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ABSTRACT

Learning from demonstrations is a common way for users to teach robots, but it
is prone to spurious feature correlations. Recent work constructs state abstrac-
tions, i.e. visual representations containing task-relevant features, from language
as a way to perform more generalizable learning. However, these abstractions also
depend on a user’s preference for what matters in a task, which may be hard to
describe or infeasible to exhaustively specify using language alone. How do we
construct abstractions to capture these latent preferences? We observe that how
humans behave reveals how they see the world. Our key insight is that changes
in human behavior inform us that there are differences in preferences for how hu-
mans see the world, i.e. their state abstractions. In this work, we propose using
language models (LMs) to query for those preferences directly given knowledge
that a change in behavior has occurred. In our framework, we use the LM in
two ways: first, given a text description of the task and knowledge of behavioral
change between states, we query the LM for possible hidden preferences; second,
given the most likely preference, we query the LM to construct the state abstrac-
tion. In this framework, the LM is also able to ask the human directly when
uncertain about its own estimate. We demonstrate our framework’s ability to con-
struct effective preference-conditioned abstractions in simulated experiments, a
user study, as well as on a real Spot robot performing mobile manipulation tasks.

1 INTRODUCTION

In robot learning, we wish to teach robots how to perform tasks that human users want. Learning
from demonstrations (LfD) is a common way for doing so, as the user can directly teach the robot
desired task behavior. Unfortunately, LfD requires a lot of data and often fails to fully specify all the
reasons behind the demonstrated behavior Correa et al. (2022). For example, consider the scenario
depicted in figure 1, which shows two demonstrations for the task “throw away the can”. Is the user
demonstrating moving cans, navigating to a specific goal location, or tossing the can in the trash?
Without more data disambiguating the demonstrations, it’s difficult for the robot to fully learn what
all the features that matter for the task are.

Humans, meanwhile, exhibit extraordinary generalization capabilities in new environments. A key
reason why humans can learn so quickly is their ability to construct simplified mental representations
over which to plan Ho et al. (2022). Useful abstractions are task-dependent, and prior experience,
commonsense reasoning, and direct teaching contribute to humans learning how to best construct
these abstractions Ho et al. (2023); Huey et al. (2023). Recent work showed how we can successfully
leverage strong priors embedded in LMs to aide in constructing state abstractions for robots Peng
et al.. Given a language description of the task, language-guided abstraction (LGA) leverages the
strong semantic priors in LMs to model task-relevant features important for decision-making Peng
et al..

Unfortunately, LGA is limited when the features that are important to the human are not fully spec-
ified in language. This presents a challenge in real-world robotics settings where we must adapt
to human preferences quickly and efficiently, which can often be expensive or even intractable for
preferences inexpressible through natural language. How can we ensure that the robot’s state ab-
stractions are strong enough to enable efficient learning Peng et al. (2023); Peng et al. yet flexible
enough to learn individual preferences?
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Figure 1: Preference-Conditioned Language-Guided Abstraction (PLGA). (Left) The robot uses the
demonstration pair to identify a behavior change not captured by the language specification. Given
this information, we query the LM for potential preferences that could explain this change. Finally,
the robot uses its best preference estimate to query the LM for state abstractions and train a policy.
(Right) At test time, the robot generalizes to new states and language specifications.

In this work, we propose a framework to use language and behavior to query LMs for their possible
abstraction preference. Our observation is how humans behave is indicative of how they see the
world, i.e. their state abstraction. If we are able to observe a difference in human behavior, this
provides meaningful grounds to infer there are differences in preferences for how their abstractions
are constructed. In this work, we introduce Preference-conditioned Language-Guided Abstraction
(PLGA), a framework for using this information to infer latent preferences to explain differences in
human behavior. In PLGA, we use the LM in two ways: first, given a text description of the task and
knowledge of behavior change between states, we query the LM for possible hidden preferences;
second, given the most likely preference, we query the LM for the state abstraction. In this frame-
work, the LM is also able to actively query for human preferences by asking the human when it is
uncertain about its own estimate.

2 PROBLEM FORMULATION

2.1 PRELIMINARIES

Markov Decision Processes. We model our problem as a Markov Decision Process M =
⟨S,A, T ,R⟩ with states s ∈ S , actions a ∈ A, transition probability T : S × A × S → [0, 1],
and rewards R : S × A → R. We define a trajectory τ as a sequence of state-action pairs,
τ = (s0, a0, · · · , sT , aT ). We wish to learn a policy πψ : S → A, parameterized by ψ, that
solves the MDP.

Goal-Conditioned Behavioral Cloning. We consider scenarios where the robot does not know
the reward, and instead it learns the policy πψ from user demonstrations D = {τ i}ni=1 =
{(si1, ai1, ..., siT , aiT )}ni=1 and a natural language description ℓ ∈ L that specifies the goal for each
demonstration. Goal-conditioned behavioral cloning (GCBC) Co-Reyes et al. (2018) is a method
where the policy can condition on both the current state s and a linguistically-specified goal ℓ to try
and imitate human actions. GCBC attempts to learn a policy π that minimizes:

LGCBC = E(sit,a
i
t,ℓ

i)∼Dtrain
[∥πψ(sit, ℓi)− ait∥22] , (1)

However, because at its core the algorithm simply imitates the data it has seen, GCBC alone cannot
reliably generalize the policy πψ(sit, ℓ

i) to novel specifications ℓi or states sit.

Language-Guided Abstraction. Our work builds on LGA (Language-Guided Abstraction) Peng
et al., which proposes using LM priors to build abstract state representations. LGA’s key novelty
is an abstraction function f̂ : S × L → Ŝ that contextualizes the state within the language task
specification and produces a task-relevant state abstraction ŝ = f̂(s, ℓ). This extends GCBC to
learning policies πψ̂ : Ŝ → A that operate at the abstraction level:

LLGA = E(sit,a
i
t,ℓ

i)∼D[||πψ̂(f̂(s
i
t, ℓ

i))− ait||22] . (2)
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The key to LGA generalizing beyond specific user commands and demonstrations is the rich lan-
guage prior that determines which states and specifications should be treated similarly in the context
of decision-making (e.g. if the robot has learned to “pick up a cup”, it should also know to “pick up
something to drink with”).

In LGA, the abstraction function f̂LGA consists of 3 steps:

1. In textualization, a state captioner C : S → Lϕ converts the raw perceptual state s into
a text-based feature set ϕ = C(s). This text representation may include common visual
attributes of the state like object type and color, which are reasonably accessible via seg-
mentation models today Kirillov et al. (2023).

2. Feature abstraction passes ϕ and ℓ to the LM and asks for the features relevant for the task,
ϕ̂ = LMabs(ϕ, ℓ). We denote LMabs as queries for the abstraction, e.g. “What features in
the scene matter for the task ⟨throw away the can⟩?”.

3. Lastly, LGA instantiates ϕ̂ into an abstracted state ŝ = C−1(ϕ̂). We assume that the cap-
tioner from step 1 is invertible and can, thus, instantiate (potentially abstracted) perceptual
states from feature sets, i.e. C−1 : Lϕ → S . For instance, in figure 1 the captioner con-
verts states to a feature set of object names, and the inverse captioner takes an LM-obtained
feature set and converts it into an abstracted state.

Altogether, the LGA abstraction function can be written as f̂LGA(s, ℓ) = C−1(LMabs(C(s), ℓ)).

2.2 PROBLEM STATEMENT

Unfortunately, LGA is limited when the language utterance does not fully specify the desired be-
havior. For example, in figure 1, without explicitly mentioning “avoid electronics” in the utterance
ℓ, there is no recourse for the model to know that “drill” or “laptop” should be captured by the ab-
straction, and are thus relevant for robot behavior. Consequently, the LGA function f̂ will ignore it,
leading to learning an incorrect policy πψ̂ downstream. In this paper, we present a method to infer
and incorporate such unexpressed preferences.

Formally, we assume the human holds a latent preference θ ∈ Θ over what the abstraction ŝ should
be, i.e. ŝ = f̂(s, ℓ, θ) for f̂ : S × L × Θ → Ŝ. In the example above, the user is a cautious person
who prefers to “avoid electronics”. The challenge is that the robot does not know θ and must infer
it in order to build the abstraction.

We observe that in providing demonstrations to the robot, humans reveal information about what
matters to them in their tasks. In other words, demonstrations implicitly give evidence for what
the latent abstraction preference θ is (Jeon et al., 2020). In this paper, we study how we can use
demonstrations D together with the utterance ℓ to learn preference-conditioned language-guided
abstractions ŝ = f̂(s, ℓ, θ), i.e. abstractions that capture how the human represents the task, us-
ing information from both their linguistic specification and physical behaviors. We expect these
preference-conditioned abstractions will allow flexible adaptation to preferences over tasks.

3 PREFERENCE-CONDITIONED LANGUAGE-GUIDED ABSTRACTION

We present our method for constructing preference-conditioned language guided abstractions
(PLGA). We use an LM to give a common-sense prior over abstraction preferences given a lan-
guage specification and information about user demonstrations. At a high level, our method consists
of two steps: 1) estimating the abstraction preference θ and 2) updating the abstraction function f̂
with that θ. Our use of the LM is, thus, two-fold: first, given ℓ and information about demonstrations
τ , we query the LM for most likely human preference θ; next, given that preference, we query the
LM for the abstraction. This framing also allows us to actively query the human for their preference
when the LM is uncertain about its set of hypothesized θs. We present the full PLGA procedure in
Alg. 1.

We use GPT4 OpenAI (2023) as our LM to query for human preferences and state abstractions given
state, language, and trajectory information. Here, we first focus on LM queries for state abstractions.
We discuss the use of LMs for querying for human preferences in section 3.2.
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Algorithm 1: PLGA
1 Input: N sampled trajectory pairs (τ, τ ′) ∈ D, specification ℓ, captioner C, entropy threshold
ϵ, distance threshold κ

2 Init: Abstraction model without preferences f̂LGA

3 for i← 1 to N do
4 / / Language can’t explain behavior change
5 if ∥τ − τ ′∥22 > κ and f̂LGA(s, ℓ) = f̂LGA(s′, ℓ) then
6 / / Find hidden preference as in section 3.2
7 ΘLM , P (θ | s, s′, ℓ,∆ = 1) ∼ LMpref(C(s), C(s

′), ℓ,∆ = 1)
8 / / LM is confident about preference
9 if H(P (θ | s, s′, ℓ,∆ = 1)) < ϵ then

10 θ̂ ← argmaxθ(P (θ | s, s′, ℓ,∆ = 1))
11 else
12 θ̂ ← query H / / as in section 3.3
13 / / Create updated abstractions as in section 3.1.
14 f̂PLGA(s, ℓ, θ̂) = C−1(LMabs(C(s), ℓ, θ̂))

15 πψ̂ ← LPLGA(f̂
PLGA(s, ℓ, θ̂))

3.1 LMS AS MODELS OF STATE ABSTRACTION

Moving beyond LGA, we want an abstraction function that is preference-conditioned. Here, we
assume we already have an estimate of the human’s abstraction preference θ, and we discuss
the estimation process later in section 3.2. We can use the same captioner from LGA, but the
LM must now be queried with preference information as well. Hence, in our feature abstraction
step we pass ϕ, ℓ and a language description of the estimate θ to the LM and query it for the
preference-conditioned features that are relevant for the task, i.e. ϕ̂ = LMabs(ϕ, ℓ, θ). In the fig-
ure 1 example, the abstraction query includes not only the scene and task specification, but also
the inferred preference “avoid electronics”. Overall, our abstraction function can be written as
f̂PLGA(s, ℓ, θ) = C−1(LMabs(C(s), ℓ, θ)).

3.2 LMS AS MODELS OF PREFERENCE

We now discuss how PLGA estimates the human’s latent abstraction preference parameter θ. Given s
and ℓ, we could query an LM for potential human preferences θi corresponding to that state and task
specification, i.e. θi ∼ LMpref(C(s), ℓ), but the space of possible preferences may be intractably
large. For example, in figure 1 the more objects in the scene, the combinatorially more preferences
for caring or not caring about each one of them the LM could find.

We observe that given demonstrations τ , we can derive additional insights about the abstraction
preference beyond the language specification: human behavior (i.e. demonstrations) implicitly re-
veals information about what the human cares about in the world (i.e. the abstraction). If we had
a language description of the demonstrations, we could include it in our query to the LM. Unfortu-
nately, behaviors are particularly challenging to caption Rana et al. (2023) and asking the human to
narrate every demonstration they give is too burdensome.

Instead of giving the LM a description of the behavior the human demonstrates, we indicate initial
scenes where behaviors are different in ways that the language utterance does not specify. Given a
trajectory pair (τ, τ ′) corresponding to initial states s and s′ and the specification ℓ, we introduce
a binary variable ∆(s, s′, ℓ) that indicates whether the desired human behaviors in s and s′ are
different in ways not directly specified by ℓ.

Intuitively, ∆ signals that an unknown human preference θ is impacting behavior. If ∆ is 0, then
behaviors τ and τ ′ are either the same despite starting in different states or different but in a way
conveyed by ℓ. If ∆ is 1, then τ and τ ′ differ beyond the language specification. In the figure 1
example, the user demonstrations differ despite the specification “Throw away the can” not explicitly
indicating that they should. Our hypothesis is that the context change between s and s′ can reveal
the human preference θ that resulted in the behavior change in τ and τ ′.
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Figure 2: We evaluate on three tabletop manipulation tasks: pick, place, and sweep.

When ∆ = 1, we query the LM for potential human preferences θi that explain the change in
behavior for the two scenes, i.e. θi ∼ LMpref(C(s), C(s

′), ℓ,∆ = 1). We denote the set of
“sampled” preferences ΘLM = {θi}ki=0. The PLGA estimate θ̂ should be the most likely in ΘLM .
To generate that, we ask the LM to also assign a normalized probability for how likely it is that θi
is the hidden preference, resulting in a distribution P (θ | s, s′, ℓ,∆ = 1) with support on ΘLM . In
passive PLGA, we simply select θ̂ to be the preference in ΘLM with the highest probability.

3.3 QUERYING PREFERENCES WITH LANGUAGE

If the LM model is uncertain about which of the hypothesised preferences θi is the most likely
explanation for the behavior change, PLGA enters an active learning stage where it queries the user
directly for the cause of behavior change. This scenario may apply when the human preference
cannot be captured by a general LM prior, e.g. “pick up my favorite object” where the robot is
uncertain about what the user’s “favorite object” may be. In such cases, we expect none of the
probability values to stand out. In other words, the entropy of the LM-queried distribution P (θi |
s, s′, ℓ,∆ = 1) is high. We propose that when this is the case, the robot should query the human
directly for a language description of their preference θ̂.

3.4 POLICY LEARNING WITH PLGA

Once the robot has a preference estimate θ̂, our abstraction function is simply f̂PLGA(s, ℓ, θ̂) =

C−1(LMabs(C(s), ℓ, θ̂)). We can use this to train our policies πψ̂ , similar to LGA:

LPLGA = E(sit,a
i
t,ℓ

i)∼D[||πψ̂(f̂
PLGA(sit, ℓ

i, θ̂))− ait||22] . (3)

with differences from LGA highlighted in red.

4 INVESTIGATING PASSIVE PLGA AS A PRIOR FOR GENERAL PREFERENCES

We begin our evaluation by testing PLGA’s ability to leverage the semantic priors in LMs to generate
human preferences that explain changes in behavior. We first conduct simulated experiments to
demonstrate passive PLGA in cases where the LM should be able to confidently identify the human
preference. For cases where the LM may be unsure about the hidden preference, we will test the
active component of PLGA with real users in section 5. Here, we present results for nine different
scenarios across three different tasks.

Environment. We generate a series of robotic control manipulation tasks from the simulated envi-
ronment VIMA Jiang et al. (2022) (figure 2). VIMA is a vision-based simulator where a UR5 arm is
tasked with manipulating a specified target object into a desired goal configuration. Observations are
top-down RGB images of the manipulation space and actions are continuous pick and place poses
each consisting of a 2D coordinate and a rotation expressed as a quaternion. We modify the VIMA
feature space to contain up to 48 potential objects (e.g. bowl) and 17 colors/textures (e.g. glass) (see
list in Appendix).

Following standard LGA, we implement a captioner module that extracts the feature set ϕ from
the original RGB observation. This captioner uses a ground truth segmentation mask and labels it
with text descriptions of objects and their properties (texture, object ID, etc.). Our PLGA algorithm
constructs the task-relevant feature subset ϕ̂ using GPT4 OpenAI (2023) as the LM. We query the
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LM by providing a language utterance, description of the scene, estimated preference, and a target
feature to evaluate (the full prompt can be seen in the Appendix). The LM returns a binary re-
sponse indicating whether that feature should be included in the preference-conditioned abstraction
ϕ̂. Finally, we convert ϕ̂ to ŝ, a binary pixel mask over the robot observation where all identified
task-relevant features are represented as ones (otherwise zero).

Our algorithm requires finding trajectory pairs in the demonstration set where the language spec-
ification can’t explain the behavior change. To generate them, we randomly sample trajectory
pairs from D, compute their Euclidean distance and their corresponding preference-free abstrac-
tions ŝ = f̂LGA(s, ℓ) and ŝ′ = f̂LGA(s′, ℓ), and check for pairs that are more than κ distance apart
while mapping to the same abstraction ŝ = ŝ′. In our experiments, we found κ > 0.2 was a good
metric for differentiating trajectories.

Tasks. We investigate three tasks that arise in the context of personal robotics: 1) pick up the
[target], 2) place grasped object on the [target], and 3) sweep object 1 into object 2 [while avoiding
potential obstacle] (brackets denote objects the user may have a preference distribution over). For
each task, we test three possible (unspecified) preferences that may impact the desired abstraction.

1. For pick: 1) a (ripe) tomato, 2) a (container) to put food in, 3) a (dry) cereal bowl (paren-
theses denote the hidden preference). The robot must determine the correct target object
given behavioral context (e.g. is a green tomato a target pick object?).

2. For place: 4) a (non-electronic) object such as pan, 5) a (stable) surface such as coaster,
6) a (desired content) container such as recycling or trash. For these tasks, the robot must
determine the correct target for the held object to be placed on/in (e.g. is a laptop a valid
place location?);

3. For sweep: 7) a hot object such as stove, 8) a sweepable object such as rug, and 9) a sharp
object such as knife. For these tasks, the robot must assess whether objects are potential
obstacles to be avoided before executing a sweep motion (e.g. is a red stove an object to be
avoided?).

Preferences are instantiated as a distribution over possible object types and colors in the task. These
may include preferred pick objects (e.g. red or dark red tomatoes for ripe, but not green), preferred
place objects (e.g. container or bin for non-electronic but not laptop), and avoid obstacles (e.g. a
knife for sharp but not flower). These are selected to illustrate diversity in preferences that PLGA
can infer using strong semantic priors. For each task, the language specification is given without
mentioning the preference (e.g. “Sweep the food into the sink”). PLGA therefore must infer the
hidden preference from behavioral context (e.g. avoid hot objects). Here we assume there is a
generic but unspecified preference for each scenario (e.g. users generally prefer to avoid hot objects).

For each preference-task pair, we generate a dataset D via an oracle demonstrator consisting of 20
demonstrations: 10 expressing behavior when the tested feature is present in the scene and 10 when
the tested feature is not (e.g. 10 trajectories of the sweeping food around the stove if the stove is
hot, and 10 where sweeping food across the stove otherwise). Target objects are randomly sampled
from one of three discretized locations. To create additional complexity, we additionally sample a
distractor object that is unrelated to the preference (e.g. a flower along with a stove).

Manipulated Variables. We test PLGA’s ability to construct good preference-conditioned abstrac-
tions for each task using the LM priors alone. We compare the resulting policies trained via PLGA
against two baselines: GCBC (learned directly from raw states and the specified language utterance
as per Eq. equation 1) and LGA (learned from state abstractions constructed via querying ϕ against
the language utterance alone as per Eq. equation 2). We implement GCBC as a goal-conditioned
CNN architecture that independently processes language input ℓ into an embedding via BERT De-
vlin et al. (2018) and the RGB image into an embedding via a CNN, then concatenates the outputs
for action prediction via a MLP. We implement LGA and PLGA as the same CNN architecture
processing the state abstraction only.

Dependent Measures. We evaluate success as an executed action via a pick/place/sweep of the
target object within radius α of the goal. For these tasks, we constructed a ground truth test dis-
tribution reflective of the human preference. We manipulate the training and test distribution such
that only a subset of the true preference distribution (e.g. red tomatoes) are seen at training. We
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Figure 3: Policy success rate (with standard error) on simulated experiments. PLGA outperforms
both LGA and GCBC on task performance, showing better preference-conditioned abstraction con-
struction on downstream task learning.

evaluate performance via success rate of the learned policies on 5 states sampled from the full test
distribution during test.

Hypothesis H1: Using information about changes in behavior (PLGA) leads to state abstractions
better able to generalize policy learning to preference-conditioned test tasks than abstractions based
on language alone (LGA) or no abstractions (GCBC).

Analysis. To compare performance, we show in figure 3 the policy success rates on test scenes
for each task. These results illustrate a trend for better PLGA performance compared to baselines
(significant for four tasks with a one-sided t-tests p < 0.05).

Overall, this illustrates a trend for better PLGA performance than baselines, supporting the notion
that preference-conditioned abstractions enable better generalizable learning. However, one-sided
t-tests confirm statistical significance only for four of the tasks. The other tasks display high vari-
ance at times in the result, indicating that more trials may be necessary to determine significance.
Nevertheless, the qualitative trend softly supports H1.

5 INVESTIGATING ACTIVE PLGA FOR USER-SPECIFIC PREFERENCES

In section 4 we tested PLGA’s ability to construct generic preference-conditioned abstractions using
only the LM’s priors. We now test its ability to construct abstractions when the preferences are
more personalized, meaning the LM may not be entirely sure about its sampled hypotheses ΘLM .
We study the active component of PLGA with a user study to test the ability of PLGA to recognize
uncertainty about a preference estimation, causing it to query for the human preference and update
its abstraction model accordingly.

5.1 EXPERIMENTAL SETUP

Tasks. We now construct a new scenario for each task.
1. For pick: a (favorite food);

2. For place: a (preferred dish) for setting food on;

3. For sweep: a (specific type of object) to avoid.

These tasks are now intended to study 1) PLGA’s ability to measure uncertainty over the LM’s
inferred preferences, or in other words, know when it does not know the answer and ask for help
and 2) PLGA’s ability to update its abstraction generation process given a user-specified preference
in natural language.

Sanity Check. Before investigating PLGA’s active querying of human preferences, we first conduct
a sanity check to ensure the measured entropy of the resulting LM preference probability is indeed
higher (indicating uncertainty) for these tasks vis-a-vis those less ambiguously defined in the previ-
ous section. We perform the same LM query as before (e.g. where the LM is tasked with inferring a
hidden favorite food from ∆). As shown in figure 4, we do see larger uncertainty for tasks contain-
ing more ambiguous preferences, and a one sided t-test (t(10) = −3.49, p = 0.005) confirms this
observation. Based on these results, we found ϵ = 1.0 to be a good entropy threshold.
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Figure 5: Learned policy success rates for tasks with ground truth preference specified by user
study participants. PLGA (active) outperforms PLGA (passive), LGA (passive), and GCBC on task
performance, demonstrating an ability to flexibly incorporate natural language human preferences
into abstraction construction.
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Study Design. We conducted a computer-based in-person user study where
participants were shown a text description of the task, and asked to give a
general preference specified in natural language.

The study is split into three phases: familiarization, scenario generation, and
preference querying. During familiarization, we introduce the user to the task
context, the simulation interface, and full feature list that is available in the
environment. We then show them an example task and text abstraction ϕ̂. In
scenario generation, we introduce six scenarios (two per task), where we de-
scribe a background story for each user (e.g. you are about to have guests over
for dinner or you now need to figure out how to store food). This was intended
to elicit a natural preference for how each scenario would be interpreted that
invoked different downstream preference-conditioned abstractions (e.g. plate
and bowl may be more relevant for the first scenario, while container and box
might be more relevant for the second). In preference querying, we then ask
the user to specify, in language, their explicit preferences for the task as our
preference query. This preference query is then used by PLGA to explicitly
update its abstraction.

Participants. We recruited 12 participants (50% male, aged 18-29) from the greater community.
We paid participants $30 for participation. Our study passed institutional IRB review.

5.2 OBJECTIVE RESULTS: ACTIVE PLGA SUCCESSFULLY LEARNS FROM HUMAN
PREFERENCE QUERIES

Now that we have established active PLGA enables a more natural and less effortful user interac-
tion, we measure whether querying users for their preference in natural language results in good
preference-conditioned abstractions as compared to baselines.

Manipulated Variables. We compare the performance of active PLGA to non-interactive abstrac-
tion construction algorithms: Passive PLGA (where the LM did not explicitly query the human for
their preference and instead used its best estimate θ̂ ∈ ΘLM ), Passive LGA (where the LM builds
an abstraction without explicitly modeling preference), and GCBC. We would like the comparison
to validate the importance of identifying when the LM is unsure in its hypotheses and asking the
human, when compared to taking its best guess (Passive PLGA), not reasoning about preferences at
all (Passive LGA), or not even using state abstractions (GCBC).

Dependent Measures. For measuring downstream task success, we report the same success rate
as in section 4. Note, instead of assuming ground truth test distributions constructed by the exper-
imenters, we now assume the abstractions explicitly specified by the human manually during the
Active LGA querying in section A.1 are the ground truth test distributions by which to evaluate.
This is a reasonable assumption considering previous work Peng et al. (2023); Bullard et al. (2018);
Cakmak & Thomaz (2012) has demonstrated the ability of humans to perform task-specific feature
selection to their individualized preferences.
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Hypothesis H3: Abstractions learned with human preference queries (Active PLGA) result in better
performing policies compared to passive methods (Passive PLGA, Passive LGA, GCBC).

Analysis. figure 5 shows that active PLGA outperforms other passive baselines in learning good
preference-conditioned abstractions from human queries in natural language, supporting H3. We
further confirmed this by running one-sided t-tests (marked with orange asterisks) between Active
PLGA and Passive LGA, our strongest competing baseline, confirming significance at p < 0.05.
This illustrates the ability of PLGA to integrate information queried from the user meaningfully
in constructing state abstractions. Moreover, while every method has its natural user effort vs.
information gain tradeoff, PLGA’s ability to query seamlessly for natural human feedback while
reducing user frustration and effort is an exciting testament to the value of strong priors for learning.

6 INVESTIGATING PLGA ON A SPOT ROBOT

We demonstrate the real world abstraction construction utility of PLGA on a Spot robot1 performing
mobile manipulation tasks.

Robotic Platform. Spot is a mobile manipulation legged robot equipped with six RGB-D cameras
(one in gripper, two in front, one on each side, one in back), each producing an observation of size
480x640. We only use observations taken from the front camera.

Tasks and Data Collection. We collected demonstrations of a human teleoperating the robot while
performing two mobile manipulation tasks with household objects: place the drink in the bin and
throw away the can. The manipulation action space consists of the following three actions along
with their parameters: (xy, grasp), (xy, move), (drop) while the navigation action space consists of
a SE(3) group denoting robot waypoints2. For place the drink, the robot is tasked with bringing an
already-grasped soda can to a specified location and dropping it into a trash can. We assume the
user has a preference for avoiding electronics in the way, otherwise taking the shortest path. For
throw away, the robot is tasked with picking up a drink on a table, bringing it to a correct bin (either
recycling or trash), and successfully dropping the drink into the bin. We assume the user has a
preference for placing cans in a recycling bin if one is available, and otherwise placing them in the
trash. Both tasks include possible distractors like drills and brushes.

For place the drink, we generate demonstrations of the robot placing a soda can into the recycling
if available, otherwise trash. At test time, we evaluate the robot on the scenarios with a water bottle
instead. For throw away the can, we generate demonstrations of the robot walking directly to the
trash can when a shirt is on the ground, but avoiding the drill when it is present. At test time, we
evaluate the robot on two new scenes: a laptop (to avoid) and pants (walk across). While the robot
sees a trajectory of a user avoiding a drill during train, it is not exposed to laptops prior to test.

Training and Test Procedure. We first extract a segmented image from the observations using
Segment Anything (Kirillov et al., 2023) and captioner Dedic (Zhou et al., 2022) to perform a check
for behavior ∆ (e.g. is the robot taking a different trajectory when a laptop is present in the scene vs.
shorts). If the answer is yes, we instantiate the full PLGA pipeline. First, we perform a preference
query to the LM with the initial two scenes and task description; next, we use this preference to
query the LM to construct a preference-conditioned abstraction; lastly, we map this abstraction back
into the observation dimension.

Takeaway. PLGA produced policies capable of successfully completing both tasks consistently,
even when faced with new distractor objects, target object colors, or unseen linguistic specifications.
Excitingly, we were able to observe non-trivial generalization capabilities, particularly in the avoid
task (the robot successfully learned to avoid laptops from only seeing a demonstration of avoiding a
drill). The failures we did observe were largely due to captioning errors (e.g. the segmentation model
detected the object but was unable to produce a good text description). Our demonstration of PLGA
on real robotic hardware indicates an exciting future in using LMs to help generate preference-
conditioned state abstractions.

1Our Spot’s name is Moana.
2For ease of data generation, we perform imitation learning over the trajectory rather than each state (i.e.

predict a sequence of actions from an initial observation).
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Figure 6: User study interaction results (lower is better for all but perceived performance). The
interaction experience with Active PLGA is rated more favorably by users than with Active LGA.

A APPENDIX

A.1 SUBJECTIVE RESULTS: PLGA ENABLES MORE NATURAL AND EASY USER
INTERACTION

We first tested if users can easily and effortlessly specify individualized preferences via natural
language to the model in a manner that is less burdensome and frustrating than baseline human-in-
the-loop abstraction construction methods.

Manipulated Variables. We are interested in comparing the user experience of PLGA vs. a baseline
human-in-the-loop abstraction method. The baseline we select is the active version of LGA where
users are first presented with an LM’s best guess of the correct abstraction list (without explicitly
modeling preference), and then asked to refine the resulting representation via a text-based interface.
We implemented this baseline as an additional condition in our user study. In the active LGA
condition, the preference querying phase is instead replaced with an explicit abstraction querying
phase, where the user is tasked with specifying, in text, the feature list ϕ̂ that contains all task-
relevant aspects for their preferences in each task. We provide a full list of environment features for
easy access. We counterbalance conditions and record qualitative task experience post-conclusion
of both conditions.

Dependent Measures. For measuring interaction experience, we administered the subjective 7-
point Likert Scale survey, inspired by the NASA-TLX Hart & Staveland (1988). We presented the
survey after the user completed both conditions, and recorded responses for each.

Hypothesis H2: Describing a language preference (Active PLGA) is a more natural and less effort-
ful user interaction experience than manually filtering relevant abstraction features (Active LGA).

Analysis. figure 6 illustrates our subjective user study results with the NASA TLX scores aggregated
across participants. We additionally ran paired t-tests with significance level α = 0.05, marked
with orange asterisks. We see that users found PLGA to be significantly less mentally (t(11) =
−2.46, p < 0.05) and physically demanding (t(11) = −2.54, p < 0.05), and the results are even
more pronounced for feeling rushed (t(11) = −7.40, p < 0.001), frustrated (t(11) = −8.48, p <
0.001), or expending a great deal of effort (t(11) = −8.99, p < 0.001). Meanwhile, we found no
statistically significant difference in perceived performance (t(11) = 1.60, p = 0.14), suggesting
that Active PLGA offers a more natural and effortless interaction experience than Active LGA with
no loss in performance quality. Overall, results support our hypothesis H2.

The result is not surprising – after all, it is to be expected that giving a natural language utterance
is an easier experience than inspecting a list of features and selecting the right subset. However, we
wanted to verify that users overall find it easy to explicate their preference in words, and that training
the robot this way does not decrease their perception of its performance. From this point of view,
the results are positive and even encouraging for future research using natural language to explicate
human preferences.
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A.2 DISCUSSION

We presented PLGA, a framework for learning preference conditioned state abstractions from lan-
guage and demonstration information. Particularly, we focused on settings where the language task
specification does not list everything the human cares about. We introduced LM preference queries
for inferring user preferences present in demonstrations directly from LM priors. Our simulated ex-
periments, user study, and Spot robot demos illustrate that natural language can be a convenient ve-
hicle to communicate hidden preferences for constructing state abstractions, and those abstractions
result in improved downstream task performance. Although we demonstrated PLGA’s real-world
applicability in home manipulation tasks, we are excited about future opportunities in shared auton-
omy tasks (where the human may have a preference for which aspects of the task the robot assists
with), or autonomous driving (where users have a preference for what objects to avoid).

Limitations and Future Work. In our work, we assumed we had no further information regarding
differences in user behavior beyond the initial states that induced these behaviors. However, we do
not use the information about how exactly user behavior changed. A natural direction would be to
extend PLGA’s preference query abilities to user trajectories, where richer features, like obstacle
avoidance distance, can be explored. Such a path would open more meaningful opportunities for
grounding natural language to the language of human behavior.

Moreover, while we focused here on using language priors to construct state abstractions for im-
itation learning, a natural parallel would be to explore this framework in the context of rewards,
where rich semantic priors could be extremely meaningful to few-shot downstream learning from
demonstrations. Furthermore, our algorithm is not designed to be iterative, which means that there
is no opportunity for continual preference learning after repeated exposure to different interactions.
However, there are many trajectory-based features that arise in the context of robotics that would
require more text-based motion information regarding user actions that we currently do not have.

Lastly, while we broached the subject of active preference elicitation, we did not conduct a deep
dive into meaningful ways to interact with the user when trying to learn their preference (opting
instead to query them directly if uncertain). Future work can explore different ways of performing
preference elicitation with language models, including iterative approaches that perform sequential
updates to the reward or preference model.

A.3 RELATED WORK

Learning from Human Input. Existing frameworks for interactive querying for downstream learn-
ing, like TAMER (Knox & Stone, 2008) and COACH (MacGlashan et al., 2017), use human feed-
back to train policies, but are restricted to binary or scalar labeled rewards Abel et al. (2017); Zhang
et al. (2019). Another line of work looks at learning from human preferences, often by asking them
to compare or rank trajectory snippets (Christiano et al., 2017b; Brown et al., 2020a). There are
also works that actively learn from human teachers, where the emphasis is on generating actions or
queries that are maximally informative for the human to label (Bobu et al., 2022; Chao et al., 2010).
Unfortunately, these approaches all are limited by the fact that the feedback asked of the human
is overfit to specific failures or desired data points, and rarely scale well relative to human time or
effort Bobu et al. (2023).

Language Models for Human Preferences. LMs are increasingly being used for personalized
applications. Prior work has explored using LMs for recommendation systems Wu et al. (2023b); Ji
et al. (2023); Lyu et al. (2023); Mao et al. (2023); Wang et al. (2022), user-specific chatbots Zhang
et al. (2018); Ma et al. (2021); Li et al. (2016); Qian et al. (2018); Song et al. (2019); Zhong et al.
(2022), or even sorting household objects according to personal preferences Wu et al. (2023a).

A range of techniques have been introduced to specify human preferences and inject them into
LMs. With the popularization of prompting-based techniques, users simply have to write a textual
description (called a prompt) specifying their preferred task and condition LMs on this prompt to
induce their desired behavior Brown et al. (2020b). In order to encourage LMs to produce outputs in
line with users’ preferences, recent work has explored techniques such as instruction-tuning Ouyang
et al. (2022); Honovich et al. (2023); Wang et al. (2023b); Chung et al. (2022); Zhang et al. (2023)
and reinforcement learning from human feedback (RLHF) Bai et al. (2022); Ziegler et al. (2020);
Christiano et al. (2017a); Stiennon et al. (2020); Ganguli et al. (2022).
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Furthermore, having been pre-trained on large corpora of human-generated text Raffel et al. (2019),
LMs often possess sensible priors over “typical”3) human preferences and behaviors Li et al. (2023);
Brown et al. (2020b); Zhou et al. (2019). Because of this, LMs have at times even been used
as simulations of humans Aher et al. (2023); Dillion et al. (2023); Argyle et al. (2023). As part
of prompting, LMs must implicitly perform language understanding on human-written prompts to
infer their preferences. However, LMs have also been used to explicitly infer human preferences
from linguistic specifications. For example, recent work has examined reward learning using LMs
Lin et al. (2022); Kwon et al. (2023).

Language Models in Robotics. LMs hold commonsense knowledge about object properties, func-
tions, and their relevance to various tasks. This is why many recent works have explored using LMs
to output plans directly, i.e. generate primitives or high-level action sequences (Sharma et al., 2022;
Ahn et al., 2022; Huang et al., 2022a;b). These approaches use priors embedded in LMs to produce
better instruction following models, or in other words, better compose base skills to generate more
complex behavior (Zeng et al., 2023; Li et al., 2023; Ahn et al., 2022; Wang et al., 2023a). In con-
trast, we use LM priors to learn it preferences over relevant features. Recent work (Peng et al.) has
also proposed to use LMs to perform state abstraction for learning better skills from scratch, instead
leveraging the LM’s priors to identify task-relevant features for state abstraction construction.

A.4 FULL PROMPT

ChatGPT models (including GPT4) can take in both system prompts and user prompts. We split our
prompt into these two parts.

Preference Query. System prompt where {scene intersection} is replaced by the list of all similar
features between two scenes and {scene1 minus scene2} and {scene2 minus scene1} are the lists
of scene differences.

There are two scenes. The user takes a different trajectory in the first scene vs. the
second.
The first and second scene both have the following features: {scene intersection}
The first and second scene differ on the following:
First scene- {scene1 difference}
Second scene- {scene2 difference}

What are the most likely high-level preferences to have caused the difference in
the user’s behavior and why? The user took different trajectories in the two scenes.
Please give a list of brief preferences (with only one reason) and assign a confi-
dence score to each answer, in the format [[”answer”, score], [”answer”, score],
...]. Please ensure all scores sum up to 1.

Abstraction Query. System prompt where {object list} is replaced by the list of all object types in
the environment and {object colors} by the list of all colors and textures:

You are interfacing with a robotics environment that has a robotic arm learning
to manipulate objects based on some linguistic command (e.g. “pick up the red
bowl”). At each interaction, the researcher will specify the command that you
need to teach the robot. In order to teach the robot, you will need to help design the
training distribution by specifying what properties task-relevant objects can have
based on the given command. Objects in this environment have two properties:
object type, object color. Any object type can be paired with any color, but an
object can only take on exactly one object type and exactly one color.
Object types:
{object list}
Object colors:
{object colors}

3It is worth noting that text scraped from the internet, which constitutes the bulk of what today’s LMs are
trained on, is biased and does not capture a representative sample of human preferences globally.
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User prompt where {rule} is replaced by one of the task prompts listed above, {group} is replaced
by “object color” or “object type”, and {candidate} is replaced by each candidate object color or
type that we would like the LM to evaluate:

The command is “{rule}”. In an instantiation of the environment that contains
only some subset of the object types and colors, could the target object have
{group} “{candidate}”? Think step-by-step and then finish with a new line that
says “Final answer:” followed by “yes” or “no”.

A.5 TASK DETAILS

Pick:

ripe tomato:

• Task description: Bring me a tomato.
• True distribution: {objects: tomato}, {textures: red, dark red}

food container:

• Task description: Bring me something to put food in.
• True distribution: {objects: bowl, container, box}, {textures: ALL}

dry cereal bowl:

• Task description: Bring me a cereal bowl
• True distribution: {objects: bowl, drying rack, drying towel, drying cloth}, {textures:

ALL}

Place:

non-electronic:

• Task description: Put down my mug.
• True distribution: {objects: ALL

iPad, laptop, phone}, {textures: All}

stable surface:

• Task description: Put down the pan.
• True distribution: {objects: pan, coaster, pallet}, {textures: ALL}

desired content:

• Task description: Put away my food.
• True distribution: {objects: tomato, pepper, peach, apple, container, box}, {textures: ALL}

Sweep:

hot object:

• Task description: Sweep the food into the sink.
• True distribution: {objects: food, sink, stove, pan}, {textures: red, dark red}

sweepable:

• Task description: Sweep the dust into the container.
• True distribution: {objects: bin, container, floor}, {textures: wooden, granite}

sharp:

18



Under review as a conference paper at ICLR 2024

• Task description: Sweep the food into the sink.

• True distribution: {objects: pepper, peach, apple, sink, knife, sharp block}, {textures:
ALL}
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