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Abstract

Numerous deep learning (DL)-based ap-
proaches have been developed for medical re-
port generation (MRG), aiming to automate the
description of medical images. These reports
typically comprise two sections: the findings,
which describe visual aspects of the images,
and the impression, which summarizes the di-
agnosis or assessment. Given the distinct ab-
straction levels of these sections, conventional
end-to-end DL methods that generate both si-
multaneously may not be optimal. Addressing
this challenge, we introduce a novel Hierarchi-
cal Medical Report Generation Network (Hi-
MrGn) designed to better reflect the inherent
structure of medical reports. The Hi-MrGn op-
erates in two stages: initially, it generates the
findings from input multimodal data including
medical images and auxiliary diagnostic texts;
subsequently, it produces the impression based
on both the findings and images. To enhance
the semantic coherence between findings and
impression, we incorporate a contrastive learn-
ing module within the Hi-MrGn. We validate
our approach using two public X-ray image
datasets, MIMIC-CXR and IU-Xray, demon-
strating that our method surpasses current state-
of-the-art (SOTA) techniques in this domain.

1 Introduction

Medical reports are essential in routine clinic. How-
ever, for radiologists, medical report writing is a
time-consuming and labor-intensive task. Medi-
cal report generation (MRG), which can produce
reports from input medical images automatically,
is highly desired and of great clinical significance.
MRG is a special field of image captioning, and in
the advance of deep learning (DL), many DL-based
image captioning methods have been proposed with
success (Vinyals et al., 2015; Karpathy and Fei-Fei,
2015; Anderson et al., 2018; Krause et al., 2017;
Cornia et al., 2020).

Despite the great achievement of existing DL-
based MRG methods, most of them, as illustrated
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Figure 1: Comparison between one-pass and hierarchi-
cal strategies for medical report generation. (a) Existing
one-pass methods jointly generate findings and impres-
sion, ignoring their semantic hierarchy. (b) Our hierar-
chical approach adopts a two-stage process with explicit
semantic alignment between the two sections.

in Fig. 1(a), generate both findings and impression
simultaneously through a one-pass approach using
the same features learned through the same deep
learning paths. It is known that medical reports are
structured by findings and impression. The find-
ings in medical reports provide visual descriptions
of medical images, detailing aspects such as the
anatomical shape, position, and size of lesions. In
contrast, the impression section entails the deduc-
tion and final decision-making process, embodying
a higher abstract level of semantic information com-
pared to the findings. Existing one-pass generation
strategy ignores the semantic hierarchy inherent in
radiology reports. Therefore, as shown in Fig. 1(b),
we claim that the findings and impression in med-
ical reports should be generated hierarchically to
avoid the mixture of information at different ab-
stract levels.

Some existing works have attempted hierarchi-
cal generation strategies (Srinivasan et al., 2020),
where findings and impression are generated inde-
pendently without explicitly modeling their under-
lying reasoning relationship. As a result, seman-
tic consistency between findings and impression



cannot be guaranteed, which may introduce hal-
lucinated content in the impression (Jiang et al.,
2025).

Based on the above observation, in this paper,
we propose a new DL-based MRG method, the
Hierarchical Medical Report Generation Network
(Hi-MrGn). The Hi-MrGn separates the genera-
tion process of findings and impression, where fea-
tures learned from input medical images and auxil-
iary diagnostic texts (e.g., reason for examination)
are used for generating the findings, then features
from the findings are refined with visual features
to produce the impression. A disease classification
branch is adopted as an auxiliary task to guide the
generation of both findings and impression. More-
over, a contrastive-learning module is integrated
in the Hi-MrGn to make the separately generated
findings and impression have semantic consistency.
In the experiment, two public datasets MIMIC-
CXR (Johnson et al., 2019) and IU-Xray (Demner-
Fushman et al., 2016) are used. The experimental
results show that the proposed method outperforms
the state-of-the-art (SOTA) methods. The main
contributions of our method are listed below:

* We propose a novel hierarchical MRG frame-
work (Hi-MrGn), explicitly designed to reflect
the inherent semantic order of radiology re-
ports by generating the findings and impres-
sion in two stages, aligning with real-world
clinical reporting practices.

 To bridge the semantic gap between the sepa-
rately generated findings and impression, we
introduce a co-attention module and a con-
trastive learning module to enforce semantic
consistency across the two stages.

* We conduct comprehensive experiments on
two datasets, demonstrating that Hi-MrGn out-
performs state-of-the-art baselines in both lan-
guage generation and clinical accuracy.

2 Related Work

2.1 Medical Report Generation

MRG methods adopt encoder—decoder frameworks
similar to image captioning. Specifically, the en-
coder is responsible for extracting visual features
from input images, based on which sequence of
words describing the input images can be gener-
ated by the decoder. For example, Chen et al. pro-
posed an attention-based decoder with a relational

memory module to record key information dur-
ing generation. This memory-driven Transformer
achieved better language fluency and higher clin-
ical accuracy (Chen et al., 2020b). Jin et al. pro-
posed a diagnosis-driven prompting framework that
integrates a disease classifier into the generation
process. Predicted disease labels are converted
into discrete prompt tokens, which guide the Trans-
former decoder to generate more clinically accurate
content (Jin et al., 2024). In addition, various mech-
anisms in MRG, including reinforcement learning
(RL) (Miura et al., 2021; Zhou et al., 2024) and
knowledge graph techniques (Li et al., 2023), are
employed to enhance the accuracy or fluency of the
generated reports.

2.2  Multimodal Learning in MRG

Medical report generation is fundamentally a
vision-to-language task, recent studies have shown
that incorporating additional textual or semantic
information along with images can significantly im-
prove performance. Two representative strategies
have emerged. The first one introduces intermedi-
ate supervision through semantic tags. For exam-
ple, the AlignTransformer model first predicts a set
of disease tags from the chest X-ray and then uses
those tags to guide report generation (You et al.,
2021). By integrating an image-derived text repre-
sentation(the tags), the model was shown to reduce
the bias towards describing only normal observa-
tions. The other strategy is to enrich input represen-
tations through external knowledge or retrieved text.
They leverage structured resources such as medi-
cal knowledge graphs, existing clinical reports and
auxiliary diagnostic texts. For example, knowledge
graphs are typically encoded as structured embed-
dings or relational memory, which are injected into
the model to enhance clinical reasoning (Liu et al.,
2021; Huang et al., 2023). In (Jin et al., 2024),
clinical reports are incorporated through retrieval-
augmented generation (RAG) frameworks, where
similar cases are retrieved and fused with the cur-
rent input. In (Nguyen et al., 2021; Liu et al., 2025),
auxiliary diagnostic texts, such as the reason for ex-
amination, are integrated via multimodal encoders
that align textual and visual features, which often
follow the architecture of vision-language models
(VLMs).

2.3 Hierarchical Generation in MRG

As aforementioned, most MRG models generate
the entire report in a one-pass approach. Recently,
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Figure 2: Structure of the Hi-MrGn. It is composed of a findings generator, a co-attention module, an impression
generator, and a contrastive-learning module. Visual and textual features derived in the findings generator are refined
by the co-attention module for generating the impression in the impression generator. Semantic consistency of the
generated findings and impression is ensured by the contrastive-learning module.

a few works have explored hierarchical generation
strategies. For example, ORGAN (Hou et al., 2023)
adopts a two-stage plan-then-generate approach: it
first generates a list of key observations and then
elaborating them into a full report. However, OR-
GAN’s observation plan covers only findings and
does not explicitly generate an impression section
or summary of those findings. In (Srinivasan et al.,
2020), a hierarchical Transformer based MRG is
proposed. It first generates the findings and then
produces the impression based on them, reflecting
the hierarchical structure of radiology reports. Our
work is closely related to this method but extends
this idea in two important aspects: (1) we incorpo-
rate original visual features via a co-attention mod-
ule for richer context, rather than generating the
impression solely on the findings and intermediate
tag embeddings; and (2) we introduce a contrastive
learning module to explicitly align the semantic
representations of findings and impression.

3 Methods

The structure of Hi-MrGn is shown in Fig. 2. It
is composed of four main components, i.e., the
findings generator, the co-attention module, the
impression generator, and the contrastive-learning
module. The findings generator learns visual fea-
tures F;, from the input medical images and textual
features F; from auxiliary diagnostic text for gen-
erating the findings. Concerning the impression

generation, F, and the findings-related features Fr
in the findings generator are further fed to the co-
attention module, where self-attention and cross-
attention blocks are adopted to explore higher level
features, i.e., F), and F}, based on which the im-
pression can be generated by the impression gen-
erator. Additionally, F), and FY, are utilized by a
disease classification branch to predict the presence
of diseases, serving as an auxiliary task to enhance
the capacity of feature learning in both generators.
The semantic consistency between the separately
generated findings and impression is enhanced by
the contrastive-learning module. It is worth noting
that the Hi-MrGn can be regarded as a hierarchical
generation framework, and its image encoder and
text decoder can be replaced by any existing ones.
Details of each components are discussed below.

3.1 The Findings Generator

The findings generator is a typical encoder-decoder
network with multimodal inputs. The encoder is
of a dual-branch structure. The first branch is a
pre-trained ResNet (He et al., 2016) based image
encoder which learns visual features F), from the
input medical images I, and F), is organized as a set
of patch tokens, i.e, F,, = {z1,x2, ..., x5}, where
S denotes the number of patches and z; € R?
represents the visual feature of a patch. To provide
rich clinical context and guide report generation
with prior knowledge (Nguyen et al., 2021; Liu



et al., 2025), a text encoder is added as the second
branch, where auxiliary diagnostic texts is encoded
through BERT’s embedding layer (Devlin et al.,
2019) to obtain textual embeddings F; € RV*<,

To enable semantic integration of visual and
textual representations, we first concatenated the
patch-wise image features and the diagnostic text
embeddings to form a joint token sequence F' =
[Ey; Fy] € RSTN)*d This fused sequence is then
transformed through a stack of L standard Trans-
former encoder layer:

FO = MSALN(F1)) 4 FED (1)
FO = FEN(LN(FO) + FO ¢=1,2,... L,
(2)

where MSA(-) denotes multi-head self-attention,
FFN(-) is a two-layer feed-forward network and
LN(-) represents layer normalization. We use
Frused = F(L) ag the final fused representation.

In the text decoder I, we utilize a Transformer
decoder-based architecture to generate the findings.
Specifically, the hidden state for each word position
h; € R% in the findings is computed based on the
fused features and previous words:

h; = Decoder( Fysed, W1, ---, Wi—1)- 3)
where w1, wa, ..., w;—1 represent previous ¢ — 1
words. Based on the hidden states H = {h; }NFD
(Nrpp is the number of words in the findings), the
words of findings can be determined, which is de-
fined as:

Prp = softmax(HW "), 4)

where W € RNv* i5 the vocabulary matrix and
N, is the vocabulary size. Prp (3, j) represents the
probability in choosing the j-th word from W for
the ¢-th word in the generated findings. The cross
entropy is used as the loss function of the findings
generator, which is defined as:

1 Nrp Ny
ﬁFD = —TWZZYFD(iaj>IOgPFD(i7j)’
i=1 j=1

®)
where Yep (4, j) is the ground truth. The decoder
hidden states H = {h;}, N also serve as the token-
level semantic representation of findings, which we
denote as Ff in the following co-attention module.

3.2 The Co-Attention Module

In clinical routine, radiologists can make the de-
duction and final decision (i.e., the impression)
according to the findings and the medical images.
Based on this observation and inspired by (Lu et al.,
2019), a co-attention module is adopted. It employs
attention mechanism that allows cross-modal learn-
ing between the findings (represented by the textual
feature F'r) and the medical images (represented
by the visual features F7,). The resulting representa-
tions, denoted as F and I}, encode more abstract
and complementary semantics for generating the
accurate impression.

As shown in Fig. 2, the co-attention module is
composed of N attention blocks. Each block con-
tains two symmetrical sub-branches for textual and
visual streams. Within each branch, a self-attention
layer is first applied to encode intra-modal context,
followed by a cross-attention layer that integrates
information from the other modality. Formally,
given input features Fg and F,,, one co-attention
block proceeds as:

F = SelfAtt;(LN(F)) + (6)
F, = SelfAtt,(LN(F,)) + (7)
Fl= CrossAttt(LN(FF) F ) +EF,  (8)
F! = CrossAtt,(LN(F,), Fg) + Fy. (9

After passing through all co-attention blocks, the
outputs Ff; € RNm>d and ! € RS*4 are used as
enriched representations for impression generation.

3.3 The Impression Generator

The output features of the co-attention module (F,
and FY) are concatenated as the input of the impres-
sion generator (text decoder II) , based on which
the impression can be obtained:

k; = Decoder(F,; Ff:; wy, wa, ..., w;—1), (10)
where k; is the hidden state of each word in the
impression. Following the same way as the findings
generator, K = {kl}]kvjl (Npp is the number of
words in the impression) can be produced, based
on which the final impression can be generated.
The loss function of the generation of impression is
similar as that used for the findings, i.e., the cross
entropy as defined in (5).

Additionally, to enhance the learning capacity
of related features, disease classification is added
as an auxiliary task, where a classification head



formed by fully connected layers (d — d/2 — 14)
is integrated to predict the presence of 14 distinct
thoracic diseases, such as atelectasis and lung opac-
ity, which are widely recognized in the field of
chest radiograph report generation (Smit et al.,
2020). Binary Cross-Entropy is adopted as the
loss function of the disease classifier.

3.4 The Contrastive-Learning Module

Since the findings and impression are generated
separately, their semantic consistency is not explic-
itly enforced. To mitigate this, we incorporate a
contrastive learning module into Hi-MrGn to en-
hance the semantic consistency between the two
sections.

Conventional contrastive learning frameworks
rely on both positive and negative pairs (Radford
et al., 2021; Chen et al., 2020a). While positive
pairs (i.e., findings and impression from the same
image) are readily available, defining reliable nega-
tive pairs is ambiguous, as semantically related find-
ings and impression from different samples may
be incorrectly treated as negatives (Wang et al.,
2022b). Thus, we adopt SimSiam (Chen and He,
2021) in the contrastive-learning module, which
requires positive pairs only.

The module comprises a projection MLP & and
a prediction MLP H. The positive sample pair
consists of two features, specifically FF and FI,
generated by CXR-BERT (Boecking et al., 2022)
based on the findings and impression produced by
the Hi-MrGn from identical medical images (refer
to Fig.2). The corresponding loss is defined as
follows:

Lsim =D(H(K(FF))), stopgrad (K(£7))

) ) 11
+D (H(IC(FI)),stopgrad(/C(FF)))7 o

where D(z,y) is the cosine similarity, which is
defined as:

L Y

D(z,y) = — T
@9 = "5l Tl

(12)

4 Experiments

4.1 Datasets

Two widely applied public datasets, i.e., the
MIMIC-CXR (Johnson et al., 2019) and the IU-
Xray (Demner-Fushman et al., 2016) are used in
our experiment. Specifically, the MIMIC-CXR con-
tains 377,110 chest X-ray images and correspond-
ing medical reports of 65,379 patients. While the

IU-Xray contains 7,470 chest X-ray images with
medical reports of 3,955 patients. Each dataset is
divided into training (70%), validation (10%), and
testing (20%) sets, respectively.

4.2 Baselines

Besides the proposed Hi-MrGn, existing SOTA
methods, including the TopDown (Anderson et al.,
2018), the G-Trans (Lovelace and Mortazavi,
2020), the R2GenCMN (R-CMN) (Chen et al.,
2021), the XPRONET (XPRO) (Wang et al.,
2022a), the R2ZGEN (Chen et al., 2020b), the OR-
Gan (Hou et al., 2023), and the PromptMRG(P-
MRG) (Jin et al., 2024) are also evaluated.

4.3 Experimental Results

4.3.1 Language Generation Performance

In this section, six widely used natural language
generation(NLG) metrics, including BLEU-1 (B-1)
to BLEU-4 (B-4) (Papineni et al., 2002), METEOR
(MTR) (Banerjee and Lavie, 2005) and ROUGE-L
(R-L) (Lin, 2004), are adopted in our experiment.
Since the findings and impression are generated
separately in the Hi-MrGn, besides the evaluation
of the whole generated medical reports, the find-
ings and impression are also evaluated separately.
Considering that the medical reports generated by
the SOTA methods under evaluation have no clear
division of findings and impression, we concate-
nate the findings and impression using a special
delimiter token during traning, which allows us to
easily divide the outputs into findings and impres-
sion during evaluation.

Evaluation results are shown in Table 1. Clearly,
for the findings (F), the impression (I), and the
whole medical report (F+1), the Hi-MrGn achieves
superior or comparable performance to all SOTA
methods.

4.3.2 Clinical Accuracy Performance

While NLG metrics assess the fluency and lexi-
cal similarity of generated reports, the ability to
accurately identify diseases is crucial in MRG.
Following prior works (Liu et al., 2024; Hou
et al., 2023), we evaluate the clinical efficacy of
our method on the MIMIC-CXR dataset using
CheXpert-based metrics (Irvin et al., 2019), includ-
ing micro-average Precision, Recall, and F1-score.
As shown in Table 2, Hi-MrGn achieves the best
performance among all baselines, with an F1-score
of 0.467. We also observe that models such as OR-
GAN, P-MRG, and G-Trans achieve relatively high



Table 1: Evaluation results using SOTA methods and the Hi-MrGn on two datasets, where F, I and F+I, represent

findings, impression, and the whole reports, respectively.

MIMIC-CXR IU-Xray

Methods | Target
B-1 B-2 B-3 B-4 MTR R-L B-1 B-2 B-3 B-4 MTR R-L
F 0.322 0.205 0.142 0.105 0.133 0.281 | 0.384 0.244 0.161 0.112 0.190 0.322
TopDown I 0.219 0.140 0.094 0.067 0.112 0.358 | 0.321 0.182 0.121 0.073 0.106 0.393
F+I | 0.321 0.205 0.141 0.103 0.134 0.284 | 0.404 0.260 0.169 0.116 0.184 0.332
F 0.347 0.221 0.152 0.112 0.144 0.288 | 0458 0.296 0.203 0.148 0.188 0.352
R-CMN I 0.273 0.173 0.115 0.080 0.128 0.371 | 0.380 0.218 0.143 0.097 0.126 0.440
F+I | 0.350 0.222 0.152 0.110 0.145 0.291 | 0460 0.303 0.205 0.147 0.184 0.363
F 0.352 0.222 0.153 0.113 0.142 0.285 | 0467 0.289 0.209 0.160 0.182 0.357
R2GEN I 0271 0.172 0.113 0.079 0.127 0.372 | 0.373 0.224 0.139 0.105 0.125 0.433
F+I 0.355 0.224 0.153 0.111 0.144 0.290 | 0.446 0.297 0.204 0.145 0.173 0.342
F 0.362 0.229 0.158 0.116 0.147 0.288 | 0.478 0.309 0.210 0.149 0.188 0.346
G-Trans I 0.282 0.176 0.115 0.079 0.130 0.367 | 0.343 0.227 0.160 0.087 0.131 0.467
F+I 0.365 0.230 0.158 0.115 0.148 0.292 | 0.481 0.319 0.218 0.153 0.189 0.360
F 0.371 0.226 0.149 0.105 0.147 0.268 | 0.395 0.236 0.160 0.113 0.156 0.310
P-MRG I 0.242 0.141 0.093 0.064 0.104 0.255 | 0.218 0.136 0.091 0.060 0.120 0.301
F+I | 0.369 0.224 0.147 0.103 0.144 0.265 | 0430 0.270 0.182 0.127 0.164 0.325
F 0.382 0.255 0.182 0.137 0.155 0.296 | 0486 0.317 0.225 0.164 0.193 0.343
XPRO I 0.278 0.174 0.114 0.078 0.129 0.367 | 0.389 0.220 0.128 0.088 0.127 0.446
F+I | 0.376 0.255 0.182 0.136 0.156 0.339 | 0.489 0.326 0.225 0.160 0.189 0.361
F 0.391 0.257 0.181 0.134 0.157 0.322 | 0495 0.325 0.228 0.170 0.205 0.367
ORGan I 0.287 0.183 0.123 0.087 0.132 0.373 | 0418 0.244 0.162 0.108 0.137 0.451
F+I | 0.387 0.258 0.183 0.135 0.158 0.335 | 0496 0.331 0.229 0.168 0.200 0.338
F 0415 0.292 0.221 0.176 0.182 0.340 | 0.506 0.335 0.240 0.178 0.201 0.385
Hi-MrGn I 0.303 0.215 0.164 0.127 0.161 0.374 | 0438 0.316 0.226 0.178 0.176 0.451
F+I | 0392 0.262 0.185 0.136 0.160 0.334 | 0.514 0.353 0.256 0.189 0.205 0.408

Table 2: Clinical efficacy comparison on the MIMIC-
CXR dataset. We report micro-average Precision, Re-
call, and F1-score based on CheXpert labels for whole
report generation (F+I).

Methods | Precision Recall Fl-score
TopDown 0.315 0.270 0.291
R-CMN 0.342 0.310 0.325
R2GEN 0.353 0.300 0.324
G-Trans 0.421 0.375 0.397
P-MRG 0.492 0.420 0.453
XPRO 0.385 0.330 0.355
ORGan 0.463 0.405 0.432
Hi-MrGn 0.518 0.455 0.467

clinical accuracy due to their explicit incorporation
of disease-specific guidance during training.

4.3.3 Ablation Study

The Hi-MrGn consists of several components,
namely, the hierarchical structure for findings and
impression generation (H), the multimodal input
fusion (M), the co-attention mechanism for enhanc-
ing and fusing visual and textual features (Co-A),
and the contrastive-learning module (CL) module.
To show the contribution of each components, we
need to answer the following questions: (1) Does
the impression generation benefit from the H? (2)
Is multimodal input fusion necessary for accurate
findings generation? (3) Is the Co-A module help-
ful for two-modality feature fusion and enhancing?
(4) What does the CL bring to medical report gener-
ation? Therefore, the ablation experiments are con-
ducted in our study. Table 3 shows the evaluation
results using the MIMIC-CXR and the IU-Xray
datasets, and we come to the following conclusions
for each component.

Impact of H. The H module provides the ben-



Table 3: Ablation study of the Hi-MrGn. ‘H’, ‘M’, ‘Co-A’, and ‘CL’ indicate the hierarchical structure, the

multimodal input fusion, the co-attention module, and the contrastive-learning module, respectively.

MIMIC-CXR IU-Xray
Methods | Target
B-1 B-2 B-3 B-4 MTR R-L B-1 B-2 B-3 B-4 MTR R-L
F 0.388 0.261 0.188 0.142 0.158 0.312 | 0.442 0.302 0.222 0.169 0.189 0.384
Base I 0.257 0.161 0.111 0.078 0.132 0.369 | 0.389 0.263 0.187 0.108 0.121 0.422
F+I | 0.378 0.254 0.184 0.137 0.154 0.325 | 0449 0.318 0.236 0.179 0.191 0412
F 0.397 0.266 0.189 0.142 0.160 0.327 | 0473 0.315 0.229 0.173 0.195 0.379
H I 0.276 0.197 0.145 0.119 0.152 0.373 | 0412 0.288 0.203 0.158 0.163 0.435
F+I | 0.384 0.256 0.182 0.134 0.152 0.328 | 0.482 0.327 0.241 0.183 0.198 0.403
F 0.365 0.246 0.174 0.128 0.150 0.288 | 0.435 0.287 0.206 0.156 0.181 0.335
Hw/oM I 0.275 0.173 0.114 0.078 0.130 0.370 | 0.408 0.280 0.195 0.148 0.157 0.428
F+I | 0360 0.245 0.160 0.115 0.145 0.330 | 0463 0.309 0.225 0.170 0.188 0.385
F 0401 0.266 0.188 0.141 0.159 0.332 | 0481 0.322 0.235 0.176 0.197 0.388
H+Co-A I 0.284 0.205 0.158 0.124 0.160 0.375 | 0.432 0.305 0.220 0.170 0.172 0.448
F+I | 0386 0.255 0.178 0.130 0.156 0.330 | 0490 0.335 0.249 0.190 0.203 0.415
F 0.406 0.272 0.196 0.147 0.163 0.332 | 0.492 0.330 0.240 0.182 0.200 0.396
H+CL I 0.282 0.205 0.156 0.122 0.158 0.372 | 0.425 0.298 0.216 0.165 0.168 0.441
F+I | 0.391 0.261 0.185 0.140 0.154 0.332 | 0.498 0.342 0.252 0.193 0.207 0.418

efit of generating findings and impression from a
single model, which is closer to clinic routine than
previous SOTA methods that generate the medical
report simultaneously through the same network
path. To evaluate the effectiveness of hierarchi-
cal generation, we compare with a baseline (Base)
that generates findings and impression simultane-
ously using only the findings generator. Careful
observation of Table 3 shows that the H module
improves the generation quality, especially for the
impression.

Impact of M. The findings generator incorpo-
rates both visual features from medical images and
textual features from auxiliary diagnostic texts. By
removing the textual input branch (H w/o M), we
observe notable performance degradation, particu-
larly in findings generation. This demonstrates that
multimodal fusion provides richer context informa-
tion for accurate report generation.

Impact of Co-A. The Co-A module enables ad-
vanced cross-modal learning by interleaving the
textual features of findings with visual features
from the corresponding X-ray image. In this way,
both textual and visual features can be enhanced
for good generation of the impression. Table 3
shows that the generation performance is improved
to some extent in terms of all metrics when com-
paring H with H+Co-A.

Impact of CL. In the Hi-MrGn, the findings and
impression are separately generated. Since the se-

mantic information in them should be the same, the
CL module is adopted in the Hi-MrGn to validate
the consistency constraint. The evaluation results
in Table 3 indicate that the consistency constraint
can considerably improve the generated reports in
terms of all metrics, demonstrating that the CL
module indeed contributes to the performance.

4.3.4 Qualitative Analysis and Case Study

To further demonstrate the effectiveness of our pro-
posed Hi-MrGn model in generating clinically ac-
curate and semantically consistent medical reports,
we present two representative cases in Fig. 3, com-
paring the generated reports from our model with
those from ORGAN and G-Trans, alongside the
ground-truth reports.

In the first case, the ground-truth report describes
bilateral peribronchial consolidations. ORGAN,
however, presents a clear inconsistency: the find-
ings state "the lungs are clear bilaterally", while
the impression reports "chronic left upper lobe at-
electasis”. This semantic conflict reflects the weak-
ness of one-pass generation, which fails to align
the factual content across sections. In contrast, Hi-
MrGn maintains consistency throughout: the find-
ings indicate "peribronchial consolidations present,
notably involving the left upper lobe", and the im-
pression reinforces this with "prominent left upper
lobe involvement, consistent with a chronic pul-
monary condition".
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7 Ground-Truth

FINDINGS: persistent largely
unchanged left upper lobe right
upper lobe and left lower lobe
peribronchial consolidation. there
are stable low lung volumes. no
pleural effusion or pneumothorax.
the cardiomediastinal silhouette is
stable within normal limits. the
pleural surfaces are unremarkable.
IMPRESSION: persistent bilateral
peribronchial consolidations which
might represent post-pneumonic
fibrosisinflammation organizing
pneumonia wegeners
granulomatosis or less likely
residual infection.

~

o Em mm mm mm mm Em mm o = E——

Ground-Truth
FINDINGS: In comparison to the
prior radiograph performed on___,
there has been interval
development of a moderately-sized
right pleural effusion. Left lung is
essentially clear. No pneumothorax.
Heart size is within normal limits.
No acute osseous abnormalities
identified.

IMPRESSION: Interval
development of a moderately-sized
right pleural effusion since___.

FINDINGS: pa and lateral images of
the chest were obtained with the
patient in the upright position. again
seen are surgical clips in the left
upper quadrant from prior
cholecystectomy. the lungs are clear
bilaterally. previously seen left upper
lobe consolidation has resolved.
there is no pneumothorax or pleural
effusion. cardiomediastinal
silhouette is unremarkable.
visualized osseous structures are
unremarkable.

IMPRESSION: unremarkable chest
radiograph with chronic left upper
lobe atelectasis.

FINDINGS: Heart size is normal,
and there is no mediastinal
vascular engorgement. There are
no pleural effusions. The lungs are
clear. No pneumothorax is seen.
There are no acute osseous
abnormalities

IMPRESSION: No acute
cardiothoracic process including no
evidence of pneumonia.

~
Hi-MrGn \
FINDINGS: there are peribronchial \
consolidations present, notably 1
involving the left upper lobe. lung I
volumes are low resulting in
crowding of the bronchovascular |
structures. the remaining lung 1
fields are clear. there is no pleural I
|
I
|
|
I
1

ORGAN

effusion or pneumothorax. the
cardiac and mediastinal
silhouettes are unremarkable.
IMPRESSION: multifocal
peribronchial consolidations, with
prominent left upper lobe
involvement, consistent with a
chronic pulmonary condition. no
acute cardiopulmonary process

. o /
identified.

Hi-MrGn

FINDINGS: There is a small right |

pleural effusion. Heart size is 1

normal. The pulmonary 1

vasculature is normal. Lungs are

clear. No pneumothorax is seen. 1

There are no acute osseous I
|
|
|
/

G-Trans

abnormalities.

IMPRESSION: Stable, small
right pleural effusion. No acute
cardiothoracic process.

Figure 3: Examples of the reports using SOTA method and the Hi-MrGn. Red and green indicate consistent and

inconsistent with the ground truth, respectively.

The second case illustrates Hi-MrGn’s strength
in accurate pathology recognition. The ground-
truth impression highlights an "interval develop-
ment of a moderately-sized right pleural effusion”,
capturing the progression of the condition. G-
Trans, in contrast, reports that "there are no pleural
effusions”, and its impression incorrectly concludes
with "no acute cardiothoracic process including no
evidence of pneumonia', missing the key pathol-
ogy. Hi-MrGn accurately detects the effusion in
the findings, stating "there is a small right pleural
effusion”, and its impression reinforces this by not-
ing a "stable, small right pleural effusion”, aligning
well with the reference.

5 Conclusions

In this paper, we proposed a novel hierarchical
medical report generation network (Hi-MrGn) to
address the issue of generating medical reports,
which have two parts different abstraction levels,
i.e., the findings and impression. Specifically, the
proposed Hi-MrGn generates the findings and im-
pression in a hierarchical way, where the first stage
focuses on generating the findings, while the sec-
ond stage derives information related to the impres-
sion based on the refinement of the features learned
at the first stage. Additionally, a contrastive learn-

ing module is introduced to ensure high semantic
consistency between the generated findings and
impression. Through the substantial experiments
using two public datasets, the experimental results
demonstrated that the proposed Hi-MrGn outper-
formed the latest state-of-the-art methods in both
datasets. Further ablation study showed that all
the proposed components, including the hierarchi-
cal framework, the multimodal input fusion, the
co-attention module, and the contrastive-learning
module, play effective roles in the medical report
generation.

Limitations

Our current framework has some limitations. First,
since the impression is generated based on the pre-
viously generated findings, its quality inherently
depends on the accuracy and completeness of the
findings, which may lead to error accumulation
throughout the generation process. Second, our
current framework is tailored for radiology report
generation from chest X-ray images. Future work
could explore the generalizability of this approach
to other imaging modalities, such as computed to-
mography (CT) and magnetic resonance imaging
(MRI), to extend its clinical applicability.



Ethics Statement

The MIMIC-CXR (Johnson et al., 2019) and IU-
Xray (Demner-Fushman et al., 2016) datasets
used in this study are publicly available and de-
identified, ensuring no protected health informa-
tion is involved. However, reports generated by
Hi-MrGn may contain errors such as misdiagnoses
or missed findings, which could impact clinical de-
cisions. Therefore, model outputs should always
be reviewed by medical professionals before use.

Similar to other deep learning models, Hi-MrGn
may reflect biases in the training data. We encour-
age careful consideration of fairness and ethical im-
plications when applying the model in real-world
settings.
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A Implementation Details

We train Hi-MrGn using the AdamW optimizer
with a learning rate of 5 x 1075, a minimum learn-
ing rate of 5 x 1075, and a warm-up learning rate of
5 x 10~7. A linear warm-up followed by a cosine
decay schedule (LinearWarmupCosinelLRSched-
uler) is applied. The weight decay is set to 0.05,
and the dropout rate is 0.1. The model is trained
for 30 epochs with a batch size of 64.

The input image resolution is 224 x 224. The
maximum sequence lengths are set to 100 for find-
ings, 50 for impression, and 50 for history. The
encoder is a pretrained ResNet-101 provided by Py-
Torch, and the decoder is a pretrained BERT model
from HuggingFace, enhanced with a co-attention
module. For contrastive learning, we adopt CXR-
BERT as the sentence encoder to extract semantic
embeddings of findings and impression.

The model has 544.97M trainable parameters.
All experiments are conducted on a single NVIDIA
RTX 3090 GPU.

Here are the pretrained models we used:

¢ BERT(base, uncased):
https://huggingface.co/google-bert/
bert-base-uncased

¢ CXR-BERT(BiomedVLP-CXR-BERT-
general):

https://huggingface.co/microsoft/
BiomedVLP-CXR-BERT-general

11


https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/google-bert/bert-base-uncased
https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-general
https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-general
https://huggingface.co/microsoft/BiomedVLP-CXR-BERT-general

