
The Challenge of Hidden Gifts in Multi-Agent Reinforcement Learning

The challenge of hidden gifts in multi-agent reinforce-
ment learning

Anonymous authors
Paper under double-blind review

Abstract

Sometimes we benefit from actions that others have taken even when we are unaware1
that they took those actions. For example, if your neighbor chooses not to take a parking2
spot in front of your house when you are not there, you can benefit, even without being3
aware that they took this action. These “hidden gifts” represent an interesting challenge4
for multi-agent reinforcement learning (MARL), since assigning credit when the ben-5
eficial actions of others are hidden is non-trivial. Here, we study the impact of hidden6
gifts with a very simple MARL task. In this task, agents in a grid-world environment7
have individual doors to unlock in order to obtain individual rewards. As well, if all the8
agents unlock their door the group receives a larger collective reward. However, there9
is only one key for all of the doors, such that the collective reward can only be obtained10
when the agents drop the key for others after they use it. Notably, there is nothing to11
indicate to an agent that the other agents have dropped the key, thus the act of drop-12
ping the key for others is a “hidden gift”. We show that several different state-of-the-art13
RL algorithms, including MARL algorithms, fail to learn how to obtain the collective14
reward in this simple task. Interestingly, we find that independent model-free policy15
gradient agents can solve the task when we provide them with information about their16
own action history, but MARL agents still cannot solve the task with action history.17
Finally, we derive a correction term for these independent agents, inspired by learning18
aware approaches, which reduces the variance in learning and helps them to converge19
to collective success more reliably. These results show that credit assignment in multi-20
agent settings can be particularly challenging in the presence of “hidden gifts”, and21
demonstrate that learning awareness in independent agents can benefit these settings.22

1 Introduction23

In a social world we often rely on other people to help us accomplish our goals. Sometimes, people24
help us even if we aren’t aware of it or haven’t communicated with them about it. A simple example25
would be if someone decides not to take the last cookie in the pantry, leaving it for others. Another26
interesting example is the historical “Manitokan” practice of the plains Indigenous nations of North27
America. In an expansive environment with limited opportunities for communication, people would28
leave goods for others to use at effigies (Barkwell, 2015). Notably, in these cases there was no29
explicit agreement of a trade or articulation of a “tit-for-tat”(Axelrod, 1980). Rather, people simply30
engaged in altruistic acts that others could then benefit from, even without knowing who had taken31
the altruistic act. We refer to these undeclared altruistic acts as “hidden gifts”.32

Hidden gifts represent an interesting challenge for credit assignment in multi-agent reinforcement33
learning (MARL). If one benefits from a hidden gift, assigning credit to the actions of the other is34
essentially impossible, since the action was never made clear to the beneficiary. As such, standard35
Bellman-back-ups (Bellman, 1954) would likely be unable to identify the critical steps that led to36
success in the task. Moreover, unlike a scenario where cooperation and altruistic acts can emerge37

1

Under review for RLC 2025, to be published in RLJ 2025

through explicit agreement or a strategic equilibrium (Nash Jr, 1950), as in general sum games38
(Axelrod, 1980), with hidden gifts the benefits of taking an altruistic action are harder to identify.39

To explore the challenge of hidden gifts for MARL we built a simple grid-world task where hidden40
gifts are required for optimal behavior (Chevalier-Boisvert et al., 2023). We call it the Manitokan41
task, in reference to the inspiration we drew from the Manitokan practices of plains indigenous42
communities. In the Manitokan task, two-or-more agents are placed in an environment where each43
agent has a “door” that they must open in order to obtain an individual, immediate, small reward. As44
well, if all of the agents successfully open their door then a larger, collective reward is given to all45
of them. To open the doors, the agents must use a key, which the agents can both pick up and drop.46
However, there is only a single key in the environment. As such, if agents are to obtain the larger47
collective reward then they must drop the key for others to use after they have used it themselves.48
The agents receive an egocentric, top-down image of the environment as their observation in the49
task, and they can select actions of moving in the environment, picking up a key, dropping a key,50
or opening a door. Since the agents do not receive information about other agents’ actions, key51
drops represent a form of hidden gift – which make the credit assignment problem challenging. In52
particular: 1. there is no negative reward for holding the key, and 2. dropping the key only leads to53
the collective reward if the other agents take advantage of the gift.54

We tested several state-of-the-art model-free and MARL algorithms on the Manitokan task. Specif-55
ically we tested Value Decomposition Networks (VDN, QMIX and QTRAN) (Sunehag et al., 2017;56
Son et al., 2019; Rashid et al., 2020), Multi-Agent and Independent Proximal Policy Optimization57
(MAPPO and IPPO) (Schulman et al., 2017; Yu et al., 2022), counterfactual multi-agent policy58
gradients (COMA) (Foerster et al., 2018; She et al., 2022), Multi-Agent Variational Exploration59
Networks (MAVEN) (Mahajan et al., 2019), an information bottleneck based Stateful Active Facil-60
itator (SAF) (Liu et al., 2023) and standard policy gradients (PG) (Sutton et al., 1999; She et al.,61
2022). Notably, we found that none of these models were capable of learning to drop the key and62
obtain the collective reward reliably. In fact, many of the MARL algorithms exhibited a total col-63
lapse of key-dropping behavior, leading to less than random performance on the collective reward.64
These failures held even when we provided the agents with objective relevant information, providing65
inputs indicating which doors were open and whether the agents were holding the key.66

Interestingly, when we also provided the agents with a history of their own actions, we observed67
that independent agents could now solve the collective task, whereas MARL agents still failed to68
do so. However, the successful independent agents’ showed high variability in their success rate.69
Based on this, we analyzed the value estimation problem for this task formally, and observed that the70
value function necessitates an approximation of a non-constant reward. That is, the collective reward71
is conditioned on the other agent’s policy which is non-stationary. Inspired by learning awareness72
(Willi et al., 2022; Foerster et al., 2017), we derived a new term in the policy gradient theorem which73
corresponds to the Hessian of the collective reward objective weighted by the other agent’s policy74
with respect to the collective reward. Using this correction term, we show that we can reduce the75
variance in the performance of the independent agents and achieve consistent learning to drop the76
key for others.77

Altogether, our key contributions in this paper are:78

• We introduce a novel MARL task, the Manitokan task, involving hidden gifts that is challenging79
for credit assignment, but tractable for mathematical analysis.80

• We provide evidence that several state-of-the art MARL algorithms cannot solve the Manitokan81
task, despite its apparent simplicity.82

• We demonstrate that when action history is provided to the agents, then independent agents can83
solve the task, but MARL algorithms still cannot.84

• We provide a theoretical analysis of the Mantokan credit assignment problem and use it to derive85
a correction term based on learning-aware approaches (Foerster et al., 2017).86

2

The Challenge of Hidden Gifts in Multi-Agent Reinforcement Learning

• We show that the derived correction term can reduce variance in the Manitokan task and improve87
convergence towards policies that involve leaving hidden gifts.88

2 The Manitokan task for studying hidden gifts89

The Manitokan task is a cooperative MARL task in a grid world. The task has been designed to be90
more complex than matrix games, such as Iterative Prisoner’s Dilemma (Axelrod, 1980; Chammah,91
1965), but simple enough for mathematical analysis. At the beginning of an episode each agent is92
assigned a locked door (Fig.1A) that they can only open if they hold a key. Agents can pick up the93
key if they move to the grid location where it is located (Fig.1B). Once an agent has opened their94
door it disappears and that agent receives a small individual reward immediately (Fig.1C). However,95
there is only one key for all agents to share and the agents can drop the key at any time if they hold it96
(Fig.1D). Once the key has been dropped the other agents can pick it up (Fig.1E) and use it to open97
their door as well (Fig.1F). If all doors are opened a larger collective reward is given to all agents,98
and at that point, the task terminates.99

We now define the notation that we will use for describing the Manitokan task and ana-100
lyzing formally. The environment is a partially observable Markov decision process M =101
(N , T,O,A,Π,R, γ), where:102

• N := {1, 2, . . . , N} is the set of N agents.103

• T is the maximum timesteps in an episode.104

• O := O1 ×O2 × · · · ×ON is the space of partial observations for the N agents and oit ∈ Oi is a105
partial observation for an agent i at timestep t.106

• A := A1 ×A2 × · · · ×AN is the joint space of actions and ait ∈ A is the action of agent i at time107
t.108

• Π := π1 × π2 × · · · × πN is the joint space of individual agent policies.109

• R is the reward function composed of both individual rewards, rit, which agents receive for open-110
ing their own door, and the collective reward, rc, which is given to all agents when all doors are111
opened. (See equation 1 below.)112

• γ is the discount factor.113

The observations, oit, that each agent receives are egocentric images of the 9 grid locations surround-114
ing the current position of the agent (see the lighter portions in Fig. 1). The key, the doors, and the115
other agents are all visible if they are in the field of view, but not otherwise (hence the task is par-116
tially observable). The actions the agents can select, ait, consist of ‘move forward’, ‘turn left’, ‘turn117
right’, ‘pick up the key’, ‘drop the key’, and ‘open the door’. Episodes last for T = 150 timesteps at118
maximum, and are terminated early if all doors are opened.119

The monotonic reward function R is defined as:120

R(oit, a
i
t) =


rit = ri door opened
rc =

∑N
j rj all doors opened

0 otherwise
(1)

The Manitokan task is unique from other credit assignment work in MARL due to the number of121
keys being strictly less than the number of agents. This scarcity requires the coordination of gifting122
the key between agents as a necessary critical step for success and maximizing the cumulative return.123
But, notably, unlike most other MARL settings the altruistic act of dropping the key is not actually124
observable by other agents — when an agent picks up the key they do not know if they were the125
first agent to do so or if other agents had held the key and dropped it for them. Thus, key drop acts126
are “hidden gifts” between agents and the task represents a deceptively simple, but actually complex127

3

Under review for RLC 2025, to be published in RLJ 2025

structural credit assignment problem (Tumer et al., 2002; Agogino & Tumer, 2004; Gupta et al.,128
2021).129

Importantly, with this set-up, the collective reward is necessarily delayed relative to any key drop ac-130
tions. Moreover, key drop actions only lead to reward if the other agents have learned to accomplish131
their individual tasks. It then follows that the delay between a key drop action and the collective132
reward being received will be proportional in expectation to the number of agents, rendering a more133
difficult credit assignment problem for higher values of N . In the data presented here we only134
consider the easiest version of the task, where N = 2.135

Agent 1
 a

f

b

e

c

d

Door 1

Door 2

The key

Agent 2

Agent 1 finds

the key

Agent 1 finds

their door

Agent 1 opens

their door for

reward +0.5

Agent 1 drops

the key

Agent 2 found

the key and finds

their door

Agent 2 opens

their door for reward

 +1.5, Agent 1 receives

reward +1.0

Figure 1: The deceivingly simple steps to success in the Manitokan task. a) Agent 1 finds the key;
b) Agent 1 then finds their door; c) Agent 1 opens their door; d) Agent 1 drops the key as a “hidden
gift”; e) Agent 3 finds their door; f) Agent 2 opens their door.

3 Results136

We begin by testing the ability of various state-of-the-art RL agents to solve this task, both multi-137
agent models, and independent, model-free models. For the multi-agent models, we selected models138
that are prominently used as baselines for credit assignment in fully cooperative MARL tasks. These139
included the counterfactual model COMA, the centralized critic multi-agent PPO (MAPPO), and140
global value mixer models VDN, QMIX and QTRAN (Foerster et al., 2018; Yu et al., 2022; Sunehag141
et al., 2017; Rashid et al., 2020; Son et al., 2019). For independent, model-free agents we used142
standard policy gradient methods (PG), and independent PPO agents (Sutton et al., 1999; Schulman143
et al., 2017). In order to alleviate problems with exploration and changing policies we also tested144
MAVEN (which provides more robust exploration) and SAF (which is a meta-learning approach145
for learning with multiple policies) (Mahajan et al., 2019; Liu et al., 2023). All models were built146
with recurrent components in their networks (specifically, Gated Recurrent Units, GRUs (Cho et al.,147
2014)) in order to provide agents with some information about task history. (See Appendix A.1)148
for more details on model design and training.) In our initial tests we provided only the egocentric149
images as observables for the agents. As well, we trained 10 simulations with different seeds that150
initialized 32 parallel environments also with different random seeds. These parallel environments151
make the reward signals in each batch less sparse. For each simulation we ran 10,000 episodes for152
each 32 parallel environments, except in Figure 6 where we did 26,000 episodes. Training was done153

4

The Challenge of Hidden Gifts in Multi-Agent Reinforcement Learning

with 2 CPUs for each run and SAF required an additional A100 GPU per run. An emulator was also154
used to improve environment step speed (Suarez, 2024).155

3.1 All models fail in the basic Manitokan task156

To our surprise, all of the models we tested converged to a level of success in obtaining the collective157
reward that was below the level achieved by a fully random policy (Fig. 2a). In fact, with the sole158
exception of MAPPO, all of the MARL models we tested (COMA, VDN, QMIX, QTRAN) exhib-159
ited full collapse in hidden gift behavior: these models all converged to policies that involved less160
than random key dropping frequency. Randomizing the policy can slightly improve success rate but161
reduced cumulative reward (Appendix A.2.4). Notably, the agents that didn’t show full collapse in162
collective success (MAPPO, IPPO, and SAF) were still successfully opening their individual doors,163
as seen by the fact that their cumulative reward was higher than the cumulative reward obtained by164
a random policy (Fig. 2b). But, the MARL agents that showed total collapse of collective behavior165
also showed collapse in the individual rewards. We believe that this was due to the impact of shared166
value updates. With shared value updates the reward signal could be swamped by noise from the167
unrewarded agents in the absence of key drops, and be confused by a lack of reward obtained when168
agents’ dropped the key before opening their doors. (See more below in 4)169

0 2500 5000 7500
Episodes

0.00

0.03

0.06

Co
lle

ct
iv

e
Su

cc
es

s R
at

e

COMA
MAPPO
IPPO
PG
VDN
QMIX
QTRAN
MAVEN
SAF
Random

(a) Collective Success Rate

0 2500 5000 7500
Episodes

0.00

0.08

0.16

Cu
m

ul
at

iv
e

Re
wa

rd

CO
MA

MAP
PO

IPP
O

VD
N

PG QMIX
QTR

AN
MAV

EN
SA

F
Ra

nd
om

Agent 1
Agent 2

(b) Cumulative Reward

Figure 2: a) Success rate for the collective reward, i.e. percentage of trials where both agents
opened their doors. b) Cumulative reward of both agents across 10000 episodes with 32 parallel
environments limited to 150 timesteps each.

To maximize the cumulative reward, agents had to learn that dropping the key after opening their170
door is a necessary action to take (Fig 1d). As a consequence, the number of key drops that should171
occur in an optimal policy between both agents asymptotically on average is 1 (corresponding to a172
strategy of one agent always being the first to use the key) or 0.5 per agent (corresponding to both173
agents sharing the role of first to use the key).174

We found that the key drop rates could explain the lack of collective success in this task. For most of175
the MARL agents (VDN, QMIX, QTRAN, MAVEN) the key drop rate always converged to exactly176
zero (Fig. 3a), hence the total collapse in collective success in the task. In the case of MAPPO, and177
SAF, we observed that the agents learned to pick up the key and open their individual doors, but178
minimized the number of key drops to close to zero (Fig. 3a). As a result, the collective success179
rate was also close to zero. Interestingly, COMA and independent PG showed very low, but non-180
zero rates of key drop (Fig. 3a), however only PG exhibited a non-zero collective success rate (Fig.181
2a). This was because even though COMA agents learned to occasionally drop the key, the counter-182

5

Under review for RLC 2025, to be published in RLJ 2025

factual baseline caused the loss to become excessively negative (Appendix A.2.1). In contrast, IPPO183
did not exhibit a collapse in key drops, which explains its slightly better success in obtaining the184
collective reward (Fig. 2a).185

One complication with measuring the key drop rate is that if the agents never even pick up the key186
then the key drop rate is necessarily zero. To better understand what was happening in the MARL187
agents, therefore, we examined the “non-zero key drop rate”, meaning the rate at which keys were188
dropped if they were picked up. The non-zero key drop rate showed that the MARL agents begin189
by dropping the key after picking it up some of the time, but the eventually converge on a policy of190
simply holding the key after picking it up (Fig. 3b). These results show that the Manitokan task is a191
challenging credit assignment problem that all of the RL models we tested here failed to solve.192

0 2500 5000 7500
Episodes

0

3

6

Ke
y

Dr
op

 R
at

e

CO
MA

MAP
PO

IPP
O

PG SA
F

Agent 1
Agent 2

(a) Key Drop Rate

0 2500 5000 7500
Episodes

0

8

16

No
n-

Ze
ro

 K
ey

 D
ro

p
Ra

te

VD
N

QMIX
QTR

AN
MAV

EN

(b) Non Zero Key Drop Rate

Figure 3: a) Key drop rate (i.e. cumulative key drops) averaged across parallel episodes and runs.
b) Non-zero key drop rate (i.e. cumulative key drops) averaged across parallel episodes that had key
drops and runs.

3.2 Observability of door and key status does not rescue performance in the Manitokan task193

To succeed in the collective reward, agents needed to learn to pick up the key, use it, then drop it,194
in that order. If they did these actions out of order (e.g. dropping the key before using it), then they195
could not achieve collective success. As such, we reasoned that one potential cause for collapse in196
performance in this task could be the fact that agents did not receive an explicit signal that they had197
opened their door or that they held the key (i.e. the task was partially observable with respect to198
these variables). Therefore, to make the task easier we provided the agents with an additional pair of199
observations, one which indicated whether their door was open, the other which indicated whether200
they held the key. With this information, theoretically, the agents could at least learn to only drop201
the key after their door was opened.202

Surprisingly, even in this easier version of the task, the models we tested all failed to achieve col-203
lective success rates above random. In fact, the same behavior occurred, with the MARL agents204
(MAPPO, QMIX, COMA) showing total collapse, and the independent PG agents showing some205
collective success, but still below random (Fig. 4a). As well, as before, we found that only MAPPO206
and independent PG showed any learning in the task, with QMIX and COMA showing collapse in207
the individual success rate as well (Fig. 4b). Thus, the lack of information about the status of the208
door and key was not the cause of failure to solve the initial version of the Manitokan task.209

6

The Challenge of Hidden Gifts in Multi-Agent Reinforcement Learning

0 2500 5000 7500
Episodes

0.000

0.025

0.050
Co

lle
ct

iv
e

Su
cc

es
s R

at
e

COMA
MAPPO
QMIX
PG
Random

(a) Collective Success Rate

0 2500 5000 7500
Episodes

0.00

0.06

0.12

Cu
m

ul
at

iv
e

Re
wa

rd

CO
MA

MAP
PO PG

QMIX
Ra

nd
om

Agent 1
Agent 2

(b) Cumulative Reward

Figure 4: a) Success rate when each agent receives information about whether they have opened their
door or not and if they have the key or not. b) Cumulative reward of both agents with information
about whether they have opened their door or not and if they have the key or not.

3.3 Adding action history helps independent agents but not MARL agents210

Next, we reasoned that another potential cause of failure was the fact that agents did not even know211
if they themselves had dropped the key in the past. This would make credit assignment to the key212
drop action very hard. To make this component of the task easier, we provided the agents with an213
additional observation input, namely the last action that they took. Coupled with the recurrence in214
the models, this would permit the agents to know that they had dropped the key in the past if/when215
the collective reward was obtained. This would, in theory, make the credit assignment problem216
easier.217

When we added the past action to the observation, we found that the independent PG models now218
showed signs of being able to learn to obtain the collective reward, much better than random (Fig.219
??). This also led to better cumulative reward for the PG agents (Fig. ??). However, interestingly,220
the MARL agents still showed no ability to learn this task, exhibiting the same collapse in collective221
success rate and same low levels of cumulative reward as before (Fig. ?? & 5). These results222
indicated to us that there is something about the credit assignment problem in the Manitokan task that223
can be addressed by standard policy gradients agents, but not fancier credit assignment mechanisms.224
Additionally, the independent PG agents still showed very high variance in their collective success225
rate (Fig. ??), suggesting that there is something unique about the credit assignment problem in this226
task. We therefore turned to a formal analysis of the task to better understand the credit assignment227
problem therein.228

4 Formal analysis and correction term229

For ease of analysis we focus on the situation where N = 2, i.e. there are only two agents. We230
begin by considering the objective function for agent i with parameters Θi, for an entire episode of231
the Manitokan task, where we ignore the discount factors (which don’t affect the analysis):232

J(Θi) = E[
T∑

t=0

R(oit, a
i
t)] = E[

T∑
t=0

rit + rct] = E[
T∑

t=0

rit] + E[
T∑

t=0

rct] (2)

7

Under review for RLC 2025, to be published in RLJ 2025

0 2500 5000 7500
Episodes

0.00

0.25

0.50
Co

lle
ct

iv
e

Su
cc

es
s R

at
e

COMA
MAPPO
QMIX
PG
Random

(a) Collective Success Rate

0 2500 5000 7500
Episodes

0.00

0.25

0.50

Cu
m

ul
at

iv
e

Re
wa

rd CO
MA

MAP
PO

PG QMIX
Ra

nd
om

Agent 1
Agent 2

(b) Cumulative Reward

Figure 5: a) Success rate when each agent receives their last action in the observation. b) Cumulative
reward of both agents with last action information.

If we consider the sub-objective related solely to the collective reward Jc(Θ
i) = J(Θi) −233

E[
∑T

t=0 r
i
t] = E[

∑T
t=0 r

c
t], we can then also consider the sub-policy of the agent related to the234

collective reward (πi
c), and the sub-policy unrelated to the collective reward (πi

d). If we condition235
the collective reward objective on the door for agent i being open, then Jc(Θ

i) is independent of236
πi
d. Therefore, when we consider the gradient for agent i of the collective objective, conditioned on237

their door being open, we get:238

∇ΘiJc(Θ
i) = E[∇Θi log π

i
c(a

i|oi)Qc(o
i, ai)] = E[∇Θi log π

i
c(a

i|oi)]E[Qc(o
i, ai)] (3)

where Qc(o
i, ai) is the value solely related to the collective reward. With this set-up, we can then239

prove that the gradient of this collective objective is inversely related to the entropy of the other240
agent’s policy.241

Theorem 1 Let Jc(Θi) = E[
∑T

t=0 r
c
t] be the collective objective function for agent i, and assume242

that agent i is the first to open their door. Then the gradient of this objective function is given by:243

∇ΘiJc(Θ
i) = E[∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj)] (4)

where Ψ(πj
c , a

j , oj) = E[1

∇Θj log πj
c(aj |oj)

] and i ̸= j.244

See the Appendix A.3.1 for the full proof. As a proof sketch, we rely on two key assumptions.245
The first key assumption is that agent i is the first to open their door. As a result, agent j’s entire246
policy is related directly to the collective reward, and hence the sub-policy πj

d does not exist. The247
second key assumption is that the other agent’s collective reward policy is differentiable. With those248
assumptions we can then use the objective of agent j as a surrogate for the collective reward, similar249
to the approach taken in mutual learning aware models (Willi et al., 2022; Foerster et al., 2017).250

4.1 Use of a correction term in the value function251

Using Theorem theorem 1 we can add a correction term to the policy updates for the agents. Specif-252
ically, we adjust the policy update for agent i using ∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj). This correction253
should reduce the variance in the agents’ abilities to obtain the collective reward by stabilizing their254
policies with respect to each other. As well, we note that in principle it may be possible for an agent255
to use their own policy to estimate this correction term, since collective reward is shared. This leads256

8

The Challenge of Hidden Gifts in Multi-Agent Reinforcement Learning

to a correction term of ∇Θi∇ΘiJc(Θ
i)Ψ(πi

c, a
i, oi), which we term “Self Correction”. Hence, we257

next tested whether these correction terms applied to PG agents would indeed reduce the variance258
in their performance.259

We tested the independent PG agents, with action history inputs, over many episodes to ensure that260
we could see convergence. We examined the original independent PG agents and compared them to261
both PG agents with the original correction term above, and the self-correction term. As well, we262
examined PG agents with a max-entropy term, which could theoretically also reduce the variance263
in the learned policies (Ahmed et al., 2019; Haarnoja et al., 2018; Eysenbach & Levine, 2022). We264
found that all of the agents converged to a fairly high success rate over time (Fig. 6a) and high265
cumulative reward (Fig. 6b). But, the variance was markedly different. The variance of the standard266
independent PG agents was quite high, and the variance of the max-entropy agents wasn’t any lower267
throughout most of the episodes, with the exception of the early episodes (Fig. 6c). In contrast, the268
variance of the agents with the correction term was a bit lower. But, interestingly, it was the agents269
with the self-correction term that showed the lowest variance. We believe that this may be due to270
added noise from considering multiple policies in the update. Altogether, these results confirm that271
the correction term we derived from our formal analysis can reduce variance in performance on the272
Manitokan task, but the greatest reduction in variance is achieved by using a self-correction term.273
This is interesting, in part, because it shows that it may be possible to resolve the complexities of274
hidden gift credit assignment using self-awareness, rather than full collective agent awareness.275

4.2 Improved variance with the derived collective term276

0 8000 16000 24000
Episodes

0.0

0.3

0.6

Co
lle

ct
iv

e
Su

cc
es

s R
at

e

Self Correction
Max Entropy
Correction
Vanilla

(a) Collective Success Rate

0 8000 16000 24000
Episodes

0.0

0.3

0.6

Cu
m

ul
at

iv
e

Re
wa

rd

Co
rre

cti
on

Max
 En

tro
py

Se
lf C

orr
ec

tio
n

Va
nil

la

Agent 1Agent 2

(b) Cumulative Reward

0 8000 16000 24000
Episodes

0.00

0.03

0.06
Va

ria
nc

e

Self Correction
Max Entropy
Correction
Vanilla

(c) Variance

Figure 6: Collective Success Rate of policy gradient agents comparing the normal, vanilla PG model
against PG with a maximum entropy term, PG with the correction term, and PG with the self-
correction term. b) Cumulative reward of PG agents with and without correction terms. c) Variance
in collective success rate across episodes.

5 Discussion277

In this work we developed a simple MARL task to explore the complexities of learning in the278
presence of “hidden gifts”, i.e. cooperative acts that are not actually revealed to the recipient. The279
Manitokan task we developed, inspired by the practices of indigenous plains communities in North280
America, requires agents to open doors using a single key in the environment. Agents must drop the281
key for other agents after they have used it if they are to obtain a larger collective reward. But, these282
key drop acts are not apparent to the other agents, making this a task with hidden gifts.283

We observed that in the basic version of the Manitokan task none of the models we tested were284
able to solve it. This included both regular, individual policy gradient agents (PG, PPO), meta-285
learning agents (SAF), enhanced exploration agents (MAVEN), counterfactual agents (COMA), and286
MARL agents with collective value functions (VDN, QMIX, QTRAN, and MAPPO). When we287

9

Under review for RLC 2025, to be published in RLJ 2025

added additional information to the observations the more sophisticated models tested were still not288
able to solve this task. However, when we provided previous action information, then the simple,289
independent PG agents could solve the task, though with high variance. Formal analysis of the290
value function for the Manitokan task showed that it contains a second-order term related to the291
collective reward that can introduce instability in learning. We used this to derive a correction for the292
independent PG agents that successfully reduced the variance in their performance. Altogether, our293
results demonstrate that hidden gifts introduce challenging credit assignment problems that many294
state-of-the-art MARL algorithms cannot overcome.295

5.1 Limitations296

We intentionally used a very simple task to make formal analysis more tractable. But, there remains a297
question of whether the simplicity of the task actually made the credit assignment problem harder—298
it is possible that in an environment with more information and actions available to the agents the299
models could have solved the task. For example, if some form of communication between agents300
was permitted, then perhaps it would be possible for agents to first learn to communicate their gifts301
to each other, only to have them become implicit and unspoken over time. This may have been how302
similar practices developed in the plains of North America.303

Another limitation is the limited memory provided by the GRU architecture. It is possible that with304
a more explicit form of memory (e.g. a long context-window transformer (Ni et al., 2023; Chen305
et al., 2021; Cross et al., 2025) or retrieval augmented model (Hung et al., 2019) agents could more306
easily assign credit to their gifting behavior.307

Finally, given that the correction term that we derived from our formal analysis was motivated by308
steering agents to the collective objective as in various learning aware approaches (Willi et al.,309
2022; Foerster et al., 2017; Meulemans et al., 2025; Aghajohari et al., 2024), it seems reasonable310
to speculate that abstracting properties from these models have an untapped potential exterior to the311
domains in which they were designed. Future work should further explore this possibility.312

5.2 Rethinking reciprocity313

A broader implication from our work is that the emergence of reciprocity in a multi-agent setting314
can be complicated when acts of reciprocity themselves are partially or fully unobservable. One315
potential interesting way of dealing with these situations would be to develop agents that are good at316
predicting the actions of other agents, which may make it possible to infer that other agents will take317
altruistic actions when appropriate. The reciprocity in MARL settings with any form of “hidden318
gift” may generally be aided by the ability of RL agents to successfully predict the actions of others.319

References320

Milad Aghajohari, Juan Agustin Duque, Tim Cooijmans, and Aaron Courville. LOQA: Learning321
with opponent q-learning awareness. In The Twelfth International Conference on Learning Rep-322
resentations, 2024. URL https://openreview.net/forum?id=FDQF6A1s6M.323

Adrian K Agogino and Kagan Tumer. Unifying temporal and structural credit assignment problems.324
In Autonomous agents and multi-agent systems conference, 2004.325

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the326
impact of entropy on policy optimization. In International conference on machine learning, pp.327
151–160. PMLR, 2019.328

Robert Axelrod. Effective choice in the prisoner’s dilemma. Journal of conflict resolution, 24(1):329
3–25, 1980.330

Lawrence J Barkwell. Manitokanac. Gabriel Dumont Institute of Native Studies and Applied Re-331
search, 2015. URL https://www.metismuseum.ca/resource.php/148154.332

10

https://openreview.net/forum?id=FDQF6A1s6M
https://www.metismuseum.ca/resource.php/148154

The Challenge of Hidden Gifts in Multi-Agent Reinforcement Learning

Richard Bellman. The theory of dynamic programming. Bulletin of the American Mathematical333
Society, 60(6):503–515, 1954.334

Albert M Chammah. Prisoner’s dilemma; a study in conflict and cooperation. Ann Arbor, U. of335
Michigan P, 1965.336

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,337
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence338
modeling. Advances in neural information processing systems, 34:15084–15097, 2021.339

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo Perez-Vicente, Lucas Willems,340
Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & miniworld: Mod-341
ular & customizable reinforcement learning environments for goal-oriented tasks. Advances in342
Neural Information Processing Systems, 36:73383–73394, 2023.343

Kyunghyun Cho, Bart van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Hol-344
ger Schwenk, and Yoshua Bengio. Learning phrase representations using RNN encoder–decoder345
for statistical machine translation. In Alessandro Moschitti, Bo Pang, and Walter Daelemans346
(eds.), Proceedings of the 2014 Conference on Empirical Methods in Natural Language Process-347
ing (EMNLP), pp. 1724–1734, Doha, Qatar, October 2014. Association for Computational Lin-348
guistics. DOI: 10.3115/v1/D14-1179. URL https://aclanthology.org/D14-1179/.349

Logan Cross, Violet Xiang, Agam Bhatia, Daniel LK Yamins, and Nick Haber. Hypothetical minds:350
Scaffolding theory of mind for multi-agent tasks with large language models. In The Thirteenth351
International Conference on Learning Representations, 2025. URL https://openreview.352
net/forum?id=otW0TJOUYF.353

Benjamin Eysenbach and Sergey Levine. Maximum entropy RL (provably) solves some robust354
RL problems. In International Conference on Learning Representations, 2022. URL https:355
//openreview.net/forum?id=PtSAD3caaA2.356

Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shimon Whiteson.357
Counterfactual multi-agent policy gradients. In Proceedings of the AAAI conference on artificial358
intelligence, volume 32, 2018.359

Jakob N Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter Abbeel, and Igor360
Mordatch. Learning with opponent-learning awareness. arXiv preprint arXiv:1709.04326, 2017.361

Dhawal Gupta, Gabor Mihucz, Matthew Schlegel, James Kostas, Philip S Thomas, and Martha362
White. Structural credit assignment in neural networks using reinforcement learning. Advances363
in Neural Information Processing Systems, 34:30257–30270, 2021.364

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy365
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-366
ence on machine learning, pp. 1861–1870. Pmlr, 2018.367

Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico Carnevale,368
Arun Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by transporting369
value. Nature communications, 10(1):5223, 2019.370

Dianbo Liu, Vedant Shah, Oussama Boussif, Cristian Meo, Anirudh Goyal, Tianmin Shu,371
Michael Curtis Mozer, Nicolas Heess, and Yoshua Bengio. Stateful active facilitator: Coordi-372
nation and environmental heterogeneity in cooperative multi-agent reinforcement learning. In373
ICLR, 2023.374

Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. Maven: Multi-agent375
variational exploration. Advances in neural information processing systems, 32, 2019.376

11

https://aclanthology.org/D14-1179/
https://openreview.net/forum?id=otW0TJOUYF
https://openreview.net/forum?id=otW0TJOUYF
https://openreview.net/forum?id=otW0TJOUYF
https://openreview.net/forum?id=PtSAD3caaA2
https://openreview.net/forum?id=PtSAD3caaA2
https://openreview.net/forum?id=PtSAD3caaA2

Under review for RLC 2025, to be published in RLJ 2025

Alexander Meulemans, Seijin Kobayashi, Johannes von Oswald, Nino Scherrer, Eric Elmoznino,377
Blake Richards, Guillaume Lajoie, Blaise Agüera y Arcas, and João Sacramento. Multi-agent co-378
operation through learning-aware policy gradients, 2025. URL https://arxiv.org/abs/379
2410.18636.380

John F Nash Jr. Equilibrium points in n-person games. Proceedings of the national academy of381
sciences, 36(1):48–49, 1950.382

Tianwei Ni, Michel Ma, Benjamin Eysenbach, and Pierre-Luc Bacon. When do transformers shine383
in rl? decoupling memory from credit assignment. Advances in Neural Information Processing384
Systems, 36:50429–50452, 2023.385

Tabish Rashid, Mikayel Samvelyan, Christian Schroeder De Witt, Gregory Farquhar, Jakob Foerster,386
and Shimon Whiteson. Monotonic value function factorisation for deep multi-agent reinforcement387
learning. Journal of Machine Learning Research, 21(178):1–51, 2020.388

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy389
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.390

Jennifer She, Jayesh K Gupta, and Mykel J Kochenderfer. Agent-time attention for sparse rewards391
multi-agent reinforcement learning. arXiv preprint arXiv:2210.17540, 2022.392

Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung Yi. Qtran: Learning393
to factorize with transformation for cooperative multi-agent reinforcement learning. In Interna-394
tional conference on machine learning, pp. 5887–5896. PMLR, 2019.395

Joseph Suarez. Pufferlib: Making reinforcement learning libraries and environments play nice.396
arXiv preprint arXiv:2406.12905, 2024.397

Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Vinicius Zambaldi, Max398
Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z Leibo, Karl Tuyls, et al. Value-decomposition399
networks for cooperative multi-agent learning. The International Foundation for Autonomous400
Agents and Multiagent Systems, 2017.401

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-402
ods for reinforcement learning with function approximation. Advances in neural information403
processing systems, 12, 1999.404

Kagan Tumer, Adrian K Agogino, and David H Wolpert. Learning sequences of actions in col-405
lectives of autonomous agents. In Proceedings of the first international joint conference on au-406
tonomous agents and multiagent systems: Part 1, pp. 378–385, 2002.407

Timon Willi, Alistair Hp Letcher, Johannes Treutlein, and Jakob Foerster. Cola: consistent learning408
with opponent-learning awareness. In International Conference on Machine Learning, pp. 23804–409
23831. PMLR, 2022.410

Chao Yu, Akash Velu, Eugene Vinitsky, Jiaxuan Gao, Yu Wang, Alexandre Bayen, and Yi Wu. The411
surprising effectiveness of ppo in cooperative multi-agent games. Advances in neural information412
processing systems, 35:24611–24624, 2022.413

12

https://arxiv.org/abs/2410.18636
https://arxiv.org/abs/2410.18636
https://arxiv.org/abs/2410.18636

The Challenge of Hidden Gifts in Multi-Agent Reinforcement Learning

Supplementary Materials414

The following content was not necessarily subject to peer review.415
416

A Appendix417

A.1 Methods418

This section contains the hyperparameters for the results, hardware details for training and minor419
details on the task setup.420

A.1.1 Hyperparameters421

Table 1: Model architecture and hyperparameters used for MAPPO.

Component Specification

Policy Network Architecture (Joint) 1-layer CNN (outchannels = 32, kernal = 3, ReLU), 1-
layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input = 64,
output=64, ReLU), 1 layer GRU (input = 64, output =
64, with LayerNorm), 1 layer Categorical (input=64, out-
put=6)

Value Network Architecture (Joint) 1-layer CNN (outchannels = 32, kernal = 3, ReLU), 1-
layer MLP (input = 32, output=64, ReLU), 1 layer MLP
(input = 32, output=64, ReLU), 1 layer MLP (input = 64,
output=64, ReLU), 1 layer GRU (input = 64, output = 64,
with LayerNorm), 1 layer MLP(input = 64, output = 1,
ReLU)

Optimizer Adam, learning rate: 1× 10−5

Discount Factor γ 0.99
GAE Parameter λ 0.95
PPO Clip Ratio ϵ 0.2
Entropy Coefficient 0.0001
Data chunk length 10
Parallel Environments 32
Batch Size Parallel Environments × Data chunk length × number of

agents
Mini-batch Size 1
Epochs per Update 15
Gradient Clipping 10
Value Function Coef. 1
Gain 0.01
Loss Huber Loss with delta 10.00

13

Under review for RLC 2025, to be published in RLJ 2025

Table 2: Model architecture and hyperparameters used for IPPO.

Component Specification

Policy Network Architecture (Disjoint) 1-layer CNN (outchannels = 32, kernal = 3, ReLU),
1-layer MLP (input = 32, output=64, ReLU), 1 layer
MLP (input = 32, output=64, ReLU), 1 layer MLP (in-
put = 64, output=64, ReLU), 1 layer GRU (input = 64,
output = 64, with LayerNorm), 1 layer Categorical (in-
put=64, output=6)

Value Network Architecture (Disjoint) 1-layer CNN (outchannels = 32, kernal = 3, ReLU),
1-layer MLP (input = 32, output=64, ReLU), 1 layer
MLP (input = 32, output=64, ReLU), 1 layer MLP (in-
put = 64, output=64, ReLU), 1 layer GRU (input = 64,
output = 64, with LayerNorm), 1 layer MLP(input =
64, output = 1, ReLU)

Optimizer Adam
Learning rate 1× 10−5

Discount Factor γ 0.99
GAE Parameter λ 0.95
PPO Clip Ratio ϵ 0.2
Entropy Coefficient 0.0001
Data chunk length 10
Parallel Environments 32
Batch Size Parallel Environments × Data chunk length × number

of agents
Mini-batch Size 1
Epochs per Update 15
Gradient Clipping 10
Value Function Coef. 1
Gain 0.01
Loss Huber Loss with delta 10.00

14

The Challenge of Hidden Gifts in Multi-Agent Reinforcement Learning

Table 3: Model architecture and hyperparameters used for PG.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer
MLP (input=64, output=6)

Critic Network Architecture (Disjoint) 1-layer MLP (input = 27, output=64, ReLU), 1-
layer MLP (input = 64, output=64, ReLU), 1-
layer MLP (input=64, output=1)

Target Critic Network Architecture (Disjoint) 1-layer MLP (input = 27, output=64, ReLU), 1-
layer MLP (input = 64, output=64, ReLU), 1-
layer MLP (input=64, output=1)

Actor optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Critic optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Discount factor γ 0.99
Target network update interval 1 episode
Learning rate 5× 10−5

TD Lambda 1.0
Replay buffer size 32
Parallel environment 32
Parallel episodes per buffer episode 1
Training batch size 32

Table 4: Model architecture and hyperparameters used for COMA.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer MLP
(input=64, output=6)

Critic Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1-
layer MLP (input = 64, output=64, ReLU), 1-layer
MLP (input=64, output=6)

Target Critic Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1-
layer MLP (input = 64, output=64, ReLU), 1-layer
MLP (input=64, output=6)

Actor optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Critic optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Discount factor γ 0.99
Target network update interval 1 episode
Learning rate 5× 10−5

TD Lambda 1.0
Replay buffer size 320
Parallel environment 32
Parallel episodes per buffer episode 1
Training batch size 32

15

Under review for RLC 2025, to be published in RLJ 2025

Table 5: Model architecture and hyperparameters used for SAF.

Component Specification

Policy Network Architecture (Disjoint) 2-layer MLP (input = 64, output=128, Tanh),
Value Network Architecture (Joint) 2-layer MLP (input = 80, output=128, Tanh),
Shared Convolutional Encoder (Joint) 1-Layer CNN (outchannels = 64, kernal = 2)
Knowledge Source Architecture (Joint)

Query Projector 1-layer MLP (input = 128, output=64, Tanh)
State Projector 1-layer MLP (input = 128, output=64, Tanh)
Perceiver Encoder (latents = 4, latent input = 64, cross attention channels

= 64, cross attention heads = 1, self attention heads =
1, self attention blocks = 2 with 2 layers each)

Cross Attention (heads = 1, query input = 64, key-value input = 64,
query-key input = 64, value channels = 64, dropout =
0.0)

Combined State Projector 1-layer MLP (input = 128, output=64, Tanh)
Latent Encoder 1-layer MLP (input = 128, output=64, Tanh), 1-layer

MLP (input = 64, output=64, Tanh),1-layer MLP (in-
put = 64, output=16, Tanh)

Latent Encoder Prior 1-layer MLP (input = 64, output=64, Tanh), 1-layer
MLP (input = 64, output=64, Tanh),1-layer MLP (in-
put = 64, output=16, Tanh)

Policy Projector 1-layer MLP (input = 128, output=164, Tanh)
Optimizer Adam, epsilon 1× 10−5

learning rate 3× 10−4

Discount Factor γ 0.99
GAE Parameter λ GAE not used
PPO Clip Ratio ϵ 0.2
Entropy Coefficient 0.01
Data chunk length 10
Parallel Environments 32
Batch Size Parallel Environments × Data chunk length × number

of agents
Mini-batch Size 5
Epochs per Update 15
Gradient Clipping 9
Value Function Coef. 1
Gain 0.01
Loss Huber Loss with delta 10.00
Number of policies 4
Number of slot keys 4

16

The Challenge of Hidden Gifts in Multi-Agent Reinforcement Learning

Table 6: Model architecture and hyperparameters used for VDN.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 128, output = 64), 1 layer MLP
(input=128, output=6)

Target Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 128, output = 64), 1 layer MLP
(input=128, output=6)

Mixer Network Architecture Tensor sum of states
Policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Target policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Start epsilon greedy 1.0
Minimum epsilon greedy 0.05
Discount factor γ 0.99
Target network update interval 1 episode
Start learning rate 1× 10−2

Minimum learning rate 1× 10−6

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 32
Training batch size 32
Warm up buffer episodes 32

17

Under review for RLC 2025, to be published in RLJ 2025

Table 7: Model architecture and hyperparameters used for QMIX.

Component Specification

Actor Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer MLP
(input=64, output=6)

Target Actor Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer MLP
(input=64, output=6)

Mixing Network Architecture (Joint)
Hypernet Weights 1 1-layer MLP (input =54, output=64, ReLU), 1-

layer MLP (input = 64, output=52)
Hypernet Biases 1 1-layer MLP (input =54, output=64)
Hypernet Weights 2 1-layer MLP (input =54, output=32, ReLU), 1-

layer MLP (input = 64, output=32)
Hypernet Bias 2 1-layer MLP (input =54, output=64, ReLU), 1-

layer MLP (input = 64, output=1)
Target Mixing Network Architecture (Joint)

Hypernet Weights 1 1-layer MLP (input =54, output=64, ReLU), 1-
layer MLP (input = 64, output=52)

Hypernet Biases 1 1-layer MLP (input =54, output=64)
Hypernet Weights 2 1-layer MLP (input =54, output=32, ReLU), 1-

layer MLP (input = 64, output=32)
Hypernet Bias 2 1-layer MLP (input =54, output=64, ReLU), 1-

layer MLP (input = 64, output=1)
Policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Target policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Start epsilon greedy 1.0
Minimum epsilon greedy 0.05
Discount factor γ 0.99
Target network update interval 1 episode
Start learning rate 1× 10−2

Minimum learning rate 1× 10−6

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 32
Training batch size 32
Warm up buffer episodes 32

18

The Challenge of Hidden Gifts in Multi-Agent Reinforcement Learning

Table 8: Model architecture and hyperparameters used for QTRAN.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer MLP
(input=64, output=6)

Target Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer MLP
(input=64, output=6)

Mixing Network Architecture (Joint)
Query Network 1-layer MLP (input =188, output=32, ReLU), 1-

layer MLP (input = 32, output=32, ReLU), 1-layer
MLP (input = 32, output=1)

Value Network 1-layer MLP (input =54, output=32, ReLU), 1-
layer MLP (input = 32, output=32, ReLU), 1-layer
MLP (input = 32, output=1)

Action Encoding 1-layer MLP (input =134, output=134, ReLU), 1-
layer MLP (input = 134, output=134)

Target Mixing Network Architecture (Joint)
Query Network 1-layer MLP (input =188, output=32, ReLU), 1-

layer MLP (input = 32, output=32, ReLU), 1-layer
MLP (input = 32, output=1)

Value Network 1-layer MLP (input =54, output=32, ReLU), 1-
layer MLP (input = 32, output=32, ReLU), 1-layer
MLP (input = 32, output=1)

Action Encoding 1-layer MLP (input =134, output=134, ReLU), 1-
layer MLP (input = 134, output=134)

Policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Target policy optimizer Adam, alpha 0.99, epsilon 1× 10−5

Start epsilon greedy 1.0
Minimum epsilon greedy 0.05
Discount factor γ 0.99
Target network update interval 1 episode
Start learning rate 1× 10−2

Minimum learning rate 1× 10−6

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 32
Training batch size 32
Warm up buffer episodes 32

19

Under review for RLC 2025, to be published in RLJ 2025

Table 9: Model architecture and hyperparameters used for MAVEN.

Component Specification

Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer MLP
(input=64, output=6)

Target Policy Network Architecture (Joint) 1-layer MLP (input = 27, output=64, ReLU), 1
layer GRU (input = 64, output = 64), 1 layer MLP
(input=64, output=6)

Noise Mixing Network Architecture (Joint)
Hypernet Weights 1 1-layer MLP (input=116, output=64)
Hypernet Bias 1 1-layer MLP (input=116, output=32)
Hypernet Weights 2 1-layer MLP (input=116, output=32)
Skip Connection 1-layer MLP (input=116, output=2)
Value network 1-layer MLP (input=116, output=32, ReLU), 1-

layer MLP(input=32,output=1)
Target Noise Mixing Network Architecture (Joint)

Hypernet Weights 1 1-layer MLP (input=116, output=64)
Hypernet Bias 1 1-layer MLP (input=116, output=32)
Hypernet Weights 2 1-layer MLP (input=116, output=32)
Skip Connection 1-layer MLP (input=116, output=2)
Value network 1-layer MLP (input=116, output=32, ReLU), 1-

layer MLP(input=32,output=1)
RNN Aggregator 1-layer GRU (input=116, output=2)
Discriminator 1-layer MLP (input=116, output=32, ReLU), 1-

layer MLP (input=32, output=2),
Actor optimizer RMSprop, alpha 0.99, epsilon 1× 10−5

Target actor optimizer Adam, alpha 0.99, epsilon 1× 10−5

Use skip connection in mixer False
Use RNN aggregation False
Discount factor γ 0.99
Target network update interval 1 episode
Learning rate 5× 10−5

TD Lambda 1.0
Replay buffer size 1000
Parallel environment 32
Parallel episodes per buffer episode 1
Training batch size 32

20

The Challenge of Hidden Gifts in Multi-Agent Reinforcement Learning

A.1.2 Compute422

For each simulation 2 CPUs were allocated and the 32 parallel environments were multithreaded.423
All models expect for SAF were able to run without GPUs while SAF used a single A100 for each424
simulation. All models, except for VDN, QMIX and QTRAN can finish at 10000 episodes for all 10425
simulations within 4 days while the aforementioned models take 7 days. It is possible to use a GPU426
for these value mixer models for faster data collection but this was not done to collect the data. The427
correction term experiments take 7 days to collect 26000 episodes and do not benefit from GPUs428
since their networks are too small.429

A.1.3 Manitokan task setup430

The Manitokan Task was designed to be simple for tractable analysis so setup is also simple. The431
key, agents and doors are randomly initialized at the beginning of each episode and the actions drop432
and toggle were additionally pruned when an agent is not holding a key for reasonable environment433
logic but are not necessary to be removed for the task to work. Everything else was described in434
Section 2.435

A.2 Additional Experiments436

The experiments provided below offer insights into the challenge of the Manitokan Task, and further437
empirical validation of the correction and self correction terms.438

A.2.1 COMA’s loss becomes negative439

0 2500 5000 7500
Episodes

0.004

0.002

0.000

Ac
to

r L
os

s

(a) Actor Loss

0 2500 5000 7500
Episodes

0.16

0.08

0.00

Co
un

te
rfa

ct
ua

l B
as

el
in

e

(b) Counterfactual Baseline

Figure 7: a) Policy loss of the COMA model b) Counterfactual baseline in the COMA policy update

COMA persistently collapsed even though it exhibited similar learning behaviour to PG (a closely440
related model). The policy loss and baseline curves show increasing instability with large variance441
spikes before converging to a value around 0.0. Perhaps this collapse is from the difficulty of leaving442
a hidden gift between individual and collective incentives. The original COMA paper Foerster et al.443
(2018) even mentions a struggle for an agent overcoming an individual reward, although exterior to444
hidden gifts, may be cause for the instability.445

A.2.2 Key drops across all parallel environment for value mixer models collapses446

21

Under review for RLC 2025, to be published in RLJ 2025

0 2500 5000 7500
Episodes

0

5

10

Ke
y

Dr
op

 R
at

e

VD
N

QMIX
QTR

AN
MAV

EN

Figure 8: Keydrops averaged over all parallel environments including ones with zero drops with
models that mix values into a global value function (VDN, QMIX, QTRAN and MAVEN).

The non-zero key drop rate in the main results Fig 3b showed a wider variation between agents and447
small learning effect. The decreased variance in the appendix Fig 8 is most likely attributed to agents448
not finding the key at all due to noise from the global value updates. The second QMIX agent also449
contains a burst in key drops towards the end with450

A.2.3 Changing which agent steps first in an episode harms performance451

0 2500 5000 7500
Episodes

0.000

0.025

0.050

Co
lle

ct
iv

e
Su

cc
es

s R
es

id
ua

l

Alt
ern

ati
ng

Ra
nd

om
Sa

me

Agent 1
Agent 2

(a) Collective Success Rate Residual

0 2500 5000 7500
Episodes

0.00

0.15

0.30

Co
lle

ct
iv

e
Su

cc
es

s R
at

e

Alternating
Random
Same

(b) Collective Success Rate

Figure 9: a) The contribution of an agent’s reward accumulation to success weighted by their total
reward comparing policy gradient agents with action history of the same agent stepping first (i.e.
agent 1 then agent 2), alternating agents stepping first (i.e. agent 1 steps first on odd numbered
episodes and agent 2 steps first in even numbers episodes), and a random agent is selecting to step
first. b) Success rate between different step ordering each episode.

The collective success residual is calculated as (rc − ri)× ri where (rc − ri) describes how much452
an agent i is contributing to the collective success while weighting it by ri shows if the agents453
are increasing that success rate. Interestingly, alternating which agent goes first between episodes454
creates oscillations in the collective success rate residual where one agent receiving more reward455
means the other agent receives less. Greatly reducing the success. Moreover, randomly selecting an456
agent to go first biases the first agent to increase their reward and almost removes all success. These457
effect may be caused by uncertainty associated with which agent can reach the key when the other458
agent is in sight.459

22

The Challenge of Hidden Gifts in Multi-Agent Reinforcement Learning

A.2.4 Randomizing the policy can increase collective success slightly460

0 2500 5000 7500
Episodes

0.01

0.02

0.03
Co

lle
ct

iv
e

Su
cc

es
s R

at
e

Random
VDN
QMIX
MAPPO
IPPO

(a) Collective Success Rate

0 2500 5000 7500
Episodes

0.03

0.06

0.09

Cu
m

ul
at

iv
e

Re
wa

rd

IPP
O

Ra
nd

om
VD

N
QMIX
MAP

PO

Agent 1Agent 2

(b) Cumulative Reward

Figure 10: a) Comparing agents of MAPPO, IPPO, VDN and QMIX models with a randomization
applied to their policies b) The cumulative reward for randomized policy agents

PPO agents had their value function learning rates set to 0.001 while the policy learning rates where461
kept as 0.000001. This meant the policy would always prefer initial episodes and converge quickly462
to those while the value function weighting them more evenly to converge further in the training463
process. VDN and QMIX use epsilon greedy in their strategy and simply increasing the time of464
decay for this mechanism led these agents to be more random throughout the experiment.465

This policy randomization process very slightly improved these agents the success rates’ compared466
to those in the main results Fig 2a but decreased the cumulative reward for the PPO agents than467
those in Fig 2b. The random policy aligned VDN and QMIX to the random action baseline more or468
less, and avoided collapse.469

A.2.5 Behavioural variations appear between models with inter agent distance and470
minimizing the steps to the first reward471

0 2500 5000 7500
Episodes

1.8

2.0

2.2

Di
st
an
ce

CO
MA

MA
PP
O

IPP
O

VD
N

PG QM
IX

QT
RA
N

MA
VE
N

SA
F

Ra
nd
om

(a) Distance

0 8000 16000 24000
Episodes

1.95

2.10

2.25

Di
st

an
ce

Self Correction
Max Entropy
Correction
Vanilla

(b) Correction Term Distance

Figure 11: a) Euclidean distance between agents averaged over parallel environments and simula-
tions across our tested models b) Euclidean distance comparing policy gradient agents with action
history and variance reduction terms.

23

Under review for RLC 2025, to be published in RLJ 2025

Although the 2-agent Manitokan Task is a four by four grid world, we measured the euclidean472
distance between agents to see if they become more coordinated or adversarial when learning hidden473
gifting. In Fig 11a, PG agents exhibited the highest exploration phase but eventually converged to a474
lower distance. MAPPO agents also has a similar but substantially smaller exploration effect in the475
very beginning while SAF did not have any exploration phases. IPPO and MAVEN agents similarly476
hovered below the random baseline but MAVEN agents were closer to each other. COMA agents477
begin around random but converge to be closer to each other as well. Value mixer agents VDN,478
QMIX and QTRAN all are on average closer to each other but QTRAN agent agents converge479
further apart.480

In Fig 11b, vanilla and max entropy PG agents with action history become asymptotically closer481
to each other while the correction term agents converge further apart from them. The variance482
reduction in self correcting agents is also noticeable.483

0 2500 5000 7500
Episodes

0

60

120

Re
wa

rd
 T

im
es

te
p

CO
MA

MAP
PO

IPP
O

VD
N

PG QMIX
QTR

AN
MAV

EN
SA

F
Ra

nd
om

Agent 1
Agent 2

(a) Timestep of First Reward

0 8000 16000 24000
Episodes

75

100

125

Re
wa

rd
 T

im
es

te
p

Co
rre

cti
on

Max
 En

tro
py

Se
lf C

orr
ec

tio
n

Va
nil

la

Agent 1
Agent 2

(b) Correction Term Timestep of First Reward

Figure 12: a) Timestep the first reward an agent received. b) Timestep the first reward a policy
gradient agent with action history received.

The reducing the timestep of the first reward is a way to measure if agents are improving their484
policies if cumulative reward also increases. In (Fig 12a), PG, IPPO, MAPPO and SAF all converge485
quickly while PG and MAPPO learn policies of reducing the step slightly below random. COMA486
converges at a low timestep but this is most likely due to the collapse. MAVEN oscillates at a487
timestep better than random but never converges and doesn’t seem to learn a good policy and VDN,488
QMIX, and QTRAN collapse consistently with other results in Section 3.489

While in Fig 12b, all PG models with action history reduce their initial reward timesteps but models490
with the correction term converge slower.491

24

The Challenge of Hidden Gifts in Multi-Agent Reinforcement Learning

A.2.6 Modifying the reward function enhances perspective on the challenge of the492
Manitokan task493

0 2500 5000 7500
Episodes

0.0

0.2

0.4

Co
lle

ct
iv

e
Su

cc
es

s R
at

e

Vanilla
Oracle Reward
Hold Punishment
Injection

(a) Collective Success Rate

0 2500 5000 7500
Episodes

0.00

0.25

0.50

Cu
m

ul
at

iv
e

Re
wa

rd

Va
nil

la
Orac

le
Re

ward

Hold
 Pu

nis
hm

en
t

Inj
ec

tio
n

Agent 1
Agent 2

(b) Cumulative Reward

Figure 13: a) Success rate of policy gradient agents with action history comparing the normal reward
function with an oracle reward term (i.e. an agent receives a reward of 1 once for dropping the key
after opening their door), a punishment term (i.e.. a negative reward of 1 is applied each step an
agent holds their key after opening their door) and a reward injection term (i.e. randomly distribut-
ing normally smaller rewards around the standard rewards decaying over episodes) b) Cumulative
reward to compare the modified reward functions

The reward function R in equation 1 to study hidden gifting behavior is both sparse with a hard494
to predict collective reward conditioned on the other agent’s policy. We tested additional re-495
ward conditions on PG agents with action history to see if sample efficiency improvement can496
be found. Particularly, the oracle reward: rit the first key dropped after agent i’s door is opened ,497
is the critical step to take for hidden gifting and when implemented the collective suc-498
cess rate increased quicker than the normal reward function. The punishment reward:499
−0.5 for each step agent i is holding the key after their door was opened, is also meant to induce500
gifting behavior but agents seemed to avoid the key altogether. Lastly, the injection reward where a501
set of rewards rd < ri are normally distributed around rewards ri and rc which also served as the502
mean. rd was additionally reduced each episode for agents to prefer the standard rewards. Injection503
reduced the success rate severely but also reduced variance in accumulating the expected reward.504

These minor modifications reemphasize the difficulty in hidden gifting, where our most performative505
agents still struggle even when rewarded for the optimal action.506

25

Under review for RLC 2025, to be published in RLJ 2025

0 2500 5000 7500
Episodes

0.00

0.15

0.30

Co
lle

ct
iv

e
Su

cc
es

s R
at

e

Individual Reward
Collective Reward
Vanilla

(a) Collective Success Rate

0 2500 5000 7500
Episodes

0.2

0.4

Cu
m

ul
at

iv
e

Re
wa

rd

Ind
ivi

du
al

Re
ward

Co
lle

cti
ve

 Re
ward

Va
nil

la

Agent 1
Agent 2

(b) Cumulative Reward

Figure 14: a) Success rate between policy gradient agents comparing a disassociation of the reward
function (i.e.. just the individual reward and the collective rewards) b) Cumulative reward of the
same dissociated reward function agents

For a further investigation of the reward function, we tested a dissociation of the individual reward507
ri and the collective reward rc with action history PG agents. Using only the individual reward508
removed collective success altogether but agents converged at a higher percentage of the cumulative509
reward (i.e.. whoever gets to the key first). The sole collective reward did not cause a failure in510
collective behavior but severely inhibited it. With both these reward dissociations, agents fail to511
learn hidden gifting.512

A.2.7 The self correction term is empirically sound in contraposition513

0 3000 6000 9000
Episodes

0.00

0.08

0.16

Collective Success
Agent 1 Reward
Agent 2 Reward

(a) Collective Success Rate

0 3000 6000 9000
Episodes

0.00

0.15

0.30

Collective Success
Agent 1 Reward
Agent 2 Reward

(b) Collective Success Rate Across Simulations

Figure 15: a) The percentage of cumulative reward and collective success for anti-collective policy
gradient agents with action history (i.e. optimizing the negated self correction term) across 11000
episodes b) 9 individual simulations for anti-collective behaviour averaged each across a different
set of 32 parallel environments

26

The Challenge of Hidden Gifts in Multi-Agent Reinforcement Learning

For all previous experiments, the correction term was maximized to induce agents towards dropping514
the key for the other agent (i.e. hidden gifting). Contrapositively however, this term for an agent i515
could also be minimized through negation −E[∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj)] in the policy update516
and doing so led agents to actively "compete" for the key and avoid dropping it all together. In517
Fig 15a, the rewards for both agents increases with variance spikes while the collective success rate518
goes down. These results demonstrate a stronger implication of the self-correction in the collective519
behaviour of agents than just as a variance reducer.520

Fig 15b displays the individual simulations with standard deviation of the 32 parallel environments.521
Specifically, the reward curves sharply drop and return after agents have learned to open their doors.522
This tradeoff in the individual reward accumulation is a detriment to the collective success rate523
but perhaps in other situations, the negative correction term can help avoid undesired rewarded524
behaviour.525

A.3 Proofs526

A.3.1 Correction term527

We begin by deriving the standard policy gradient theorem Sutton et al. (1999) under the assump-528
tions in Section 4 that an agent i is first to open their door and that the collective reward rc is529
differentiable through another agent js objective. The objective J(Θi) for agent i is to maximize the530
expected cumulative sum of rewards within an episode E[

∑T
t R(oit, a

i
t)] with the reward function531

R in equation 1 where a value function V (Θi, oi) = E[R(oi, ai)].532
533

∇ΘiJ(Θi) = ∇Θi(
∑

ai∈A πi(ai|oi)Q(oi, ai)) is the differentiated objective w.r.t agent i.534
535

=
∑

ai∈A(∇Θiπi(ai|oi)Q(oi, ai) + πi(ai|oi)∇ΘiQ(oi, ai)) by product rule expansion.536
537

=
∑

ai∈A(∇Θiπi(ai|oi)Q(oi, ai) + πi(ai|oi)∇Θi(
∑

oi+1,R
i P (oi

′

+1, R
i(oi, ai)|oi, ai)(Ri(oi, ai) +538

V (Θi, oi+1)) where the value function can be used to predict a look-ahead of the next reward with a539
next observation oi+1 and P is the transition probability.540

541

Normally a reward is constant and incapable of change but since E[
∑T

t=0 R(oit, a
i
t)] =542

E[
∑T

t=0 r
i
t + rct] = E[

∑T
t=0 r

i
t] + E[

∑T
t=0 r

c
t] from equation 2, only ri degenerates to 0543

while rc is differentiable w.r.t to another agent j.544
545

J(Θj) = E[
∑T

t R(ojt , a
j
t)]546

547

J(Θj) = E[
∑T

t=0 r
i
t] + E[

∑T
t=0 r

c
t] equation 2 by linearity of R.548

549

J(Θj)− E[
∑T

t=0 r
i
t] = E[

∑T
t=0 r

c
t] = Jc(Θ

j)550
551

∇ΘjJc(Θ
j) = E[∇Θj log πj

c(a
j |oj)Qc(o

j , aj)]552
553

∇ΘjJc(Θ
j) = E[∇Θj log πj

c(a
j |oj)]E[Qc(o

j , aj)] from equation 3.554
555

Ψ(πj
c , o

j , aj) = 1

E[∇Θj log πj
c(aj |oj)]

where Ψ is the reciprocal of the expected collective policy for556

agent j.557
558

27

Under review for RLC 2025, to be published in RLJ 2025

∑
ai∈A(∇Θiπi(ai|oi)Q(oi, ai)+πi(ai|oi)(

∑
oi+1,R

i P (oi
′

+1, R
i(oi, ai)|oi, ai)(∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj)+559

∇ΘiV (Θi, oi+1)) has the correction term plugged in.560
561

Let Φ(oi) =
∑

ai∈A(∇Θiπi(ai|oi)Q(oi, ai) for readability.562
563

Φ(oi) + πi(ai|oi)(
∑

oi+1,R
i P (oi

′

+1, R
i(oi, ai)|oi, ai)(∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj) +564

∇ΘiV (Θi, oi+1))565
566

Let ρi(oi → oi+1) = πi(ai|oi)(
∑

oi+1,R
i P (oi

′

+1, R
i(oi, ai)|oi, ai) for further readability.567

= Φ(oi) +
∑

oi ρ
i(oi → oi+1)(∇ΘiV (Θi, oi+1) +∇Θi∇ΘjJc(Θ

j)Ψ(πΘj , aj , oj))568
569

= Φ(oi) +
∑

oi ρ
i(oi → oi+1)(Φ(o

i
+1) + ∇Θi∇ΘjJc(Θ

j)Ψ(πj
c , a

j , oj) +
∑

oi+1
ρi(oj+1 →570

oj+2)(∇ΘiV (Θi, o+2) +∇Θi∇ΘjJ(Θj
c, o

j)Ψ(πj
c , a

j , oj)) can be recursively expanded out further.571
572

=
∑

xi,xj∈O

∑∞
k=0 ρ

i(o → xi, k)(Φ(xi) +∇Θi∇ΘjJc(Θ
j
c)Ψ(πj

c , a
j , xj))573

574

Let η(o) =
∑∞

k=0 ρ
i(oi → oinext, k) to clarify the transitions.575

576 ∑
o η(o)(Φ(o) + ∇Θi∇ΘjJc(Θ

j)) ∝
∑

o
η(o)∑
o η(o) (Φ(o) + ∇Θi∇ΘjJc(Θ

j , oj)Ψ(πj
c , a

j , oj) since577
the normalized distributed is a factor of the sum.578

579

Then let
∑

s
η(o)∑
o η(o) =

∑
o∈O d(o)580

581 ∑
o∈O d(o)(

∑
ai∈A(∇Θiπi(ai|oi)Q(oi, ai) +∇Θi∇ΘjJc(Θ

j , oj)Ψ(πj
c , a

j , oj))582
583

=
∑

o∈O d(o)(
∑

ai∈A(π
i(ai|oi)Q(oi, ai)

∇Θiπ
i(ai|oi)

πi(ai|oi) + ∇Θi∇ΘjJc(Θ
j , oj)Ψ(πj

c , a
j , oj)) with584

the log-derivative technique.585
586

=
∑

s∈S d(s)(
∑

ai∈A((a
i|oi)Q(oi, ai)∇Θi log πi(ai|oi) +∇Θi∇ΘjJc(Θ

j , oj)Ψ(πj
c , a

j , oj))587
588

∇ΘiJ(Θi) = E[Q(oi, ai)∇Θi log πi(ai|oi) +∇Θi∇ΘjJ(Θj , oj)Ψ(πΘj , aj , oj))] □589

A.3.2 Self correction term590

Considering equation 3 and 4, the correction term E[∇Θi∇ΘjJc(Θ
j)Ψ(πj

c , a
j , oj)] =591

E[Qc(o
j , aj)].592

593

The expected collective reward is approximated the value of the collective reward594
E[Qc(o

j , aj)] ≈ E[
∑T

t=0 r
c
t].595

596

However if the other agent j opens their door first,597
598

E[
∑T

t=0 r
c
t] ≈ E[Qc(o

i, ai)]599
600

28

The Challenge of Hidden Gifts in Multi-Agent Reinforcement Learning

= E[∇Θj∇ΘiJc(Θ
i)Ψ(πi

c, a
i, oi)]601

602

Therefore, E[∇Θi∇ΘjJc(Θ
j)Ψ(πj

c , a
j , oj)] = E[∇Θj∇ΘiJc(Θ

i)Ψ(πi
c, a

i, oi)] □603
604

Each agent only needs access to their own parameters for self correction.605

29

