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Abstract
Numerous deep learning (DL)-based ap-001
proaches have been developed for medical re-002
port generation (MRG), aiming to automate the003
description of medical images. These reports004
typically comprise two sections: the findings,005
which describe visual aspects of the images,006
and the impression, which summarizes the di-007
agnosis or assessment. Given the distinct ab-008
straction levels of these sections, conventional009
end-to-end DL methods that generate both si-010
multaneously may not be optimal. Addressing011
this challenge, we introduce a novel Hierarchi-012
cal Medical Report Generation Network (Hi-013
MrGn) designed to better reflect the inherent014
structure of medical reports. The Hi-MrGn op-015
erates in two stages: initially, it generates the016
findings from input multimodal data including017
medical images and auxiliary diagnostic texts;018
subsequently, it produces the impression based019
on both the findings and images. To enhance020
the semantic coherence between findings and021
impression, we incorporate a contrastive learn-022
ing module within the Hi-MrGn. We validate023
our approach using two public X-ray image024
datasets, MIMIC-CXR and IU-Xray, demon-025
strating that our method surpasses current state-026
of-the-art (SOTA) techniques in this domain.027

1 Introduction028

Medical reports are essential in routine clinic. How-029

ever, for radiologists, medical report writing is a030

time-consuming and labor-intensive task. Medi-031

cal report generation (MRG), which can produce032

reports from input medical images automatically,033

is highly desired and of great clinical significance.034

MRG is a special field of image captioning, and in035

the advance of deep learning (DL), many DL-based036

image captioning methods have been proposed with037

success (Vinyals et al., 2015; Karpathy and Fei-Fei,038

2015; Anderson et al., 2018; Krause et al., 2017;039

Cornia et al., 2020).040

Despite the great achievement of existing DL-041

based MRG methods, most of them, as illustrated042

Figure 1: Comparison between one-pass and hierarchi-
cal strategies for medical report generation. (a) Existing
one-pass methods jointly generate findings and impres-
sion, ignoring their semantic hierarchy. (b) Our hierar-
chical approach adopts a two-stage process with explicit
semantic alignment between the two sections.

in Fig. 1(a), generate both findings and impression 043

simultaneously through a one-pass approach using 044

the same features learned through the same deep 045

learning paths. It is known that medical reports are 046

structured by findings and impression. The find- 047

ings in medical reports provide visual descriptions 048

of medical images, detailing aspects such as the 049

anatomical shape, position, and size of lesions. In 050

contrast, the impression section entails the deduc- 051

tion and final decision-making process, embodying 052

a higher abstract level of semantic information com- 053

pared to the findings. Existing one-pass generation 054

strategy ignores the semantic hierarchy inherent in 055

radiology reports. Therefore, as shown in Fig. 1(b), 056

we claim that the findings and impression in med- 057

ical reports should be generated hierarchically to 058

avoid the mixture of information at different ab- 059

stract levels. 060

Some existing works have attempted hierarchi- 061

cal generation strategies (Srinivasan et al., 2020), 062

where findings and impression are generated inde- 063

pendently without explicitly modeling their under- 064

lying reasoning relationship. As a result, seman- 065

tic consistency between findings and impression 066
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cannot be guaranteed, which may introduce hal-067

lucinated content in the impression (Jiang et al.,068

2025).069

Based on the above observation, in this paper,070

we propose a new DL-based MRG method, the071

Hierarchical Medical Report Generation Network072

(Hi-MrGn). The Hi-MrGn separates the genera-073

tion process of findings and impression, where fea-074

tures learned from input medical images and auxil-075

iary diagnostic texts (e.g., reason for examination)076

are used for generating the findings, then features077

from the findings are refined with visual features078

to produce the impression. A disease classification079

branch is adopted as an auxiliary task to guide the080

generation of both findings and impression. More-081

over, a contrastive-learning module is integrated082

in the Hi-MrGn to make the separately generated083

findings and impression have semantic consistency.084

In the experiment, two public datasets MIMIC-085

CXR (Johnson et al., 2019) and IU-Xray (Demner-086

Fushman et al., 2016) are used. The experimental087

results show that the proposed method outperforms088

the state-of-the-art (SOTA) methods. The main089

contributions of our method are listed below:090

• We propose a novel hierarchical MRG frame-091

work (Hi-MrGn), explicitly designed to reflect092

the inherent semantic order of radiology re-093

ports by generating the findings and impres-094

sion in two stages, aligning with real-world095

clinical reporting practices.096

• To bridge the semantic gap between the sepa-097

rately generated findings and impression, we098

introduce a co-attention module and a con-099

trastive learning module to enforce semantic100

consistency across the two stages.101

• We conduct comprehensive experiments on102

two datasets, demonstrating that Hi-MrGn out-103

performs state-of-the-art baselines in both lan-104

guage generation and clinical accuracy.105

2 Related Work106

2.1 Medical Report Generation107

MRG methods adopt encoder–decoder frameworks108

similar to image captioning. Specifically, the en-109

coder is responsible for extracting visual features110

from input images, based on which sequence of111

words describing the input images can be gener-112

ated by the decoder. For example, Chen et al. pro-113

posed an attention-based decoder with a relational114

memory module to record key information dur- 115

ing generation. This memory-driven Transformer 116

achieved better language fluency and higher clin- 117

ical accuracy (Chen et al., 2020b). Jin et al. pro- 118

posed a diagnosis-driven prompting framework that 119

integrates a disease classifier into the generation 120

process. Predicted disease labels are converted 121

into discrete prompt tokens, which guide the Trans- 122

former decoder to generate more clinically accurate 123

content (Jin et al., 2024). In addition, various mech- 124

anisms in MRG, including reinforcement learning 125

(RL) (Miura et al., 2021; Zhou et al., 2024) and 126

knowledge graph techniques (Li et al., 2023), are 127

employed to enhance the accuracy or fluency of the 128

generated reports. 129

2.2 Multimodal Learning in MRG 130

Medical report generation is fundamentally a 131

vision-to-language task, recent studies have shown 132

that incorporating additional textual or semantic 133

information along with images can significantly im- 134

prove performance. Two representative strategies 135

have emerged. The first one introduces intermedi- 136

ate supervision through semantic tags. For exam- 137

ple, the AlignTransformer model first predicts a set 138

of disease tags from the chest X-ray and then uses 139

those tags to guide report generation (You et al., 140

2021). By integrating an image-derived text repre- 141

sentation(the tags), the model was shown to reduce 142

the bias towards describing only normal observa- 143

tions. The other strategy is to enrich input represen- 144

tations through external knowledge or retrieved text. 145

They leverage structured resources such as medi- 146

cal knowledge graphs, existing clinical reports and 147

auxiliary diagnostic texts. For example, knowledge 148

graphs are typically encoded as structured embed- 149

dings or relational memory, which are injected into 150

the model to enhance clinical reasoning (Liu et al., 151

2021; Huang et al., 2023). In (Jin et al., 2024), 152

clinical reports are incorporated through retrieval- 153

augmented generation (RAG) frameworks, where 154

similar cases are retrieved and fused with the cur- 155

rent input. In (Nguyen et al., 2021; Liu et al., 2025), 156

auxiliary diagnostic texts, such as the reason for ex- 157

amination, are integrated via multimodal encoders 158

that align textual and visual features, which often 159

follow the architecture of vision-language models 160

(VLMs). 161

2.3 Hierarchical Generation in MRG 162

As aforementioned, most MRG models generate 163

the entire report in a one-pass approach. Recently, 164
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Figure 2: Structure of the Hi-MrGn. It is composed of a findings generator, a co-attention module, an impression
generator, and a contrastive-learning module. Visual and textual features derived in the findings generator are refined
by the co-attention module for generating the impression in the impression generator. Semantic consistency of the
generated findings and impression is ensured by the contrastive-learning module.

a few works have explored hierarchical generation165

strategies. For example, ORGAN (Hou et al., 2023)166

adopts a two-stage plan-then-generate approach: it167

first generates a list of key observations and then168

elaborating them into a full report. However, OR-169

GAN’s observation plan covers only findings and170

does not explicitly generate an impression section171

or summary of those findings. In (Srinivasan et al.,172

2020), a hierarchical Transformer based MRG is173

proposed. It first generates the findings and then174

produces the impression based on them, reflecting175

the hierarchical structure of radiology reports. Our176

work is closely related to this method but extends177

this idea in two important aspects: (1) we incorpo-178

rate original visual features via a co-attention mod-179

ule for richer context, rather than generating the180

impression solely on the findings and intermediate181

tag embeddings; and (2) we introduce a contrastive182

learning module to explicitly align the semantic183

representations of findings and impression.184

3 Methods185

The structure of Hi-MrGn is shown in Fig. 2. It186

is composed of four main components, i.e., the187

findings generator, the co-attention module, the188

impression generator, and the contrastive-learning189

module. The findings generator learns visual fea-190

tures Fv from the input medical images and textual191

features Ft from auxiliary diagnostic text for gen-192

erating the findings. Concerning the impression193

generation, Fv and the findings-related features FF 194

in the findings generator are further fed to the co- 195

attention module, where self-attention and cross- 196

attention blocks are adopted to explore higher level 197

features, i.e., F ′
v and F ′

F, based on which the im- 198

pression can be generated by the impression gen- 199

erator. Additionally, F ′
v and F ′

F are utilized by a 200

disease classification branch to predict the presence 201

of diseases, serving as an auxiliary task to enhance 202

the capacity of feature learning in both generators. 203

The semantic consistency between the separately 204

generated findings and impression is enhanced by 205

the contrastive-learning module. It is worth noting 206

that the Hi-MrGn can be regarded as a hierarchical 207

generation framework, and its image encoder and 208

text decoder can be replaced by any existing ones. 209

Details of each components are discussed below. 210

3.1 The Findings Generator 211

The findings generator is a typical encoder-decoder 212

network with multimodal inputs. The encoder is 213

of a dual-branch structure. The first branch is a 214

pre-trained ResNet (He et al., 2016) based image 215

encoder which learns visual features Fv from the 216

input medical images I , and Fv is organized as a set 217

of patch tokens, i.e, Fv = {x1, x2, ..., xS}, where 218

S denotes the number of patches and xi ∈ Rd 219

represents the visual feature of a patch. To provide 220

rich clinical context and guide report generation 221

with prior knowledge (Nguyen et al., 2021; Liu 222
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et al., 2025), a text encoder is added as the second223

branch, where auxiliary diagnostic texts is encoded224

through BERT’s embedding layer (Devlin et al.,225

2019) to obtain textual embeddings Ft ∈ RN×d.226

To enable semantic integration of visual and227

textual representations, we first concatenated the228

patch-wise image features and the diagnostic text229

embeddings to form a joint token sequence F =230

[Fv;Ft] ∈ R(S+N)×d. This fused sequence is then231

transformed through a stack of L standard Trans-232

former encoder layer:233

F̃ (ℓ) = MSA(LN(F (ℓ−1))) + F (ℓ−1), (1)234

235

F (ℓ) = FFN(LN(F̃ (ℓ))) + F̃ (ℓ), ℓ = 1, 2, ..., L,
(2)236

where MSA(·) denotes multi-head self-attention,237

FFN(·) is a two-layer feed-forward network and238

LN(·) represents layer normalization. We use239

Ffused = F (L) as the final fused representation.240

In the text decoder I, we utilize a Transformer241

decoder-based architecture to generate the findings.242

Specifically, the hidden state for each word position243

hi ∈ Rd in the findings is computed based on the244

fused features and previous words:245

hi = Decoder(Ffused, w1, ..., wi−1). (3)246

where w1, w2, ..., wi−1 represent previous i − 1247

words. Based on the hidden states H = {hi}NFD
i=1248

(NFD is the number of words in the findings), the249

words of findings can be determined, which is de-250

fined as:251

PFD = softmax(HW⊤), (4)252

where W ∈ RNw×d is the vocabulary matrix and253

Nw is the vocabulary size. PFD(i, j) represents the254

probability in choosing the j-th word from W for255

the i-th word in the generated findings. The cross256

entropy is used as the loss function of the findings257

generator, which is defined as:258

LFD = − 1

NFD

NFD∑
i=1

Nw∑
j=1

YFD(i, j) logPFD(i, j),

(5)259

where YFD(i, j) is the ground truth. The decoder260

hidden states H = {hi}NFD
i=1 also serve as the token-261

level semantic representation of findings, which we262

denote as FF in the following co-attention module.263

3.2 The Co-Attention Module 264

In clinical routine, radiologists can make the de- 265

duction and final decision (i.e., the impression) 266

according to the findings and the medical images. 267

Based on this observation and inspired by (Lu et al., 268

2019), a co-attention module is adopted. It employs 269

attention mechanism that allows cross-modal learn- 270

ing between the findings (represented by the textual 271

feature FF ) and the medical images (represented 272

by the visual features Fv). The resulting representa- 273

tions, denoted as F ′
F and F ′

v, encode more abstract 274

and complementary semantics for generating the 275

accurate impression. 276

As shown in Fig. 2, the co-attention module is 277

composed of N attention blocks. Each block con- 278

tains two symmetrical sub-branches for textual and 279

visual streams. Within each branch, a self-attention 280

layer is first applied to encode intra-modal context, 281

followed by a cross-attention layer that integrates 282

information from the other modality. Formally, 283

given input features FF and Fv, one co-attention 284

block proceeds as: 285

F̃F = SelfAttt(LN(FF)) + FF, (6) 286

F̃v = SelfAttv(LN(Fv)) + Fv, (7) 287

F ′
F = CrossAttt(LN(F̃F), F̃v) + F̃F, (8) 288

F ′
v = CrossAttv(LN(F̃v), F̃F) + F̃v. (9) 289

After passing through all co-attention blocks, the 290

outputs F ′
F ∈ RNFD×d and F ′

v ∈ RS×d are used as 291

enriched representations for impression generation. 292

3.3 The Impression Generator 293

The output features of the co-attention module (F ′
v 294

and F ′
F) are concatenated as the input of the impres- 295

sion generator (text decoder II) , based on which 296

the impression can be obtained: 297

ki = Decoder(F ′
v;F

′
F;w1, w2, ..., wi−1), (10) 298

where ki is the hidden state of each word in the 299

impression. Following the same way as the findings 300

generator, K = {ki}NIP
k=1 (NIP is the number of 301

words in the impression) can be produced, based 302

on which the final impression can be generated. 303

The loss function of the generation of impression is 304

similar as that used for the findings, i.e., the cross 305

entropy as defined in (5). 306

Additionally, to enhance the learning capacity 307

of related features, disease classification is added 308

as an auxiliary task, where a classification head 309

4



formed by fully connected layers (d → d/2 → 14)310

is integrated to predict the presence of 14 distinct311

thoracic diseases, such as atelectasis and lung opac-312

ity, which are widely recognized in the field of313

chest radiograph report generation (Smit et al.,314

2020). Binary Cross-Entropy is adopted as the315

loss function of the disease classifier.316

3.4 The Contrastive-Learning Module317

Since the findings and impression are generated318

separately, their semantic consistency is not explic-319

itly enforced. To mitigate this, we incorporate a320

contrastive learning module into Hi-MrGn to en-321

hance the semantic consistency between the two322

sections.323

Conventional contrastive learning frameworks324

rely on both positive and negative pairs (Radford325

et al., 2021; Chen et al., 2020a). While positive326

pairs (i.e., findings and impression from the same327

image) are readily available, defining reliable nega-328

tive pairs is ambiguous, as semantically related find-329

ings and impression from different samples may330

be incorrectly treated as negatives (Wang et al.,331

2022b). Thus, we adopt SimSiam (Chen and He,332

2021) in the contrastive-learning module, which333

requires positive pairs only.334

The module comprises a projection MLP K and335

a prediction MLP H. The positive sample pair336

consists of two features, specifically F̂F and F̂I,337

generated by CXR-BERT (Boecking et al., 2022)338

based on the findings and impression produced by339

the Hi-MrGn from identical medical images (refer340

to Fig.2). The corresponding loss is defined as341

follows:342

Lsim =D(H(K(F̂F))), stopgrad(K(F̂I))

+D
(
H(K(F̂I)), stopgrad(K(F̂F))

)
,

(11)343

where D(x, y) is the cosine similarity, which is344

defined as:345

D(x, y) = − x

∥x∥2
· y

∥y∥2
. (12)346

4 Experiments347

4.1 Datasets348

Two widely applied public datasets, i.e., the349

MIMIC-CXR (Johnson et al., 2019) and the IU-350

Xray (Demner-Fushman et al., 2016) are used in351

our experiment. Specifically, the MIMIC-CXR con-352

tains 377,110 chest X-ray images and correspond-353

ing medical reports of 65,379 patients. While the354

IU-Xray contains 7,470 chest X-ray images with 355

medical reports of 3,955 patients. Each dataset is 356

divided into training (70%), validation (10%), and 357

testing (20%) sets, respectively. 358

4.2 Baselines 359

Besides the proposed Hi-MrGn, existing SOTA 360

methods, including the TopDown (Anderson et al., 361

2018), the G-Trans (Lovelace and Mortazavi, 362

2020), the R2GenCMN (R-CMN) (Chen et al., 363

2021), the XPRONET (XPRO) (Wang et al., 364

2022a), the R2GEN (Chen et al., 2020b), the OR- 365

Gan (Hou et al., 2023), and the PromptMRG(P- 366

MRG) (Jin et al., 2024) are also evaluated. 367

4.3 Experimental Results 368

4.3.1 Language Generation Performance 369

In this section, six widely used natural language 370

generation(NLG) metrics, including BLEU-1 (B-1) 371

to BLEU-4 (B-4) (Papineni et al., 2002), METEOR 372

(MTR) (Banerjee and Lavie, 2005) and ROUGE-L 373

(R-L) (Lin, 2004), are adopted in our experiment. 374

Since the findings and impression are generated 375

separately in the Hi-MrGn, besides the evaluation 376

of the whole generated medical reports, the find- 377

ings and impression are also evaluated separately. 378

Considering that the medical reports generated by 379

the SOTA methods under evaluation have no clear 380

division of findings and impression, we concate- 381

nate the findings and impression using a special 382

delimiter token during traning, which allows us to 383

easily divide the outputs into findings and impres- 384

sion during evaluation. 385

Evaluation results are shown in Table 1. Clearly, 386

for the findings (F), the impression (I), and the 387

whole medical report (F+I), the Hi-MrGn achieves 388

superior or comparable performance to all SOTA 389

methods. 390

4.3.2 Clinical Accuracy Performance 391

While NLG metrics assess the fluency and lexi- 392

cal similarity of generated reports, the ability to 393

accurately identify diseases is crucial in MRG. 394

Following prior works (Liu et al., 2024; Hou 395

et al., 2023), we evaluate the clinical efficacy of 396

our method on the MIMIC-CXR dataset using 397

CheXpert-based metrics (Irvin et al., 2019), includ- 398

ing micro-average Precision, Recall, and F1-score. 399

As shown in Table 2, Hi-MrGn achieves the best 400

performance among all baselines, with an F1-score 401

of 0.467. We also observe that models such as OR- 402

GAN, P-MRG, and G-Trans achieve relatively high 403
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Table 1: Evaluation results using SOTA methods and the Hi-MrGn on two datasets, where F, I and F+I, represent
findings, impression, and the whole reports, respectively.

Methods Target
MIMIC-CXR IU-Xray

B-1 B-2 B-3 B-4 MTR R-L B-1 B-2 B-3 B-4 MTR R-L

TopDown
F 0.322 0.205 0.142 0.105 0.133 0.281 0.384 0.244 0.161 0.112 0.190 0.322
I 0.219 0.140 0.094 0.067 0.112 0.358 0.321 0.182 0.121 0.073 0.106 0.393

F+I 0.321 0.205 0.141 0.103 0.134 0.284 0.404 0.260 0.169 0.116 0.184 0.332

R-CMN
F 0.347 0.221 0.152 0.112 0.144 0.288 0.458 0.296 0.203 0.148 0.188 0.352
I 0.273 0.173 0.115 0.080 0.128 0.371 0.380 0.218 0.143 0.097 0.126 0.440

F+I 0.350 0.222 0.152 0.110 0.145 0.291 0.460 0.303 0.205 0.147 0.184 0.363

R2GEN
F 0.352 0.222 0.153 0.113 0.142 0.285 0.467 0.289 0.209 0.160 0.182 0.357
I 0.271 0.172 0.113 0.079 0.127 0.372 0.373 0.224 0.139 0.105 0.125 0.433

F+I 0.355 0.224 0.153 0.111 0.144 0.290 0.446 0.297 0.204 0.145 0.173 0.342

G-Trans
F 0.362 0.229 0.158 0.116 0.147 0.288 0.478 0.309 0.210 0.149 0.188 0.346
I 0.282 0.176 0.115 0.079 0.130 0.367 0.343 0.227 0.160 0.087 0.131 0.467

F+I 0.365 0.230 0.158 0.115 0.148 0.292 0.481 0.319 0.218 0.153 0.189 0.360

P-MRG
F 0.371 0.226 0.149 0.105 0.147 0.268 0.395 0.236 0.160 0.113 0.156 0.310
I 0.242 0.141 0.093 0.064 0.104 0.255 0.218 0.136 0.091 0.060 0.120 0.301

F+I 0.369 0.224 0.147 0.103 0.144 0.265 0.430 0.270 0.182 0.127 0.164 0.325

XPRO
F 0.382 0.255 0.182 0.137 0.155 0.296 0.486 0.317 0.225 0.164 0.193 0.343
I 0.278 0.174 0.114 0.078 0.129 0.367 0.389 0.220 0.128 0.088 0.127 0.446

F+I 0.376 0.255 0.182 0.136 0.156 0.339 0.489 0.326 0.225 0.160 0.189 0.361

ORGan
F 0.391 0.257 0.181 0.134 0.157 0.322 0.495 0.325 0.228 0.170 0.205 0.367
I 0.287 0.183 0.123 0.087 0.132 0.373 0.418 0.244 0.162 0.108 0.137 0.451

F+I 0.387 0.258 0.183 0.135 0.158 0.335 0.496 0.331 0.229 0.168 0.200 0.338

Hi-MrGn
F 0.415 0.292 0.221 0.176 0.182 0.340 0.506 0.335 0.240 0.178 0.201 0.385
I 0.303 0.215 0.164 0.127 0.161 0.374 0.438 0.316 0.226 0.178 0.176 0.451

F+I 0.392 0.262 0.185 0.136 0.160 0.334 0.514 0.353 0.256 0.189 0.205 0.408

Table 2: Clinical efficacy comparison on the MIMIC-
CXR dataset. We report micro-average Precision, Re-
call, and F1-score based on CheXpert labels for whole
report generation (F+I).

Methods Precision Recall F1-score

TopDown 0.315 0.270 0.291
R-CMN 0.342 0.310 0.325
R2GEN 0.353 0.300 0.324
G-Trans 0.421 0.375 0.397
P-MRG 0.492 0.420 0.453
XPRO 0.385 0.330 0.355
ORGan 0.463 0.405 0.432

Hi-MrGn 0.518 0.455 0.467

clinical accuracy due to their explicit incorporation404

of disease-specific guidance during training.405

4.3.3 Ablation Study 406

The Hi-MrGn consists of several components, 407

namely, the hierarchical structure for findings and 408

impression generation (H), the multimodal input 409

fusion (M), the co-attention mechanism for enhanc- 410

ing and fusing visual and textual features (Co-A), 411

and the contrastive-learning module (CL) module. 412

To show the contribution of each components, we 413

need to answer the following questions: (1) Does 414

the impression generation benefit from the H? (2) 415

Is multimodal input fusion necessary for accurate 416

findings generation? (3) Is the Co-A module help- 417

ful for two-modality feature fusion and enhancing? 418

(4) What does the CL bring to medical report gener- 419

ation? Therefore, the ablation experiments are con- 420

ducted in our study. Table 3 shows the evaluation 421

results using the MIMIC-CXR and the IU-Xray 422

datasets, and we come to the following conclusions 423

for each component. 424

Impact of H. The H module provides the ben- 425
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Table 3: Ablation study of the Hi-MrGn. ‘H’, ‘M’, ‘Co-A’, and ‘CL’ indicate the hierarchical structure, the
multimodal input fusion, the co-attention module, and the contrastive-learning module, respectively.

Methods Target
MIMIC-CXR IU-Xray

B-1 B-2 B-3 B-4 MTR R-L B-1 B-2 B-3 B-4 MTR R-L

Base
F 0.388 0.261 0.188 0.142 0.158 0.312 0.442 0.302 0.222 0.169 0.189 0.384
I 0.257 0.161 0.111 0.078 0.132 0.369 0.389 0.263 0.187 0.108 0.121 0.422

F+I 0.378 0.254 0.184 0.137 0.154 0.325 0.449 0.318 0.236 0.179 0.191 0.412

H
F 0.397 0.266 0.189 0.142 0.160 0.327 0.473 0.315 0.229 0.173 0.195 0.379
I 0.276 0.197 0.145 0.119 0.152 0.373 0.412 0.288 0.203 0.158 0.163 0.435

F+I 0.384 0.256 0.182 0.134 0.152 0.328 0.482 0.327 0.241 0.183 0.198 0.403

H w/o M
F 0.365 0.246 0.174 0.128 0.150 0.288 0.435 0.287 0.206 0.156 0.181 0.335
I 0.275 0.173 0.114 0.078 0.130 0.370 0.408 0.280 0.195 0.148 0.157 0.428

F+I 0.360 0.245 0.160 0.115 0.145 0.330 0.463 0.309 0.225 0.170 0.188 0.385

H+Co-A
F 0.401 0.266 0.188 0.141 0.159 0.332 0.481 0.322 0.235 0.176 0.197 0.388
I 0.284 0.205 0.158 0.124 0.160 0.375 0.432 0.305 0.220 0.170 0.172 0.448

F+I 0.386 0.255 0.178 0.130 0.156 0.330 0.490 0.335 0.249 0.190 0.203 0.415

H+CL
F 0.406 0.272 0.196 0.147 0.163 0.332 0.492 0.330 0.240 0.182 0.200 0.396
I 0.282 0.205 0.156 0.122 0.158 0.372 0.425 0.298 0.216 0.165 0.168 0.441

F+I 0.391 0.261 0.185 0.140 0.154 0.332 0.498 0.342 0.252 0.193 0.207 0.418

efit of generating findings and impression from a426

single model, which is closer to clinic routine than427

previous SOTA methods that generate the medical428

report simultaneously through the same network429

path. To evaluate the effectiveness of hierarchi-430

cal generation, we compare with a baseline (Base)431

that generates findings and impression simultane-432

ously using only the findings generator. Careful433

observation of Table 3 shows that the H module434

improves the generation quality, especially for the435

impression.436

Impact of M. The findings generator incorpo-437

rates both visual features from medical images and438

textual features from auxiliary diagnostic texts. By439

removing the textual input branch (H w/o M), we440

observe notable performance degradation, particu-441

larly in findings generation. This demonstrates that442

multimodal fusion provides richer context informa-443

tion for accurate report generation.444

Impact of Co-A. The Co-A module enables ad-445

vanced cross-modal learning by interleaving the446

textual features of findings with visual features447

from the corresponding X-ray image. In this way,448

both textual and visual features can be enhanced449

for good generation of the impression. Table 3450

shows that the generation performance is improved451

to some extent in terms of all metrics when com-452

paring H with H+Co-A.453

Impact of CL. In the Hi-MrGn, the findings and454

impression are separately generated. Since the se-455

mantic information in them should be the same, the 456

CL module is adopted in the Hi-MrGn to validate 457

the consistency constraint. The evaluation results 458

in Table 3 indicate that the consistency constraint 459

can considerably improve the generated reports in 460

terms of all metrics, demonstrating that the CL 461

module indeed contributes to the performance. 462

4.3.4 Qualitative Analysis and Case Study 463

To further demonstrate the effectiveness of our pro- 464

posed Hi-MrGn model in generating clinically ac- 465

curate and semantically consistent medical reports, 466

we present two representative cases in Fig. 3, com- 467

paring the generated reports from our model with 468

those from ORGAN and G-Trans, alongside the 469

ground-truth reports. 470

In the first case, the ground-truth report describes 471

bilateral peribronchial consolidations. ORGAN, 472

however, presents a clear inconsistency: the find- 473

ings state "the lungs are clear bilaterally", while 474

the impression reports "chronic left upper lobe at- 475

electasis". This semantic conflict reflects the weak- 476

ness of one-pass generation, which fails to align 477

the factual content across sections. In contrast, Hi- 478

MrGn maintains consistency throughout: the find- 479

ings indicate "peribronchial consolidations present, 480

notably involving the left upper lobe", and the im- 481

pression reinforces this with "prominent left upper 482

lobe involvement, consistent with a chronic pul- 483

monary condition". 484
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Figure 3: Examples of the reports using SOTA method and the Hi-MrGn. Red and green indicate consistent and
inconsistent with the ground truth, respectively.

The second case illustrates Hi-MrGn’s strength485

in accurate pathology recognition. The ground-486

truth impression highlights an "interval develop-487

ment of a moderately-sized right pleural effusion",488

capturing the progression of the condition. G-489

Trans, in contrast, reports that "there are no pleural490

effusions", and its impression incorrectly concludes491

with "no acute cardiothoracic process including no492

evidence of pneumonia", missing the key pathol-493

ogy. Hi-MrGn accurately detects the effusion in494

the findings, stating "there is a small right pleural495

effusion", and its impression reinforces this by not-496

ing a "stable, small right pleural effusion", aligning497

well with the reference.498

5 Conclusions499

In this paper, we proposed a novel hierarchical500

medical report generation network (Hi-MrGn) to501

address the issue of generating medical reports,502

which have two parts different abstraction levels,503

i.e., the findings and impression. Specifically, the504

proposed Hi-MrGn generates the findings and im-505

pression in a hierarchical way, where the first stage506

focuses on generating the findings, while the sec-507

ond stage derives information related to the impres-508

sion based on the refinement of the features learned509

at the first stage. Additionally, a contrastive learn-510

ing module is introduced to ensure high semantic 511

consistency between the generated findings and 512

impression. Through the substantial experiments 513

using two public datasets, the experimental results 514

demonstrated that the proposed Hi-MrGn outper- 515

formed the latest state-of-the-art methods in both 516

datasets. Further ablation study showed that all 517

the proposed components, including the hierarchi- 518

cal framework, the multimodal input fusion, the 519

co-attention module, and the contrastive-learning 520

module, play effective roles in the medical report 521

generation. 522

Limitations 523

Our current framework has some limitations. First, 524

since the impression is generated based on the pre- 525

viously generated findings, its quality inherently 526

depends on the accuracy and completeness of the 527

findings, which may lead to error accumulation 528

throughout the generation process. Second, our 529

current framework is tailored for radiology report 530

generation from chest X-ray images. Future work 531

could explore the generalizability of this approach 532

to other imaging modalities, such as computed to- 533

mography (CT) and magnetic resonance imaging 534

(MRI), to extend its clinical applicability. 535
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Ethics Statement536

The MIMIC-CXR (Johnson et al., 2019) and IU-537

Xray (Demner-Fushman et al., 2016) datasets538

used in this study are publicly available and de-539

identified, ensuring no protected health informa-540

tion is involved. However, reports generated by541

Hi-MrGn may contain errors such as misdiagnoses542

or missed findings, which could impact clinical de-543

cisions. Therefore, model outputs should always544

be reviewed by medical professionals before use.545

Similar to other deep learning models, Hi-MrGn546

may reflect biases in the training data. We encour-547

age careful consideration of fairness and ethical im-548

plications when applying the model in real-world549

settings.550
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A Implementation Details757

We train Hi-MrGn using the AdamW optimizer758

with a learning rate of 5× 10−5, a minimum learn-759

ing rate of 5×10−6, and a warm-up learning rate of760

5× 10−7. A linear warm-up followed by a cosine761

decay schedule (LinearWarmupCosineLRSched-762

uler) is applied. The weight decay is set to 0.05,763

and the dropout rate is 0.1. The model is trained764

for 30 epochs with a batch size of 64.765

The input image resolution is 224 × 224. The766

maximum sequence lengths are set to 100 for find-767

ings, 50 for impression, and 50 for history. The768

encoder is a pretrained ResNet-101 provided by Py-769

Torch, and the decoder is a pretrained BERT model770

from HuggingFace, enhanced with a co-attention771

module. For contrastive learning, we adopt CXR-772

BERT as the sentence encoder to extract semantic773

embeddings of findings and impression.774

The model has 544.97M trainable parameters.775

All experiments are conducted on a single NVIDIA776

RTX 3090 GPU.777

Here are the pretrained models we used:778

• BERT(base, uncased):779

https://huggingface.co/google-bert/780

bert-base-uncased781

• CXR-BERT(BiomedVLP-CXR-BERT-782

general):783

https://huggingface.co/microsoft/784

BiomedVLP-CXR-BERT-general785
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