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ABSTRACT

Fine-grained image classification, which is a challenging task in computer vision,
requires precise differentiation among visually similar object categories. In this
paper, we introduce a novel approach that utilizes Graph Neural Network (GNN)
blocks to enhance the clustering capability of feature vectors extracted from im-
ages within a deep neural network (DNN) framework. These GNN blocks capture
intricate dependencies between feature vectors by modeling them as nodes within
a graph. This graph-based approach enables our model to learn contextual infor-
mation and relationships that are essential for fine-grained categorization. In prac-
tice, our proposed method demonstrates significant improvements in the accuracy
of different fine-grained classifiers, with an average increase of (+2.78%) and
(+3.83%) on the CUB200-2011 and Stanford Dog datasets, respectively, while
achieving a state-of-the-art result (95.79%) on the Stanford Dog dataset. Fur-
thermore, our method serves as a plug-in refinement module and can be easily
integrated into different architectures.

1 INTRODUCTION

Fine-grained classification is an important task in computer vision. With the rapid advancement of
technology, we now have the capability to collect and store a large amount of image data from vari-
ous sources. However, classifying objects in images with high similarity, such as bird species, types
of leaves, or electronic product models, remains a difficult challenge. This challenging problem has
numerous real-world applications, including image recognition, disease diagnosis (Lu et al., 2023;
Zhang et al., 2023; Wen et al., 2023), and even biodiversity monitoring (Horn et al., 2017; 2015a;b),
where distinguishing between visually similar subcategories is crucial. Despite significant progress
in using deep neural networks (DNN) to address this issue, there are still many challenges to over-
come in order to achieve high accuracy and stability.

In contrast to standard image classification, fine-grained image classification presents greater diffi-
culty for three primary reasons: (i) substantial intra-class variation, with objects in the same cate-
gory exhibiting significant pose and viewpoint differences; (ii) subtle inter-class distinctions, where
objects from different categories may closely resemble each other with minor differences; (iii) con-
straints on training data, as labeling fine-grained categories often demands specialized expertise and
a substantial amount of annotation effort. For these reasons, fine-grained classification remains a
formidable challenge for traditional deep neural networks (DNNs). This is primarily due to their
limited capacity to discriminate between fine-grained features and the inherent difficulty in learning
detailed patterns from limited training data.

This paper presents a GNN Post-Hoc (GPH) plugin that leverages the power of graph neural net-
works (GNNs) to enhance existing fine-grained image classification methods. We propose a design
architecture that integrates GNN blocks into a conventional DNN architecture, allowing for the ex-
traction of fine-grained features while maintaining the robustness and generalization capabilities of
deep learning. Our approach aims to capture intricate inter-dependencies between feature vectors,
effectively clustering them into meaningful groups that correspond to fine-grained categories. By
doing so, we aim to improve the classification accuracy, particularly in scenarios where intra-class
variations are significant.

In this work, we provide a comprehensive investigation into the effectiveness of our proposed model,
benchmarking it against state-of-the-art methods on widely recognized fine-grained classification

1



Under review as a conference paper at ICLR 2024

datasets. We demonstrate that the incorporation of GNN blocks leads to substantial performance
gains, showcasing the potential of this hybrid approach for fine-grained image classification tasks.
Our contributions can be summarized as follows:

• We introduce a novel network architecture design in which GNN blocks are incorporated
following the DNN encoder, improving the ability to cluster feature vectors and mitigating
the ambiguity issue in fine-grained classification.

• The proposed design can be easily integrated into various fine-grained classifiers, enhanc-
ing performance, while the model’s complexity and processing time remain manageable.

• Our extensive experiments on publicly available datasets demonstrate the model’s capabil-
ity to enhance feature clustering and accuracy, while also achieving state-of-the-art results
on the Stanford Dogs dataset.

The remainder of this paper is organized as follows: Section 2 provides an overview of related
work in the field of fine-grained classification and graph neural networks. In Section 3, we present
our proposed model architecture in detail. Section 4 describes the experimental setup and presents
empirical results. Finally, in Section 5, we discuss the implications of our findings and outline
avenues for future research.

2 RELATED WORK

In this section, we present two research tracks related to our study, including fine-grained image
classification and graph neural networks.

2.1 FINE-GRAINED IMAGE CLASSIFICATION

Recent deep learning research on fine-grained classification problems has primarily focused on
two main directions, including convolutional neural networks (CNN)-based methods and visual
attention-based methods.

CNN-based Fine-Grained Image Classification is commonly seen in general classification tasks
and specifically in fine-grained classification problems. Common baseline CNN architectures such
as MobileNet Howard et al. (2017), DenseNet Huang et al. (2017), ConvNeXT Liu et al. (2022), and
others can also be applied to fine-grained classification tasks. Notably, in 2022, both task-specific
models the PIM (Chou et al., 2022) and the µ2Net+ (Gesmundo, 2022) achieved state-of-the-art per-
formance on the NABirds and CUB-200-2011 datasets (Wah et al., 2011). Currently, the HERBS
model (Chou et al., 2023) stands out as one of the top-performing models on these datasets. It em-
ploys two innovative approaches, namely high-temperature refinement and background suppression,
to address key challenges in fine-grained classification.

Visual attention-based approaches aim to mimic human visual attention by selectively focusing
on informative regions or features within an image. One of the pioneering models utilizing this
mechanism, Xiao et al. (2014), uses two-level attention to concentrate on both overall image context
and fine-grained details. More recently, a reinforcement learning-based fully convolutional atten-
tion localization network (Liu et al., 2017) adaptively selects multiple task-driven visual attention
regions. This model is renowned for being significantly more computationally effective in both the
training and testing phases. Furthermore, the ViT-NeT (Kim et al., 2022) model augments the ex-
plicability of Vision Transformers (Dosovitskiy et al., 2021) by integrating a neural tree decoder,
enabling the generation of predictions with hierarchical structures that facilitate improved compre-
hension and examination of the model’s decision-making process. In another context, MetaFormer
Yu et al. (2021) employs convolutional layers to encode visual information and transformer layers to
fuse vision and meta information. Currently, the ViT-NeT and MetaFormer models are achieving the
highest accuracy levels on the Stanford Dogs dataset(Khosla et al., 2011), and the NABirds dataset
Van Horn et al. (2015), respectively.
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Figure 1: An overview of our GNN-based post-hoc architecture design

2.2 GRAPH NEURAL NETWORKS

Graph neural networks (GNNs) can be categorized into four types, which encompass: convolutional
graph neural networks (ConvGNNs), recurrent graph neural networks (RecGNNs), graph autoen-
coders (GAEs), and spatial-temporal graph neural networks (STGNNs). Inspired by the success of
CNNs in computer vision, numerous methods have emerged to redefine convolution for graph data.
These methods, collectively known as Convolutional Graph Neural Networks (ConvGNNs), can be
categorized into two main streams: spectral-based and spatial-based approaches. Since the pioneer-
ing work on spectral-based ConvGNNs was presented by Bruna et al. (2014); various advancements,
extensions, and approximations have been made in spectral-based ConvGNNs including GCN Kipf
& Welling (2017), AGCN Li et al. (2018), and DualGCN Zhuang & Ma (2018). On the other
hand, Spatial-based ConvGNNs define graph convolutions based on a node’s spatial relations (e.g.,
Veličković et al. (2019); Xu et al. (2019); Chiang et al. (2019)). From a different perspective, spatial-
based ConvGNNs share a similar concept of information propagation and message passing with
RecGNNs. Furthermore, alongside RecGNNs and ConvGNNs, several other GNN variants have
been devised, including Graph Autoencoders (GAEs) Kipf & Welling (2016) and Spatial-Temporal
Graph Neural Networks (STGNNs) Yu et al. (2018).

3 PROPOSED APPROACH

3.1 PROBLEM DEFINITION

For the problem of fine-grained image classification, similar to the general image recognition, we are
given a training dataset T = {(xi, yi)}Ni=1 drawn from an unknown joint data distribution defined on
X × Y , with X ⊂ R3×H×W and Y ⊂ {0, 1}C denoting the input image space and the output label
space (H,W denoted as height and width of an image in X ). In particular, the label space Y - which
contains one-hot classification vectors, is the union space of all the C subspaces corresponding to
the C subordinate categories of the same meta-category, i.e., Y = Y1 ∪ Y2 ∪ · · · ∪ Yc ∪ · · · ∪ YC .
Our goal is to learn a mapping function f : X → Y that correctly classifies images into one of the
C categories.

3.2 GPH ARCHITECTURE DESIGN

In order to improve the model’s understanding of complex image relationships and bolster its ca-
pability to distinguish subtle variations in fine-grained classification tasks, we propose a simple yet
effective architecture design that utilizes a plug-in module based on GNNs. Figure 1 illustrates
the workflow of our proposed design, in which the GNN encoder can be considered as a post-hoc
plug-in. We first utilize a DNN-based encoder to generate feature vectors. These vectors are then
constructed into a complete graph and input into a GNN model to obtain GNN embeddings, aim-
ing to enhance the discriminative ability between feature clusters. The two features from the two
encoders are then combined and fed into fully connected layers for classification. It is worth noting
that the GNN plug-in can be integrated into any mainstream backbone network such as DenseNet,
Swin Transformer, and ConvNeXT. In this section, we offer comprehensive insights into our GNN
Post-Hoc structure, consisting of two primary components: the deep neural network encoder and the
graph neural network encoder, along with an overview of the inference process.
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In our network architecture, function f consists of three components: (1) a deep neural network
encoder Φ : X → Rm that maps each input image xi to a l2-normalized feature embedding zi;
(2) a graph neural network encoder that constructs a fully connected graph G from the obtained
feature vectors within a batch z = {zi}bi=1 and then maps them to l2-normalized feature embeddings
g = {gi}bi=1 with gi ∈ Rm; (3) a classifier Ψ : Rm → RC that maps each feature in the combined
m-dimensional embeddings of z and g to a classification vector, where a cross-entropy loss can be
applied after using a sigmoid function.

DNN encoder. This encoder can be a typical encoder in any DNN-based image classification meth-
ods. Given a training batch {xi, yi}bi=1 with batch size b, the images are fed into the feature extractor
network, yielding l2-normalized embeddings {zi}bi=1: zi = Φ(xi)

GNN encoder. We enhance the capability of conventional classification networks for fine-
grained classification tasks by incorporating a graph neural network module after their fea-
ture extraction module. Figure 2 illustrates a toy example depicting the distribution of fea-
ture points corresponding to images in a two-dimensional space. In Figure 2 (a), the fea-
tures extracted by conventional models exhibit good class separability, with features from
the same class clustering closely together. However, there is a lack of clear differentiation
between clusters of different classes, leading to potential misclassifications. On the other
hand, our model also facilitates the grouping of elements of the same class while improv-
ing the separation between clusters of different classes, thereby enhancing the overall accuracy.

(a) Conventional DNN (b) GNN Post-Hoc

Figure 2: Example of feature embeddings of GPH

We denote a fully connected graph G =
(V, E ,F), where V represents the set of images
in each batch, i.e., |V| = b, E = {eij}i,j=1,b

is the set of edges connecting images, and F =
{z1, z2, ..., zb} is the node features in the graph.

Our proposed GPH can employ various GNN
architectures as the GNN encoder, such as
GraphTransformer Yun et al. (2019) and Graph-
SAGE Hamilton et al. (2017) to learn the node
embeddings, which are described by the feature
matrix in Z ∈ Rb×m. Specifically, the initial
node representation, which is the set of DNN
embeddings {zi}bi=1, are passed through multiple layers, with each layer encompassing two crit-
ical functions: AGGREGATE, responsible for gathering information from the neighbors of each
node, and COMBINE, tasked with updating the node representations by combining the aggregated
information from neighbors with the current node representations.

Mathematically, the general framework of the GNN encoder can be expressed as follows:

• Initialization: Z(0) = F .
• For each layer l-th of the GNN encoder (l = 1, L with L is the number of layers), we

update the embeddings of the graph to have Z(l) = {z(l)i }bi=1, which is encoded through
two general functions (here, z(0)i refers to zi):

a
(l)
i = AGGREGATE(l)

{
z
(l−1)
j : j ∈ N (i)

}
, z

(l)
i = COMBINE(l)

{
z
(l−1)
i , a

(l)
i

}
(1)

where N (i) is the set of neighbors for the i-th node.

Feature combination. The node representations Z(L) obtained at the last layer of the GNN encoder
can be treated as the final node representations, and these features are subsequently merged with
features from the DNN encoder {zi}bi=1 as follows:

ci = COMBINE
{
z
(L)
i , zi

}
. (2)

These final features {ci}bi=1 are then passed through the classifier Ψ for classification.
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Table 1: Dataset statistics. Imbalance is defined as the ratio of the number of images in the largest
class to the number of images in the smallest class.

Dataset # Train # Test Imbalance
CUB-200-2011 5,994 5,794 1.03

Stanford Dogs 12,000 8,580 1.00

NABirds 23,929 24,633 15.00

4 EXPERIMENTS

4.1 DATASETS AND EXPERIMENTAL SETTINGS

Datasets. We perform experiments on three well-known fine-grained datasets: CUB-200-201 Wah
et al. (2011), Stanford Dogs Khosla et al. (2011), and NABirds Van Horn et al. (2015). First, the
CUB-200-201 dataset, i.e., Caltech-UCSD Birds-200-201, comprises 11,788 labeled images of bird
species. Originally, the dataset included 200 bird species, but the extended version incorporates extra
images for each category, resulting in a total of 201 classes. This dataset also provides attribute labels
and landmark annotations, which offer supplementary information for detailed analysis. Second,
the Stanford Dogs dataset consists of 20,580 images featuring 120 distinct dog breeds, and it does
not include meta-information similar to CUB-200-201. And finally, the NABirds dataset, short for
“North American Birds Dataset,” contains over 48,000 annotated images of 555 bird species found
in North America. The division of training and testing data follows the predefined configurations in
each dataset, with detailed quantities provided in Table 1.

Implementation details. All experiments are conducted on an NVIDIA Tesla T4 GPU with 15GB
of RAM. Initially, all input images are resized to 224x224 pixels. We employ simple data augmen-
tation techniques such as RandomHorizontalFlip and RandomRotation during training. The DNN
encoder is trained using pre-trained weights from the ImageNet1K dataset. For the GNN encoder,
we integrate four blocks in total. The first block transforms the output features of the base encoder
into embeddings with a size of 1024. The remaining three blocks further transform the features to
ensure that the output features have a consistent dimension of 1024. The model is fine-tuned for
50 epochs using a batch size of 32 for all models. As the proposed GPH can be influenced by the
batch size, we provide detailed experiments to evaluate the results corresponding to different batch
size configurations in section 4.2.3. We train the network using the Rectified Adam optimizer with
a default epsilon value of 1e−8. The dimension of the embedding of the encoder network is set
to 1024. We evaluate the top-1 classification error on the shuffled validation set. Additionally, the
initial learning rate is set to 1e−5.1

4.2 EXPERIMENTAL RESULTS

Our empirical studies in this subsection are designed to answer the following key research questions.

• Q1. How is the effectiveness of the proposed design when applying various types of GNN
encoders to the GPH architecture?

• Q2. To what extent does the GNN Post-Hoc model improve performance compared to
regular classification networks and state-of-the-art fine-grained classification approaches?

• Q3. How do batch configurations affect the performance of the proposed model?
• Q4. How does integrating an additional GNN encoder with the DNN encoder impact the

representation of feature vectors compared to a conventional classification model?
• Q5. How does the GNN aggregation functions affect the accuracy of the proposed model?

4.2.1 DIFFERENT GNN ENCODERS (Q1)

To investigate the effect of employing different GNN models as the GNN encoder, we perform
an experiment using four popular GNN methods, including: GCN Kipf & Welling (2017), GAT

1The source code of the implementation is available online (currently omitted due to blind review).
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Veličković et al. (2017), GraphSAGE Hamilton et al. (2017), and GraphTransformer Yun et al.
(2019), by assessing their performance on the three benchmark datasets while using Densenet201
as the underlying DNN backbone. Furthermore, we introduce another baseline plug-in adopting an
Attention layer instead of the GNN encoder for comparison against the GPH architecture. Table 2
reveals that models equipped with these additional modules consistently enhance accuracy in con-
trast to the standard Densenet201. Remarkably, our four GPH models exhibit even more substantial
improvements, particularly in the context of fine-grained classification across these three datasets.

Table 2: Model accuracy according to different GNN encoders.

Model Acc (%)
Stanford Dogs CUB-200-2011 NAbirds

Densenet201 83.95 79.13 77.55
Densenet201-Attention 85.28 79.45 78.59
Densenet201-GCN 87.6 84.40 84.14
Densenet201-GAT 87.82 84.61 83.94
Densenet201-SAGE 87.39 84.43 83.54
Densenet201-GraphTransformer 88.09 84.48 83.62

4.2.2 COMPARISON WITH EXISTING METHODS (Q2)

Baselines. To validate the effectiveness and generalization of our method, we investigate the per-
formance of incorporating GPH on four different well-known DNNs and their variants, including
DenseNet Huang et al. (2017), MobileNet Howard et al. (2017), ConvNext Liu et al. (2022), and
SwinTransformer Liu et al. (2021), HERB Chou et al. (2023). It is important to highlight that our
GPH is the only modification, while all other training configurations and hyperparameters remain
unaltered from the original implementations. For consistency, we employ GraphTransformer as the
GNN encoder for all experiments in this section. Even though we incorporate our proposed method
across various techniques and assess it on diverse datasets, we maintain the consistent parameter
configuration detailed earlier throughout all experiments.

Comparison results. Table 3 shows the impact of our GPH on fine-grained classification perfor-
mance across different methods and datasets. Our interesting findings are summarized as follows:

• The table clearly illustrates that the incorporation of GPH consistently improves fine-
grained classification results. Notably, we observe an average increase of +2.78%,
+3.83%, and +3.29% on the Stanford Dogs, CUB-200-2011 datasets and NABirds, re-
spectively.

• While GPH significantly enhances the performance of CNN-based models on both datasets,
the improvement is more moderate for transformer-based models. We hypothesize that
because of the inherent similarity between the attention mechanism of transformers and
the nature of GNN, the accuracy improvement is not as substantial as with CNN-based
models. For example, with models like DenseNet and MobileNet, accuracy increases by
3 − 6% on both datasets, while with Swin Transformer, it ranges from 1 − 2%. Notably,
ConvNext shows a slight performance boost on the Stanford Dogs dataset but a significant
improvement of 5− 6% on CUB-200-2011.

• Improving existing fine-grained classification methods is a challenging endeavor. However,
as shown in Table 3, our proposed approach achieves new state-of-the-art results on the
Stanford Dogs dataset2. It is worth noting that for the other two datasets, including CUB-
200-2011 and NAbirds, we fail to reproduce the performance of state-of-the-art baselines,
i.e., HERB3 and MetaFormer4 even when referring to their GitHub pages.

• Additionally, we observe that for some models, when we add the GPH module to smaller
variants, they achieve better accuracy than the larger variants without the module, while
also being less time-consuming and complex. For instance, SwinT-Small-GPH (61.7M

2According to the comparison table in https://paperswithcode.com/sota/
fine-grained-image-classification-on-stanford-1 on 26/09/2023.

3https://github.com/chou141253/FGVC-HERBS.git
4https://github.com/dqshuai/MetaFormer.git
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Table 3: The impact of GPH on fine-grained classification outcomes when incorporated into various
DNN techniques. The accuracy gain when applying GPH is provided in the brackets.

Method Inference
time

# params Acc (%)
Stanford

Dogs
CUB-200-

2011
NABirds

MobilenetV3-S 0.013 1.6M 73.12 67.5 66.46
MobilenetV3-S-GPH 0.016 17.4M 77.01(+3.89) 69.86(+2.36) 69.1(+2.64)
MobilenetV3-L 0.035 4.4M 78.31 77.65 75.86
MobilenetV3-L-GPH 0.039 23.2M 82.72(+4.41) 80.77(+3.12) 79.82(+3.96)
Densenet201 0.28 18.3M 83.95 79.13 77.55
Densenet201-GPH 0.29 73.7M 87.72(+3.77) 84.48(+5.35) 83.81(+6.26)
Densenet161 0.42 26.7M 84.46 79.68 78.97
Densenet161-GPH 0.45 88.7M 88.47(+4.01) 84.79(+5.11) 84.75(+5.78)
SwinT-Small 0.51 49.1M 91.39 86.27 86.74
SwinT-Small-GPH 0.52 61.7M 92.79(+1.40) 87.35(+1.08) 87.97(+1.23)
SwinT-Big 0.82 87.0M 92.11 85.86 86.32
SwinT-Big-GPH 0.84 102.8M 93.06(+0.95) 87.9(+2.04) 88.03(+1.71)
ConvNextBase 0.59 88.7M 92.77 81.93 85.31
ConvNextBase-GPH 0.61 103.4M 94.56(+1.79) 87.52(+5.59) 87.86(+2.55)
ConvNextLarge 1.22 197.9M 93.71 81.74 85.53
ConvNextLarge-GPH 1.23 231.8M 95.79(+2.08) 87.8(+6.06) 88.11(+2.58)
HERB-SwinT 1.74 286.6M 88.62 89.9 90
HERB-SwinT-GPH 1.88 318.2M 88.9(+0.28) 90.37(+0.47) 90.61(+0.61)

Avg. Improvement +2.51 +3.46 +3.04

parameters) outperforms SwinT-Big (87M parameters), and ConvNextBase-GPH (103.4M
parameters) surpasses ConvNextLarge (197.9M). This partly demonstrates the effective-
ness of the proposed module when integrated into different backbones. Regarding neural
network complexity, despite a significant increase in the number of parameters in the pro-
posed models compared to the base ones, the inference time varies only slightly between
them.

In summary, our proposed approach consistently demonstrates enhanced performance across various
classifiers and fine-grained datasets. Moreover, our method can easily integrate with cutting-edge
classifiers to yield further enhancements. Notably, the parameter configuration for our approach
remains uncomplicated, delivering favorable outcomes with a single setup across diverse classifiers
and datasets.

4.2.3 THE IMPACT OF BATCH CONFIGURATIONS (Q3)

In both the training and inference phases of the proposed module, the feature learning process of the
GNN encoder begins by constructing a complete graph based on the features of the DNN encoder
within a batch. Therefore, batch configurations, including batch size and how images are selected,
influence the model’s performance to some extent. In this part, we will examine the stability of GPH
under different batch configurations.

Batch size. Figure 3 reveals that altering the batch size of the training and testing process has
minimal impact on the accuracy of the baseline DNN models. Therefore, in this experiment, we
only compare the results of 4 out of the 9 GPH variants for ease of illustration. The results plotted
on both datasets demonstrate that larger models tend to exhibit higher stability, i.e., changes in
batch size do not significantly affect performance. Among the models, Densenet201-Attention and
MobileNet exhibit the biggest variability. In contrast, the other 3 models show differences of less
than 1%.

Shuffling the validation dataset during evaluation. Since GPH refines image latent embeddings
using a fully connected graph of all embeddings within a batch, its performance may depend on the
variation of the samples in the batch. In this section, we examine the stability of GPH under different
batch configs of the evaluation datasets. Table 4 displays the comparison results of Densenet161-
GPH and SwinT-Big-GPH models on the validation dataset with two different orders: sequential
and shuffled-data sampling. In the sequential data sampling scenario, data is drawn from one class
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Figure 3: Performance comparison for GPHs using various batch sizes on both the Stanford Dogs
dataset (on the left) and the CUB-200-2011 dataset (on the right). Note that experiments with large
batch sizes on Densenet201-GPH, SwinT-Small-GPH, and ConvNextBase-GPH are omitted due to
the GPU’s memory constraints.

Table 4: Evaluation results on the three datasets employing two distinct data sampling techniques
during validation, namely Sequential and Shuffle.

Method Stanford Dogs CUB-200-2011 NABirds
Sequential Shuffle Sequential Shuffle Sequential Shuffle

Densenet161-GPH 88.47 88.17 84.79 84.53 84.75 84.62

SwinT-Big-GPH 93.06 92.82 87.90 87.66 87.38 87.21

before moving on to the next class when filling the batches, making the variation of samples within
each batch low. In contrast, in the common shuffled-data sampling, the variation within each batch
is high since each sample is randomly picked from any class. As reported in Table 4, sequential
sampling provides slightly better accuracy, but the gap is small (maximum 0.3%). Therefore, we
can confirm that GPH provides a pretty stable result, and the diversity of classes within the same
batch has a minor impact on the model’s classification performance.

Feature selection within a batch during evaluation and prediction. The question at hand is
whether, with pre-trained weights obtained during the training of the GPH model and a batch size of
b, the model’s input during testing or inference must necessarily be fixed with b images for the GNN
encoder to process. To address this question, we employ a method of filling the batch embedding
with vectors of all ones. Specifically, assuming we have bt < b images for testing, bt images first
pass through the DNN encoder to extract features {zi}b1i=1. Then, the {zj}bj=b1

are initialized as
vectors of ones, and the entire set of b features is subsequently input into the GNN encoder for
processing, as described in Section 3.2. Table 5 presents the evaluation results on the validation
set using this method with b1 = 1, corresponding to different values of b. The results demonstrate
the stability of the batch size-specific filling method, even with MobileNetV3-S-GPH, where this
method achieves better accuracy than the conventional approach of taking the entire batch of images.
Notably, the results for Densenet201-Attention-filled are favorable, while Densenet201-Attention
performs poorly with a small batch size. From these results, it is evident that the filling method
effectively addresses the posed question.

Table 5: The performance of models using various batch sizes after filling batch feature embeddings
with ones tensors on the Stanford Dogs dataset.

1 4 8 16 28 36 48 64 120
MobilenetV3-S-GPH 72.54 75.57 76.22 76.54 76.57 76.78 76.71 76.82 77.01

MobilenetV3-S-GPH-filled 76.2 76.33 76.52 76.64 76.93 76.98 76.94 76.92 77.01
Densenet201-Attention 31.42 63.67 76.94 83.13 84.39 85.06 85.47

Densenet201-Attention-filled 85.32 85.61 85.63 85.56 85.6 85.64 85.47
Densenet201-GPH 86.33 88.05 88.14 88.2 88.31 88.31 88.09

Densenet201-GPH-filled 87.25 87.47 87.68 88 88.27 88.27 88.09
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Figure 4: The visualization of the attention map between image feature maps and the four models

4.2.4 VISUAL ANALYSIS (Q4)

To identify the areas of primary interest in the images according to the models’ analysis, we uti-
lize Grad-Cam Selvaraju et al. (2019) to display their activation maps on the original images, as
depicted in Figure 4, where the color spectrum from blue to red represents values from low to high,
with higher values indicate stronger focus of the model on that area. We can discern that all four
models primarily concentrate on the object in the image, which is the dog. Nevertheless, in the
case of the Densenet201-GPH and SwinT-Small-GPH models, our model gives more attention to
the dog’s facial regions, seeking cues for assessment, whereas the baseline’s heatmap weights are
spread across the entire dog.

4.2.5 GNN AGGREGATION FUNCTIONS (Q5)

Table 6: The impact of GNN aggregation functions on fine-grained classification

Model Sum Mean
Densenet201-Attention 75.15 85.85
Densenet201-SAGE 66.90 87.39

The results presented in Table 6 illustrate a comparison between various GNN aggregation functions,
specifically SUM and MEAN. These two functions yield divergent impacts on accuracy. The MEAN
function leads to a notable improvement in model accuracy compared to DenseNet201, whereas the
SUM operation has a detrimental effect. Additionally, we observe contrast in performance: when
using the SUM function, SAGE achieves a lower accuracy than Attention, while the opposite holds
true for the MEAN function.

5 CONCLUSION AND DISCUSSIONS

In our investigation, we identified a novel architectural design that appears deceptively straightfor-
ward yet has remained unexplored in prior studies. Rigorous experimentation conducted on bench-
mark datasets underscores the efficacy of our proposed approach, showcasing its seamless integra-
tion with a variety of fine-grained classifiers. These synergistic interactions yielded appreciable
improvements in accuracy, establishing a new benchmark for performance in the field. Additionally,
our architectural innovation fostered a reduction in both model parameters and inference latency
when compared to conventional DNN methodologies.

Our research opens up several promising avenues for future exploration. First, further investigation
can delve into optimizing the architecture and hyperparameters of the integrated GNN-DNN model
for different fine-grained classification tasks. Additionally, exploring different graph construction
strategies and graph neural network architectures may yield insights into improving model perfor-
mance. Moreover, the application of this integrated approach to other computer vision tasks and
datasets warrants exploration, as it has the potential to enhance various aspects of visual recogni-
tion.
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APPENDIX

A ALGORITHM FOR GNN POST-HOC

In this section, we present the previously omitted pseudo-code for the GPH model. Algorithm 1
outlines the common steps for constructing the GNN encoder architecture, which includes the GN-
NModule followed by a Linear layer, ReLU, and Batch Normalization, acting as a block. The first
block transforms the DNN features into new features with dimensions defined in the initialization of
GNNEncoder (embd size). Subsequent blocks transform the features while maintaining the same
dimensions. Algorithm 2 describes the process of adding the GNN encoder as an add-on to the DNN
encoder.

Algorithm 1 A GNN Encoder Network Pseudo-code, PyTorch-like
# feat size: input feature size for GNN Encoder
# embd size: output embedding size of GNN Encoder
# n layers: number of GNN Encoder blocks
# n cls: number of classes
# edge index:
class GNNEncoder(torch.nn.Module):
def init (self, feat size, embd size, n layers, n cls):
self.n layers = n layers
self.gnn1 = GNNModule(feat size, embd size)
self.gnns = ModuleList(GNNModule(embd size, embd size), n layers)
self.linear1 = Linear(embd size, embd size)
self.linears = ModuleList(Linear(embd size, embd size), n layers)
self.lin skip1 = Linear(feat size, embd size)
self.lin skips = ModuleList(Linear(feat size, embd size), n layers)
self.bn1 = BatchNorm1d(embd size)
self.bns = ModuleList(BatchNorm1d(embd size), n layers)
self.out = Linear(embd size, n cls)

def forward(self, x, edge index):
x skip = self.skip1(x)
x = self.gnn1(x, edge index)
x += x skip
x = relu(self.linear1(x))
x = self.bn1(x)
for i in range(self.n layers):
x skip = self.lin skips[i](x)
x = self.gnns[i](x, edge index)
x += x skip
x = relu(self.linears[i](x))
x = self.bns[i](x)

x = self.out(x)
return x

Algorithm 2 A GNN Post-Hoc Network Pseudo-code, PyTorch-like
class GNNPostHoc(torch.nn.Module):
def init (self, embd size, n layers, n cls):
self.base enc = DNNEncoder()
feat size = self.base enc.classifier.in features
self.gnn enc = GNNEncoder(feat size, embd size, n layers, n cls)

def get edge index(batch size):
#
return edge index

def forward(self, images):
batch size = images.shape[0]
x = self.base enc(images)
edge index = self.get edge index(batch size)
return self.gnn enc(x, edge index)
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B ADDITIONAL RESULTS

In Tables 7, 8, and 9, we provide a detailed results table for the GPH models on three datasets,
including Stanford Dogs, CUB-200-2011, and NABirds. The experiments are conducted with batch
size values in {1, 4, 8, 16, 28, 36, 48, 64, 120}. It is worth noting that the maximum batch size for
each model is described specifically in Table 10 under the configuration of an NVIDIA Tesla T4
GPU with 15GB of RAM. These results further substantiate our observations in Research Question
3 regarding batch configurations.

Table 7: Standford Dogs.

1 4 8 16 28 36 48 64 120
MobilenetV3-S-GPH 72.54 75.57 76.22 76.54 76.57 76.78 76.71 76.82 77.01

Densenet201-GPH 86.33 88.05 88.14 88.2 88.31 88.31 88.09
SwinT-Small-GPH 92.12 92.46 92.62 92.68 92.73 92.79

ConvNextBase-GPH 94.36 94.52 94.54 94.58 94.56

Table 8: CUB-200-2011.

1 4 8 16 28 36 48 64 120
MobilenetV3-S-GPH 63.17 65.51 65.86 66.13 66.94 67.22 67.77 67.57 69.86

Densenet201-GPH 81.86 83.86 84.22 84.29 84.46 84.53 84.41
SwinT-Small-GPH 86.52 86.92 87.04 87.26 87.29 87.31

ConvNextBase-GPH 86.81 87.19 87.45 87.43 87.56

Table 9: NABirds.

1 4 8 16 28 36 48 64 120
MobilenetV3-S-GPH 59.72 66.05 67.27 68.05 68.4 68.64 68.77 68.83 69.1

Densenet201-GPH 73.96 80.23 82.14 83.09 83.47 83.56 83.62
SwinT-Small-GPH 85.13 86.43 87.07 87.64 87.88 87.97

ConvNextBase-GPH 85.72 87.33 87.57 87.78 87.86

Table 10: The maximum batch size for each model.

Full RAM
MODEL BATCH SIZE

MobilenetV3 120
Densenet 48

SwinTransformer 36
ConvNext 28

HERB-SwinT 5
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