

(T-t)

. gS vy 1 —e Tt . gS Vo 1—e 2
t) =vgS — UgS(— S|——
v 1(t) = PsS(=0= + = D)+ | =BS54 D) s o
(A.55)
When T' — t — +00, we obtain the eq. 2.12
S 1 Z
= — A.
Vo I .0 % (l/s pe + VQS) -+ 202 ( 56)
m

217




A.2. DIRECT PROB.

APPENDIX A. APPENDIX

Now we dispose of the expression of v, ;7 and v, j7 _ .

Then we provide a proof of the analytical expression and property of v, r7(t)

Proof. Starting from 1.196, we obtain

d
Vsl = S(VZ,HDWDS‘I'VH(VQWES"}_DE—VQS)+V3,7TDS+25WV2,WV2S+D7?—V3S); v, ;f(T) =0

" AT

This equation has 6 sub-members, we compute them here. The first sub-member is

vsSv, rp(t)vx(t)

vsS 1 — e o=t vsS
:ySS<uSS(VS 2y =f + (—Vss(%—l— -

o —pU o —pv

2¢

DSS N s 6—a(T—t) _ €—2a(T—t)

e—a(T—t) _ e—3a(T—t)
2c
vsS)? vsS v UglgS?
—pU 2a « —pv 2a

_ ((555)2(1755 n 1/21/)> 20Tt | ((1735)2(1735 + V9 )— Dsu2552>6_3a(T—t)

—p 2cv o —pU 2c

)4 DSV2552> —olT—1)

vgS n V2

—pU 2a

vgS)? gS
(7sS) (Vs N _szp)>€_2a(T—t)

2a o} —pv 2a
(A.58)
The second sub-member is
1 e a(T—t) Vs
Do ST(t (t) = (v S 2 —a(T—t) 1 —a(T—t)
vsSvp(t)rax(t) = (0sS) - s (I—e )
_ (7s5)* 1o —a(T—t)(l —e a(T—t))2
o v (A.50)
(7sS)* 1o —a(T—t) —a(T—t) —2a(T—t)
- (1—2e +e )
o  —pU
_ (7s5)* 12 ( —a(T—t) _ 9,~2a(T—t) _|_e—3a(T—t)>
«a  —pU
The third sub-member is
1— e—a(T—t
I/gsSﬂH(t)ﬂgr(t) = V2517552 —2a(T—t)
Q
o (A.60)
— Ung vsS (ean(Tft) o 673a(T7t))
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Using the computation done for the second sub-member, the fourth sub-member is

—a(T-t) 2 1— —2a(T—t)
DS 1 (1) = 75" — _”;Da el )
= 2 —a(T—t) _ ,—3a(T—t
_ vsS i(e—a(T—t) _ 9e720(T=0) 4 o=3a(T-0)y 4 V3€ ) —emdl ))
—pv - —pv 2
_ S M sy ey
—pv - —pv 2
— 90gS V3 o 20(T—t)
(=pv)?
@( v %5y e=3alr-)
—pv - —pv 2
(A.61)
The fifth sub-member is
2095 SV ()12 r(t) = 21/2586_0[(71_1:)&76_0‘(71_”(1 — 7o)
v
= 2U555— 2_ 20T (] — g=elT-) (A.62)
— 2,68 VZ_(e—Qa(T—t) _ 6—3a(T—t))
The sixth sub-member is
VggSﬂg(ﬂ = V358673Q(T7t) (A63)

Now, each sub-member can be integrated between ¢t and T we use the key integral
of equation A.13, then the first member integrated provides

T
/ UsSv, 17(5)0x(s)ds
t b
_ <<555)2 <l755 n 1/2_) n 951/2552> 1 — et
2a o} —pv 2a «
A.64
(759)% vsS 1o |1 —e 2T ( )
- e
o o pU Q@
n (555)2(555 n VQ_) B 1751/255’2 1 — e 3a(T-1)
2a « —pU 2a 3
Then the limit of this quantity when 7" — ¢ — 400
. T _ _ (958)2 UgS Vo 175V2552
T_ltz_'rgroo t vsSvy 17(8)vx(s)ds = 6 ( - —pD) + 72 (A.65)
The second member integrated between ¢ and T provides
T (555)2 ve 1 — e—a(T—t) 1— €—2a(T—t) 1— e—Sa(T—t)
vg S r(s)ds = -2
/t Vs S py(s)vza(s)ds « —pD( « 2a + 3av )
(A.66)
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This quantity has a limit when 7" — ¢ — 400

T )2
: e ~ (UsS)? 1y
Tﬁltzg}roo t UsSv(s)van(s)ds = 302 op (A.67)
The third member provides
T — _ —2a(T-t) _ ,—3a(T-t)
B YN vsS 1—e B 1—ce¢ A 63
| mstnrs) = ms2 (= ) (Ao

Then the previous quantity has a limit when T'—t — +o0

T _
. _ o, VasUsS
Tfltl—?;r}roo t Vst (8) 05 (s) = 2 (A.69)
The fourth member integrated over time is
T -~ 2 —a(T—t
S 1 —e oY)
/ vsSvs r(s)ds = l( V27 é)e—
‘ —pv - —pv 2 o
12 1 — e—2a(T—t)
— 2§ —2 A.70
S A
vsS , va 1/3)1 e
—pv - —pv 2 3o
This quantity has a limit when T"'— ¢ — +00
T _ 2
) B B vsS 1 v; V3
Tfltﬂoo t vgSvs (8)ds = —_p17(3 7 + 3 ) (A.71)
The fifth member integrated between ¢t and T is
T _ ,—2a(T—t) _ ,—3a(T—t)
1 1
/t 215850 (8) V2 x(8)ds = 2VQSS_V;V( 6204 — 63@ )y (AT2)
When T' — t — +o00 this quantity tends to
T
. _ v2sS Vo
l 2195 SUn r(s)ds = A.73
plm t V255U (8)V2.x(8)ds T ( )
The sixth sub-member integrated is
T 1 — efSa(Tft)
/ v3sST2(s)ds = 135S (A.74)
¢ B1e"
The limit of the previous quantity when T — t — 400 is
T
. -3 . V3SS
T_ltz_rﬁroo t v35SU;5(8)ds = ™ (A.75)
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Then the whole expression integrated between ¢ and T is

VS,H(t) — V3,H(T>
_ (1755)2(1755 n 1/2_) " 551/2552 n (1755)2 Vz_ n Dss_ V22_ @) 1 — eIt
2a o} —pu 2a o —pv  —pv —pv 2 «
|- <(l755)2(ﬂss n 1/2_>> B 2(1755)2 1/2_
o o —pU o —pU
- 5'2 2 1 — —2a(T—1)
+ vsbas — 20gS—="— 4 21998 ] ¢
a (—pp)? —pv 20
n (1755)2(555 n VQ_) B Dsl/gsS2 n (555)2 1/2_
2a « —pU 2a a  —pv
_ g2 oS 1 — e—3a(T—t)
_stase B0 (B By 9pg8- eS| ——C
« —pv - —pv 2 —pU 3
(A.76)

Finally, by taking into account v, ;7(T) = 0, the simplified expressions of the mo-
ment of order 3 of the neutron present in the system in presence of a source is, as

in eq. 2.13,
(555)2 vgS 1) I75V2352 vgS v 1-— e_a(T_t)
t) = 3 i
Vs, 111) [( 20 ( « * —,017) 20 * —,017(—,017 2 ) a
[ ((9s9)2 058 v Dsiag S V2 1 — e~2(T—1)
N _((S )(s 43 2_)> sV2sST  gpg V2 L9 ]
a a —pU a (—pv)? —pU 20
[ ((75S)2 sS  _ va . 30512952
N (7sS) ( 59 4 2_) _ SUstas
2 o —pU 2a
oS 1— —3a(T—t)
SRLCLAGC E) — sS4 s °
—pv - —pv 2 —pv 3

(A.77)

Now we consider the asymptotic integrated sub-members in order to compute v, f7 .

The first term in Z5°

(% + 3%)% cancels with the corresponding term in the

2
line below.
- 2
Then the next term 252255~ ip % is added to the second term in % and the second
term in %
I75V2552 1 1 1 vgS S
4 oy A.T8
2a ( +2a 2(1) a 204V2S ( )
The next term ”Sps _Vg Wlth the third term in 5~ and the third term in 3i
S v2 1 1 1 S v 2
e e (A.79)
pU py « 3 3 —pv —pv
Then, the last term ”SS 22 in — can be added to the sixth term in %
1 _
”L‘S:Q— _ L5, (A.80)
—pv 2 a0 3B« 3o —pv
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Now we consider the remaining term 21555 _"—;ﬁ in i can be added to the seventh

term in ?%
o

1 1 S U
21958 VQ_(— - —)= _D_S_WVQ_S (A.81)
—pv 200 3« 3o —pv —pv
The second term (VSS) 3 "21/ 31 can be rewritten
S 1 vgS S
@sSfgve 1755, v (A.82)

2a —pl/3a_ o 20 " —pv

. . 5353 . .
The two remaining terms in % are Vgag and 11/35 Then adding equations A.79,

A.80, A.81 and S 3.V3s, adding equations A.78 and A.82, and adding also D(% 33,
obtain the eq. 2. 14

S vs 6 vi Uslag vsS S 12 v3S3
y3,H,oo_£( ( + v3) S tss | oo | Vs o s | + g

we

—pU - —pU —pv b6

(A.83)
0

We now dispose of all the expression of the moment for the presence of the
neutron in the system

e at time t, Ux(t), vox(t), vs3x(t) and vpp(t), v, 17(t), vy 7(t),

e their asymptotic values 0 and vy, Vo 17 05 V3 [T oo

A.2.4 Moments of the distribution of detection p,(t), P,(t), Q,(t)

Here we provide the detail of all the computation needed for the moments of the
distribution of the neutron detected py(t), P.(t), Qn(t).

Moments of the distribution p,,(t)
First, we provide a proof of the analytical expression of the first moment of (p,,(t))nen-

Proof. For the moment of order 1, by differentiating the equation 1.214 with respect
to x then evaluating in x = 1, we obtain

dm >
L)+ () = A > vfma(t) + Acee, my(T) =0 (A.84)
dt
v=0
which becomes
dm1 _
_W(t) + (Ar — App)ma(t) = Acec (A.85)
but, as a« = A\r — Apv, we can deduce that
1 dmy >\F8F
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Moreover, we know the fact that

AF AR
Oé_)\T—D)\F
11
=X
vl

1
_—pﬂ

_ 1 _ At
because p =1 e

(A.87)

The knowledge of the differential equations allows obtaining the simple moments

in the absence of a source, we need to compute them.

We suppose here that s € [¢,7]. Computing the simple moment of order 1 in
the absence of a source, we search to solve the differential equation

1 dm1

EF
- = £ T)=0 A.88
o ds + ma —plj’ ml( ) ( )
with homogeneous equation associated
1 dm1
- =0 A.89
a ds Hm ( )
the corresponding solution is
mig = Ke®* (A.90)
A particular solution of the equation A.88
EF
Miparticuliere = —_W (Ag]_)
So, we dispose of
mp = Ke*® + g—F_ (A.92)
Moreover, we are in the presence of the initial condition
Which signifies that
K =——f ot (A.04)
So, when t < T
_ EF —a(T—t)
]E[N[t T]](pn(t))n = ml(t) = —_pﬂ(l (& ) (A95)
Thus, we can conclude eq. 2.32
_ _ tr —a(T—t)
B[Nzl pa (), = ma(t) = _—pp(l - ) (A.96)
m
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Then we dispose of the expression of p,(t).

Now we compute the moment of order 2 of p,(t), m2(t). So we provide the proof
of the analytical expression of the second moment of (py,(t))nen

Proof. Differentiating two times the equation 1.214 with respect to x then evaluating
in x = 1, we obtain
1 dmg 1%} 2

oA +ma = —_ppml’ my(T) =0 (A.97)

The associated homogeneous equation is the same as for m;, we refer the reader
to the previous computations.

Using the previous expression by introducing the expression of mi, we obtain

1 dms Vo ( ER

- - 9 =

T —5 _py)Q(l o e—Oé(T—t))Q’ mQ(T) -0 (A98)

the second member of the differential equation in question is an exponential poly-
nomial, so we search a particular solution of the form of an exponential polynomial.
More explicitly, this equation becomes for 7 =T — ¢

(—=)?(1 — e *7)%, ma(0) =0 (A.99)

multiplying by e*”, we obtain

d oT
M2€  _ qeon 2 (EE )21 emom2 () = 0 (A.100)

dr —pU - —pv

integrating between 0 and ¢, we obtain

me = ae~oT 22 6—F)2/ e (1 — e *)du, ma(0) =0
0

—pv —pv
—or V2 EF o [T _
—_ ar_"4 o =8 o _ 9 ary
a2 (=5) /0(6 +e)du (A.101)
ar _ 1 —at _ 1
- P (S e 1)
—pU - —pU Q@ —a
We can deduce the eq. 2.35
_ Vock _ _ p\—a(T—t) _  —2a(T—t)
ma(t) =7 _)3(1 2a(T —t)e e ) (A.102)
—pi

But, we know that

(A.103)
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To conclude, we dispose of eq. 2.34

2
€ —a(T— —2a(T— EF —a(T—
E[Nﬁ,:rﬂ(pn(t))n — 2(_/);’)3(1 —2a(T — t)e (T—t) _ o=2a(T t)> 4 —_pD(l _ea(T t))
(A.104)
O

Now we dispose of the expression of the moment of order 2 of p,(t), ma(t) and
the associated simple moment E[N[% )P (®))n-

Then we compute the expression of the moments of order 3 of p,(¢). Here is the
proof of the analytical expression of the third simple moment of (p;,(t))nen

Proof. Deriving three time the equation 1.214 with respect to x then evaluating in
xr =1, we are in presence of

1d 1
_E% +mg = _—W(V:;mi" + 2vamuma), ms(T) =0 (A.105)

We retold the solution of the homogeneous associated equation is given by
ma(t) = cstee™ (A.106)

Reinjecting the expression of m; and ms in A.105, we dispose of

3
_l% , L_V 8F_ (1 . e—a(T—t))?,
o dt —pv " (=pp)?
2
n 2V2 gF_(l B 7a(T7t)) 7/25_1:' (1 B ZO[(T . t)efa(Tft) . *2Q(T*t))7 mg(T) = 0
—pU (—pv)
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By the use of the change of variable 7 = T — ¢, and multiplying by €7,

3
dmse®™ qe®” EF a3 EF _ V25%7 _ 9
= vs| — | =€) 42| — | (1 —e ) “— (1 — 2are™ " — e 797)
( (—/w> —pv (—pr)?

dr —pU

2
+ 219 <£_F_> V2€fr3ea7-<1 . e—om-)(l — 2a7e % — eZaT))

3
s <€_F> (1 o 36—a7 + 36—2a7— o 6—3aT)€aT

3
+ 2v3 °F e (1 — (2ar +1)e™ + (2ar — 1)e 27 + 6_3‘”)>

3
— iﬁ (I/g (E_F> (GOcT -3 + 36—047 _ 6—2@7)
—pV —pV

3
+ 2u3 24 (e°T — (2a7 + 1) + (2a7 — 1)e™ 7 4 e2°7)

—pU —pU —pU
(A.108)
Integrating between 0 and 7 we obtain
1 EF ’ V2 V2 2
mge?T = — | — (v3 +2—2)(e*" — 1) — (33 + 2—)ar — 2(a1)?—=
—pv \ —pv —pU —pU —pU
V2 V2 1 6—2(17' V2
3 ) 2 —aT 1) — -9 2 —4 2 —ar _ 1 —aT
+ (33 —,017)( +1) — (v —pﬁ) 5 0 (cwe +e >)
(A.109)
What enables us to come to
1 EF ’ V2 V2 V2
ms(T) = o\ (vs + 2_25)(1 —e ) — (Bvs + 2_25)0476 °T —2(ar)? _;ye’m
2 2 —aT —3ar
vy —oT —2aT ) € — €
vz — 2 — — -2
+ (3w _pﬂ)(e e ) — (vs _pp) 5

vy
—4 — e~oT _ aTe—QaT _ 6—2&7
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which becomes de facto

v2 V2 1 v2 V2
+e_°”<—(1/3+2 27)+(3V3—2 27)——(1/3—2 2 )+4 2)

—pU —pU 2 —pU —pv
2 2 2 2
—ate “7(3vz + 2 U27) 92 (a7)?e™ 4 e 27 (—3v3 + 2 oy 1/27)
—pv —pU —pv —pv
2 1 2
+4 2 0”_672047'_’__(”3_2 VQ_) —3ar
—pU 2 —pU

(A.111)

V22 —2at 1 V22 —3ot
— (3vs + 2_,0]7(1 + 2a7))e + §(V3 - 2—pD) )
(A.112)
Introducing the constants
€3
{A = gf%y (A.113)
B=2vi=o

Finally, the expression can be rearranged as eq. 2.38

ma(t) = —3(~2(A + B)
+(=(3A+B) +2a(T = 1)(3A + B) + 20°B(T = )%)e "™ (4 114
+ (2(3A + B) + 4aB(T — t))e 2

+ (—A+ B)e_?’O‘(T_t))

But we know that

- »g dg
E[NG 1) n ) = [@] x:ft) 3152 :1(t)+ [a_x] 121@) (A.115)

= 6(m3(t) + mg(t)) +my (t)

an]
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We can conclude by the eq. 2.37

+ (2(3A + B) + 40{B(T — t))@_Qa(T_t) + (_A + B)e—Sa(T—t)>

1
B[N mlnna = 6] = 5(=2(A +B) + (=(3A + B) +2a(T — )(3A + B) + 20°B(T —

t)Q)efa(Tft)

Vock —a(T—t) —2a(T—t)
———(1—=2a(T —t)e —e
(1= 20(T 1) )
+ 6—F_(1 — (T
(A.116)
]

Finally, we dispose of all the expression the three first moment of p, (%)
® My (t)a mQ(t)a m3(t)

® E[Nir)] s BING ) on@)ns EING 11l (o0

Moments of the distribution P,(t)

In the following S = Sr will refers to the intensity of the source and Sy = 0. Now
we will compute the three first moment of P,(t). Then we begin with the proof of
Prop 2.32

Proof. We differentiate 2.39

gi(xt {/ SZl/f,, ~(a, S)dS}G<I,t)
- {/0 ) SZVﬁa—i(m,T—s)g”_l(x,T—s)ds}G(x,t)

Evaluating in x = 1, we find that

oG ER
o _l(t):/o SZVf,,ml(T—
_ / SZ” £, EE (1 — o= g (A.118)
0 —pV

-5 Z v, /T (1 - ey

After the computation of the integral, we obtain eq. 2.40

(A.117)

1 — e—a(T—t)

(T—t)— —— (A.119)

E
E[Nj1)(pe, = Mi(t) = 7sS—— a
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Now we dispose of the expression of the first moment of P,(¢). Then we compute
the moment of order 2 of the distribution P, (t). Thus, the proof of Prop 2.2.1 is

Proof. We take back the equation for 1.222 where

ma(T — 5) = 2oy (1= 20(T — (T — 5))e T~ — e=2a(T~(T=))

(A.120)

{ml(T —5) = SE (1 — e~ (T=(T-9))

what enables to deduce

T—t 2 ep
(/ Svsmy (T — s)ds) = (VSS—
0 —pY

and
=t 2 Tt
SVQSm%<T — 8) = stS F_ 3 / (1 — 2798 + e—2a5)d8
0 (=p7)? Jo
g2 1 — e~ (T—t) 1 — e 2a(T—1)
= ysS—E T —t—2
Va8 (—pp)? o' + 200
=t Ve Tt
/0 vsSma(T — s) = DSS(—,ODF)3 /0 (1 — 2a(T — (T — ))e~oT=(T=9)) _ o=2a(T—(T=s))) g
VQE:%* —as = e~ s 1=t e—2as Tt
= DSS — T —t— 2 as — 2 +
(_pV)B — 0 o . 200 .
; — e—a(T—1) _ o—2a(T—t)
_ = e —a(T—t) 1 e 1 e
=vgS T—t+2(T—1t -2 _
s (—pD)3{ +2( Je - o
(A.122)

So, we can conclude by eq. 2.42

2 _ —a(T—1) _ ,2a(T—1)
i WER —a(T—t) 1 (& 1 (&
Ms(t) = vgS T—t4+2(T -t -2 —
2(t) = s (—pv)3 + 2 Je Q 20
2 1— —a(T—t) 1— —2a(T—t)
+ s S—E | Tt —2—F =
(—pr)? « 2

(A.123)
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And, as E[Nj, 1y](p. 1), = 2Ma(t) + Mi(t), we can deduce eq. 2.41

2 _ —a(T—1) _ ,2a(T—1)
_ Vo€ o 1—e 1—ce¢
E[N? = 2gS—L T — ¢+ 2T —t)e*TH _2 —
[ [th]](Pn(t))n Vs (—pi)? + 2( Je o 7
2 1— —a(T—t) 1— —2a(T—t)
D Tl A ) R Eal +—°
(—pv)? «a 2a

2
1— —a(T—t) 1 a(T—-t)
+ Vgsg—F{T—t—e—} —I—Vss—F{T—t— ¢
—pv a —pv !
(A.124)
]

Now we dispose of the expression of the moment of order 2 of P,(¢). Then we
provide the proof of the Prop

Proof. We have the knowledge that most of the terms in previous equation, we have
to compute now the first term of the left part of 1.241.
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Moreover, we know that

+ (2(3A + B) + 4aBs)e 2 4+ (—A + B)e_?’o‘s) ds

1 1 — e—a(T—t)
= 5| 2A+B)(T 1) - (BA+B)——
1— —a(T—t)
—2(3A+ B)(T —t)eo@=H - 2—¢ 7
(0]
1 — e—a(T—t)
+2B(—a(T —t)%e T (T —t)e TV y 2 — )
«
1— —2a(T—t) 1 — e—2a(T—t) 1 — e—3a(T—t)

+2(3A + B)T —2B((T — t)e 2T=0 _ T) +(-A+ B)T

=, - (T—(T—s))\2
m T—sds:/ — (1 — e "W 79N ds
/o 1 ) 0 (_PV)2( )

5%1 T—t )
T N9 1 —2e % 4+ e **)ds
) )
g2 1 e—aT=t) | _ g=2a(T—1)
N (—plj?)z(T_t_2 PO Pa—
- ek (T—(T—s))
3 T — ds = / 1 oL —(L—s 3d
[T G T,
7 1 — e (T 1 — e—2(T—1) 1 — e—3a(T—t)

- 6F—3(T—t—3 : 43" _ ¢ )

(—pl/) « 2 3a

T—t T—t 3
/O m1m2(T — S)ds = /0 %(1 _ e—as)(l — Qase S — 6_2a8)d8
V25% O ) )

N R p—

(_PV) 0

3 —a(T—t)

S G N T _3

(o) << )+ AT —H)e ;

1— €—3a(T—t)

_ T —t —2()4(T—t)

( )e g

(A.125)
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Remark A.2.2. We retold the reader that

3
A == E—Fi
{ T (A.126)

B =20y

Hence, we can conclude by eq. 2.44

S 1— —a(T—t)

Ms(t) = —$ ( —2(A+B)(T —t)— (3A+ B)eT
1 — —a(T—t)
—9(BA+ B)(T —t)e ™0 - =S )

(67

1— efa(Tft)
+2B(—a(T — )% T8 (T —t)e T 0o~

a
+ 2055 % ((T 1)+ AT — 1T 31—€T“(T”
(T - t)e 2T 1-@3_2””)
+ I/355<_é§_)3 (T—t— 31 — e:f(T—t) N 31 _ e;;a(T—t) - 1 e;:(T_t)

2 _ —a(T—1) _ ,2a(T—t)
— WER —a(T—1) 1 (& 1 e
+ S T—t+2(1T"—t — —
(VS (—pD)3( (( Je a ) 2 )

2 _ —a(T—t) _ ,—2a(T-t)
Ep 1—e 1—e
T—t—2
+ vag (—pﬂ)Q( - + 5o
72 G2 2 1— —a(T—t) 1 — —a(T—t)
FLC e A St -t A R
6 (—pr)? a (—pp) a
(A.127)
The term produces
1 — —a(T—t) 1 — —a(T—t) 1 — —a(T—t)
_tze L9t € —-—° (A.128)
« « o
1 — —a(T—t) 1— —a(T—t)
H4B~—% —(3A+5B)— & (A.129)
« o}

and also

232



APPENDIX A. APPENDIX A.2. DIRECT PROB.

What can be simplified as eq. 2.44

S 1— —a(T—t)
Ms(t) = —% ( —2(A+B)(T —t) + (34 + 5B)—=
o
—2(3A + B)(T — t)e *T=1
1—e¢ a(T—-t)
+2B(—a(T — )2 T8 (T —t)e P00~ )
«a
1 — e 2T 1 — g—3a(T—1)
6A+4B)——— —2B(T —t)e 27D 4 (_A+B)———
(64 +4B) (T = t)e 2T 4 (—A + B)———
3 _ p—a(T—t)
V26F —a(T—t 1 €
WogS——L (T —t) +2(T — t)e T —
+ 2u5 o) (( ) +2( Je 3 -
1— 673a(T7t)
_ T _ t 720&(T7t) -
( Je + 3
&3 1 — e—a(T—t) 1 — e—2a(T—t) 1— 6—3a(T—t)
S—L (T —t-3 3 —
s (—pD)3( a + 2 3 )
2 _ —a(T—t) _ ,—2a(T—1)
S—E (T —t42((T —t)e Tt —
- ( (T~ (T 1) e
2 1— e—a(T—t) 1— €—2a(T—t)
F
T—1t—2
+V2S(—p17)2( a * 2a )
-~ SQ c 1 — efoz(Tft) EF 1 e a(T—t)
+ =2 (T —t— 2 ogS—— [(T —t) —
o Y Ll v
(A.130)
What we can consider in a more ordinate manner as
E[NG )Py, = 6(Ma(t) + Ma(t)) + Mi(t) (A.131)
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To conclude, we dispose of eq. 2.43

E[N; 1) (Pt
S 1 — —a(T—t)
- (—%(—2(A+B)(T—t)—(3A+B)€—
«
1 — —a(T—t)
—9BA+ B)(T —t)e @0 -~
«
1 — —a(T—t)
F2B(—a(T — t)2e=0T=) (T —)e=T= y 92— ¢ = 7
«
1— €—2a(T—t) 1 — €—2a(T—t) 1 — e—3a(T—t)
2(3A+ B —2B((T —t)e 2T - =~ -A+B)—m——
+2(34+ B)— (T~ tye )+ (A B)
3 _ —a(T—1)
y2€F —a(T—t) 1 e
2096 ——— [ (T —t)+2(T —t -3
+ 295 o) (( )+ 2( Je -
1 — e—3a(T—t)
(T —t)e + 30
53 1— efa(Tft) 1— 6720¢(T7t) 1— 673a(T7t)
S—L (T—t-3 3 —
T vss (—pD)?’( a * 2 3a )
2 _ —a(T—1) 1 — —2a(T—t)
_ V25F —a(T—t) 1 e e
S————(T —t+2((T —t — —
- ( o (T = 2T~ ) ) -
2 _ —a(T—1) _ ,—2a(T—1)
Ep 1—e 1—e
— (T —-t—-2
+ v2s (_pD)Q( - + 5 )
vis? £k L —e o=\ _ £F 1 —e T
T—t— ——— S—— (T —1t) —
TR o )|
1 — e—a(T—t) 1 e—2a(T—t)
6| 76S——L_|\T —t +2(T — t)e T — -
" (DS (—pv)3 AT ~t)e a 20
£2 1 e—a(T—t) 1 — €—2a(T—t)
S—LE T —t-2
+ s (—p0)? o + 0
2
1 1— a(T—t)
4= pssi{T—t— c } )
2 —pv «
1 —a(T—t)
+ pss—gF_{T— f——° }
—pU «
(A.132)
]

Thus, we dispose of the expression of the three first moment of the distribution

P,(t)
hd Ml(t)7 M2(t)a M3(t)7
o E[Npn)pu)ns EIVG 1) Pa)ns EING 1l
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Moments of the distribution @, (t)

In the following S = SF will refers to the intensity of the source and Sy = 0. Now
we want to compute the expressions of the three first moments of @, (t). First, we
compute the expression of Prop 2.2.8

Proof. We can sum it in

1— efa(Tft)

+EE (1= T D)5 (A133)
_py b

By the use of A.51, we conclude by stating the simple moment of order 1 in
presence of a source is (eq. 2.45)

E[Ni1](@u). = 7sS——(T — 1) (A.134)

]

Now we dispose of the expression of M;. Then we want to compute the expres-
sion of M3y and thus the expression of E[N[%,T]](Qn(t))w So we do the proof of Prop
2.2.9

Proof. We retold
E[Nir)@u), = 2Ma(t) + My (A.135)

Carefully repeating the previous formula, we can write

g2 1— —a(T—t) 1— —2a(T—t)
My(t) = ass(i;)g T —t+ 2T — t)e T 2 ea - €2a
e2 1— efa(Tft) 1 — 672a(T7t)
S—LE T —t—2
vas (—pr)? o * 20
2
1 1 —a(T—t)
+ = Dssg—F {T —t— ¢ }
2 —pU o
S 1 — a(T—t)
TRCLEA R [ Y =F (1 — emalT=)
a —pv a —pU
- 2
ﬁ y2€7F (1 _ 201(T B t)e—oz(T—t) _ e—QOé(T—t))
o (—pv)

2
1755 1755 2 1/255 EF _ _
1_ a(T t) 2
+[2a(a +—pﬂ>+ 2a]<—py>( c )

(A.136)

In the subparts A.2.4 and 2.2 we have already computed the (m;); 1,27, (Ms)i 19
and the moments of the distribution of the number of neutrons present in the system
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in presence of a source or in the absence of a source, we can now state

2
_ 12139
E[NEr)@utenn = 2{VSS—F

T —t+ 2T —t)e T _9 _
Cpwpp | T AT e

o 2a

1 — e—a(T—t) 1 — e—2a(T—t)]

e2 1— e—a(T—t) 1— €—2a(T—t)
S—L T —t—2
+ 12s (—p0)? o + e
2
1 1 —a(T—-t)
+ - ‘gSg—F {T —1— ¢ }
2 —pU o
S 1 — a(T—t)
TR T G (1 — T
« —pU « —pU

2
vgS vgS 1) VasS EF o
1 — a(T—t)\2
+[2a(a+—pu)+ 2a]<—py)( ‘ )}

L

(A.137)
We remark we can add the first and fifth line of A.137
ugs(iﬁg T —t+2(T — t)e T _9 1— e;a(T—t) 11— 6;:@4)]
a (—pp)?
— DSS<if§)3 (T —t— 0l ~ eaa(Tt) L 1— eQZa(Tt)

—p a

2
Factorising the third and the fourth line of A.137 by 202 5> (5—1””) (T—t— 120

then added provides

—pv o
2 2
. 272 9 EF 9 1_€—a(T—t)
s ( 2 (-0 (25

The right side of this equation simplifies with the first term of 2v, Hm%.

2
1 — —a(T—t) 1 11— —a(T—t) 1 — —a(T—t)
st (o 1T (1 i

(A.139)

In the same manner, we can add A.138 and the second member of the fifth line
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of A.137.
2 _ —a(T—1) _ ,2a(T—1)
_ V€T 1—e 1—e
2UgS T—t—2
Vs (—pl?)?’( ! * 2a
sS vogh —20(T—t) _ _—a(T—t)
—_— 1+2e —e @ A.140
20 (= pﬂ)g( + 2 € ) ( )
82 1 — e—a(T—t)
= 2ugS E_ (7T —t— —M—
RN a

Moreover, the second line added to the third term of the fifth line of A.137

g2 1 — efa(Tft) 1— 67201(T7t)
20058 L | T — t — 2
S o
2
UQSS 5},1 (1 + e_za(T_t) - 26_a(T_t)) (A.141)
20 (—pp)
V5o a

Finally, the whole expression is simplified as eq. 2.46

2
€
ENeal@uonn = vs8"— o5 (T = 1)°

2 1 — —a(T—t)
(2 ) (1122

+ 5S¢t

we can notice this expression contains E[N[t§T]]%Qn(t))n and E[N1]@n )

We can use the same tricks for Ms(t) and we obtain eq. 2.47

_l sc2 EF N2
M2(t) == 21/55 (—p]/2)2 (T t) ( )
A.143
2 1 — e—T-t)
+ °r 5 VSSL—FVQSS T—t—e—
(—pr2) (—pv) o

Then the expression of My and the expression of E[N, [%-T]](Qn(t))n are computed.
And so, we find the analytical expression of Y2(T — ).

Then the expression of M3 and E[NS;T}](Qn(t))n can be computed. So we do the
proof of Prop 2.2.10

Proof. We dispose of the equation
E[Njiy] = 6Ms(t) + 6Ma(t) + Ma(t) (A.144)
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In order to get a more simplified version of the computations, we recall the form
Of Mg (t)

Ms(t) = /0 B S(wsma(T — 5) + 2v05my (T — 8)ma(T — 8) + vasmi (T — s))ds

T—t

Svsgmi (T — 3)ds> >M1 (t)
(A.145)

+ (/0 ) S(wsma(T — 5) + vasmi(T — 5))ds + é(

0

We assign a term of M3(t) with respect to another term in function of the nuclear
parameter of the source.
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T—t
/ SﬁsTﬂg(T — S)dS + ﬂnoomg(t)
0 ,

UeS 1— —a(T-t)
- _”ST<_2(A+B)(T_t) —(BA+B)— %
(e
1 — —a(T—t)
—2(3A+ B)(T — )@@= - 27 7
«
1— e—a(T—t)
+2B(—a(T — t)%?e T T —t)e T D 20— )
(e
1— 6—2a(T—t) 1— €—2a(T—t) 1 — e—3o¢(T—t)
2B8A+B)———— —2B((T —t)e ) - )4 (-A+B)——M—
+2(34+ B)——~ (T —t)e 5 ) T (A+B) ———
7S
- La(—z(A +B)

+ (=(3A + B) + 2a(T — t)(3A + B) + 2a°B(T — t)?)e~T~Y)
+ (2(3A + B) + 4aB(T — t))e 2"

+ (—A+ B)e*%‘(T*t))

B 1755{ _L(A+B) (34+B)

—1 2 1
- —2(3A+ B)— +2BZ 1 2(3A + B)—
9 o o (34 -+ )a+ 04+ (3A + >2a

-1 1
—2B— —A4+ BY—
2a +( + )3a

—2(A+B)(T—1)
(BA+B) ,B34+B) B (34+B) ) —a(r—

4= —
« o o o

+

+| —2(34+B)—4B + 2g(3A + B)) (T — t)e—a(T—t)
(0]
+| —2aB+ 2aB> (T —t)2eoT

+ 1 -2 —2— 42

2a 2a a

BA+B) ,B <3A+B))6_M_t>

+| —2B+ 4Bg> (T — t)e~ 2T
(6%

3a «

5 —2(A+B)(T —t) —6—— — 4B(T — t)e T

_ pgSJ11A+16B A+ Be—oc(T—t)
B1e" a

—+ 3&6—2a(T—t) + QB(T _ t)e—Zoc(T—t) + 2_12‘1‘ Be—SOz(T—t)}
o a

(A.146)
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= V285
/ Svosmi (T — s)ma(T — s)ds + o 2ma (t)ma(t)
0

3 _ —a(T—1) _ ,=3a(T—1)
B Vo€ —a(T—t) 1—e Coa(r—t) 1€
=9 T—t)+2(1T—t -3 —(T'—t —_—
VST o (( ) +2(T —t)e - (T =t)e +——
3
v2sS VQg_F (1 . —a(T—t))(l 2a(T t)e—oz(T—t) _ €—2a(T—t))
o (—pv)
3 _ —a(T—1) 1 — —3a(T—t)
B Vg, —a(T—t) I—e —2a(T—t) €
S T—t)+2(T—1t -3 — (T —t
Vas (o) (( )+ 2( Je o ( )e + 30
1— —a(T—t)
+ e (1 B 20{(T . t)e—a(T—t) _ —204(T—t))>
(0%

T—t VSSS
/ SV3Sm§(T —s)ds + m‘rf(t)
0 3

3 1 — —a(T—-t) 1 — —2a(T—t) 1 — —3a(T—-t)
zyggSS—F)g<(T—t—3 ‘ +3-—° S )

(—pv ! 20 3
1 — 3e—a(T—t) 4 36—2a(T—t) _ e—3a(T—t)>
+
3o
3 1 — —a(T—t) 1 —2a(T—t)
YAy U _ ot
(—pv)3 a 2
(A.148)
T—t - DSS
Svsma(T — s)dsM(t) + TMl(t)mg(t)
0
T—t
= vgSM(t) / ma(T — s)ds + ma(t)
0
2 _ —a(T-1) _ ,2a(T—1)
= V2€F —a(T—t) 1 e 1 e
= vgSM(t T—t+2((T -t — —
7S M ><(_W}3< P2~ 1) )
ve (1 —2a(T — t)e Tt — g=2a(T—1))
(—pv)? o
2 1 — —a(T-t)
PIS y <T pplm et
(—pv)? !
(A.149)
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1/258

/ T S (T — s)dsMu(t) + 225 A (m2 (1)

«

= 1955 M, (t) (/OTt mi(T — s)ds + mf(t))

g2 1 — efa(Tft) 1— 67201(T7t) 1 — 26704(T7t) + 672a(T7t)
= g S— My(t) | (T —t —2
V23 (—pw)? i ><< o + 20 2a
g2 1 efa(Tft)
= s S—Mi(t)| T —t —
125 &L 1( )( a
e H0)
v —pu
(A.150)

Tt 2 3 g3
é(/ Svgmq (T — s)ds> M (t) + Vsj mi(t)
0

_ MP(t) n ZE

6 Gas 1
303 3 _ —a(T—t) _ —a(T—t))2
v3S° ey 3 ,l—e (1—e )
= ——— | (T —t)’ =3(T —t) ———— +3(T' — ¢t
6(_/)5)3(( e
(1 _ efa(Tft)>3 (1 _ efa(Tft))S
a ad * fo% )
1755'3 g%, ) 1 — efoz(Tft) (1 _ efa(Tft))Z
= — (T -t (T —t)"=3(T -t
5 (_pﬂ)g( (T =) =3(T = t)—— +3 =
(A.151)
It remains (v, 7 — vsss D(jg’ai3)m?(t) and vy M(t)ma(t)
V35S 5253 3
Walloo = 30"~ gz /M0
S = 2
_ <_< )+ 2 1/33)
3a\ —pv " —pv —pU
(A.152)

vsS S [_ 1 7§S*\ v3sS .
+7£<”S pv+””>+ a7 | i) = 5 mi(®) - T Imi)

S v Vs 2% vgS S v
= | (e )+ ) 22 2 s s | | mi(t)
3o\ —pv - —pv —pU a 2a —pU

We have to take care of 5 terms in order to simplify the e~3(7 =%
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EH7OOM2(t)m1 (t)

_ 2 —a(T-1)
_ S Er (4 e 5y PEE T 4 (T — )T — ploc

a \ (—pv) (—p7) a

1 e—2a(T—t)

B 2c0
£2 1 e—a(T—t) 1 €—2a(T—t)
S—L T —t—-2
2

i1 —Ssé_F{T_t_ 6 } )

2 —pU «

(A.153)

Then summing each previous sub results, we obtain the simplified version.
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More explicitly we have

Ms(t)

- _ —a(T—t)
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+ (2(3A + B) + 4aB(T — t))e 21

+(—-A+ B)e‘w(T‘”)
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3a\ —pv " —pv —pv
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This expression can be simplified. We point at the reader that
E[NG 1) (@u@), = 6(Ms + Ma) + M,y (A.155)

that can be shortened as eq. 2.48

2
- €F erDo vsDog o 1 — e—a(T-1)
E[N; = UsS T—-1t)3 1— 1 ao(T t)_2—
e, = 75,55 (0 =0 ( —r ) ( oD, ) ( T a(T —t)
_erDs 1 7% Dss - 3 — de—T=1) 4 9p—20(T—1)
P’ "D, 20(T — 1)

2 Vo L—e T\ [ ¢ep
+ 6(—pl7)2 (Vss(_py) + VgsS) (T —t— T) (Vss(_py) (T — t) + 1)

o)

2
(T —t)® + 60 552( pr)Z(T—t)2—I—ZEgS

(A.156)
Then the asymptotical behaviour of the moments can be settled.
O

Proof of the computation of the Feynman moments of order 2 and 3.

Finally, we have computed the three first moment of @, (t)

L] Ml, MQ, Mg,

o E[N:r)@u@nr ENEr)@u@nr ENGaql@u@)a-

A.2.5 Generating functions

We recall here the principal use of a generating function, and we give the details of
the previous computations of the annexes.

We denote g(z,t) a generating function associated to the distribution p,():
g(z,t) :== 3% 2"p,(t). What enables us to get

pn(t) = [g;n] (t) (A.157)

We denote g,(z,t) the generated function associated to p,.(t): g.(z,t) =

Zn 0" Pn(t)

g =y (A.158)

because p,,, is a conditional probability, which can be broken down as follows p,, , =

zn1-|-~~~-&-nu:n Hyy’:l bu.
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In order to get the moment of ¢,, we can differentiate with respect to the space

variable z:
g 15}
(%) = Vg”_la—i (A.159)
2
Py o[ Og v g
(@ﬂ) =v(v—1)g 2(% + gt e (A.160)

(A.161)
lg” ) 3 P
( 354 ) =v(v—1)(v-2)(v-3)g"" (57?:) +3u(v—1)(v — z)gvf?)a_i
Fq\ AN Lia
S o RO (R )
&g o d'
+v(v— 1)g”’28—x€a—i + Vg”*la—xﬂ (A.162)

=v(v—1)(v—-2)(v—-3)g" " (%) +3v(v—1)(v — 2)g”3%

2
209 D’g 829) +ng_1349

+4v(v —1)g +3v(v—1)g (8:162 o

Ox Ox3

In order to get the differential equations for the considered moments (simple,
factorial, etc...), we write properly the Fokker-Planck equations, which reads

d [e.9]
—d—g A9 =Ar Y fug” + Aclect + (1 - ec)), 9(T) =1 (A.163)

v=0

A first differentiation with respect to x provides

d 9y | 9, 99 .
+ Ar x—)\pZVf,, ~9"" + ceo, 5 (T) =0 (A.164)
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A third one provides

ddy | Pg &g 1y 89 Pg
—E%HT% Zuf,, 539 +3(v _1)3_&(;29 +(v—1)(r—2) o | (s

v=0

A fourth one gives

2
dd'yg &g - g 1 2
_2 — R 1 Il 2 HBYI

R AF;”JF P (Chttl W W vl I ww 1

0gd'g , o Pgdyg , ., Pgdg ,, 0gdy
””‘”(a a? TSman? T ama? Taan
ag azg v—3

ox® N
(A.168)

Generating function moments

We define the moments of the generating function g as

1 |d
=1
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Using the Fokker-Planck equation for the moments, we obtain

1 dmy 1
-2 = e (T —t T) =
o + mq _pD€F( ), mi(T) =0
1d
——% +mo = %mi mo(T) =0
Q@ pv (A.170)
1 dms " 1 (v3m? + 2 ) (T) =0
o di 3 —pﬂ 371 217017182 ), 3
1d
_5_224 +my = __pﬂ(yg(mg + §TfL2m3) + vsmimy + vymy), ma(T) =0

From these equations we can get

1|Pg” viv—1) ,
Moy =3 [ 92 ] ~ =—F ™ + vmey (A.171)
We can notice the fact that
E[N(N —=1)---(N —n)] = nlm, (A.172)

More explicitly, we dispose of

E[N]pa ). =ma(t)
E[N?| (6, = 2ma(t) +ma(t) (A.173)
B[N ). = 6(ms(t) +ma(t)) + ma(t)

Generating function gr

In this part we consider a specific generating function

Definition A.2.3. We take into account the generating function associated to the
induced fission

+o0o
=> fg’(x.t) (A.174)
v=0

Proposition A.2.4. The differentiate of gr of order 1 to 3 with respect to x of the
generating function gp are

+o00

agF . ag 1/ 1
ox _;ny
2
ang <= 629 v—1 iy ag v—2
81/'2 _Zoyfl/a zg +ZV(V_]‘>fV % g ( )
v= A.175
& gr &Fg 89329 ”
G :Z”f”a 9 1+Z a—w" ’

v=0
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By this fact we dispose of

0]
% - g (t)

o ]

IEN = 2hgma(t) + 2uasm(t) (A.176)

Ox? »

o] ) 3
53 = 6vgms(t) + 12v99mq (t)ma(t) + 6rssmi(t)

L dz=1

Proof. The two first equations are easy to obtain, the last one requires computing
that
3x2x2=12 (A.177)

]

A.2.6 Feynman moments tools

This part is useful in 1.6.3.

In the following S = Sg will refers to the intensity of the source and Sy = 0.
The Feynman moments can be computed thanks to the I}, .

The computation of I (%) is

Proof. We retold that I o (t) = % where K := logG and so
=1
K =logG +1logGy  (9(x.1),t) (A.178)
Moreover
T—t +oo
logG = S/ (Z fog"(x, T —s) — 1)ds (A.179)
0 v=0
Then when we differentiate C one time with respect to x
G 7 (9(w,t),t)
HCX)
oK 0K N
—_— = - A.180
or  Ox * G1(9(z,1), 1) ( )
where
8Gﬂ7oo(g(x,t),t)] B [@] IG1T (o(.1) t)]
ox . ox . ox . (A.181)
=m, (t)ljﬂ,oo
and so
Ioo(t) = Mai(t) +ma(t)vgy (A.182)
what provides
Moo(t) = 78S (T — #) (A.183)
— v
O
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The computation of I «(t) is

Proof. By definition, we know that

1| PK
el =5 [a_]
=1

and so we deduce

Farr (glat)d) 0G 11 (g(zt).t)
1| PK 1 —Hﬁ;hGnm(g(x,t),t) + (H”’?T
Bel) =51 52| T3 Grr (9@ 0.0
x=1 H,oo gL, t), x=1
(A.185)
But, we know that
Gr1oo(9(z,t), 1) =1 (A.186)
Moreover, we know
PG lolr1)t) 9 0Gy (9(x,1).1)
ox? - O ox
d g oG 17
= (= 10 ).t A.187
ax(ax o (9(2,1).1) ( )
&g 0G 17 99 PG 11 o
= — : t),t e~ . t),t
e (g, 1),0) + S22 (g1, 1
what enables to understand that
Dooo(t) = Io(t) +ma(t)ipy oo +ma(t)vy 17 + m%(t)ﬂ}loo (A.188)
However
T—t 0
Ft:S/ yma (T — s)ds
#(t) 0 ;f 2T =) (A.189)
= s ST (1) + s ST(t)
where
T—t
12(t) :/ mi(T — s)ds
0
T 5% 2
= /0 e (1 =2 4+ e7°*)ds (A.190)
2 _ o—a(T—1) _ ,—2a(T—1)
Ep 1—e 1—e
T—t—2
p252( Q@ * 20 )
and also
T—t
L(t) = / mo(T — s)ds
ngF T—t
= 1 — 2ase™% — 729 s
(=pv)? /o ( )
2 _ —a(T—1) _ ,2a(T—t)
_ €R —a(T—1) 1—e 1—e
= T—t+2(T—t -2 —
- pﬂ>3( +2(T —t)e - Y—
(A.191)
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what provides

82 1— e—a(T—t) 1— €—2a(T—t)
Dy(t) = rosS—(T —t +2
2(1) = vas p252< * a N 20 )
82 1— e—a(T—t) 1— 6—2a(T—t)
7§S—L (T —t+2(T — t)e @It — —
s (—,017)3< + 2 Je Q 20 )
(A.192)
Moreover, we know that
ma(O)7py . 2y (1 — 20(T — t)emoT—) — =2a(T—1)) 85
Moo(t) vsS =5 (T — 1) (A.103)
—2a(T—t
_g S (Lgeatry Lo,
(—pv)? a(T —1t)
also
O 2281 T (B ) 4 )
Noo(t) UsSEE(T —t)
g (A.194)
(S ey s\l
« —pv vs | o(T —1t)
in addition
P (S — 0P
I vgS=E (T —
Loo(t) PsS=5(T —1) (A.195)
B 2555 EF (1 — e_o‘(T_t))2
T a —pp a(T —t)
And finally, we dispose of
52 1— e—a(T—t) 1— e—2a(T—t)
Dooo(t) = 12sS—=(T —t +2 2
h00(t) = Log p2ﬂ2( + - + 5 )
52 1— e—a(T—t) 1— 6—2a(T—t)
5SS (T — t + 2(T — t)e T — 2 -
s (—pl?)3( +2 Je a 20 )
(A.196)
0
We can conclude the explicit expression of Y5(T')
205 ()
Yo = —"—- A.197
2= T ( )

A.2.7 Feynman and simple moments: passage formula

We establish the equations between the Feynman and the simple moments in order
to have less cost in computations in the inverse problem 3.1. We recall

E[(N — E[N])’]

-

—1 (A.198)
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Then
_ E[N7]
Y, = E[N] —E[N] -1 (A.199)
And reciprocally
E[N?] = E[N](Y2 + E[N] + 1) (A.200)
On the other hand,
oo BBV, BBy
Then
_ E[N? —3N?E[N] + 3NE[N]* — E[N]’] B E[N?] B B
Y3 = V] 3( [V E[N]-1) a0
_ E[N?] — 3E[N?|E[N] + 2E[N}? E[N?] ‘
= E[N] —3( E[N] —E[N]-1)
Finally,
Y3 = Ig[]]vv? — 3E[N?] 4 2E[N]? — 3(1;[[]]\[\;] —E[N]) +2 (A.203)
Conversely,

E[N?] = E[N](Y; + 3E[N?] — 2E[N]?) + 3(E[N?] — E[N]*) — 2E[N]|  (A.204)

A.2.8 Euler’s method for the moments of the neutrons de-
tected

This subsection is useful in 2.4.
In the following S = S will refers to the intensity of the source and Sy = 0.

Starting again from the differential equation on G

—§ =SG(gr — 1) (A.205)
ot
We differentiate a first time
0oG . 0G dgr
Evaluated in x = 1, we obtain
d _
—%Ml = I/SSml (A207)

Then we differentiate a second time the differential equation on G

0 *aG &G 9G dgr |, Pyr
Bl A i v

) (A.208)
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Remark A.2.5. Fvaluated in x = 1 and divided by 2, we obtain

d
—EMQ = S(DS(Mlml + mg) + I/QSm%) (A209)

In order to finally derive a last time

0 PG el &G g
I AR Tl ri e

) (A.210)

By evaluating in = 1 and dividing by 6, we obtain

d
_EMS = S(Ds(Mgml + Mims + mg) + st(Mlm% + 2m1m2) + Vgsm:l)’) (A211)

(M;)j=13
Starting from the equation
G(x,t) = Gz, 1)G 1  (9(,1))

To obtain the explicit Euler scheme for M, (t), we differentiate this equation with
respect to x and evaluate in x = 1,

Ml(t) == M1 (t) + ﬂﬂ}ooml(t)

then we differentiate the obtained equation with respect to t,

dMl(t) _ dMl(t) _ dml(t)

7 7 VT oo 7 (A.212)

To obtain the explicit Euler scheme for Ms(t), we differentiate the equation 1.249
(state-of-the-art) with respect to x two times and divide by 2 and evaluate in z = 1,

M(t) = Mo(t) + vy (My()ma(t) +ma(t)) + v, 7 omi(t)

then we differentiate the obtained equation with respect to t,

IMa(t)  dMa(t)  d(Ma()ma(t) + malt)) dm? (1)
7t = + VI 0o 7 + V2’H’O°—dt (A.213)

To obtain the explicit Euler scheme for M3(t), we differentiate the equation 1.249
(state-of-the-art) with respect to x three times and divide by 6 and evaluate in
x = 1, then we differentiate the obtained equation with respect to t,

dMg . dMg 1D (dmlMQ + mldMg + dMﬂTLQ + Mldm2)
dt — dr Al dt
(2m1dm1M1 + m%dM1 + 2(dm1m2 + mldmg)
+ V2,H,oo dt

B dms m%dml
+ I/H,oo dt +3V3,H,oo dt

) (A.214)
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A.2.9 Panjer formula

We retold here the Panjer formula the I},(7"), useful in 1.6.3.

We still retold the expression so that the reader could bring closer to the equation
for the I,(7T).

Let start again from

{ /T SagF } 1) (A.215)

Using the formula for the limited expansion in x = 1 of the generating function GG
in order to obtain the moments, we dispose of

%(Z(:p—l)”Mn> :/t S(aax(x—l )dtz (x — 1)
> n(@—1)"M, = (Zi(:c—ni—ln) A (x—1)ij:Zi(x—mi—an(x—an

(nMn> (x— 1)t = Z (Z ZF@Mnl) (z —1)" 1
"~ T A

What enables to get by identification of the general term of the present power series,
and to conclude that

nM, =Y LM, (A.217)

i=1

Thus, we expose what enables us to conclude the expression of the Feynman mo-
ments in function of the M,.

My=1
M, =T
. (A.218)
2My = IV My + 215
SMs = IoM1 + 215M, + 313
What enables us to conclude that
I M-
Y = 272 = 2ﬁ2 — M
Fl M1 (A.219)
X =6=2 = 6—2 — 6My + 2M?
]—,1 Ml 2 + 1

A.2.10 Link between Q,(t) and P,(t)

The aim of this subpart is to make a connection between @, (t) and P,(t).
To do so, we retold the definition of P,(t).
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Definition A.2.6. The probability of detecting n neutrons between t and T in the
system knowing the fact there were O neutrons at time t is

Pu(t) = P(n, T0, 1) (A.220)

When the measure has begun at infinitesimal far time, we have

P,(—o0) = P(n,T10, —c0) (A.221)

For t < 0, we can decompose P,(t) of the following manner

P,(t) = P(n,T|0,t) ZIP’ n, T|i,0)11(i, 00, t) (A.222)

By moving t toward —oo, we obtain

ZIP’ n, T)i,0)I1(i,0]0, —oc) (A.223)

But II(i,0]0, —o0) is the stationary distribution of the number of neutrons present
in the system.

So we can deduce
Po(—00) = Qn(t) (A.224)

We have an expression which depends on ¢ and another that does not depend.

A.2.11 About cp, ¢

This subsection is useful in the state-of-the-art 1.132 and in the inverse problem 3.1.

Now, we establish the relation
6F)\F = 60)\0 (A.225)
Consider the following mean rate

Ap := mean rate of detections
Ar = mean rate of fissions (A.226)

Ac = mean rate of capture

and then we have the efficiencies of detection

AD
EFp = )\—
F (A.227)
_M
ECc = )\C
then
A
)\D = )\—D/\F = EF)\F
AF (A.228)
>\D = —D)\C = Ec/\c
Ac
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and so

SF)\F = Ec)\() (A.229)

Moreover, by definition of k.7, we know that

kefp = — (A.230)

We can deduce from the former equation

)\Tkeff = DAp
v
Ap = AR
kery o
% 231
Ao+ Ar = v AF (A.231)
eff
v
Ao = )\F(k - 1)
eff
and so that
er = eo(—— — 1) (A.232)
kery

The different parameters are linked by the relations

1— ke
T

e g (A.233)
p= VAR N k}eff

kery is the multiplication factor (sub-critical system when kqpp < 1)
« is the coefficient of the neutron decrease (sub-critical)

We notice that they are all linked by the cross-section notion. This notion is
then crucial for the description of our system.

Remark A.2.7. Here are some computations

keff B 1-— k‘eff ]Ceff (07%))

= A.234

Orv Or (1 — k‘eff)ﬂ —pv ( 3 )
AR AR 1

—_— = A.235

o VAR 17/\>\_TF —1 ( )

A.2.12 MCNP-6 and Tripoli-4 parameters

Here are the details of the numerical cases used in chapter 2, 2.5.
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In the first case

We present here the Tripoli-4 data file for the case with Californium-252

First test case

Layer composition Width Density

252Ct 0.01 unknown

POLY, C, H.CH2 19.99 300 POLY 0.9 2 C 0.856 H.CH2 0.1438
AIR, O16, N14 4 300 AIR 0.0013 2 O16 0.22 N14 0.78
HELIUMS3 2 300 HELIUM3 0.001 1 HE3 1

Here are some handling about the moments in the case of spontaneous fission
source only.

]E[N[O,T]] = —_10_ = ESS (A236)
What enables to deduce the following equation
Ep = —pUes (A.237)

Remark A.2.8. In the case of a pure spontaneous fission source, the reactivity p
and the induced fission data (e.g. v) are not defined.

In the same way, we can establish that
Y5 oo = €55 Dag (A.238)

and
Y300 = €502 D3g (A.239)

For the second case

We present here the Tripoli-4 data file is

Second test case

Layer composition Width Density

Water comp 14 PUNCTUAL 300

POLY, C, H.CH2 6 300 POLY 0.9 2 C 0.856 H.CH2 0.1438
AIR, O16, N14 4 300 AIR 0.0013 2 O16 0.22 N14 0.78
HELIUMS3 2 300 HELIUMS3 0.001 1 HE3 1

We obtain the following moments:

crS
E[Nor)] = ——
erDs vgDas
Voo = 222 (1 =
2, 2 ( oD, ) (A.240)

2
Yy =3 erDs 1_ pﬂsDzs B €%D3 1 pﬁgD:&S
= —p? v D, p? 2Dy
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A.3 Inverse problem

A.3.1 The program ntcOb_cov2

The following statements help to provide the data in 3.2.

In order to calculate an approximate version of the simple moments of order
1 to 6 of Q,(t) used in the covariance matrix of the measurements in the Inverse
Problem chapter, we programmed the algorithm ntcOb_cov2. A general approach
can be found in [Hum19].

In a first part, the algorithm ntcOb_cov2 uses an implicit Euler resolution of the
backward EDO for p,(t)

Um aT

() + Arpa(t) = Ap > fupnw(t) + Ac(econt + (1 = £¢)6n0), pu(T) = 0ng
= (A.241)

_dp
dt

By the use of the generating function
g(x,t) = Z " pn(t) (A.242)

and uses the Leibniz formula, in coupled equations.

In a second part, the algorithm ntcOb_cov2 uses an implicit Euler resolution of
the backward EDO for P,(t)

M
_di " (1) = —SPu(t) + s; FosPau(t), Pu(T) = b0 (A.243)
for the binomial cumulants
(T —1t):= % [%K%@)] I,Vp e N* (A.244)
of order 1 to 6, where
K =logG = logG + logGy  (9(, 1)) (A.245)

and uses the Panjer formula (see State of art).

A.3.2 Vectorial version of CLT
This subsection is useful for the computation of the empirical covariance matrix of

the observations 1.354.

The following results come from Central Limit Theorem. In a first part, we will
examine the Cramér-Wold lemma.

Lemma A.3.1. Cramér-Wold
The sequence of random vectors (X;)ien in the vectorial space E converges in law in
E to X if and only if for all linear form u on E, uw(X;) converges in law to u(X).
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This is a key point in order to prove the vectorial version of the CLT.
Then we can establish the vectorial version of the central limit theorem.

Theorem A.3.2. Let (X;)ien be a sequence of independent and identically dis-
tributed random wvectors in R, and square-integrable (i.e. E[X3] < +oo) and
Sp=> 1 Xi. Then

Sn - nE[Xl] law
> N(0, K A.24
T T N0 (A.246)

where K is the covariance matriz of X;.

Proof. Let u be a linear form on R¢. We will obtain the result thanks to the Cramér-
Wold lemma by proving u(n =2 (S, —E[S,]) converges to u(Z) where Z is a Gaussian
random vector of law N (0, K).

Note that E[u(Z)] = w(E[Z]) = u(0) = 0 and also Var(u(Z2)) = u(Ku) = Var(Xy).
Moreover,

So=nEXi] LSS ey Rlu(X
N ) \/ﬁ;( (Xi) — Elu(X;)]) (A.247)

u(X;) are real independent random variables, with same law and square-integrable
(|Eu(X1)|)* < |ul||E(X1)]]? ). We can now apply the CLT for scalar. O

u(

Application

Let’s settle X; = (le)keﬂl;gﬂ the vector of the power 1, 2, and 3 of the neutron
detection distribution.

Proposition A.3.3. The covariance matriz of X; is

E[N?] - E[N]>  E[N% —E[N|E[N?] E[NY] - E[N]E[N?]

K = Cou(X)) = | E[N* —E[N|E[N?] E[NY—E[N?? E[N?| — E[N?E[N?]
E[NY] — E[N|E[N?| E[N°] - E[N?E[N?]  E[N®] — E[N?]?

(A.248)

Proof. By definition, we know

E[(Xy - E[X1])(X1 — E[X1])] E[(X; — E[X1])(Xs — E[X5])] E[(X) — E[X3])(X3 — E[X3])]
(E[(Xz — E[X5))(X1 —E[X1])] E[(Xs — E[X5])(X2 — E[X])] E[(X2 — E[X5])(X5 — E[X3])]
E[(X3 — E[X3])(X1 — E[X4])] E[(X3 — E[X3])(X2 — E[X5])] E[(X3 — E[X3])(Xs5 — E[X;])]

This matrix is symmetrical by definition.
Then

E[(X: - E[X1])(X1 - E[X1])] = E[X} — 2E[X1]* + E[X1]?]
[X7] - E[X4)? (A.250)

E
E[N?] — E[N]?
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and also

E[(X2 — E[Xo]) (X1 — E[Xi])] = E[X1 Xy — XiE[Xs] — XoE[X4] + E[XL]E[X}]]
[X1Xo] — E[X4]E[X>]

E
E[N’] — E[N]E[N?]

(A.251)

Using the previous principle, we will do the same computation for the other matrix
coefficient.
And so, we obtain the result. m

Remark A.3.4. Let ej,j € [1;3] be the j basis element of R3. We can obtain the
variance of each component of Xj.
So

Var[N] = ef Ke; = E[N?] — E[N]?
Var[N? = e} Kes = E[N*] — E[N?]? (A.252)
Var[N°] = e5 Kes = E[N°] — E[N*]?

A.3.3 Confidence interval

This subsection is useful for the first case of the case study 2.4.

We are about to settle the following result

VM = M) o » N(0,1),Vj € [1;3] (A.253)

&j n—-+00

in order to plot rightly the confidence interval of the M;.
Firstly, the CLT claims

V(M = My)

O'j n—-+o0o

» N(0,1),V5 € [1;3] (A.254)
Secondly, the Law of large number states
A M MZ probability A

where o =/ Ma; — M?.

Finally, we use the Slutsky theorem in order to settle

\/H(J\ZJ — M;) _ \/ﬁ(]\% — Mj) 2 law N(0,1) (A.256)

g 0j 0j m—+00

It enables to draw confidence intervals of the M;,Vj € [1;3].
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A.3.4 Approximation of the likelihood

This subsection is useful regarding the mode of 1.354.

We retold here some general aspects of the inverse problem’s theory from [Sull5].
We introduce U, ) are Banach spaces.
Firstly, we talk about a direct problem.

Definition A.3.5. Given an input u € U of a model £ : U — Y, we obtain y the
observations such that
y = f(u) (A.257)

Then, the inverse problem is

Definition A.3.6. Given the observations'y, we want to determine the input u* of
the model £ such that
y = f(u") (A.258)

About the direct problem

Here the observations are,
. 1
M ~ N (M(p¥), HCov(p*)) (A.259)

where M refers to the expression of the exact simple moments of the distribution of
N,y the number of neutrons detected between ¢ and T'.

Then

~ 1

M = M(p*) + WM (A.260)

where M ~ A(0, Cov(p*)).

We know p the vector of the parameter, the law of M has the following distri-
bution

~ 1 t (N —-1(N
P(M|p) ~ e—3 '(M=M(p))Cov(p)~ ! (M-M(p))n (A.261)
\/det(%Cov(p))

which is the exact expression of the likelihood.

About the inverse problem

We dispose of M the results of N (M(p*), %Cov(p*)), we want to estimate p* that
best fits the data.

So we use the Bayes theorem

P(p|M) ~ P(M|p)P(p) (A.262)
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We look for the mode of P(p|M) and E[p|M].
Here are some notations

Prmode = argmax ]P’(p|M)
p

. (A.263)
Pmode = argmax P(p|M)
p

where ) .
P(p|M) ~ —/\e—% *(M-M(p))Cov  (M-M(p))n (A.264)
det(+Cov)

Proposition A.3.7. There exist e > 0 such as ||Prmode — Prmode|| < € when n — +oo.
Also, M = M(p*) + \/Lﬁq* + 0(\/%;).
And where

moae

1

| (A.265)
Prmode = P + ﬁq + 0(%)

Proof. Warning p* refers to real values of the parameters. By definition of the
likelihood

~ 1 tN 1N
P(M|p) ~ o5 "(M=M(p))Cov(p)~ ! (M-M(p))n (A.266)
\/det(%Cov(p))

which is maximal when

M~ M(p)[[ove =0 (A.267)
Thanks to A.259, we obtain,
. 1 - 1
(") = M(p) + =+ 0 =) s = 0 (A.268)

which is equivalent to

o R
M(p") = M(p) + =M+ o =) =0 (A.269)

We obtain . )
M(p*) = M(Prmode) — —=M + o(—=) (A.270)

vn Vn
Since the differential of M in p* is invertible then we can apply the theorem of local

inversion: there exist a neighbourhood V of p* and W of pyede such as M|y p+ is a
local diffeomorphism. So we deduce

1 - 1
* =My p (M(Prode) — —=M + o(—= A.271
" = My (M(pe) = =M+ 0( 7)) (A271)
Using a limited expansion at order one of the previous function, we can obtain

1

P’ = Pmode — dMip*(%M)) + 0(%) (A.272)

in the neighbourhood V of p* Then we can do the same reasoning for pimoede, which
leads to the announced result. O]
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A.3.5 Delta method

We recall the result of the delta method from [GMT19] p 154., it is important for
the confidence interval in the cases study 2.4

Theorem A.3.8. Let X1,---, X, be a sequence of random vectors in R?, g : R —

law

R® a differentiable function in 6. If v/n(X, — 0) — Ny(0, X)) where Ng(0, X))

refers to the normal law in dimension d with variance-covariance matrixz Y. Then
the delta method is

Vi(g(Xa) = g(0)) —— N,(0, Dg(0) ¥Dg(6)") (A.273)

n—-+00

where Dg(0) refers to the differentiate of g in 6.

A.3.6 Numerical results

This subsection is useful to illustrate the delta method applied to the first moment

M;.

We can observe that using the empirical or theoretical values of the standard
deviation of M is similar, here is a result coming from the direct computation of
the likelihood.

Likelyhood in function of k_eff using the first moment

s —— Likelyhood using theoretical variance

Likelyhood using empirical variance

Likelyhood
~

150

K_eff

Figure A.1: Comparison of the use of the empirical or the theoretical standard
deviation of M in the computation of the likelihood of k.sf for a time gate 1" =
1.49018327
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A.4 Tools

A.4.1 Computation of confidence interval

Here are the explicit computations of the confidence interval of the cases study 2.4.

For the simple moments

We compute the expression of the confidence interval for E[N?] —E[N]? and E[N?] —
E[N]3.

We begin by computing the confidence interval for E[N?| — E[N]?.

Let (Y;)"; be an i.i.d. sample of a real-valued random variable with finite moments.
Firstly, the asymptotic confidence interval for the expectation I = E[Y] is

~ ~
A~

On 2 On
o =2 T+ 2] (A.274)

with 7, =>" Yiand oz =37 V- —I2.
We want to estlmate J = E[Y?] — E[Y]? so we will be using

. 1 <& A
‘]”:E;Yf_< ZY) = (I, K,), gi(I,K) = K — I (A.275)

where K, = %Z?:l Y2,
Thanks to the CLT, we dispose of

V(£ 3 Y; —E[Y])) ) VarlY] E[Y?] — E[Y]|E[Y?]
(ﬁ(% YR - E[Yﬂ)) n—+o0 N<OR ’ (]E[Y3] — E[Y]E[Y?] Var[Y?] ) )
(A.276)
: Var[Y] E[Y?] — E[Y]|E[Y?]
We will note C = (E[YS] _E[Y|E[Y?] Var[y?] >

Using the delta method and the Slutsky theorem, we can obtain

n—-+0o00

Vil —J) —— N (0, Vi (I, K)CiVai(l, K)T> (A.277)

where Vg1 (I, K)C1Vg1 (I, K)T = G1(E[Y],--- ,E[Y?]).
More explicitly, we have

Vo (1K) = (=21, 1) (A.278)
and
Vg1([,K)C'1Vgl(I, K)T —_ (—QE[Y]’ 1) <E[Y3]‘ia£[[1;]]E[Y2] E[Y?’]‘/’_CLE‘:{%E;]]E[YZ]> <—2I?[Y]>
—2E[Y|Var[Y] +E[Y?] — E[Y]E[Y?]
= (-2E[Y] 1) (—2E[Y]]E[Y3] +2E[Y]2E[Y?)) + Var[Y2]>

= AE[Y]*Var[Y] — 2E[Y]E[Y?] 4+ 2E[Y]*E[Y?]

— 2E[Y]|E[Y?] + 2E[Y]’E[Y?] + Var[Y?]

= 4E[Y*Var[Y] — 4E[Y|E[Y?] + 4E[Y’E[Y?] + Var[Y?]
(A.279)
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So we can conclude that the bounds of the confidence interval for J is given by

Jn £ —\/G1 (=) Y, —ny) (A.280)

CHIES SITRNES ST =4(%ZY¢>2<%ZW—<%ZY2>2)
(i) ()
()

(i)

(A.281)

With the same principle, let’s compute the confidence interval for L = E[Y?]—E[N]3.
So we have

n:%zﬂ:y;’ ( ZY) = go(Ip, My,), go(I, M) =M — I* (A.282)

Using the CLT, we dispose of

VAl S Y ~E[Y)) Var[y] B[] - E[Y]E[Y?)
(VRS ZEn) eV (0 (s v v ) )

(A.283)
Var[Y E[YY] — E[Y]E[Y?
We denote C = (]E[Y4] 3 ]E[[Y}]]E[Yﬂ [ ]Var[g/i”]] [ ]) _we have
VoI, M) = (—31%1) (A.284)

and

VoI, K)CoVga(I, )" Var E[y*] —E[Y]}E[W]) (—3]E[Y]2>

(E Var[Y?3] 1
( —SE 2Var + E[Yﬂ E[Y]E[Y?] >
YIE[Y?]) + Var[y?]
3E[Y]?Var[Y] + E[YY] — E[Y]E[Y?
= (-3EQT, 1) (—3]E[Y]2EE[]}/4] +[31é[3+f]21£:[y]]1a[w[] ]+ [Var][W])
= OE[Y]*Var[Y] — 3E[Y]?E[Y*] + 3E[Y’E[Y?]
— 3E[YPE[Y?] + 3E[Y]’E[Y]E[Y?] + Var[Y?]
= 9E[Y]*Var[Y] — 6E[Y’E[Y*] + 6E[Y]’E[Y?] + Var[Y?]
(A.285)
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Thanks to the delta method and the Slutsky theorem, we have
n—-+o0o

Vi(ln — L) —— N (0, VoI, K)CaVga(l, K)T> (A.286)

where Vgy(I, M)CyVgo(I, M)T = Go(E[Y], - - ,E[YS)).

As conclusion, the bounds of the confidence interval for L is given by

. 2 1 1
Ln:l:%\/Gg(EZY;,--- ,EZYf) (A.287)

For the Feynman moments

We suggest here to compute the covariance matrix for the Feynman moments.
The delta method settles

P E[N]
ﬁ( B | —o¢ | B[N >—>/\/ <O,V¢KV¢T) (A.288)
2 E[N3)) ] "

where (F})j—13 = ¢(NY)j=1 3.
We have previously established

E[N] E[N?]E[[%l—ﬁm
¢ [ E[N?] | = E[N] (A.289)
E[N?] E[N3]—3E[N?](E[N]+1)+2E[N]3+3E[N]2+3E[N]
E[N]
So
2 3 2
1 -1-3 gl BE%V;F AE[N] + 3
_ 1 +1
Vo=10 gk -3 o (A.290)
0 0 i
We recall
Var(N) E[N% — E[NJE[N?] E[N%] — E[N]E[N?]
K = | E[N% - E[N]E[N?] Var(N?) E[N%] — E[N?|E[N?]
E[N*] — E[N]E[N3] E[N5] — E[N?E[N?] Var(N3)

(A.291)
And so, we will be able to compute the covariance of the Feynman moments VoK VT .

A.4.2 Differentiaije for the computation of the empirical
likelihood P(p|yoss)

Here we compute the differentiate of the function used in A.3.4, and to justify the
use of P(p|yes) properly (see 1.7.2).
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Firstly, thanks to the CLT

. 1 —
det(Cov) = det(Cov(p*) + %Cov),

where Cov ~ N'(0, Cov(Cov(p*)) and Cov(Cov(p*))) = O(1)
1
)

= det(Cov(p*)) + %Tr( ‘Com(Cov(p*))Cov) + of

S

(A.292)

Then, applying the square root

\/det(Cov) \/det(Cov(p*))\/ (1+ cov(p*)—I%Tr( ‘Com(Cov(p*))Cov) + 0(%)

(A.293)
Using the limited expansion of the square root, we can establish at order 1

det(Cov) ——s +/det(Cov(p*)) (A.294)

n—-+oo

Secondly, the CLT allows us to establish

-1

_— I —— ~e

Cov = (COV(p*) + —C0V> , where Cov ~ N(0, Cov(Cov(p"))
n

v o (A.205)
= Cov(p") ' + Cov(p*)”%(?ov(p*)f1 + o(i)
vn vn
Then, at order 1
— =1
Cov — Cov(p*)™! (A.296)
n—-—+0oo

A.4.3 Distributions for induced fission

We provide here the numerical distributions used in the MC code in order to compute
the induced fission

For the first case of the direct problem A.2.12, we used the Terrel distribution

fo = 0,02800
£ =0,15590
f> = 0,31490
f5 = 0, 30880 (4297
f2 = 0,14810
f5 = 0,03870
fs = 0,00496
f7 = 0,00038

Do not forget to normalise.
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For the second case of the direct problem A.2.12, we have considered

fo=0,39658.10""

£ =0,16205
f2=10,33160
3 =0, 30869
£ =0,13069 (A.298)

fs = 0,25066.10~"
fe = 0,21643.1072
fr =0,83505.10~*
fs = 0,14403.107°

For the third and the fourth case of the direct problem, we have considered

fo = 0,02800
fi =0,15590
f2 = 0,31490
f3 =0, 30880
fi=0,14810 (4.299)
f5 = 0,03870
fo = 0,00496
fz =0,00038
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Résumé : La détection et la caractérisation de la
matiere fissile sont des questions cruciales, notam-
ment en matiere de slreté nucléaire, de garanties, de
comptabilité de la matiére et de mesures de réactivité.
Dans ce contexte, nous voulons identifier une source
de matiere fissile en connaissant des mesures ex-
ternes telles que les instants de détection pendant un
intervalle de mesure donné. Ainsi, on observe les ins-
tants de détection des neutrons émis par la matiere
fissile et traversant le détecteur, puis on calcule les
moments de la distribution empirique du nombre de
neutrons détectés durant une porte temporelle T'. Afin
d’identifier la source, on doit obtenir les parametres
suivants : le facteur de multiplication k. sy du systeme,
lintensité de la source S, l'efficacité de détection ec.
Compte tenu des parametres de la source, il existe
des modéles qui permettent de prédire les moments
du nombre compté de neutrons pendant un temps 7.
Nous considérons un modéle ponctuel dans lequel les

neutrons monocinétiques se déplacent dans un mi-
lieu infini, isotrope et homogene. La méthode permet
de calculer les moments de la distribution du nombre
compté : les physiciens prennent généralement en
compte les trois premiers moments (car les moments
d’ordre supérieur a quatre sont trop bruités). Ensuite,
étant donné les moments du nombre de neutrons
comptés pendant un temps 7', nous voulons obte-
nir les paramétres de la source fissile. Pour atteindre
ce but, nous allons utiliser une approche bayésienne
afin d’obtenir la distribution des paramétres. Cette dis-
tribution n’est pas ftriviale, les échantillons peuvent
étre obtenus avec des méthodes de Monte-Carlo par
chaine de Markov avec matrice d’adaptation de cova-
riance (MCMC avec CMA). Apres une étude de cas,
et une analyse des formules des moments dans diff
érents régimes de fonctionnement du systéme, nous
utiliserons les mesures pour deux tailles de fenétre
différentes T} et Ty.

Title : Inverse problems for stochastic neutronics
Keywords : Neutronics, Markov processes, Bayesian

Abstract : Detection and characterisation of fissile
material are crucial issues, especially in the area of
nuclear safety, of guarantees, material accounting and
reactivity measures. In this context, we want to iden-
tify a source of fissile material by knowing external
measurements such as detection times during a gi-
ven measurement interval. So, the detection times of
the neutrons emitted by the fissile material and pas-
sing through the detector are observed, then the mo-
ments of the empirical distribution of the number of
neutrons detected during a time gate 7. In order to
identify the source, the following parameters should
be obtained : the mutliplication factor of the system
kery, the intensity of the source S, the detection effi-
ciency ¢ . Given the parameters of the source, there
are models that predict the moments of the counted
number of neutrons during a time 7. We consider a

methods, MCMC

point model in which monokinetic neutrons move in
an infinite, isotropic and homogeneous medium. The
method calculates the moments of the distribution of
the number counted : physicists generally take into ac-
count the first three moments (because moments of
order greater than four are too noisy). Then, given the
moments of the number of neutrons counted during a
time T', we want to obtain the parameters of the fissile
source. To achieve this goal, we will use a Bayesian
approach to obtain the distribution of the parameters.
This distribution is not trivial, samples can be obtai-
ned with Markov Chain Monte Carlo methods with co-
variance adaptation matrix (MCMC with CMA). After
a case study, and an analysis of the moment formulae
in different operating regimes of the system, we will
use the measurements for two different time gates T
and Ts.
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