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Abstract

Sometimes we benefit from actions that others have taken even when we are unaware
that they took those actions. For example, if your neighbor chooses not to take a parking
spot in front of your house when you are not there, you can benefit, even without being
aware that they took this action. These “hidden gifts” represent an interesting challenge
for multi-agent reinforcement learning (MARL), since assigning credit when the ben-
eficial actions of others are hidden is non-trivial. Here, we study the impact of hidden
gifts with a very simple MARL task. In this task, agents in a grid-world environment
have individual doors to unlock in order to obtain individual rewards. As well, if all the
agents unlock their door the group receives a larger collective reward. However, there
is only one key for all of the doors, such that the collective reward can only be obtained
when the agents drop the key for others after they use it. Notably, there is nothing to
indicate to an agent that the other agents have dropped the key, thus the act of drop-
ping the key for others is a “hidden gift”. We show that several different state-of-the-art
RL algorithms, including MARL algorithms, fail to learn how to obtain the collective
reward in this simple task. Interestingly, we find that independent model-free policy
gradient agents can solve the task when we provide them with information about their
own action history, but MARL agents still cannot solve the task with action history.
Finally, we derive a correction term for these independent agents, inspired by learning
aware approaches, which reduces the variance in learning and helps them to converge
to collective success more reliably. These results show that credit assignment in multi-
agent settings can be particularly challenging in the presence of “hidden gifts”, and
demonstrate that learning awareness in independent agents can benefit these settings.

1 Introduction

In a social world we often rely on other people to help us accomplish our goals. Sometimes, people
help us even if we aren’t aware of it or haven’t communicated with them about it. A simple example
would be if someone decides not to take the last cookie in the pantry, leaving it for others. Another
interesting example is the historical “Manitokan” practice of the plains Indigenous nations of North
America. In an expansive environment with limited opportunities for communication, people would
cache goods for others to use at effigies (Barkwell, 2015); a temporally delayed form of reciprocal
decision making. Notably, in these cases there was no explicit agreement of a trade or articulation of
a “tit-for-tat”(Axelrod, 1980). Rather, people simply engaged in altruistic acts that others could then



Coordination and Cooperation in Multi-Agent Reinforcement Learning Workshop 2025

benefit from, even without knowing who had taken the altruistic act. We refer to these undeclared
altruistic acts as “hidden gifts”.

Hidden gifts represent an interesting challenge for credit assignment in multi-agent reinforcement
learning (MARL). If one benefits from a hidden gift, assigning credit to the actions of the other is
essentially impossible, since the action was never made clear to the beneficiary. As such, standard
Bellman-back-ups (Bellman, 1954) would likely be unable to identify the critical steps that led to
success in the task. Moreover, unlike a scenario where cooperation and altruistic acts can emerge
through explicit agreement or a strategic equilibrium (Nash Jr, 1950), as in general sum games
(Axelrod, 1980), with hidden gifts the benefits of taking an altruistic action are harder to identify.

To explore the challenge of hidden gifts for MARL we built a simple grid-world task where hidden
gifts are required for optimal behavior (Chevalier-Boisvert et al., 2023). We call it the Manitokan
task, in reference to the "take what you need, leave what you don’t need" inspiration from Manitokan
of plains indigenous communities. In the Manitokan task, two-or-more agents are placed in an
environment where each agent has a “door” that they must open in order to obtain an individual,
immediate, small reward. As well, if all of the agents successfully open their door then a larger,
collective reward is given to all of them. To open the doors, the agents must use a key, which the
agents can both pick up and drop. However, there is only a single key in the environment. As such,
if agents are to obtain the larger collective reward then they must drop the key for others to use after
they have used it themselves. The agents receive an egocentric, top-down image of the environment
as their observation in the task, and they can select actions of moving in the environment, picking
up a key, dropping a key, or opening a door. Since the agents do not receive information about
other agents’ actions, key drops represent a form of hidden gift – which make the credit assignment
problem challenging. In particular: 1. The task is fully cooperative so there is no negative reward
for holding the key, and 2. dropping the key only leads to the collective reward if the other agents
take advantage of the gift.

We tested several state-of-the-art MARL algorithms on the Manitokan task. Specifically we tested
Value Decomposition Networks (VDN, QMIX and QTRAN) (Sunehag et al., 2017; Son et al., 2019;
Rashid et al., 2020), Multi-Agent and Independent Proximal Policy Optimization (MAPPO and
IPPO) (Schulman et al., 2017; Yu et al., 2022), counterfactual multi-agent policy gradients (COMA)
(Foerster et al., 2018; She et al., 2022), Multi-Agent Variational Exploration Networks (MAVEN)
(Mahajan et al., 2019), an information bottleneck based Stateful Active Facilitator (SAF) (Liu et al.,
2023) and standard REINFORCE policy gradients (PG) (Williams, 1992; Sutton et al., 1999; 1998;
She et al., 2022). Notably, we found that none were capable of learning to drop the key and obtain
the collective reward reliably. In fact, many of the MARL algorithms exhibited a total collapse
of key-dropping behavior, leading to less than random performance on the collective reward. These
failures held even when we provided the agents with objective relevant information, providing inputs
indicating which doors were open and whether the agents were holding the key.

Interestingly, when we also provided the agents with a history of their own actions as one-hot vec-
tors, we observed that policy gradient agents without proximal policy optimization could now solve
the collective task, whereas others still failed to do so. However, these successful agents’ showed
high variability in their success rate. Based on this, we analyzed the value estimation problem for
this task formally, and observed that the value function necessitates an approximation of a non-
constant reward. That is, the collective reward is conditioned on the other agent’s policy which is
non-stationary. Inspired by learning awareness (Willi et al., 2022; Foerster et al., 2017), we derived
a new term in the policy gradient theorem which corresponds to the Hessian of the collective reward
objective weighted by the other agent’s policy with respect to the collective reward. Using this cor-
rection term, we show that we can reduce the variance in the performance of the independent agents
and achieve consistent learning to drop the key for others.

Altogether, our key contributions in this paper are:

• We introduce a novel MARL task, the Manitokan task, involving hidden gifts that is challenging
for credit assignment, but tractable for mathematical analysis.
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• We provide evidence that several state-of-the art MARL algorithms cannot solve the Manitokan
task, despite its apparent simplicity.

• We demonstrate that when action history is provided to the agents with memory, then independant
PG agents can solve the task, but other algorithms still cannot.

• We provide a theoretical analysis of the Mantokan credit assignment problem and use it to derive
a correction term based on learning-aware approaches (Foerster et al., 2017).

• We show that the derived correction term can reduce variance in the Manitokan task and improve
convergence towards policies that involve leaving hidden gifts.

2 The Manitokan task for studying hidden gifts

The Manitokan task is a cooperative MARL task in a grid world. The task has been designed to be
more complex than matrix games, such as Iterative Prisoner’s Dilemma (Axelrod, 1980; Chammah,
1965), but capable for mathematical analysis of strategic behaviour and different from past coop-
erative environments (see Related Work 3). At the beginning of an episode each agent is assigned
a locked door (Fig.1A) that they can only open if they hold a key. Agents can pick up the key if
they move to the grid location where it is located (Fig.1B). Once an agent has opened their door it
disappears and that agent receives a small individual reward immediately (Fig.1C). However, there
is only one key for all agents to share and the agents can drop the key at any time if they hold it
(Fig.1D). Once the key has been dropped the other agents can pick it up (Fig.1E) and use it to open
their door as well (Fig.1F). If all doors are opened a larger collective reward is given to all agents,
and at that point, the task terminates.

We now define the notation that we will use for describing the Manitokan task and analyzing for-
mally. The environment is a decentralized partially observable Markov decision process (Dec-
POMDP) (Goldman & Zilberstein, 2004; Bernstein et al., 2002).

Let M = (N , T, T ,O,A,Π,R, γ), where:

• N := {1, 2, . . . , N} is the set of N agents.

• T ∈ N is the maximum timesteps in an episode.

• O := ×i∈NOi is the joint space of observations for the N agents and oit ∈ Oi → N9 is a partial
observation for an agent i at timestep t. This is the only input agents take and thus the state S = O

• A := ×i∈NAi is the joint space of actions and ait ∈ Ai is the action of agent i at time t.

• Π := ×i∈Nπi is the joint space of individual agent policies.

• R → R is the reward function composed of both individual rewards, rit, which agents receive for
opening their own door (i.e. an individual objective), and the collective reward, rc, which is given
to all agents when all doors are opened (i.e. a collective objective). (See equation 1 below.)

• T : O ×A → ∆(O) is the transition function specifying the probability T (oi
′
,Ri(oi, ai)|oi, ai)

that agent i transitions to oi
′

from oi by taking action ai for a reward Ri.

• γ ∈ [0, 1) is the discount factor.

The observations, oit, that each agent receives are egocentric images of the 9 grid locations surround-
ing the current position of the agent (see the lighter portions in Fig. 1). The key, the doors, and the
other agents are all visible if they are in the field of view, but not otherwise (hence the task is par-
tially observable). The actions the agents can select, ait, consist of ‘move forward’, ‘turn left’, ‘turn
right’, ‘pick up the key’, ‘drop the key’, and ‘open the door’. Episodes last for T = 150 timesteps at
maximum, and are terminated early if all doors are opened.

The monotonic reward function Ri is defined as:
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Ri(oit, a
i
t) :=


rit = ri door opened
rc =

∑N
j rj all doors opened

0 otherwise
(1)

The Manitokan task is unique from other credit assignment work (see. 3) in MARL due to the num-
ber of keys being strictly less than the number of agents. This scarcity requires the coordination of
gifting the key between agents as a necessary critical step for success and maximizing the cumula-
tive return. But, notably, unlike most other MARL settings the altruistic act of dropping the key is
not actually observable by other agents — when an agent picks up the key they do not know if they
were the first agent to do so or if other agents had held the key and dropped it for them. Thus, key
drop acts are “hidden gifts” between agents and the task represents a deceptively simple, but actually
complex structural credit assignment problem (Tumer et al., 2002; Agogino & Tumer, 2004; Gupta
et al., 2021).

Importantly, with this set-up, the collective reward is necessarily delayed relative to any key drop ac-
tions. Moreover, key drop actions only lead to reward if the other agents have learned to accomplish
their individual tasks. It then follows that the delay between a key drop action and the collective
reward being received will be proportional in expectation to the number of agents, rendering a more
difficult credit assignment problem for higher values of N . In the data presented here we only
consider the easiest version of the task, where N = 2.
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Figure 1: The deceivingly simple steps to success in the Manitokan task. a) Agent 1 finds the key;
b) Agent 1 then finds their door; c) Agent 1 opens their door; d) Agent 1 drops the key as a “hidden
gift”; e) Agent 3 finds their door; f) Agent 2 opens their door.

3 Results

We begin by testing the ability of various state-of-the-art model-free RL algorithms to solve this
task, both multi-agent models, and independent models. For the multi-agent models, we selected
ones that are prominently used as baselines for credit assignment in fully cooperative MARL tasks.
These included the counterfactual model COMA, the centralized critic multi-agent PPO (MAPPO),
and global value mixer models VDN, QMIX and QTRAN (Foerster et al., 2018; Yu et al., 2022;
Sunehag et al., 2017; Rashid et al., 2020; Son et al., 2019). We used REINFORCE policy gradient
methods, and gradient decoupled independent PPO agents (IPPO) (Williams, 1992; Sutton et al.,
1999; Schulman et al., 2017). In order to alleviate problems with exploration and changing policies
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we also tested MAVEN (which provides more robust exploration) and SAF (which is a meta-learning
approach with a communication protocol network for learning with multiple policies) (Mahajan
et al., 2019; Liu et al., 2023). All algorithms were built with recurrent components in their policy
(specifically, Gated Recurrent Units, GRUs (Cho et al., 2014)) in order to provide agents with some
information about task history. (See Methods A for more details on design and training.) In our
initial tests we provided only the egocentric (i.e agent’s "self" is included) observations as input for
the agents. Hyperparameters were optimized by tuning from the sets provided in the original papers
with a search to avoid overfitting on the immediate reward. As well, we trained 10 simulations with
different seeds that initialized 32 parallel environments also with different random seeds. These
parallel environments make the reward signals in each batch less sparse. For each simulation we ran
10,000 episodes for each 32 parallel environments, except in Figure 6 where we did 26,000 episodes.
Training was done with 2 CPUs for each run and SAF required an additional A100 GPU per run.
An emulator was also used to improve environment step speed (Suarez, 2024).

3.1 All algorithms fail in the basic Manitokan task

To our surprise, everything we tested converged to a level of success in obtaining the collective
reward that was below the level achieved by a fully random policy (Fig. 2(a)) even though reward
was being maximized. In fact, with the sole exception of MAPPO, all of the MARL models we
tested (COMA, VDN, QMIX, QTRAN) exhibited full collapse in hidden gift behavior: these models
all converged to policies that involved less than random key dropping frequency. Randomizing the
policy can slightly improve success rate but reduced cumulative reward (Appendix 4). Notably,
the agents that didn’t show full collapse in collective success (MAPPO, IPPO, and SAF) were still
successfully opening their individual doors, as seen by the fact that their cumulative reward was
higher than the cumulative reward obtained by a random policy (Fig. 2(b)). But, the MARL agents
that showed total collapse of collective behavior also showed collapse in the individual rewards. We
believe that this was due to the impact of shared value updates. With shared value updates the reward
signal could be swamped by noise from the unrewarded agents in the absence of key drops, and be
confused by a lack of reward obtained when agents’ dropped the key before opening their doors.
(See more below in 4)
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Figure 2: a) Success rate for the collective reward, i.e. percentage of trials where both agents
opened their doors. b) Cumulative reward of both agents across 10000 episodes with 32 parallel
environments limited to 150 timesteps each.
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To maximize the cumulative reward, agents had to learn that dropping the key after opening their
door is a necessary action to take (Fig 1d). As a consequence, the number of key drops that should
occur in an optimal policy between both agents asymptotically on average is 1 (corresponding to a
strategy of one agent always being the first to use the key) or 0.5 per agent (corresponding to both
agents sharing the role of first to use the key).

We found that the key drop rates could explain the lack of collective success in this task. For most of
the MARL agents (VDN, QMIX, QTRAN, MAVEN) the key drop rate always converged to exactly
zero (Fig. 3(a) and E.2), hence the total collapse in collective success in the task. In the case of
MAPPO, and SAF, we observed that the agents learned to pick up the key and open their individual
doors, but minimized the number of key drops to close to zero (Fig. 3(a)). As a result, the collective
success rate was also close to zero. Interestingly, COMA and independent PG showed very low, but
non-zero rates of key drop (Fig. 3(a)), however only PG exhibited a non-zero collective success rate
(Fig. 2(a)). This was because even though COMA agents learned to occasionally drop the key, the
counter-factual baseline caused the loss to become excessively negative (Appendix 1). In contrast,
IPPO did not exhibit a collapse in key drops, which explains its slightly better success in obtaining
the collective reward (Fig. 2(a)).

One complication with measuring the key drop rate is that if the agents never even pick up the key
then the key drop rate is necessarily zero. To better understand what was happening in the MARL
agents, therefore, we examined the “non-zero key drop rate”, meaning the rate at which keys were
dropped if they were picked up. The non-zero key drop rate showed that the mixer MARL agents
begin by dropping the key after picking it up some of the time, but eventually converge to a policy
of simply holding or avoiding the key (Fig. 3(b)). These results show that the Manitokan task is a
challenging credit assignment problem that all of the RL models we tested here failed to solve.
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Figure 3: a) Key drop rate (i.e. cumulative key drops summed across a single episode) averaged
between parallel episodes and runs. b) Non-zero key drop rate (i.e. cumulative key drops summed
across a single episode) averaged between parallel episodes that had key drops and runs.

3.2 Observability of door and key status does not rescue performance in the Manitokan task

To succeed in the collective reward, agents needed to learn to pick up the key, use it, then drop it,
in that order. If they did these actions out of order (e.g. dropping the key before using it), then they
could not achieve collective success. As such, we reasoned that one potential cause for collapse in
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performance in this task could be the fact that agents did not receive an explicit signal that they had
opened their door or that they held the key (i.e. the task was partially observable with respect to
these variables). Therefore, to make the task easier we provided the agents with an additional pair of
observations, one which indicated whether their door was open, the other which indicated whether
they held the key. With this information, theoretically, the agents could at least learn to only drop
the key after their door was opened.

Surprisingly, even in this easier version of the task, the models we tested all failed to achieve col-
lective success rates above random. In fact, the same behavior occurred, with the MARL agents
(MAPPO, QMIX, COMA) showing total collapse, and the independent PG agents showing some
collective success, but still below random (Fig. 4(a)). As well, as before, we found that only
MAPPO and independent PG showed any learning in the task, with QMIX and COMA showing
collapse in the individual success rate as well (Fig. 4(b)). Thus, the lack of information about the
status of the door and key was not the cause of failure to solve the initial version of the Manitokan
task.
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Figure 4: a) Success rate when each agent receives information about whether they have opened their
door or not and if they have the key or not. b) Cumulative reward of both agents with information
about whether they have opened their door or not and if they have the key or not.

3.3 Adding action history helps independent agents but not MARL agents

Next, we reasoned that another potential cause of failure was the fact that agents did not even know if
they themselves had dropped the key in the past. This would make credit assignment to the key drop
action very hard. To make the task easier, we provided the agents with an additional observation
input, namely the last action that they took. Coupled with the recurrence in the models, this would
permit the agents to know that they had dropped the key in the past if/when the collective reward
was obtained. This would, in theory, make the credit assignment problem easier.

When we added the past action to the observation, we found that the PG agents now showed signs of
being able to learn to obtain the collective reward, much better than random (Fig. 5). This also led to
better cumulative reward for the PG agents (Fig. 5). However, interestingly, the other MARL agents
still showed no ability to learn this task, exhibiting the same collapse in collective success rate and
same low levels of cumulative reward as before (Fig. 5a & 5b). These results indicated to us that
there is something about the credit assignment problem in the Manitokan task that can be addressed
by independent policy gradients agents, but not fancier trust region mechanisms. Additionally, these
PG agents still showed very high variance in their collective success rate (Fig. 5), suggesting that
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there is something unique about the credit assignment problem in this task. We therefore turned to a
formal analysis of the task to better understand the credit assignment problem therein.
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Figure 5: a) Success rate when each agent receives their last action in the observation. b) Cumulative
reward of both agents with last action information.

4 Formal analysis and correction term

For ease of analysis we focus on the situation where N = 2, i.e. there are only two agents. We
begin by considering the objective function for agent i with parameters Θi, for an entire episode of
the Manitokan task, where we ignore the discount factors (which don’t affect the analysis):

J(Θi) = E[
T∑

t=0

Ri(oit, a
i
t)] = E[

T∑
t=0

rit + rct ] = E[
T∑

t=0

rit] + E[
T∑

t=0

rct ] (2)

If we consider the sub-objective related solely to the collective reward Jc(Θ
i) = J(Θi) −

E[
∑T

t=0 r
i
t] = E[

∑T
t=0 r

c
t ], we can then also consider the sub-policy of the agent related to the

collective reward (πi
c), and the sub-policy unrelated to the collective reward (πi

d). If we condition
the collective reward objective on the door for agent i being open, then Jc(Θ

i) is independent of
πi
d. Therefore, when we consider the gradient for agent i of the collective objective, conditioned on

their door being open, we get:

∇Θi
Jc(Θ

i) = E[∇Θi
log πi

c(a
i|oi)Qc(o

i, ai)] = E[∇Θi
log πi

c(a
i|oi)]E[Qc(o

i, ai)] (3)

where Qc(o
i, ai) is the value solely related to the collective reward. With this set-up, we can then

prove that the gradient of this collective objective is inversely related to the entropy of the other
agent’s policy.

Theorem 1 Let Jc(Θi) = E[
∑T

t=0 r
c
t ] be the collective objective function for agent i, and assume

that agent i is the first to open their door. Then the gradient of this objective function is given by:

∇ΘiJc(Θ
i) = E[∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj)] (4)

where Ψ(πj
c , a

j , oj) = E[ 1

∇Θj log πj
c(aj |oj)

] and i ̸= j.
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See the P. 1 for the full proof. As a proof sketch, we rely on two key assumptions. The first key
assumption is that agent i is the first to open their door. As a result, agent j’s entire policy is related
directly to the collective reward, and hence the sub-policy πj

d does not exist. The second key assump-
tion is that the other agent’s collective reward policy is differentiable. With those assumptions we
can then use the objective of agent j as a surrogate for the collective reward in the look-ahead step of
the policy gradient derivation (Sutton et al., 1998), similar to the approach taken in mutual learning
aware update rules (Willi et al., 2022; Foerster et al., 2017). The complete gradient objective from
P. 1 becomes:

∇ΘiJ(Θi) = E[∇Θi log πi(ai|oi)Q(oi, ai) +∇Θi∇ΘjJc(Θ
j)Ψ(πj

c , a
j , oj)] (5)

4.1 Use of a correction term in the value function

Using theorem 1 and eq. (5) we use the policy gradient theorem with the correction term. This
correction should reduce the variance in the agents’ abilities to obtain the collective reward by stabi-
lizing their policies with respect to each other. As well since the reward is shared, agents only need
to correct with their own parameters in expectation (see proof in P. 2). This leads to a correction term
of ∇Θi∇ΘiJc(Θ

i)Ψ(πi
c, a

i, oi), which we term “Self Correction”. Hence, we next tested whether
these correction terms applied to PG agents would indeed reduce the variance in their performance.

We tested PG agents, with action history inputs, over many episodes to ensure that we could see
convergence. We examined the original PG agents and compared them to both PG agents with the
correction term above, and the self-correction term. Additionally, we examined PG agents with
a max-entropy term, which theoretically should also reduce the variance in the learned policies
(Ahmed et al., 2019; Haarnoja et al., 2018; Eysenbach & Levine, 2022). We found that all of
the agents converged to a fairly high success rate over time (Fig. 6a) and high cumulative reward
(Fig. 6b). But, the variance was markedly different. The variance of the standard PG agents was
quite high, and the variance of the max-entropy agents were not any lower throughout most of the
episodes, with the exception of the early episodes (Fig. 6c). In contrast, the variance of the agents
with the correction term was a bit lower. But, interestingly, the agents with the self-correction
term showed the lowest variance. We believe that this may be due to added noise from considering
multiple policies in the update. Altogether, these results confirm that the correction term we derived
from our formal analysis can reduce variance in performance on the Manitokan task, but the greatest
reduction in variance is achieved by using a self-correction term. This is interesting, in part, because
it shows that it may be possible to resolve the complexities of hidden gift credit assignment using
self-awareness, rather than full collective agent awareness.

5 Discussion

In this work we developed a MARL task to explore the complexities of learning in the presence of
“hidden gifts”, i.e. cooperative acts that are not actually revealed to the recipient. The Manitokan
task we developed, inspired by the concept in Indigenous plains communities across North America,
requires agents to open doors using a single shared key in the environment. Agents must drop the
key for other agents after they have used it if they are to obtain a larger collective reward. But, these
key drop acts are not apparent to the other agents, making this a task with hidden gifts.

We observed that in the basic version of the Manitokan task none of the algorithms we tested were
able to solve it. This included both policy gradient agents (PG, PPO), meta-learning agents (SAF),
enhanced exploration agents (MAVEN), counterfactual agents (COMA), and agents with collective
value functions (VDN, QMIX, QTRAN, and MAPPO). When we added additional information to
the observations the more sophisticated models tested were still not able to solve this task. How-
ever, when we provided previous action information, then the REINFORCE, PG agents could solve
the task, though with high variance. Formal analysis of the value function for the Manitokan task
showed that it contains a second-order term related to the collective reward that can introduce insta-
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Improved variance with the derived correction term
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Figure 6: Collective success rate of PG agents comparing the normal, vanilla model against one with
a maximum entropy term, with the correction term, and a the self-correction term. b) Cumulative
reward with and without correction terms. c) Variance in collective success rate across episodes.

bility in learning. We used this to derive a correction for the PG agents that successfully reduced the
variance in their performance. Altogether, our results demonstrate that hidden gifts introduce chal-
lenging credit assignment problems that many state-of-the-art MARL algorithms cannot overcome.

5.1 Limitations

We intentionally used a grid world task to make formal analysis more tractable. But, there re-
mains a question of whether the simplicity of the task actually made the credit assignment problem
harder—it is possible that in an environment with more salient information and actions available to
the agents the models could have solved the task. For example, if some form of explicit communi-
cation between agents was permitted, then perhaps it would be possible for agents to first learn to
communicate their gifts to each other, only to have them become implicit and unspoken over time.
This may have been how similar practices developed in the plains of North America.

Another limitation is the limited memory provided by the GRU architecture. It is possible that with
a more explicit form of memory (e.g. a long context-window transformer (Ni et al., 2023; Chen
et al., 2021; Cross et al., 2025) or retrieval augmented model (Hung et al., 2019) agents could more
easily assign credit to their gifting behavior.

5.2 Rethinking reciprocity

A broader implication from our work is that the emergence of reciprocity in a multi-agent setting can
be complicated when acts of reciprocity themselves are partially or fully unobservable and therefore
temporally indirect (Nowak & Sigmund, 2005; Santos et al., 2021). One potential interesting way
of dealing with these situations would be to develop agents that are good at either predicting the
actions of other agents or influencing other agents with implicit information (Jaques et al., 2019;
Xie et al., 2021), which would ease the inference that other agents have taken altruistic actions. The
reciprocity in MARL settings with any form of “hidden gift” may generally be aided by the ability of
RL agents to successfully predict the actions of others when information is asymmetric. Given that
the correction term that we derived from our formal analysis was motivated by the gradient steering
effect in various learning aware approaches (Willi et al., 2022; Foerster et al., 2017; Meulemans
et al., 2025; Aghajohari et al., 2024), it seems reasonable to speculate that abstracting properties
from learning awareness have an untapped potential exterior to the domains in which they were
designed.
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A Appendix

M Methods

Methods This section contains the hyperparameters for the results, hardware details for training
and minor details on the task setup.

M.1 Hyperparameters

Table 1: Model architecture and hyperparameters used for MAPPO.

Component Specification

Policy Network Architecture (Joint) 1-layer CNN (outchannels = 32, kernal = 3, ReLU), 1-
layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input = 64,
output=64, ReLU), 1 layer GRU (input = 64, output =
64, with LayerNorm), 1 layer Categorical (input=64, out-
put=6)

Value Network Architecture (Joint) 1-layer CNN (outchannels = 32, kernal = 3, ReLU), 1-
layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input = 64,
output=64, ReLU), 1 layer GRU (input = 64, output = 64,
with LayerNorm), 1 layer MLP(input = 64, output = 1,
ReLU)

Optimizer Adam, learning rate: 1× 10−5

Discount Factor γ 0.99
GAE Parameter λ 0.95
PPO Clip Ratio ϵ 0.2
Entropy Coefficient 0.0001
Data chunk length 10
Parallel Environments 32
Batch Size Parallel Environments × Data chunk length × number of

agents
Mini-batch Size 1
Epochs per Update 15
Gradient Clipping 10
Value Function Coef. 1
Gain 0.01
Loss Huber Loss with delta 10.00
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Table 2: Model architecture and hyperparameters used for IPPO.

Component Specification

Policy Network Architecture (Disjoint) 1-layer CNN (outchannels = 32, kernal = 3, ReLU),
1-layer MLP (input = 32, output=64, ReLU), 1 layer
MLP (input = 32, output=64, ReLU), 1 layer MLP (in-
put = 64, output=64, ReLU), 1 layer GRU (input = 64,
output = 64, with LayerNorm), 1 layer Categorical (in-
put=64, output=6)

Value Network Architecture (Disjoint) 1-layer CNN (outchannels = 32, kernal = 3, ReLU),
1-layer MLP (input = 32, output=64, ReLU), 1 layer
MLP (input = 32, output=64, ReLU), 1 layer MLP (in-
put = 64, output=64, ReLU), 1 layer GRU (input = 64,
output = 64, with LayerNorm), 1 layer MLP(input =
64, output = 1, ReLU)

Optimizer Adam
Learning rate 1× 10−5

Discount Factor γ 0.99
GAE Parameter λ Not used
PPO Clip Ratio ϵ 0.2
Entropy Coefficient 0.0001
Data chunk length 10
Parallel Environments 32
Batch Size Parallel Environments × Data chunk length × number

of agents
Mini-batch Size 1
Epochs per Update 15
Gradient Clipping 10
Value Function Coef. 1
Gain 0.01
Loss Huber Loss with delta 10.00
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Table 3: Model architecture and hyperparameters used for PG.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer
MLP (input=64, output=6)

Critic Network Architecture (Disjoint) 1-layer MLP (input = 27, output=64, ReLU), 1-
layer MLP (input = 64, output=64, ReLU), 1-
layer MLP (input=64, output=1)

Target Critic Network Architecture (Disjoint) 1-layer MLP (input = 27, output=64, ReLU), 1-
layer MLP (input = 64, output=64, ReLU), 1-
layer MLP (input=64, output=1)

Actor optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Critic optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Discount factor γ 0.99
Target network update interval 1 episode
Learning rate 5× 10−5

TD Lambda 1.0
Replay buffer size 32
Parallel environment 32
Parallel episodes per buffer episode 1
Training batch size 32

Table 4: Model architecture and hyperparameters used for COMA.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer MLP
(input=64, output=6)

Critic Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1-
layer MLP (input = 64, output=64, ReLU), 1-layer
MLP (input=64, output=6)

Target Critic Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1-
layer MLP (input = 64, output=64, ReLU), 1-layer
MLP (input=64, output=6)

Actor optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Critic optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Discount factor γ 0.99
Target network update interval 1 episode
Learning rate 5× 10−5

TD Lambda 1.0
Replay buffer size 320
Parallel environment 32
Parallel episodes per buffer episode 1
Training batch size 32
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Table 5: Model architecture and hyperparameters used for SAF.

Component Specification

Policy Network Architecture (Disjoint) 2-layer MLP (input = 64, output=128, Tanh),
Value Network Architecture (Joint) 2-layer MLP (input = 80, output=128, Tanh),
Shared Convolutional Encoder (Joint) 1-Layer CNN (outchannels = 64, kernal = 2)
Knowledge Source Architecture (Joint)

Query Projector 1-layer MLP (input = 128, output=64, Tanh)
State Projector 1-layer MLP (input = 128, output=64, Tanh)
Perceiver Encoder (latents = 4, latent input = 64, cross attention channels

= 64, cross attention heads = 1, self attention heads =
1, self attention blocks = 2 with 2 layers each)

Cross Attention (heads = 1, query input = 64, key-value input = 64,
query-key input = 64, value channels = 64, dropout =
0.0)

Combined State Projector 1-layer MLP (input = 128, output=64, Tanh)
Latent Encoder 1-layer MLP (input = 128, output=64, Tanh), 1-layer

MLP (input = 64, output=64, Tanh ),1-layer MLP (in-
put = 64, output=16, Tanh )

Latent Encoder Prior 1-layer MLP (input = 64, output=64, Tanh), 1-layer
MLP (input = 64, output=64, Tanh ),1-layer MLP (in-
put = 64, output=16, Tanh )

Policy Projector 1-layer MLP (input = 128, output=164, Tanh)
Optimizer Adam, epsilon 1× 10−5

learning rate 3× 10−4

Discount Factor γ 0.99
GAE Parameter λ GAE not used
PPO Clip Ratio ϵ 0.2
Entropy Coefficient 0.01
Data chunk length 10
Parallel Environments 32
Batch Size Parallel Environments × Data chunk length × number

of agents
Mini-batch Size 5
Epochs per Update 15
Gradient Clipping 9
Value Function Coef. 1
Gain 0.01
Loss Huber Loss with delta 10.00
Number of policies 4
Number of slot keys 4
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Table 6: Model architecture and hyperparameters used for VDN.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 128, output = 64), 1 layer MLP
(input=128, output=6)

Target Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 128, output = 64), 1 layer MLP
(input=128, output=6)

Mixer Network Architecture Tensor sum of states
Policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Target policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Start epsilon greedy 1.0
Minimum epsilon greedy 0.05
Discount factor γ 0.99
Target network update interval 1 episode
Start learning rate 1× 10−2

Minimum learning rate 1× 10−6

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 32
Training batch size 32
Warm up buffer episodes 32
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Table 7: Model architecture and hyperparameters used for QMIX.

Component Specification

Actor Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer MLP
(input=64, output=6)

Target Actor Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer MLP
(input=64, output=6)

Mixing Network Architecture (Joint)
Hypernet Weights 1 1-layer MLP (input =54, output=64, ReLU), 1-

layer MLP (input = 64, output=52)
Hypernet Biases 1 1-layer MLP (input =54, output=64)
Hypernet Weights 2 1-layer MLP (input =54, output=32, ReLU), 1-

layer MLP (input = 64, output=32)
Hypernet Bias 2 1-layer MLP (input =54, output=64, ReLU), 1-

layer MLP (input = 64, output=1)
Target Mixing Network Architecture (Joint)

Hypernet Weights 1 1-layer MLP (input =54, output=64, ReLU), 1-
layer MLP (input = 64, output=52)

Hypernet Biases 1 1-layer MLP (input =54, output=64)
Hypernet Weights 2 1-layer MLP (input =54, output=32, ReLU), 1-

layer MLP (input = 64, output=32)
Hypernet Bias 2 1-layer MLP (input =54, output=64, ReLU), 1-

layer MLP (input = 64, output=1)
Policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Target policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Start epsilon greedy 1.0
Minimum epsilon greedy 0.05
Discount factor γ 0.99
Target network update interval 1 episode
Start learning rate 1× 10−2

Minimum learning rate 1× 10−6

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 32
Training batch size 32
Warm up buffer episodes 32
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Table 8: Model architecture and hyperparameters used for QTRAN.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer MLP
(input=64, output=6)

Target Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer MLP
(input=64, output=6)

Mixing Network Architecture (Joint)
Query Network 1-layer MLP (input =188, output=32, ReLU), 1-

layer MLP (input = 32, output=32, ReLU), 1-layer
MLP (input = 32, output=1)

Value Network 1-layer MLP (input =54, output=32, ReLU), 1-
layer MLP (input = 32, output=32, ReLU), 1-layer
MLP (input = 32, output=1)

Action Encoding 1-layer MLP (input =134, output=134, ReLU), 1-
layer MLP (input = 134, output=134)

Target Mixing Network Architecture (Joint)
Query Network 1-layer MLP (input =188, output=32, ReLU), 1-

layer MLP (input = 32, output=32, ReLU), 1-layer
MLP (input = 32, output=1)

Value Network 1-layer MLP (input =54, output=32, ReLU), 1-
layer MLP (input = 32, output=32, ReLU), 1-layer
MLP (input = 32, output=1)

Action Encoding 1-layer MLP (input =134, output=134, ReLU), 1-
layer MLP (input = 134, output=134)

Policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Target policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Start epsilon greedy 1.0
Minimum epsilon greedy 0.05
Discount factor γ 0.99
Target network update interval 1 episode
Start learning rate 1× 10−2

Minimum learning rate 1× 10−6

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 32
Training batch size 32
Warm up buffer episodes 32
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Table 9: Model architecture and hyperparameters used for MAVEN.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer MLP
(input=64, output=6)

Target Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer MLP
(input=64, output=6)

Noise Mixing Network Architecture (Joint)
Hypernet Weights 1 1-layer MLP (input=116, output=64)
Hypernet Bias 1 1-layer MLP (input=116, output=32)
Hypernet Weights 2 1-layer MLP (input=116, output=32)
Skip Connection 1-layer MLP (input=116, output=2)
Value network 1-layer MLP (input=116, output=32, ReLU), 1-

layer MLP(input=32,output=1)
Target Noise Mixing Network Architecture (Joint)

Hypernet Weights 1 1-layer MLP (input=116, output=64)
Hypernet Bias 1 1-layer MLP (input=116, output=32)
Hypernet Weights 2 1-layer MLP (input=116, output=32)
Skip Connection 1-layer MLP (input=116, output=2)
Value network 1-layer MLP (input=116, output=32, ReLU), 1-

layer MLP(input=32,output=1)
RNN Aggregator 1-layer GRU (input=116, output=2)
Discriminator 1-layer MLP (input=116, output=32, ReLU), 1-

layer MLP (input=32, output=2),
Actor optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Target actor optimizer Adam, alpha 0.99, epsilon 1× 10−5

Use skip connection in mixer False
Use RNN aggregation False
Discount factor γ 0.99
Target network update interval 1 episode
Learning rate 5× 10−5

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 1
Training batch size 32
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M.2 Compute

For each simulation 2 CPUs were allocated and the 32 parallel environments were multithreaded.
All models expect for SAF were able to run without GPUs while SAF used a single A100 for each
simulation. All models, except for VDN, QMIX and QTRAN can finish at 10000 episodes for all
10 simulations within 4 days while the aforementioned models take 7 days. It is possible to use
a GPU for these value mixer models for faster data collection but this was not done to collect the
data. The correction term experiments take 7 days to collect 26000 episodes and do not benefit from
GPUs since their networks are too small. The Hessian term was approximated with Pearlmutter’s
trick (Pearlmutter, 1994).

M.3 Manitokan task setup

The Manitokan Task is a grid world for tractable analysis. The key, agents and doors are randomly
initialized at the beginning of each episode and the actions drop and toggle were additionally pruned
when an agent is not holding a key for reasonable environment logic but are not necessary to be
removed for the task to work. Everything else was described in 2.

R Related Work

Coordination games in MARL are fully cooperative tasks such as the Multiple Particle Environ-
ment (Mordatch & Abbeel, 2017; Lowe et al., 2017), Overcooked (Carroll et al., 2019; Gessler et al.,
2025), the Starcraft Multi-Agent Challenge (Samvelyan et al., 2019; Ellis et al., 2023) and variations
of harvesting or collecting environments (Leibo et al., 2017; Lerer & Peysakhovich, 2017; Lupu &
Precup, 2020; Christianos et al., 2020). In these, there is a single team objective that agents requiring
more than one agent for the group to be successful. Other than shared global information, these fully
cooperative environments also distribute the same reward to all agents even ones who’s actions did
not contribute to success to spur coordination.

This shared reward guarantees that the agents update their policies together and will repeat any ac-
tions associated with that reward. The few works have investigated the impact individual rewards in
coordination games found mixed results and possible policy inconsistency that harmed performance
(Wang et al., 2022). Uniquely, the Manitokan task in section 2 has an individual reward for opening
a door with a key that is necessary to then acquire the collective reward through leaving the key. The
collective reward changes after each policy update since it is the only reward needing coordination
and the agents are challenged on when to leave the gift.

E Additional Experiments

The experiments provided below offer insights into the challenge of the Manitokan Task, and further
empirical validation of the correction and self correction terms.
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E.1 COMA’s loss becomes negative
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Figure 7: a) Policy loss of the COMA model b) Counterfactual baseline in the COMA policy update

COMA persistently collapsed even though it exhibited similar learning behaviour to PG (a closely
related model). The policy loss and baseline curves show increasing instability with large variance
spikes before converging to a value around 0.0. Perhaps this collapse is from the difficulty of leaving
a hidden gift between individual and collective incentives. The original COMA paper Foerster et al.
(2018) even mentions a struggle for an agent overcoming an individual reward, although exterior to
hidden gifts, may be cause for the instability.

E.2 Key drops across all parallel environment for value mixer models collapses
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Figure 8: Keydrops averaged over all parallel environments including ones with zero drops with
models that mix values into a global value function (VDN, QMIX, QTRAN and MAVEN).

The non-zero key drop rate in the main results Fig 3(b) showed a wider variation between agents
and small learning effect. The decreased variance in the appendix Fig 8 is most likely attributed to
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agents not finding the key at all due to noise from the global value updates. The second QMIX agent
also contains a burst in key drops towards the end with

E.3 Changing which agent steps first in an episode harms performance

0 2500 5000 7500
Episodes

0.000

0.025

0.050

Co
lle

ct
iv

e 
Su

cc
es

s R
es

id
ua

l

Alt
ern

ati
ng

Ra
nd

om
Sa

me

Agent 1
Agent 2

(a) Collective Success Rate Residual
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(b) Collective Success Rate

Figure 9: a) The contribution of an agent’s reward accumulation to success weighted by their total
reward comparing policy gradient agents with action history of the same agent stepping first (i.e.
agent 1 then agent 2), alternating agents stepping first (i.e. agent 1 steps first on odd numbered
episodes and agent 2 steps first in even numbers episodes), and a random agent is selecting to step
first. b) Success rate between different step ordering each episode.

The collective success residual is calculated as (rc − ri)× ri where (rc − ri) describes how much
an agent i is contributing to the collective success while weighting it by ri shows if the agents
are increasing that success rate. Interestingly, alternating which agent goes first between episodes
creates oscillations in the collective success rate residual where one agent receiving more reward
means the other agent receives less. Greatly reducing the success. Moreover, randomly selecting an
agent to go first biases the first agent to increase their reward and almost removes all success. These
effect may be caused by uncertainty associated with which agent can reach the key when the other
agent is in sight.
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E.4 Randomizing the policy can increase collective success slightly
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(b) Cumulative Reward

Figure 10: a) Comparing agents of MAPPO, IPPO, VDN and QMIX models with a randomization
applied to their policies b) The cumulative reward for randomized policy agents

PPO agents had their value function learning rates set to 0.001 while the policy learning rates where
kept as 0.000001. This meant the policy would always prefer initial episodes and converge quickly
to those while the value function weighting them more evenly to converge further in the training
process. VDN and QMIX use epsilon greedy in their strategy and simply increasing the time of
decay for this mechanism led these agents to be more random throughout the experiment.

This policy randomization process very slightly improved these agents the success rates’ compared
to those in the main results Fig 2(a) but decreased the cumulative reward for the PPO agents than
those in Fig 2(b). The random policy aligned VDN and QMIX to the random action baseline more
or less, and avoided collapse.
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E.5 Behavioural variations appear between models with inter agent distance and
minimizing the steps to the first reward
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(b) Correction Term Distance

Figure 11: a) Euclidean distance between agents averaged over parallel environments and simula-
tions across our tested models b) Euclidean distance comparing policy gradient agents with action
history and variance reduction terms.

Although the 2-agent Manitokan Task is a four by four grid world, we measured the euclidean
distance between agents to see if they become more coordinated or adversarial when learning hidden
gifting. In Fig 11(a), PG agents exhibited the highest exploration phase but eventually converged to
a lower distance. MAPPO agents also has a similar but substantially smaller exploration effect in the
very beginning while SAF did not have any exploration phases. IPPO and MAVEN agents similarly
hovered below the random baseline but MAVEN agents were closer to each other. COMA agents
begin around random but converge to be closer to each other as well. Value mixer agents VDN,
QMIX and QTRAN all are on average closer to each other but QTRAN agent agents converge
further apart.

In Fig 11(b), vanilla and max entropy PG agents with action history become asymptotically closer
to each other while the correction term agents converge further apart from them. The variance
reduction in self correcting agents is also noticeable.
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(a) Timestep of First Reward

0 8000 16000 24000
Episodes

75

100

125

Re
wa

rd
 T

im
es

te
p

Co
rre

cti
on

Max
 En

tro
py

Se
lf C

orr
ec

tio
n

Va
nil

la

Agent 1
Agent 2

(b) Correction Term Timestep of First Reward

Figure 12: a) Timestep the first reward an agent received. b) Timestep the first reward a policy
gradient agent with action history received.

The reducing the timestep of the first reward is a way to measure if agents are improving their poli-
cies if cumulative reward also increases. In (Fig 12(a)), PG, IPPO, MAPPO and SAF all converge
quickly while PG and MAPPO learn policies of reducing the step slightly below random. COMA
converges at a low timestep but this is most likely due to the collapse. MAVEN oscillates at a
timestep better than random but never converges and doesn’t seem to learn a good policy and VDN,
QMIX, and QTRAN collapse consistently with other results in Section 3.

While in Fig 12(b), all PG models with action history reduce their initial reward timesteps but models
with the correction term converge slower.
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E.6 Modifying the reward function enhances perspective on the challenge of the Manitokan
task
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(a) Collective Success Rate
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(b) Cumulative Reward

Figure 13: a) Success rate of policy gradient agents with action history comparing the normal reward
function with an oracle reward term (i.e. an agent receives a reward of 1 once for dropping the key
after opening their door), a punishment term (i.e.. a negative reward of 1 is applied each step an
agent holds their key after opening their door) and a reward injection term (i.e. randomly distribut-
ing normally smaller rewards around the standard rewards decaying over episodes) b) Cumulative
reward to compare the modified reward functions

The reward function R in equation 1 to study hidden gifting behavior is both sparse with a hard
to predict collective reward conditioned on the other agent’s policy. We tested additional re-
ward conditions on PG agents with action history to see if sample efficiency improvement can
be found. Particularly, the oracle reward: rit the first key dropped after agent i’s door is opened ,
is the critical step to take for hidden gifting and when implemented the collective suc-
cess rate increased quicker than the normal reward function. The punishment reward:
−0.5 for each step agent i is holding the key after their door was opened, is also meant to induce
gifting behavior but agents seemed to avoid the key altogether. Lastly, the injection reward where a
set of rewards rd < ri are normally distributed around rewards ri and rc which also served as the
mean. rd was additionally reduced each episode for agents to prefer the standard rewards. Injection
reduced the success rate severely but also reduced variance in accumulating the expected reward.

These minor modifications reemphasize the difficulty in hidden gifting, where our most performative
agents still struggle even when rewarded for the optimal action.
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(b) Cumulative Reward

Figure 14: a) Success rate between policy gradient agents comparing a disassociation of the reward
function (i.e.. just the individual reward and the collective rewards) b) Cumulative reward of the
same dissociated reward function agents

For a further investigation of the reward function, we tested a dissociation of the individual reward
ri and the collective reward rc with action history PG agents. Using only the individual reward
removed collective success altogether but agents converged at a higher percentage of the cumulative
reward (i.e.. whoever gets to the key first). The sole collective reward did not cause a failure in
collective behavior but severely inhibited it. With both these reward dissociation, agents fail to learn
hidden gifting.
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E.7 The self correction term is empirically sound in contraposition
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Figure 15: a) The percentage of cumulative reward and collective success for anti-collective policy
gradient agents with action history (i.e. optimizing the negated self correction term) across 11000
episodes b) 9 individual simulations for anti-collective behaviour averaged each across a different
set of 32 parallel environments

For all previous experiments, the correction term was maximized to induce agents towards dropping
the key for the other agent (i.e. hidden gifting). Contrapositively however, this term for an agent i
could also be minimized through negation −E[∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj)] in the policy update
and doing so led agents to actively "compete" for the key and avoid dropping it all together. In Fig
15(a), the rewards for both agents increases with variance spikes while the collective success rate
goes down. These results demonstrate a stronger implication of the self-correction in the collective
behaviour of agents than just as a variance reducer.

Fig 15(b) displays the individual simulations with standard deviation of the 32 parallel environments.
Specifically, the reward curves sharply drop and return after agents have learned to open their doors.
This tradeoff in the individual reward accumulation is a detriment to the collective success rate
but perhaps in other situations, the negative correction term can help avoid undesired rewarded
behaviour.

P Proofs

P.1 Correction term

We begin by deriving the standard policy gradient theorem (Sutton et al., 1998; 1999) under the
assumptions in Section 4 that an agent i is first to open their door and that the collective reward rc

is differentiable through another agent js objective. The objective J(Θi) for agent i is to maximize
the expected cumulative sum of rewards within an episode E[

∑T
t Ri(oit, a

i
t)] with the reward

function R in equation 1 where a value function V (Θi, oi) = E[Ri(oi, ai)].
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∇ΘiJ(Θi) = ∇Θi(
∑
ai∈A

πi(ai|oi)Q(oi, ai)) (6)

is the differentiated objective with respect to agent i.

∑
ai∈A

(∇Θiπi(ai|oi)Q(oi, ai) + πi(ai|oi)∇ΘiQ(oi, ai)) (7)

by product rule expansion.

∇Θiπi(ai|oi)Q(oi, ai)+πi(ai|oi)∇Θi(
∑
oi′ ,Ri

T (oi
′
, Ri(oi, ai)|oi, ai)(Ri(oi, ai)+V (Θi, oi

′
) (8)

Here, eq. (8) is summed over all actions
∑

ai∈A. Notably the value function can be used to predict
a look-ahead of the next reward with a next observation oi

′
and T is the transition probability.

Now we construct the other agent’s value estimate as a surrogate for the future collective reward.
The individual reward is a constant and disappears by passing the gradient but we can isolate the
collective reward as sub-objective for a sub-policy with a linearity assumption.

E[
T∑

t=0

Rj(ojt , a
j
t )] = E[

T∑
t=0

rjt + rct ] = E[
T∑

t=0

rjt ] + E[
T∑

t=0

rct ] (9)

eq. (1), only rj degenerates to 0 while rc is differentiable w.r.t to another agent j.

To isolate the sub-objective for the collective policy, start with the reward maximization objection.

J(Θj) = E[
T∑
t

Rj(ojt , a
j
t )] (10)

J(Θj) = E[
T∑

t=0

rjt ] + E[
T∑

t=0

rct ] (11)

by linearity in eq. (2) of Rj .

J(Θj)− E[
T∑

t=0

rjt ] = E[
T∑

t=0

rct ] = Jc(Θ
j) (12)

∇ΘjJc(Θ
j) = E[∇Θj log πj

c(a
j |oj)Qc(o

j , aj)] (13)
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∇ΘjJc(Θ
j) = E[∇Θj log πj

c(a
j |oj)]E[Qc(o

j , aj)] (14)

Since the individual policy on finding the key and opening the door is assumed to be learned from
eq. (3) then the agent’s policies are probabilistically independent from each other.

Let Ψ(πj
c , o

j , aj) = 1

E[∇Θj log πj
c(aj |oj)]

where Ψ is the reciprocal of the expected collective policy
for agent j. So we can clarify the term

∇ΘjJc(Θ
j)

E[∇Θj log πj
c(aj |oj)]

= ∇ΘjJc(Θ
j)Ψ(πj

c , o
j , aj) = E[Qc(o

j , aj)] (15)

πi(ai|oi)(
∑
oi′ ,Ri

T (oi
′

+1, R
i(oi, ai)|oi, ai)(∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj) +∇ΘiV (Θi, oi
′
)) (16)

Now in eq. (16) the correction term as a surrogate for the collective reward in the look ahead step
from eq. (8).

Let Φ(oi) =
∑

ai∈A(∇Θiπi(ai|oi)Q(oi, ai) for readability and Let ρi(oi → oi
′
) =

πi(ai|oi)(
∑

oi′ ,Ri T (oi
′
, Ri(oi, ai)|oi, ai) for further readability.

Φ(oi) +
∑
oi

ρi(oi → oi+1)(∇ΘiV (Θi, oi+1) +∇Θi∇ΘjJc(Θ
j)Ψ(πΘj , aj , oj)) (17)

The previous, eq. (17), can then be recursively expanded out further Φ(oi) +
∑

oi ρ
i(oi →

oi+1)(Φ(o
i
+1) + ∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj) +
∑

oi+1
ρi(oj+1 → oj+2)(∇ΘiV (Θi, o+2) +

∇Θi∇ΘjJ(Θj
c, o

j)Ψ(πj
c , a

j , oj))

∑
xi,xj∈O

∞∑
k=0

ρi(o → xi, k)(Φ(xi) +∇Θi∇ΘjJc(Θ
j
c)Ψ(πj

c , a
j , xj)) (18)

Let η(o) =
∑∞

k=0 ρ
i(oi → oi

′
, k) to clarify the transitions.

∑
o

η(o)(Φ(o)+∇Θi∇ΘjJc(Θ
j)) ∝

∑
o

η(o)∑
o η(o)

(Φ(o)+∇Θi∇ΘjJc(Θ
j , oj)Ψ(πj

c , a
j , oj) (19)

since the normalized distribution is a factor of the sum.
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Then let
∑

s
η(o)∑
o η(o) =

∑
o∈O d(o)

∑
o∈O

d(o)(
∑
ai∈A

(∇Θiπi(ai|oi)Q(oi, ai) +∇Θi∇ΘjJc(Θ
j , oj)Ψ(πj

c , a
j , oj)) (20)

∑
o∈O

d(o)(
∑
ai∈A

(πi(ai|oi)Q(oi, ai)
∇Θiπi(ai|oi)
πi(ai|oi)

+∇Θi∇ΘjJc(Θ
j , oj)Ψ(πj

c , a
j , oj)) (21)

, the log-derivative trick can pull out the gradient.

∑
s∈S

d(s)(
∑
ai∈A

((ai|oi)Q(oi, ai)∇Θi log πi(ai|oi) +∇Θi∇ΘjJc(Θ
j , oj)Ψ(πj

c , a
j , oj)) (22)

Finally, the full gradient objective from eq. (5) is constructed

∇ΘiJ(Θi) = E[Q(oi, ai)∇Θi log πi(ai|oi) +∇Θi∇ΘjJ(Θj , oj)Ψ(πΘj , aj , oj))] □

P.2 Self correction term

Considering eq. (3) and eq. (4) the correction term for agent i is equivalent to the expected collective
reward value estimate of

E[∇Θi∇ΘjJc(Θ
j)Ψ(πj

c , a
j , oj)] = E[Qc(o

j , aj)] (23)

In turn, the collective value estimate is an approximated prediction of the collective reward at any
time

E[Qc(o
j , aj)] ≈ E[rc] (24)

.

However the collective reward is also an approximate of the agent i’s collective reward values
estimate, if they opened their door first, which is again equivalent to the correction term of agent j

E[rc] ≈ E[Qc(o
i, ai)] = E[∇Θj∇ΘiJc(Θ

i)Ψ(πi
c, a

i, oi)] (25)

Therefore, in expectation, the correction terms of both agents are equivalent and objective sharing is
not necessary,

E[∇Θi∇ΘjJc(Θ
j)Ψ(πj

c , a
j , oj)] = E[∇Θj∇ΘiJc(Θ

i)Ψ(πi
c, a

i, oi)] □
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Very critically, this equivalence is in expectation and therefore is not an instance of a linear calcula-
tion or transform but the average value of one agent’s correction term is the same as another when
in similar context like opening their door first.


