Representation Learning with Adaptive Superpixel Coding

Mahmoud Khalil', Ahmad Khalil' , Alioune Ngom'

1School of Computer Science, University of Windsor, Windsor, ON, Canada
{khalil12, khalil71, angom } @uwindsor.ca

Abstract

Deep learning vision models are typically tailored
for specific modalities and often rely on domain-
specific assumptions, such as the grid structures
used by nearly all existing vision models. In this
work, we propose a self-supervised model based
on Transformers, which we call Adaptive Super-
pixel Coding (ASC). The key insight of our model
is to overcome the limitations of traditional Vision
Transformers, which depend on fixed-size and non-
adaptive patch partitioning. Instead, ASC employs
adaptive superpixel layers that dynamically adjust
to the underlying image content.

We analyze key properties of the approach that make
it effective, and find that our method outperforms
widely-used alternatives on standard image down-
stream task benchmarks.

1 Introduction

Deep learning has revolutionized computer vision by enabling
models to learn meaningful representations directly from un-
structured sensory data, yielding significant performance gains
across a wide range of tasks [Bommasani ef al., 2021]. In
particular, self-supervised learning (SSL) has emerged as a
powerful paradigm for learning visual representations without
human annotations, achieving remarkable results in image
classification, segmentation, and detection.

However, most SSL methods rely on fixed grid-based repre-
sentations to encode image structure. Convolutional Neural
Networks (CNNs) [He ez al., 2016; Sandler et al., 2018] treat
the image as a regular grid and extract local features using
sliding windows. Vision Transformers (ViTs) [Dosovitskiy,
20201, though more flexible in modeling long-range dependen-
cies, It begins by decomposing an image into non-overlapping
patches arranged in a uniform grid. These grid structures lead
to an inherent entanglement between the representation struc-
ture and image structure, constraining the model’s ability to
adapt to variation in object shape, scale, or layout.

This entanglement between the representation structure and
the image structure is especially limiting in downstream scene
understanding tasks, where object-level reasoning, deforma-
tion invariance, and flexible spatial grouping are often es-
sential. Many of these tasks require the model to localize,

compare, and track object parts across varying spatial arrange-
ments—capabilities poorly supported by rigid, grid-aligned
tokens.

Superpixels offer a natural alternative. Originating as a form
of image over-segmentation [Ren and Malik, 2003], superpix-
els group pixels into visually and semantically coherent re-
gions. These regions serve as low- to mid-level primitives that
align well with object boundaries and exhibit strong inductive
priors for efficient computation. They have been widely used
in vision tasks including object detection [Shu et al., 2013;
Yan et al., 2015], semantic segmentation [Gould et al., 2008;
Sharma er al., 20141, saliency estimation [He et al., 2015], and
optical flow [Hu et al., 2016], among others.

Yet, despite their utility, superpixels remain underutilized
in transformer-based models, with only a few exceptions [Mei
et al., 2024; Zhu et al., 2023]. One key reason is that trans-
formers assume a fixed token layout, typically regular patches.
However, superpixels are inherently irregular and content-
adaptive, which clashes with the design of existing architec-
tures that assume spatial consistency across layers.

In this work, we revisit the idea of superpixels and propose a
token-level grouping mechanism for transformers. Rather than
enforcing grid-based token structures, we introduce a novel
transformer-compatible layer, Adaptive Superpixel Coding
(ASC), that adaptively merges tokens into semantically coher-
ent regions. This layer computes pairwise token similarities,
forms a weighted graph, and extracts connected components
via a differentiable thresholding and grouping operation. The
resulting components serve as superpixels that replace fixed
patches in subsequent transformer layers.

Importantly, we demonstrate that this representation is espe-
cially effective in a self-supervised setting. Using contrastive
training based on frame-level similarity across videos. The re-
sulting representations are more aligned with object structure
and transfer well to diverse downstream tasks.

Our contributions are summarized as follows:

* We introduce Adaptive Superpixel Coding (ASC), a novel
transformer-compatible layer that integrates an adaptive
superpixel mechanism, enabling the decoupling of the
image’s grid-based structure from its representation struc-
ture.

* We demonstrate that the learned representation transfers
effectively to a wide range of downstream vision tasks,



including image classification, object detection, and se-
mantic segmentation. Our method outperforms strong
self-supervised baselines such as BYOL [Grill ef al.,
2020] and DINO [Caron et al., 20211.

2 Related Work

Grid-based Representation. Deep learning methods for
visual tasks [Krizhevsky et al., 2012; Koonce and Koonce,
2021; Chen et al., 2020a; Dosovitskiy, 2020] have garnered
significant attention in the machine learning community in
recent years. Early work, such as the use of CNN feature maps
[Krizhevsky et al., 2012], laid the foundation, followed by
several efforts to integrate CNN-like architectures with self-
attention mechanisms [Wang er al., 2018; Carion e al., 2020],
and even replace convolutions altogether [Ramachandran et
al., 2019; Wang et al., 2020]. Later innovations, such as
the Vision Transformer (ViT) [Dosovitskiy, 2020], represent
a natural evolution of this trend. Most of these approaches
operate on a grid of image features ranging from patches or
CNN feature maps to the final output layer. Although this
grid-based representation has proven highly effective across a
broad range of tasks, it inherently ties the learned features to
fixed spatial 2D locations in image space.

Off-the-Grid Representation. A key method for decou-
pling model representations from the image grid is through the
use of cross-attention, where one set of tokens is updated based
on the values of another set. Related approaches, such as [Lo-
catello et al., 2020; Kipf et al., 2021], extend this idea by lever-
aging slot-based attention mechanisms to model object-centric
representations. The cross-attention approach has been particu-
larly effective in object-centric tasks such as detection [Carion
et al., 2020; Zhu et al., 2020], tracking [Kipf er al., 2021;
Meinhardt et al., 2022], and instance segmentation [Cheng et
al., 2022; Kirillov et al., 2023]. GroupViT [Xu et al., 2022] is
closely related to our approach, as it employs a large number of
group tokens that are updated via cross-attention from visual
tokens. In this framework, each group token serves as a com-
pact and learnable representation that captures both local and
global contextual information from the image. These tokens
interact with image tokens through a series of cross-attention
operations.

Inspired by GroupViT, our model introduces a novel layer
into the Vision Transformer (ViT) architecture. However, in
contrast to GroupViT, our method does not rely on explicit ob-
ject queries or grouping tokens. Instead, we perform adaptive
thresholding on similarity scores to modulate the resulting rep-
resentations, allowing for more flexible and context-sensitive
feature aggregation.

Combining Tokens. Our work is closely related to recent ef-
forts aimed at improving the efficiency of Vision Transformers
by reducing the number of tokens processed per layer. No-
tably, Token Merging (ToMe) [Bolya et al., 2022] proposes
a deterministic token coalescing mechanism based on token
similarity, enabling faster inference without retraining. Other
methods, such as AdaViT [Meng et al., 2022] and Dynam-
icViT [Rao et al., 2021], introduce adaptive token pruning
or merging strategies based on confidence scores or learned
importance measures.
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Figure 1: The Architecture and Training Pipeline of ASC. ASC
is structured as a hierarchy of Transformer layers organized into
stages, each processing increasingly larger visual segments. The
first stage transforms raw pixels into superpixels representing object
features while simultaneously eliminating redundancies. The bus
image on the upper left shows the results of merging similar tokens
and discarding noise. The dashed line illustrates the relationship
between the superpixel representation and elements within the image.

While inspired by this broader class of approaches, our
method differs in both motivation and mechanism.Instead of
focusing on token efficiency, our goal is to induce object-
centric representations by constructing a token affinity graph
and identifying connected components to form semantically
coherent groups.

In contrast to ToMe, which merges token pairs based on a
greedy bipartite matching algorithm, our method constructs
a soft adjacency matrix using a learnable gating mechanism
and discovers groups via graph traversal (DFS). This enables
us to form compositional groupings of similar tokens, rather
than pairwise merges. Our formulation introduces two key
distinctions: (1) a differentiable connectivity threshold jointly
learned with the model, and (2) a graph-theoretic interpreta-
tion of token affinity, which structures the merging process
around spatial and semantic coherence.

Superpixels. Recent methods such as SpFormer [Mei et al.,
2024] and Superpixel Transformer [Zhu er al., 2023] incor-
porate superpixel-inspired structures into Transformer archi-
tectures to promote inductive biases that align with object
boundaries. These methods learn to group pixels based on
high-level semantic features through task-driven supervision
(classification or segmentation objectives), rather than opti-
mizing for low-level features of the pixel space. Although
they incorporate a locality prior that biases adjacent pixels to
cluster together, superpixel formation is ultimately guided by
discriminative task performance. In contrast, our approach
explicitly constructs a token affinity graph based on pairwise
token similarity and performs grouping via a soft gating mech-
anism followed by graph traversal.

3 Method

In this section, we introduce Adaptive Superpixel Coding
(Fig. 2; Section 3.2) and demonstrate how it can be integrated
into an architecture for self-supervised contrastive learning
(Fig. 1; Section 3.1).
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Figure 2: Adaptive Superpixel Coding.

3.1 Opverall Architecture

An overview of the Adaptive Superpixel Coding Transformer
architecture is presented in (Fig. 1).

Inspired by Video Frame-level Similarity (VES) [Xu and
Wang, 2021], we begin by sampling two random frames, f;
and f;, from a video clip, where each frame is represented
as an RGB image f € R7*Wx3_ Each frame is uniformly
partitioned into N non-overlapping patches, which serve as
basic visual tokens.

For each patch, the raw RGB values are flattened into a
vector of dimension 4 x 4 x 3 = 48 (assuming a patch size of
4 x4), and subsequently mapped into a latent embedding space
of dimension C' via a linear projection layer. This process
yields token sets {z\"”}7_, and {z\")}L_, for frames f; and
f;, respectively, where superscripts indicate the source frame
and subscripts index the patch.

The resulting patch embeddings are then processed by a
series of Transformer blocks, equipped with an Adaptive Su-
perpixel Layer 3.2. These token sequences, derived indepen-
dently from frames f; and f;, are passed through two branches
of a Siamese architecture: a predictor encoder P and a target
encoder (). Each encoder operates on the full token sequence,
producing contextualized embeddings that are subsequently
normalized using the L2 norm:

- P({zgi)}le) . Q({Zgj)}thl)
B e T

where Z; and Z; denote the normalized embeddings of frames
fi and f;, respectively, produced by the predictor encoder P
and the target encoder (). If these embeddings capture similar
content, contrastive learning encourages their alignment while
pushing apart representations from unrelated samples [Wu et
al.,2018].

ey

3.2 Adaptive Superpixel Block

As illustrated in Fig. 2, the Adaptive Superpixel Block con-
sists of a standard self-attention layer followed by Adaptive
Superpixel Layer.

Given contextualized token embeddings produced by self-
attention, we compute a superpixel-like representation by inter-
preting pairwise similarities as edges in a graph. Rather than

using a full attention distribution, we adopt the dot product to
compute affinities:

S=177", where Z € RV*d 2)

Each entry S;; quantifies the similarity between token em-
beddings z; and z;. Since S is symmetric, it can be inter-
preted as a weighted adjacency matrix of an undirected graph
G = (V, E'), where each token is a node, and the edge weights
reflect the semantic affinity.

Theoretical Foundations and Assumptions.

s Undirected Graph: Since ST = S, the graph G is
undirected. That is, if (i,7) € E, then (j,4) € E and

Sij = Sji-

* Graph Model: Let V' denote the set of tokens, and let an
edge (i,j) € E existif A;; > 0, where

A=0(S-9),

o is the sigmoid function and 6 is a learnable threshold.
The matrix A € [0, 1]V encodes soft connectivity and
controls the sparsity of the graph.

* Connectedness and Objecthood: Let ~ be the binary
relation over V' such that ¢ ~ j if and only if there exists
a path in G connecting z; and z;. The relation ~ is an
equivalence relation (reflexive, symmetric, transitive),
and partitions V' into disjoint connected components. We
formally define an object as such a connected component,
consistent with Proposition 1 and 2.

Adaptive Superpixel Layer Mechanism. The goal of Adap-
tive Superpixel Layer is to construct object-centric embed-
dings by identifying and merging connected components in
the similarity graph.

Let K = [k1,...,ky] € RVN>4: denote the key represen-
tations associated with tokens Z = [z1, ..., zn]. Define the
similarity matrix as:

Siy=kikj, A=o(S-0), 3)

A graph G = (V, E) is constructed where z;,z; € V are
connected by an undirected edge (¢,j) € E if A;; > 0. By
construction, A is symmetric and thus defines an undirected
graph.

Proposition 1 (Object Membership). Two tokens z; and
z; belong to the same object if and only if there exists a path
in G connecting them.

Proposition 2 (Transitivity of Connectivity). If z; ~ z;
and z; ~ zg, then z; ~ 2. Hence, all three tokens belong to
the same connected component, forming a single object.

The proofis in the supplementary material.

Component Aggregation. The algorithmic implementation
uses depth-first search (DFS) to enumerate connected com-
ponents in G, as outlined in Algorithm 1. Each connected
component C; C V defines a group of semantically coherent
tokens.



Algorithm 1 Depth-First Search (DFS) for Connected Com-
ponents

1: function DFS(node, A, vis, curr)
vis[node] <— True
append node to curr
fornbr=0to N—1 do

if A[node, nbr] > 0 and — vis[nbr] then

DFS(nbr, A, vis, curr)

end if
end for
9: end function
10: function FINDCOMPONENTS(A)

vis <— array of size N initialized to False

AR AR A 8

12: comps <— empty list

13:  fornode=0to N—1do

14: if = vis[node] then

15: curr <— empty list

16: DFS(node, A, vis, curr)
17: append curr to comps
18: end if

19:  end for

20: return comps

21: end function

Feature Merging. Once connected components are iden-
tified, the embeddings within each component C; C

{1,..., N} are merged via mean pooling:
1L 1
z, = Z z; 4
il JEC;

This yields a compact set of embeddings Z € RN*d:,
where N < N, and each row corresponds to an object-level
representation. These object-centric tokens serve as input to
the next layer in the Vision Transformer.

Computational Complexity. The Adaptive Superpixel Cod-
ing adds an O(N2d) overhead due to pairwise similarity com-
putation and graph-based grouping. However, this cost is
offset by a reduction in the number of tokens N < N passed
to subsequent self-attention layers. The overall impact on
runtime depends on the balance between this upfront cost and
the savings from reduced token count, which can be quantified
through ablation studies.

4 Experiments

We rigorously evaluate the learned representations from ASC
on standard benchmarks, comparing with state-of-the-art self-
supervised methods including DINO [Caron et al., 2021],
BYOL [Grill et al., 2020], MoCo-v3 [Chen et al., 2020b], and
CLIP [Radford et al., 2021]. We assess our model on three
downstream tasks: image classification, object detection, and
semantic segmentation.

This section first presents our detailed pre-training setup,
evaluation protocols, and metrics. We then compare ASC with
state-of-the-art methods across multiple benchmarks. Finally,
we conduct ablation studies to analyze the contribution of each
design choice in ASC.

4.1 Self-Supervised Pre-Training

Datasets.
pre-training:

We use three video datasets for self-supervised

* Moments in Time [Monfort et al., 2019]: 1 million
3-second video clips spanning 339 action classes. We
extract frames at 16 FPS, resulting in approximately 48
million frames at 224 x 224 resolution.

* Kinetics-700 [Carreira ef al., 2019]: 650,000 video clips
of human actions. We sample at 15 FPS, yielding approx-
imately 240 million frames at 224 x 224 resolution.

e EgodD [Grauman et al., 2022]: 3,670 hours of first-
person video. We sample frames at 5 FPS, resulting in
approximately 66 million frames at 224 x 224 resolution.

For all datasets, we maintain a strict separation between
pre-training and downstream evaluation data to ensure fair
assessment. When evaluating on standard benchmarks (e.g.,
ImageNet), we verify no overlap exists between pre-training
videos and evaluation images.

Architectures. We follow the standard Vision Transformer
(ViT) architecture [Dosovitskiy, 2020] with the following mod-
ifications. We reduce the patch size from 16 x 16 to 4 x 4,
using an input resolution of 224 x 224. We insert an Adaptive
Superpixel Coding layer immediately after the self-attention
module in each transformer block. This layer reduces the
token sequence length through spatial aggregation. We use
pre-normalization throughout the network.

The model comprises a predictor encoder and a target
encoder, which form an asymmetric Siamese architecture.
Both encoders share the same modified ViT backbone and
a 3-layer MLP projector, whose parameters are tied. How-
ever, only the predictor encoder includes an additional 2-
layer MLP predictor, which transforms the projected fea-
tures to match the output of the target encoder. This asym-
metry is critical: the target encoder provides a stable rep-
resentation (updated via stop-gradient or exponential mov-
ing average), while the predictor encoder is trained to align
with it. All batch normalization layers in the backbone,
projector, and predictor use synchronized batch normaliza-
tion (SyncBN) across devices, as in [Chen et al., 2020a;
Grill er al., 2020].

Learning Objectives. Following a strategy similar to the
[Xu and Wang, 2021] method, we begin with a video consist-
ing of L frames { f1, fa, ..., fr.}. We divide the video into 4
equal temporal intervals and randomly select one frame from
each segment. These selected frames are then augmented. Two
of the augmented frames are fed into the predictor encoder P
and the target encoder 7', respectively, producing normalized

feature embeddings: Z; = % and Z; = IIC?((J?))Hz‘
Data augmentations Besides using temporal signals to pro-
vide different views of training data, ASC uses the same set
of augmentations as in [Wu et al., 2018; Chen et al., 2020b;
Chen et al., 2020a]. We apply spatial augmentations (random
cropping to 224 x 224 pixels with scale ranging from 0.2 to
1.0, horizontal flipping with probability 0.5) and color aug-
mentations (color jittering with brightness, contrast, saturation,
and hue factors of 0.4, 0.4, 0.4, and 0.1 respectively, random
grayscale conversion with probability 0.2, and Gaussian blur
with kernel size of 23 x 23 and sigma 0.5).




Method Top-1 Top-5
MAE [He et al., 2022] 72.6 93.8
CLIP [Radford et al., 2021] 76.2 93.2
DINO [Caron et al., 2021] 78.2 94.3
TOME [Bolya et al., 2022] 777 92.8
PITOME [Tran et al., 2024] 79.1 95.4
DINOV2 [Oquab er al., 2023] 83.2 NA
ASC (ours) 82.1 96.4

Table 1: Top-1 and top-5 accuracy with ViT-B encoders on ImageNet.

Pre-training Details We trained ASC on our combined
video dataset using only the self-supervised contrastive loss
in (5). The model is trained on sub-sequences of 4 frames
sampled at uniform intervals from each video clip. Our batch
size is 512 distributed across 8 NVIDIA A100 GPUs with
a learning rate initialized to 0.0016 and decayed via the co-
sine schedule [Loshchilov and Hutter, 2016]. We use the
Adam [Diederik, 2014] optimizer with a weight decay of 0.05.
We train for 200 epochs for ViT-B models.

Hyperparameter Selection. We performed hyperparameter
tuning using a validation set comprising 5

* Learning rate: [0.0005, 0.001, 0.0016, 0.003, 0.005]
e Weight decay: [0.01, 0.05, 0.1, 0.2]

» Temperature for similarity threshold §: [0.05, 0.1, 0.2,
0.5]

Final values were selected based on validation loss and trans-
ferred to downstream tasks.

Loos(pir ) = |pi — 215 =2 — 2 (pi, ) ®)
where:

* Lpos(pi, 25) is the contrastive loss between a positive pair
of representations.

* p; is the output of the predictor network for the i-th view
of a sample.

* z; is the output of the projector network (from the target
encoder) for the j-th view of the same sample. This
branch is typically stop-gradient.

* ||pi — #;||3 denotes the squared /5 distance between p;
and z;.

* (pi, z;) is the dot product between the two vectors. When
p; and z; are {o-normalized, this corresponds to cosine
similarity.

4.2 Linear evaluation on ImageNet

We assess the quality of the learned representations via lin-
ear probing on the ImageNet-1K dataset [Russakovsky et al.,
20151, adhering to standard evaluation protocols [Kolesnikov
et al., 2019; Kornblith et al., 2019; Chen et al., 2020a]. Ta-
ble 1, 2 reports both top-1 and top-5 classification accuracy on
the held-out test set, comparing our method with leading self-
supervised approaches. Using a ViT-B backbone, ASC attains

Method

SIMCLR [Chen et al., 2020a]
BYOL [Grill et al., 2020]
DINO [Caron et al., 2021]
ASC (ours)

Architecture Top-1 Top-5

ResNet-50 (4 %) 76.5 93.2
ResNet-200 (2 x) 79.6 94.8
ResNet-50 75.3 95.0
ViT-B 82.1 96.4

Table 2: Top-1 and top-5 accuracy with various ResNet encoders on
ImageNet.

82.1% top-1 and 96.4% top-5 accuracy, which is comparable
to DINOV2 [Tran et al., 2024] (83.2% top-1) and outperforms
BYOL [Grill et al., 2020] (78.6% top-1) and DINO [Caron et
al., 2021] (78.2% top-1) when using the same architecture.

It is worth noting that DINOv2 benefits from training on a
carefully curated and filtered dataset. In contrast, our model
is trained solely on raw, uncurated video frames without any
manual filtering or supervision, yet achieves competitive per-
formance.

4.3 Transfer to Diverse Classification Benchmarks

To evaluate the generality of the learned representations, we
assess their performance across a suite of image classification
tasks beyond ImageNet. This allows us to determine whether
the features captured by our model are domain-agnostic or
exhibit dataset-specific bias.

We conduct both linear probing and full fine-tuning on the
following standard benchmarks:

» CIFAR-10/100 [Krizhevsky et al., 2009]: 10/100 classes
of natural images (60,000 32x32 color images)

» SUN397 [Xiao er al., 2010al: Scene understanding
dataset with 397 categories (108,754 images)

* VOC2007 [Everingham et al., 2010al: Object recogni-
tion with 20 classes (9,963 images)

* DTD [Cimpoi er al., 2014al: Describable Textures
Dataset with 47 texture categories (5,640 images)

e Flowers-102 [Nilsback and Zisserman, 2008]: 102
flower categories (8,189 images)

For all transfer learning experiments, we follow the proto-
cols established in [Chen ef al., 2020a; Kornblith et al., 2019]
to ensure fair comparison. For linear probing, we train a linear
classifier on frozen features extracted from our pre-trained
model. For fine-tuning, we train the entire network end-to-
end, initialized with our pre-trained weights. Evaluation is
carried out using conventional metrics appropriate to each
dataset, with performance reported on the held-out test set
after model selection based on validation performance.

As summarized in Table 3, our method consistently out-
performs BYOL across all evaluated tasks under both eval-
uation regimes. Notably, the learned representations trans-
fer effectively to diverse visual domains, including low-
resolution datasets such as CIFAR [Krizhevsky et al., 2009],
scene-centric datasets like SUN397 [Xiao et al., 2010a] and
VOC2007 [Everingham er al., 2010al, and texture datasets
such as DTD [Cimpoi et al., 2014al.



Method Foodl0l  CIFARIO CIFARI00 Birdsnap SUN397 Cars  Aireraft  VOC2007 DTD  Pets  Caltech-101  Flowers

76.2 91.9 79
5.3 91.3 8
1

630 686 615 834 763 911 948 96.6
75.3 62.2 5 755
68.4 90.6

62.2 678  60.6 82.5 90.4 94.2 96.1
588 503 50.3 805 T45 836 90.3 91.2

1
78.4
71.6

SIMCLR [Chen et

89.4 98.2 86.9 771 645 923 887 861 769 9023 944 7.5
BYOL 88. 97.8 86.1 76.3 637 916 88.1 854 762 917 93.8 97.0
SIMCLR [Chen et al,, 2020a]  88.2 97.7 5.9 75.9 635 913 88.1 41 732 80.2 92.1 97.0

Table 3: Transfer learning results from ImageNet (IN) with the stan-
dard ResNet-50 architecture.

ImageNet

Method CIFAR-10  CIFAR-100 VOCO07  SUN397
Top-1 Top-5

MoCo-v3 [Chen er al., 2020b] 76.5 93.2 93.6 78.4 86.2 65.3

BYOL [Grill et al., 2020] 79.6 94.8 94.2 79.6 87.5 66.8

DINO [Caron et al., 2021] 782 94.3 95.1 81.2 89.3 69.7

CLIP [Radford et al., 2021] 76.2 93.2 95.7 829 91.2 72.8

ASC (Ours) 82.1 96.4 95.3 81.5 89.7 70.2

Table 4: Comparison with state-of-the-art self-supervised methods.
All methods use a ViT-B backbone except CLIP, which uses ViT-
B/32. Values represent accuracy (%) on linear evaluation.

4.4 Comparison with State-of-the-Art Methods

Table 4 presents a comprehensive comparison between our
approach and leading self-supervised methods across multiple
benchmarks. For fairness, we compare methods using the
same backbone architecture (ViT-B) whenever possible. Our
method achieves competitive or superior performance com-
pared to DINO [Caron et al., 2021], BYOL [Grill et al., 2020],
and MoCo-v3 [Chen et al., 2020b] across most evaluated
tasks.

4.5 Transfer to Other Vision Tasks

We assess the generality of the learned representation by trans-
ferring it to a diverse set of downstream tasks commonly
encountered in computer vision, including semantic segmenta-
tion, object detection, and monocular depth estimation. These
evaluations aim to determine whether ASC captures transfer-
able features beyond image-level classification.

Semantic Segmentation. We evaluate ASC on the PASCAL
VOC 2012 semantic segmentation benchmark, following the
protocol detailed in Appendix F.1. The task involves assigning
a semantic label to each pixel. To adapt our Vision Trans-
former backbone for this dense prediction task, we employ
a transformer-compatible segmentation approach inspired by
SegFormer [Xie et al., 2021]. Our decoder leverages hier-
archical multi-level features from transformer layers 3, 6, 9,
and 12, preserving the global contextual information that is
characteristic of transformer models.

For each feature level, we reshape the token sequence into
2D feature maps while maintaining their positional relation-
ships. Rather than relying solely on convolutional operations,
we employ a lightweight MLP decoder that preserves the con-
textual reasoning capabilities of the transformer. This decoder
consists of layer-specific projection layers that unify channel
dimensions to 256, followed by upsampling operations with
skip connections. The final prediction head combines these
multi-scale features through a fusion module before producing
per-pixel class predictions. We fine-tune the model end-to-end
using a combination of cross-entropy and Lovasz-Softmax
loss functions. As reported in Table 5, ASC achieves a sub-

stantial improvement over prior baselines, outperforming the
Supervised-IN baseline by +1.9 mIoU and SIMCLR by +1.1
mloU.

Object Detection. To evaluate object-level representation
quality, we follow a transformer-compatible detection protocol
on PASCAL VOC 2007. Rather than forcing our transformer
features into CNN-based detection frameworks, we adapt the
DETR [Carion et al., 2020] approach which was specifically
designed for transformer architectures. Our implementation
maintains the query-based detection paradigm where a set
of object queries interact with transformer features through
cross-attention mechanisms.

Specifically, we extract hierarchical features from trans-
former layers 3, 6, 9, and 12, and process them with a trans-
former decoder consisting of alternating self-attention and
cross-attention layers. The self-attention allows object queries
to differentiate from each other, while cross-attention enables
each query to attend to relevant image regions. This approach
naturally leverages the global receptive field of transformers
without requiring the spatial reshaping that CNN detectors
need.

For fair comparison with established benchmarks, we report
results using the standard protocol on PASCAL VOC 2007
trainval/test splits, measuring average precision at loU
threshold 0.5 (AP5g). As shown in Table 5, ASC improves
upon the Supervised-IN by +3.1 AP5( and surpasses SIM-
CLR by +2.3 AP, demonstrating that our self-supervised
features better capture object-level semantics even when eval-
uated in a detection framework optimized for transformers.

Monocular Depth Estimation We evaluate monocular
depth prediction on NYU Depth v2, using a transformer-
specific protocol inspired by Dense Prediction Transformer
(DPT) [Ranftl et al., 2021] while maintaining fair comparison
with baselines [Laina et al., 2016].

Rather than directly adapting CNN-based decoders, we
leverage the transformer’s inherent capabilities through a spe-
cialized depth prediction architecture. Our approach maintains
the global context awareness that distinguishes transformers
while efficiently generating dense spatial outputs:

* We extract multi-level features from transformer layers
(3, 6, 9, 12), preserving both local patterns and global
semantic information

Instead of simple reshaping and convolution, we employ
a cross-attention mechanism between transformer fea-
tures and learnable query embeddings at each resolution
level

* These query embeddings are arranged in a 2D grid match-
ing target output resolutions and serve as a spatial struc-
ture for upsampling

* The cross-attention operation projects the transformer’s
global features onto this spatially structured grid

Multi-scale features are gradually merged through resid-
ual blocks that combine convolutions with self-attention
mechanisms

This approach preserves the transformer’s ability to model
long-range dependencies while effectively generating the spa-
tially dense predictions required for depth estimation. We train



Method APs9  mloU
Supervised-IN [He er al., 20201 744  74.4

MoCo [He et al., 2020] 74.9 72.5
SIMCLR (repro) 75.2 75.2
ASC 775 76.3

Table 5: Transfer results on semantic segmentation and object detec-
tion.

Higher better Lower better

Threshold Type ImageNet Top-1  CIFAR100 VOC07 mloU
Fixed (6 = 0.2) 80.3 78.4 74.8
Learnable (6 trained) 82.1 79.1 76.3

Table 8: Impact of fixed vs. learnable threshold.

Graph Traversal Strategy. To test the effectiveness of our
connected-component-based grouping via DFS, we replace it
with a simpler token-merging strategy similar to ToMe [Bolya
et al., 2022]. The results in Table 9 show that the connected

Method pet.<1.25 pet.<1.25%  pet.<1.25° ms rel rf b
Supervised-IN [Laina ef al., 2016] 81.1 95.3 98.8 0573 0.127 component strategy performs better.
SIMCLR (repro) 83.3 96.5 99.1 0.557  0.134
(o) 4.6 96. 99. 54 12 R .
igc k ;5_(1' 32_; ;;_; 8_;3%; 81;; Grouping Mechanism PASCAL mIoU  NYU Depth rel
. ) Connected Components (DFS) 76.3 0.128
Table 6: Transfer results on NYU v2 depth estimation. ToMe-style Merging 74.1 0.137

on the official NYU Depth v2 training set (approximately 24K
RGB-D image pairs) and evaluate on the standard test set (654
images). The model is optimized using a combination of L1
depth loss and scale-invariant loss with weights 0.5 and 1.0,
respectively.

As shown in Table 6, ASC achieves superior performance
compared to self-supervised baselines across most metrics,
with particularly notable improvements in accuracy thresholds
and RMS error. The results demonstrate that our transformer-
based architecture effectively captures both fine-grained de-
tails and global scene structure, essential for accurate depth
estimation.

5 Model Ablations

To better understand the contribution of each component in the
Adaptive Superpixel Coding (ASC) framework, we perform a
series of ablation studies. Our goal is to quantify the impact
of the Adaptive Superpixel Layer, the learnable threshold
parameter, and the graph-based grouping mechanism on the
learned representations and their transferability.

Effect of Adaptive Superpixel Layer. We first assess the
importance of the Adaptive Superpixel Layer by removing
it from the architecture and reverting to a standard Vision
Transformer (ViT) with fixed-size patch embeddings. The
model is trained under identical contrastive learning settings.
As shown in Table 7, removing the superpixel mechanism
leads to a consistent drop in accuracy across all downstream
tasks, confirming that content-adaptive grouping contributes
significantly to learning object-centric representations.

Model Variant ImageNet Top-1 VOC07 AP50  NYU Depth pct.<1.25
ASC (full) 82.1 77.5 85.1
w/o Superpixel Layer 78.6 74.8 82.4

Table 7: Effect of removing the Adaptive Superpixel Layer.

Learnable vs. Fixed Threshold. We next evaluate the role
of the learnable threshold 6 used in forming the affinity graph
for superpixel grouping. We compare ASC with a fixed thresh-
old (e.g., 8 = 0.2) versus a learnable threshold that is opti-
mized end-to-end. The learnable threshold consistently yields
better performance.

Table 9: Comparison of token grouping strategies.

Impact of Component Aggregation Strategy. We also
compare mean pooling with alternative strategies such as max
pooling and attention-based fusion. As shown in Table 10,
mean pooling performs best overall.

Aggregation Method  ImageNet Top-1 Flowers Accuracy
Mean Pooling 82.1 96.6
Max Pooling 80.8 95.2
Attention Fusion 81.4 96.1

Table 10: Comparison of token aggregation strategies.

6 Conclusion

We introduced ASC, a novel architectural component for
self-supervised visual representation learning that adaptively
groups tokens into object-level embeddings based on similar-
ity across video frames. The method operates without negative
pairs and integrates seamlessly with Vision Transformers. Un-
der the standard linear evaluation protocol on ImageNet with
a ViT-B backbone, ASC achieves a top-1 accuracy of 82.1%,
While effective, ASC has several limitations: (i) sensitivity
to the gating threshold and merge strategy; (ii) lack of ex-
plicit mechanisms for ensuring object-level invariance to pose,
occlusion, or viewpoint changes; and (iii) additional computa-
tional cost introduced by graph construction and traversal.



References

[Berg and Belhumeur, 2014] Thomas Berg and Peter N Bel-
humeur. Birdsnap: Large-scale fine-grained visual catego-
rization of birds. In IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 2019-2026, 2014.

[Bolya et al., 2022] Daniel Bolya, Cheng-Yang Fu, Xiaoliang
Dai, Peizhao Zhang, Christoph Feichtenhofer, and Judy
Hoffman. Token merging: Your vit but faster. arXiv
preprint arXiv:2210.09461, 2022.

[Bommasani et al., 2021] Rishi Bommasani, Drew A Hud-
son, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von
Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosse-
lut, Emma Brunskill, et al. On the opportunities and risks
of foundation models. arXiv preprint arXiv:2108.07258,
2021.

[Bossard et al., 2014] Lukas Bossard, Matthieu Guillaumin,
and Luc Van Gool. Food-101-mining discriminative com-
ponents with random forests. In European Conference on
Computer Vision (ECCV), pages 446—-461. Springer, 2014.

[Carion et al., 2020] Nicolas Carion, Francisco Massa,
Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov,
and Sergey Zagoruyko. End-to-end object detection with
transformers. In European conference on computer vision,
pages 213-229. Springer, 2020.

[Caron er al., 2021] Mathilde Caron, Hugo Touvron, Ishan
Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised
vision transformers. In Proceedings of the IEEE/CVF inter-
national conference on computer vision, pages 9650-9660,
2021.

[Carreira et al., 2019] Joao Carreira, Eric Noland, Chloe
Hillier, and Andrew Zisserman. A short note on
the kinetics-700 human action dataset. arXiv preprint
arXiv:1907.06987, 2019.

[Chen et al., 2020a] Ting Chen, Simon Kornblith, Moham-
mad Norouzi, and Geoffrey Hinton. A simple framework
for contrastive learning of visual representations. In Interna-

tional conference on machine learning, pages 1597-1607.
PMLR, 2020.

[Chen et al., 2020b] Xinlei Chen, Haoqi Fan, Ross Girshick,
and Kaiming He. Improved baselines with momentum
contrastive learning. arXiv preprint arXiv:2003.04297,
2020.

[Cheng et al., 2022] Bowen Cheng, Ishan Misra, Alexan-
der G Schwing, Alexander Kirillov, and Rohit Girdhar.
Masked-attention mask transformer for universal image
segmentation. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pages
1290-1299, 2022.

[Cimpoi et al., 2014a] Mircea Cimpoi, Subhransu Maji, Ia-
sonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pages 3606-3613, 2014.

[Cimpoi et al., 2014b] Mircea Cimpoi, Subhransu Maji, Ta-
sonas Kokkinos, Sammy Mohamed, and Andrea Vedaldi.
Describing textures in the wild. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pages
3606-3613, 2014.

[Diederik, 2014] P Kingma Diederik. Adam: A method for
stochastic optimization. (No Title), 2014.

[Dosovitskiy, 2020] Alexey Dosovitskiy. An image is worth
16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929, 2020.

[Everingham e al., 2010a] Mark Everingham, Luc Van Gool,
Christopher KI Williams, John Winn, and Andrew Zisser-
man. The pascal visual object classes (voc) challenge. In-
ternational journal of computer vision, 88:303—-338, 2010.

[Everingham e al., 2010b] Mark Everingham, Luc Van Gool,
Christopher KI Williams, John Winn, and Andrew Zisser-
man. The pascal visual object classes (voc) challenge.
International Journal of Computer Vision, 88(2):303-338,
2010.

[Fei-Fei et al., 2007] Li Fei-Fei, Rob Fergus, and Pietro Per-
ona. Learning generative visual models from few training
examples: An incremental bayesian approach tested on 101
object categories. Computer Vision and Image Understand-
ing, 106(1):59-70, 2007.

[Gould et al., 2008] Stephen Gould, Jim Rodgers, David Co-
hen, Gal Elidan, and Daphne Koller. Multi-class segmen-
tation with relative location prior. International journal of
computer vision, 80:300-316, 2008.

[Grauman er al., 2022] Kristen Grauman, Andrew Westbury,
Eugene Byrne, Zachary Chavis, Antonino Furnari, Rohit
Girdhar, Jackson Hamburger, Hao Jiang, Miao Liu, Xingyu
Liu, et al. Ego4d: Around the world in 3,000 hours of
egocentric video. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages

18995-19012, 2022.

[Grill et al., 2020] Jean-Bastien Grill, Florian Strub, Flo-
rent Altché, Corentin Tallec, Pierre Richemond, Elena
Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhao-
han Guo, Mohammad Gheshlaghi Azar, et al. Bootstrap
your own latent-a new approach to self-supervised learn-
ing. Advances in neural information processing systems,

33:21271-21284, 2020.

[He er al., 2015] Shengfeng He, Rynson WH Lau, Wenxi Liu,
Zhe Huang, and Qingxiong Yang. Supercnn: A superpix-
elwise convolutional neural network for salient object de-
tection. International journal of computer vision, 115:330-
344, 2015.

[He er al., 2016] Kaiming He, Xiangyu Zhang, Shaoging
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770-778, 2016.

[He et al., 2020] Kaiming He, Haogi Fan, Yuxin Wu, Saining
Xie, and Ross Girshick. Momentum contrast for unsuper-
vised visual representation learning. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 9729-9738, 2020.



[He er al., 2022] Kaiming He, Xinlei Chen, Saining Xie,
Yanghao Li, Piotr Dollér, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of

the IEEE/CVF conference on computer vision and pattern
recognition, pages 16000-16009, 2022.

[Hu er al., 2016] Yinlin Hu, Rui Song, Yunsong Li, Peng Rao,
and Yangli Wang. Highly accurate optical flow estimation
on superpixel tree. Image and Vision Computing, 52:167—
177, 2016.

[Kipf et al., 2021] Thomas Kipf, Gamaleldin F Elsayed, Ar-
avindh Mahendran, Austin Stone, Sara Sabour, Georg
Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and
Klaus Greft. Conditional object-centric learning from video.
arXiv preprint arXiv:2111.12594, 2021.

[Kirillov et al., 2023] Alexander Kirillov, Eric Mintun,
Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson,
Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-
Yen Lo, et al. Segment anything. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 4015-4026, 2023.

[Kolesnikov et al., 2019] Alexander Kolesnikov, Xiaohua
Zhai, and Lucas Beyer. Revisiting self-supervised visual
representation learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,
pages 1920-1929, 2019.

[Koonce and Koonce, 2021] Brett Koonce and Brett Koonce.
Resnet 50. Convolutional neural networks with swift for
tensorflow: image recognition and dataset categorization,
pages 63-72, 2021.

[Kornblith et al., 2019] Simon Kornblith, Jonathon Shlens,
and Quoc V Le. Do better imagenet models transfer better?
In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pages 2661-2671, 2019.

[Krause et al., 2013] Jonathan Krause, Michael Stark, Jia
Deng, and Li Fei-Fei. 3d object representations for fine-
grained categorization. In IEEE International Conference
on Computer Vision Workshops (ICCVW), pages 554-561,
2013.

[Krizhevsky et al., 2009] Alex Krizhevsky, Geoffrey Hinton,
et al. Learning multiple layers of features from tiny images.
2009.

[Krizhevsky et al., 2012] Alex Krizhevsky, Ilya Sutskever,
and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural infor-
mation processing systems, 25, 2012.

[Krizhevsky, 2009] Alex Krizhevsky. Learning multiple lay-
ers of features from tiny images. Technical Report TR-2009,
University of Toronto, 2009.

[Laina ef al., 2016] Iro Laina, Christian Rupprecht, Vasileios
Belagiannis, Federico Tombari, and Nassir Navab. Deeper
depth prediction with fully convolutional residual networks.
In Proceedings of the International Conference on 3D Vi-

sion (3DV), pages 239-248. IEEE, 2016.

[Locatello et al., 2020] Francesco Locatello, Dirk Weis-
senborn, Thomas Unterthiner, Aravindh Mahendran, Georg

Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas
Kipf. Object-centric learning with slot attention. Advances

in neural information processing systems, 33:11525-11538,
2020.

[Loshchilov and Hutter, 2016] Ilya Loshchilov and Frank
Hutter. Sgdr: Stochastic gradient descent with warm
restarts. arXiv preprint arXiv:1608.03983, 2016.

[Maji er al., 2013] Subhransu Maji, Esa Rahtu, Juho Kan-
nala, Matthew Blaschko, and Andrea Vedaldi. Fine-
grained visual classification of aircraft. In arXiv preprint
arXiv:1306.5151, 2013.

[Mei et al., 2024] Jieru Mei, Liang-Chieh Chen, Alan Yuille,
and Cihang Xie. Spformer: Enhancing vision trans-
former with superpixel representation. arXiv preprint
arXiv:2401.02931, 2024.

[Meinhardt et al., 2022] Tim Meinhardt, Alexander Kirillov,
Laura Leal-Taixe, and Christoph Feichtenhofer. Track-
former: Multi-object tracking with transformers. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 8844—-8854, 2022.

[Meng et al., 2022] Lingchen Meng, Hengduo Li, Bor-Chun
Chen, Shiyi Lan, Zuxuan Wu, Yu-Gang Jiang, and Ser-Nam
Lim. Adavit: Adaptive vision transformers for efficient
image recognition. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
12309-12318, 2022.

[Monfort et al., 2019] Mathew Monfort, Alex Andonian,
Bolei Zhou, Kandan Ramakrishnan, Sarah Adel Bargal,
Tom Yan, Lisa Brown, Quanfu Fan, Dan Gutfreund, Carl
Vondrick, et al. Moments in time dataset: one million
videos for event understanding. IEEE transactions on
pattern analysis and machine intelligence, 42(2):502-508,
2019.

[Nilsback and Zisserman, 2008] Maria-Elena Nilsback and
Andrew Zisserman. Automated flower classification over a
large number of classes. In 2008 Sixth Indian Conference
on Computer Vision, Graphics & Image Processing, pages
722-729. IEEE, 2008.

[Oquab er al., 2023] Maxime Oquab, Timothée Darcet, Théo
Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khali-
dov, Pierre Fernandez, Daniel Haziza, Francisco Massa,
Alaaeldin El-Nouby, et al. Dinov2: Learning robust
visual features without supervision. arXiv preprint
arXiv:2304.07193, 2023.

[Parkhi et al., 2012] Omkar M Parkhi, Andrea Vedaldi, An-
drew Zisserman, and CV Jawahar. Cats and dogs. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3498-3505, 2012.

[Radford et al., 2021] Alec Radford, Jong Wook Kim, Chris
Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. Learning transferable visual models from natural lan-

guage supervision. In International conference on machine
learning, pages 8748-8763. PmLR, 2021.



[Ramachandran er al., 2019] Prajit Ramachandran, Niki Par-
mar, Ashish Vaswani, Irwan Bello, Anselm Levskaya, and
Jon Shlens. Stand-alone self-attention in vision models.
Advances in neural information processing systems, 32,
2019.

[Ranftl et al., 2021] René Ranftl, Alexey Bochkovskiy, and
Vladlen Koltun. Vision transformers for dense prediction.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 12179-12188, 2021.

[Rao er al., 2021] Yongming Rao, Wenliang Zhao, Benlin
Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsifi-
cation. Advances in neural information processing systems,
34:13937-13949, 2021.

[Ren and Malik, 2003] Ren and Malik. Learning a classifica-
tion model for segmentation. In Proceedings ninth IEEE
international conference on computer vision, pages 10-17.
IEEE, 2003.

[Russakovsky et al., 2015] Olga Russakovsky, Jia Deng, Hao
Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng
Huang, Andrej Karpathy, Aditya Khosla, Michael Bern-
stein, Alexander C Berg, and Li Fei-Fei. Imagenet large
scale visual recognition challenge. International Journal
of Computer Vision, 115(3):211-252, 2015.

[Sandler et al., 2018] Mark Sandler, Andrew Howard, Men-
glong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 4510-4520, 2018.

[Sharma et al., 2014] Abhishek Sharma, Oncel Tuzel, and
Ming-Yu Liu. Recursive context propagation network for
semantic scene labeling. Advances in Neural Information
Processing Systems, 27, 2014.

[Shu et al., 2013] Guang Shu, Afshin Dehghan, and Mubarak
Shah. Improving an object detector and extracting regions
using superpixels. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, pages 3721—
3727, 2013.

[Tran et al., 2024] Chau Tran, Duy MH Nguyen, Manh-Duy
Nguyen, TrungTin Nguyen, Ngan Le, Pengtao Xie, Daniel
Sonntag, James Y Zou, Binh Nguyen, and Mathias Niepert.
Accelerating transformers with spectrum-preserving token

merging. Advances in Neural Information Processing Sys-
tems, 37:30772-30810, 2024.

[Wang et al., 2018] Xiaolong Wang, Ross Girshick, Abhinav
Gupta, and Kaiming He. Non-local neural networks. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 7794-7803, 2018.

[Wang et al., 2020] Huiyu Wang, Yukun Zhu, Bradley Green,
Hartwig Adam, Alan Yuille, and Liang-Chieh Chen. Axial-
deeplab: Stand-alone axial-attention for panoptic segmen-
tation. In European conference on computer vision, pages
108-126. Springer, 2020.

[Wu et al., 2018] Zhirong Wu, Yuanjun Xiong, Stella X Yu,
and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the

IEEE conference on computer vision and pattern recogni-
tion, pages 3733-3742, 2018.

[Xiao er al., 2010a] Jianxiong Xiao, James Hays, Krista A
Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In 2010
IEEE computer society conference on computer vision and
pattern recognition, pages 3485-3492. IEEE, 2010.

[Xiao et al., 2010b] Jianxiong Xiao, James Hays, Krista A
Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3485-3492, 2010.

[Xie et al., 2021] Enze Xie, Wenhai Wang, Zhiding Yu, An-
ima Anandkumar, Jose M. Alvarez, and Ping Luo. Seg-
former: Simple and efficient design for semantic segmenta-
tion with transformers. In Advances in Neural Information
Processing Systems (NeurlPS), 2021.

[Xu and Wang, 2021] Jiarui Xu and Xiaolong Wang. Re-
thinking self-supervised correspondence learning: A video
frame-level similarity perspective. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 10075-10085, 2021.

[Xu et al., 2022] Jiarui Xu, Shalini De Mello, Sifei Liu, Won-
min Byeon, Thomas Breuel, Jan Kautz, and Xiaolong Wang.
Groupvit: Semantic segmentation emerges from text super-
vision. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 18134—
18144, 2022.

[Yan er al., 2015] Junjie Yan, Yinan Yu, Xiangyu Zhu, Zhen
Lei, and Stan Z Li. Object detection by labeling superpixels.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5107-5116, 2015.

[Zhu et al., 2020] X Zhu, W Su, L Lu, B Li, X Wang,
J Dai, and Deformable DETR. deformable transform-
ers for end-to-end object detection. URL: https://arxiv.
org/abs/2010.04159 (Accessed 29.11. 2023), 2020.

[Zhu et al., 2023] Alex Zihao Zhu, Jieru Mei, Siyuan Qiao,
Hang Yan, Yukun Zhu, Liang-Chieh Chen, and Henrik
Kretzschmar. Superpixel transformers for efficient semantic
segmentation. In 2023 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pages 7651—
7658. IEEE, 2023.



Supplementary Material for
Representation Learning with Adaptive Superpixel Coding

A Proofs

Let G = (V, E, ¥) be an undirected graph, where each node v € V' corresponds to a feature embedding in an image, and each
edge e € E connects two embeddings such that ¥(e) = {u, v} for some u,v € V.

Definition:

* A walk in G is an alternating sequence of vertices and edges:
Wo, €1, W1, €2, .. ., €, Wk

such that ¥(e;) = {w;_1,w;} forall 1 <4 < k. A walk may contain repeated edges and vertices.
* A trail is a walk in which no edge is repeated.
* A path is a trail in which no vertex is repeated.

Definition of an Object. An object in an image is defined as a maximal set of feature embeddings (vertices in the graph)
such that for all x, y in this set, there exists a path in G from x to y, and for any z ¢ object, there is no path from x to z. This
definition is equivalent to a connected component in graph theory.

Proposition 1. Letx,y € V. Then x and y belong to the same object if and only if there exists a path in G connecting x and y.
Proof of Proposition 1. Let P(z,y) be the proposition: “There exists a path in G connecting = and y.” Let O(x, y) be the
proposition: “x and y belong to the same object.”
We aim to prove:
P(z,y) < O(z,y)

(=) Suppose P(z,y) holds, i.e., there exists a path from « to y. By the definition of an object as a connected subgraph
(connected component), any two vertices connected by a path are in the same component. Hence, x and y must belong to the
same object. Thus, P(z,y) = O(z,y).

(<) Suppose O(x, y) holds, i.e., x and y belong to the same object. By definition of object, this implies the existence of a
path connecting = and y. Hence, O(z,y) = P(z,y).

Therefore, P(x,y) <> O(z,y). O

Proposition 2. Connectivity is transitive: For any a, b, ¢ € V, if there exists a path from « to b and a path from b to ¢, then
there exists a path from a to c.
Proof of Proposition 2. Let P(u,v) be the proposition: “There exists a path in G connecting « and v.”
We are given:
P(a,b) A P(b,c)

We want to prove:
P(a,c)

Let p; = (a = vg, vy, ..., v, = b) be a path from a to b, and ps = (b = ug, u1,...,us = ¢) a path from b to c.

Since paths are sequences of adjacent vertices with no repetition, we can concatenate p; and py (excluding the repeated node
b) and remove any resulting cycles to construct a new path p3 from a to c. This process is guaranteed by the fact that any walk
can be converted to a path by removing cycles (a well-known result in graph theory).

Hence, P(a, c¢) holds. Therefore, P(a,b) A P(b,c) = P(a,c), proving transitivity of connectivity. O

Conclusion. By Propositions 1 and 2, the relation “being connected by a path” is an equivalence relation on V' (reflexive,
symmetric, transitive). Thus, the graph is partitioned into equivalence classes of connected vertices, i.e., connected components.
Each connected component corresponds to a unique object in the image. Therefore, finding objects reduces to computing
connected components in G.

B Datasets

In this work, we use multiple datasets for every experiment We make use of publicly available datasets that are released under
MIT License and that are open to all research work.
We use three large-scale video datasets for self-supervised pre-training

B.1 Moments in Time

[Monfort et al., 2019]: A diverse dataset of one million 3-second video clips covering dynamic scenes and actions. We use the
official training split containing 802,264 videos across 339 action classes.



B.2 Egod4D

[Grauman er al., 2022]: A large-scale egocentric video dataset capturing real-world, first-person interactions across diverse
scenarios. We use 3,670 hours of video from the official training set, excluding any sequences that overlap with benchmark
evaluation domains.

B.3 Kinetics-700

[Carreira et al., 2019]: A benchmark dataset consisting of over 650K video clips annotated with human actions. We use the
official training split containing 545,317 videos spanning 700 action classes.

We evaluate our method on a diverse collection of publicly available datasets for both linear evaluation and fine-tuning
protocols. All datasets are released under permissive licenses (e.g., MIT, CC BY) and are widely used in self-supervised learning
literature.

B.4 ImageNet

[Russakovsky et al., 2015] For the main benchmark, we follow the standard linear evaluation protocol on ImageNet-1K, which
consists of 1.28 million training images and 50,000 validation images across 1,000 categories. All models are evaluated
using a frozen backbone and a single-layer linear classifier trained on top of the final layer features. Images are resized and
center-cropped to 224 x 224 resolution, consistent with prior work.

Downstream Classification Datasets We further evaluate the generalization of learned representations across 12 diverse
classification tasks. For each dataset, a linear classifier or full fine-tuning is applied on top of the pretrained encoder.

* Food101 [Bossard et al., 2014]: 101 food categories with 101,000 images.

» CIFAR-10/100 [Krizhevsky, 2009]: 10 and 100-class image classification datasets with low-resolution 32 x 32 images.
* Birdsnap [Berg and Belhumeur, 2014]: 500 bird species with over 49,000 high-resolution images.

» SUN397 [Xiao ef al., 2010b]: Scene recognition dataset with 397 categories and over 100,000 images.

« Stanford Cars [Krause et al., 2013]: Fine-grained car classification with 196 classes.

* FGVC Aircraft [Maji et al., 2013]: Aircraft model recognition with 100 classes.

* YOC2007 [Everingham er al., 2010b]: 20-class object classification, evaluated using classification labels only.
* DTD [Cimpoi et al., 2014b]: A dataset of texture images categorized by human-centric attributes.

» Oxford Pets [Parkhi ef al., 2012]: 37 pet categories with annotations for both class and breed.

« Caltech-101 [Fei-Fei et al., 2007]: 101 object categories and a background class.

» Oxford Flowers-102 [Nilsback and Zisserman, 2008]: Flower classification with 102 categories.

All datasets are preprocessed following the protocols established in [Grill ef al., 2020; Chen et al., 2020al, including standard
resizing and normalization. Where applicable, training-validation splits and evaluation metrics follow the respective official
implementations or prior literature for fair comparison.

C DMetrics

Image Classification (e.g., ImageNet, CIFAR, SUN397). We evaluate classification performance using Top-1 and Top-5
accuracy:

N
1
Top-1 Accuracy = ZH‘(% =) ©)
i=1
1< A
Top-5 Accuracy = N ZH‘(yi € Top-5(pi)) Q)
i=1

where y; is the ground-truth label, §; is the top-1 predicted label, and p; is the model’s class probability vector.
Object Detection (PASCAL VOC 2007). We report Average Precision at IoU = 0.5 (AP@50):

1
APs5g = / p(r)dr (®)
0
where p(r) is the precision at recall r, and predictions are considered correct if:

[Bprea 1 B 0.5 ©)

IoU = > 0.
|Bpred U Bgt‘



Semantic Segmentation (PASCAL VOC 2012). We evaluate segmentation using mean Intersection over Union (mlIoU):

< TP,

mloU = L Z -
- C4Z= TP.+ FP.+FN,

where T'P,, F'P,., and F'N, are the true positives, false positives, and false negatives for class ¢, and C'is the total number of
classes.

(10)

Monocular Depth Estimation (NYU Depth v2). We use both accuracy and error metrics:
* Threshold accuracy at § € {1.25,1.25%,1.253}:

1 & d; d;
Accuracys = N ZH‘ (max (c{’ dl> < 5) (11
i=1 i

(2

¢ Root Mean Square Error (RMSE):

N

1 N2
RMSE = | ; (di - di) (12)
¢ Relative Error (REL):
N ~
1 |d; — d;|
REL = — —_— (13)

Here, d; and d; denote the predicted and ground-truth depth at pixel ¢, respectively.

D Evaluation Protocols

Linear Evaluation on ImageNet. Our linear evaluation protocol strictly follows established practices in self-supervised
learning research:

1. Pre-trained model weights are frozen (no backpropagation through backbone)

A single linear layer is trained on top of the frozen features

Standard ImageNet augmentation protocol is used (resize to 256px, random crop to 224px)
Training uses SGD with momentum (0.9) for 100 epochs

ke

Learning rate starts at 0.1 and is decayed by a factor of 10 at epochs 60 and 80
6. Weight decay is set to 0.0001

The reported accuracy is calculated on the official ImageNet validation set of 50,000 images.
Transfer Learning Protocol For fine-tuning on downstream datasets, we use:

¢ Optimizer: SGD with momentum (0.9)

¢ Learning rate: 0.01 for linear probing, 0.0001 for full fine-tuning, with cosine decay

* Weight decay: 0.0001

¢ Epochs: 100 for all datasets

» Early stopping: Based on validation performance

* Augmentations: Random resize, crop, and flip consistent with standard practices

For all transfer learning experiments, we divide each dataset into standard train/val/test splits (or use official splits where
available), and report results on the designated test splits.

Data Split Information For each downstream evaluation benchmark, we use the following splits:
* ImageNet: 1.28M training images, SOK validation images (used as test set)

CIFAR-10/100: 50K training images, 10K test images

VOC2007: Train/val split (5,011 images), test split (4,952 images)

SUN397: 19,850 training images, 19,850 validation images, 19,850 test images (official split)

DTD: 3,760 training images, 1,880 test images

Flowers-102: 2,040 training images, 6,149 test images



E Experimental Details
Dataset Processing Pipeline. For all video datasets, we apply the following processing:
1. Decode videos at native resolution
2. Sample frames at specified FPS rates (16 FPS for Moments in Time, 15 FPS for Kinetics-700, 5 FPS for Ego4D)
3. Resize frames to maintain aspect ratio with shorter side = 256 pixels
4. Apply center crop to obtain 224 x 224 pixel frames for pre-training

Training Setup. We train ASC using a self-supervised contrastive loss (Equation (5)) applied over 4-frame video subsequences.
Each batch consists of 512 video clips. Training is conducted using:

» Optimizer: Adam [Diederik, 2014] with 8; = 0.9, 82 = 0.999, € = 10-8

 Learning rate: 0.0016, decayed via cosine schedule [Loshchilov and Hutter, 2016] with 5 epochs of warm-up
* Weight decay: 0.05

* Batch size: 512

* Input: Sub-sequences of 4 consecutive frames

* Training epochs: 200 for all models

* Target encoder update: Exponential moving average with momentum 0.996

Hyperparameter Optimization. We conduct a grid search over key hyperparameters using 5% of the training data as a
validation set. The parameters and their search spaces include:

e Learning rate: [0.0005, 0.001, 0.0016, 0.003, 0.005]

* Weight decay: [0.01, 0.05, 0.1, 0.2]

e Similarity threshold 6: [0.05, 0.1, 0.2, 0.5]

 Batch size: [1024, 2048, 4096]
The optimal values were selected based on validation loss convergence and downstream performance on a small subset of
ImageNet classes.

Compute Resources. Experiments were conducted on 8x NVIDIA A100 GPUs (40GB memory each). Training on the
combined dataset takes approximately 24 hours for ViT-Tiny and 2.5 days for ViT-B. The total compute for all reported
experiments is estimated at approximately 200 GPU-hours, aligning with the computational budget of comparable prior work.

F Downstream Task Architectures and Protocols

F.1 Semantic Segmentation

For semantic segmentation, we evaluate on the PASCAL VOC 2012 dataset using the standard split provided by
augmented_voc. The dataset contains 21 classes (including background).

Architecture. Our segmentation architecture adapts the ViT backbone to dense prediction through a carefully designed decoder
structure. The decoder follows a Feature Pyramid Network (FPN) design that leverages multi-scale features from intermediate
transformer layers:

* Feature extraction: We extract features from transformer layers 3, 6, 9, and 12, providing hierarchical representations at
different semantic levels.

* Feature normalization: Each feature set is processed through a 1x1 convolutional layer to unify channel dimensions to
256.

» Upsampling pathway: Starting from the deepest layer, features are progressively upsampled using bilinear interpolation
and merged with corresponding shallower features through lateral connections.

* Refinement: Each merged feature map undergoes a 3x3 convolutional refinement step with batch normalization and ReLU
activation.

* Prediction head: The final feature map is processed by a 1x1 convolution that outputs logits for the 21 semantic classes.

Training Details. Our ViT backbone is initialized with weights pretrained via ASC and fine-tuned end-to-end with the
segmentation decoder. Input images are resized to 512 x 512 pixels.

Training is conducted using the AdamW optimizer with an initial learning rate of 5 x 1075, cosine annealing scheduler,
and a batch size of 16. We employ a combination of cross-entropy and Lovész-Softmax loss functions with weights of 1.0
and 0.5 respectively. We fine-tune for 20k iterations with a linear warmup for the first 1500 iterations. Data augmentation
includes random scaling (0.5-2.0), random cropping, horizontal flipping, and color jittering. Evaluation is done using the mean
Intersection-over-Union (mloU) metric.



F.2 Object Detection
We follow the object detection protocol on PASCAL VOC 2007 using Faster R-CNN as our detection framework.

Architecture. Since standard detection frameworks are designed for convolutional backbones, we integrate our pretrained ViT
with Faster R-CNN through a specialized feature adapter:

* Token reshaping: The final layer patch tokens from the ViT (/V tokens with dimension D) are reshaped into a 2D spatial
grid with dimensions H x W x D, where H x W = N.

» Feature adapter: This grid is processed through a small convolutional network consisting of:
— A 1x1 convolution that maps D dimensions to 512 channels

— Two residual blocks, each with two 3x3 convolutions and skip connections
— A final 1x1 convolution that maps to the expected backbone output channels (256 for C4 Faster R-CNN)

* Multi-scale features: For improved detection of objects at different scales, we extract features from intermediate transformer
layers (3, 6, 9) and process them through similar adapter modules before feeding them into the FPN structure of Faster
R-CNN.

* Detection head: We use the standard Faster R-CNN detection head with RPN, Rol Pooling, and classification/bounding
box regression heads.

Training Details. The detector is trained on the trainval2007 split and evaluated on test2007. We use stochastic
gradient descent with momentum (0.9), an initial learning rate of 1 x 10~3 with step decay at iterations 18k and 22k, weight
decay of 1 x 10~%, and train for 24k iterations with a batch size of 8.

We implement gradient clipping at a max norm of 10.0 to stabilize training. Standard detection augmentations include
horizontal flipping, scale jittering, and color augmentation. Results are reported using AP5( following standard PASCAL VOC
evaluation protocol.

F.3 Monocular Depth Estimation
We evaluate monocular depth prediction on the NYU Depth v2 dataset, which consists of RGB-D indoor scenes.

Architecture. Our depth estimation approach is inspired by Dense Prediction Transformers (DPT) [Ranftl et al., 2021], which
is specifically designed to leverage transformer architectures for dense prediction tasks. The architecture consists of:

* Feature extraction: We extract token embeddings from transformer layers 3, 6, 9, and 12, providing a hierarchical
representation with varying receptive fields.

* Reassembly blocks: For each feature level, we use:

— A cross-attention mechanism where learnable query embeddings (arranged in a 2D grid) attend to the transformer
tokens

— This effectively projects global features back into a spatially structured representation
— Each query embedding corresponds to a spatial location in the final prediction

* Fusion blocks: Features from different levels are progressively fused using:

— Residual connections to preserve information flow
— A combination of convolutions (3x3) for local context and self-attention for global context
— Layer normalization between operations

* Depth head: The final fused features are processed by a lightweight MLP that outputs per-pixel depth values.

This architecture better leverages the transformer’s inherent global context modeling while maintaining spatial coherence
through the structured query embeddings. Unlike conventional CNN-based upsampling decoders, it preserves the transformer’s
ability to model long-range dependencies throughout the decoding process.

Training Details. We train on the official NYU Depth v2 dataset using an input resolution of 640x480 pixels. The model is
optimized using:

» Adam optimizer with learning rate 1 x 10~*

* Cosine learning rate schedule with 2000-step warmup

* Batch size of 8

* Training for 25 epochs

* Loss function combining L1 (weight 0.5), scale-invariant (weight 1.0), and edge-aware gradient loss (weight 0.5)

¢ Data augmentation including random horizontal flipping, color jittering (brightness, contrast, saturation), and random
cropping to 416x352 pixels



Our edge-aware gradient loss specifically helps preserve structural boundaries by penalizing depth discontinuities that don’t
align with RGB edges, which is particularly beneficial for transformer-based models that might otherwise produce overly smooth
depth maps.

Evaluation metrics include relative error (rel), root mean squared error (rms), and the percentage of predicted depths within
thresholds of 1.25, 1.252, and 1.253 compared to ground truth, following standard protocols in depth estimation literature.

G Limitations
We identify several limitations of the Adaptive Superpixel Coding that may guide future research:

Hyperparameter sensitivity. The grouping behavior is influenced by the learnable gating threshold 6, which determines
the sparsity of the similarity graph. While effective empirically, its interpretability and generalization across datasets remain
under-explored.

Merge policy and representation bias. Connected components are merged using mean pooling, which assumes uniformity
within each group. This may suppress distinctive or minority features within an object, especially near boundaries or in regions
with semantic heterogeneity. More expressive aggregation mechanisms may yield richer object-level embeddings.

Computational overhead. The module introduces additional complexity per layer via O(N?d) similarity computation and
DFS traversal. While the reduced token count in subsequent layers may compensate for this overhead, the overall trade-off
remains unquantified and warrants empirical runtime analysis.

Object granularity. The notion of an object is inferred solely from local pairwise feature similarities, which can lead to over-
or under-grouping in cluttered scenes or under occlusion. Without global context or top-down constraints, the grouping may not
align with semantically meaningful object boundaries.

Layer-wise inconsistency. Grouping is performed independently at each layer, with no mechanism to enforce consistency or
track object identity across layers. This can result in unstable representations, particularly in deep architectures. Incorporating
recurrent or hierarchical grouping could improve temporal coherence.

Symmetry and object independence. The module does not explicitly enforce object symmetry or viewpoint invariance. As a
result, the same object under different poses, orientations, or occlusions may be fragmented into separate groups. Achieving
object-level invariance in grouping remains a key challenge for generalizing to complex real-world scenes.
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