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Abstract

By now Bayesian methods are routinely used in practice for solving inverse prob-
lems. In inverse problems the parameter or signal of interest is observed only
indirectly, as an image of a given map, and the observations are typically further
corrupted with noise. Bayes offers a natural way to regularize these problems via
the prior distribution and provides a probabilistic solution, quantifying the remain-
ing uncertainty in the problem. However, the computational costs of standard,
sampling based Bayesian approaches can be overly large in such complex models.
Therefore, in practice variational Bayes is becoming increasingly popular. Never-
theless, the theoretical understanding of these methods is still relatively limited,
especially in context of inverse problems. In our analysis we investigate variational
Bayesian methods for Gaussian process priors to solve linear inverse problems. We
consider both mildly and severely ill-posed inverse problems and work with the
popular inducing variables variational Bayes approach proposed by Titsias [57].
We derive posterior contraction rates for the variational posterior in general settings
and show that the minimax estimation rate can be attained by correctly tunned
procedures. As specific examples we consider a collection of inverse problems
including the heat equation, Volterra operator and Radon transform and inducing
variable methods based on population and empirical spectral features.

1 Introduction

In inverse problems we only observe the object of interest (i.e. function or signal) indirectly, through a
transformation with respect to some given operator. Furthermore, the data is typically corrupted with
measurement error or noise. In practice the inverse problems are often ill-posed, i.e. the inverse of
the operator is not continuous. Based on the level of ill-posedness we distinguish mildly and severely
ill-posed cases. The ill-posedness of the problem prevents us from simply inverting the operator
as it would blow up the measurement errors in the model. Therefore, to overcome this problem,
regularization techniques are applied by introducing a penalty term in the maximum likelihood
approximation. Standard examples include generalized Tikhonov, total variation and Moore-Penrose
estimators, see for instance [4; 5; 9; 11; 18; 56] or a recent survey [3] on data-driven methods for
solving inverse problems

An increasingly popular approach to introduce regularity to the model is via the Bayesian paradigm,
see for instance [3; 7; 12; 29; 54] and references therein. Beside regularization, Bayesian methods
provide a probabilistic solution to the problem, which can be directly used to quantify the remaining
uncertainty of the approach. This is visualised by plotting credible sets, which are sets accumulating
prescribed percentage of the posterior mass. For computing the posterior typically MCMC algorithms
are used, however, these can scale poorly with increasing sample size due to the complex structure of
the likelihood. Therefore, in practice often alternative, approximation methods are used. Variational
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Bayes (VB) casts the approximation of the posterior into an optimization problem. The VB approach
became increasingly popular to scale up Bayesian inverse problems, see for instance the recent papers
[22; 31; 34; 42] and references therein. However, until recently these procedures were considered
black box methods basically without any theoretical underpinning. Theoretical results are just starting
to emerge [2; 46; 63; 64; 66], but we still have limited understanding of these procedures in complex
models, like inverse problems.

In our analysis we consider Gaussian process (GP) priors for solving linear inverse problems.
For Gaussian likelihoods, due to conjugacy, the corresponding posterior has an analytic form.
Nevertheless, they are applied more widely, in non-conjugate settings as well. However, training and
prediction even in the standard GP regression model, scales as O

(
n3
)

(or O
(
n2
)

for exact inference
in the recent paper [16] leveraging advances in computing hardware) and O

(
n2
)
, respectively, which

practically limits GPs to a sample size n of order 104. Therefore, in practice often not the full
posterior, but an approximation is computed. Various such approximation methods were proposed
based on some sparse or low rank structure, see for instance [13; 14; 33; 43; 49; 50; 51; 52; 57]. Our
focus here lies on the increasingly popular inducing variable variational Bayes method introduced in
[57; 58].

In our work we extend the inducing variable method for linear inverse problems and derive theoretical
guarantees for the corresponding variational approximations. More concretely we adopt a frequentist
Bayes point-of-view in our analysis by assuming that there exists a true data generating functional
parameter of interest and investigate how well the variational posterior can recover this object. We
derive contraction rates for the VB posterior around the true function both in the mildly and severely
ill-posed inverse problems. We then focus on two specific inducing variable methods based on
the spectral features of the prior covariance kernel. We show that for both methods if the number
of inducing variables are chosen large enough for appropriately tunned priors the corresponding
variational posterior concentrates around the true function with the optimal minimax estimation
rate. One, perhaps surprising aspect of the derived results is that the number of inducing variables
required to attain the optimal, minimax contraction rate is sufficiently less in the inverse setting than
in the direct problem. Therefore, inverse problems can be scaled up at a higher degree than standard
regression models.

Related literature. The theory of Bayesian approaches to linear inverse problems is now well
established. The study of their asymptotic properties started with the study of conjugate priors
[1; 15; 20; 26; 27; 28] before addressing the non-conjugate case [25; 45] and rate-adaptive priors
[26; 55]. By now we have a good understanding of both the accuracy of the procedure for recovering
the true function and the reliability of the corresponding uncertainty statements. The theory of
Bayesian non-linear inverse problems is less developed, but recent years have seen an increasing
interest in the topic, see the monograph [36] and references therein. Some algorithmic developments
for variational Gaussian approximations in non-linear inverse problems, and applications to MCMC
sampling, can be found in [40; 41].

The inducing variable approach for GPs proposed by [57; 58] has been widely used in practice.
Recently, their theoretical behaviour was studied in the direct, nonparametric regression setting. In
[8] it was shown that the expected Kullback-Leibler divergence between the variational class and
posterior tends to zero when sufficient amount of inducing variables were used. Furthermore, optimal
contraction rates [37] and frequentist coverage guarantees [38; 59; 60] were derived for several
inducing variable methods. Our paper focuses on extending these results to the linear inverse setting.

Organization. The paper is organized as follows. In Section 2 we first introduce the inverse regression
model where we carry out our analysis. Then we discuss the Bayesian approach using GPs and
its variational approximations in Sections 2.1 and 2.2, respectively. As our main result we derive
contraction rates for general inducing variable methods, both in the mildly and severely ill-posed
cases. Then in Section 2.3 we focus on two specific inducing variable methods based on spectral
features and provide more explicit results for them. We apply these results for a collection of
examples, including the Volterra operator, the heat equation and the Radon transform in Section 3.
Finally, we demonstrate the applicability of the procedure in the numerical analysis of Section 4
and conclude the paper with discussion in Section 5. The proof of the main theorem together with
technical lemmas and additional simulation study are deferred to the supplementary material.

Notation. Let C, c be absolute constants, independent of the parameters of the problem whose values
may change from line to line. For two sequences (an) and (bn) of numbers, an . bn means that there
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exists a universal constant c such that an ≤ cbn and we write an � bn if both an . bn and bn . an
hold simultaneously. We denote by an � bn if |an/bn| tends to zero. The maximum and minimum
of two real numbers a and b are denoted by a∨ b and a∧ b, respectively. We use the standard notation
δij = 1i=j . For m ≥ 1, we note Sm++ the set of positive-definite matrices of size m×m.

2 Main results

In our analysis we focus on the non-parametric random design regression model where the functional
parameter is observed through a linear operator. More formally, we assume to observe i.i.d. pairs of
random variables (xi, Yi)i=1,...,n satisfying

Yi = (Af0) (xi) + Zi, Zi
iid∼ N(0, σ2), xi

iid∼ G i = 1, . . . , n, (1)

where f0 ∈ L2(T ;µ), for some domain T ⊂ Rd and measure µ on T , is the underlying functional
parameter of interest and A : L2(T ;µ) 7→ L2(X ;G), for the measure G = Aµ on X , is a known,
injective, continuous linear operator. In the rest of the paper we use the notation Pf0 and Ef0
for the joint distribution and the corresponding expectation, respectively, of the data (X,Y ) =
(xi, Yi)i=1,...,n. Furthermore, we denote by EX , PX , EY |X , PY |X the expectation/distribution under
G⊗n and the law of (Yi)i given the design respectively. Finally, for simplicity we take σ2 = 1 in our
computations.

In the following, denoting A∗ the adjoint of A, we assume that the self-adjoint operator
A∗A : L2(T ;µ) 7→ L2(T ;µ) possesses countably many positive eigenvalues (κ2

j )j with respect to
the eigenbasis (ej)j (which is verified if A is a compact operator for instance). We remark that (gj)j
defined by Aej = κjgj is an orthonormal basis of L2(X ;G). We work on the ill-posed problem
where κj → 0, the rate of decay characterizing the difficulty of the inverse problem.
Definition 1. We say the problem is mildly ill-posed problem of degree p > 0 if κj � j−p has a
polynomial decay. In the severely ill-posed problem, the rate we consider is exponential, κj � e−cj

p

for c > 0, p ≥ 1, and p is the degree of ill-posedness once again.

In nonparametrics it is typically assumed that f0 belongs to some regularity class. Here we consider
the generalized Sobolev space

H̄β :=
{
f ∈ L2(T ;µ) : ‖f‖β <∞

}
, ‖f‖2β =

∑
j

j2β |〈f, ej〉|2 , (2)

for some β > 0. We note that the difficulty in estimating f0 from the data is twofold: one needs
to deal with the observational noise, which is a statistical problem, as well as to invert the operator
A, which comes from inverse problem theory. As a result of the ill-posedness of the problem,
recovering f0 from the observations may suffer from problems of unidentifiability and instability. The
solution to these issues is to incorporate some form of regularization in the statistical procedure. The
Bayesian approach provides a natural way to incorporate regularization into the model via the prior
distribution on the functional parameter. In fact penalized likelihood estimators can be viewed as the
maximum a posteriori estimators with the penalty term induced by a prior. For example Tikhonov
type regularizations can be related to the RKHS-norm of a Gaussian Process prior, see [35; 44] for a
more detailed discussion.

2.1 Gaussian Process priors for linear inverse problems

We focus on the Bayesian solution of the inverse problem and exploit the Gaussian likelihood structure
by considering conjugate Gaussian Process (GP) priors on f . A GP GP (η(·), k(·, ·)) is a set of
random variables {f(t) | t ∈ T }, such that any finite subset follows a Gaussian distribution. The
GP is described by the mean function η and a covariance kernel k(t, t′). We consider centered
GPs as priors (i.e. we take η ≡ 0). Then the bilinear, symmetric nonnegative-definite function
k : T × T 7→ R determines the properties of the process (e.g., its regularity). In view of the linearity
of the operator A the corresponding posterior distribution is also a Gaussian process. The mean and
covariance function of the posterior is given by

t 7→ KtAf

(
KAfAf + σ2In

)−1 y,

(t, s) 7→ k(t, s)−KtAf

(
KAfAf + σ2In

)−1
KAfs,

(3)
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where y = (y1, . . . , yn)T , Af =
(
Af(xi)

)
i=1,...,n

, KAfAf = EΠAfAfT ∈ Rn×n with EΠ

denoting the expectation with respect to the GP prior Π, KT
tAf =

(
EΠAf(xi)f(t)

)
i=1,...,n

∈ Rn,
see the supplement for the detailed derivation.

Due to the closed-form expressions for the posterior and the marginal likelihood, as well as the
simplicity with which uncertainty quantification may be produced, GP regression has gained pop-
ularity [44]. Furthermore, the asymptotic frequentist properties of posteriors corresponding to GP
priors in the direct problem, with A taken to be the identity operator, is well-established by now.
Optimal contraction rates and confidence guarantees for Bayesian uncertainty quantification were
derived in the regression setting and beyond, see for instance [10; 39; 47; 53; 48; 61; 62; 65] and
references therein. In the following, we say that εn is an L2–posterior contraction rate for the
posterior Π [ · |X,Y ] if for any Mn → 0

Ef0Π
[
f : ‖f − f0‖L2(T ;µ) ≥Mnεn | X,Y

]
→ 0.

In our analysis we consider covariance kernels with eigenfunctions coinciding with the eigenfunctions
of the operator A∗A, i.e. we take

k(t, s) =
∑

j
λjej(t)ej(s), (4)

where (λj)j denote the corresponding eigenvalues. The asymptotic behaviour of the corresponding
posterior has been well investigated in the literature both in the mildly and severely ill-posed inverse
problems. Rate optimal contraction rates and frequentist coverage guarantees for the resulting credible
sets were derived both for known and unknown regularity parameters [15; 26; 27; 28; 55]. These
results were further extended for other covariance kernels where the eigenfunctions do not exactly
match the eigenfunctions of the operator A, but in principle they have to be closely related, see
[1; 20; 25; 45].

However, despite the explicit, analytic form of the posterior given in (3) and the theoretical underpin-
ning, the practical applicability of this approach is limited for large sample size n. The computation
of the posterior involves inverting the n-by-n matrix KAfAf + σ2In, which has computational
complexity O(n3). Therefore, in practice often not the true posterior, but a scalable, computationally
attractive approximation is applied. Our focus here is on the increasingly popular inducing variable
variational Bayes method introduced in [57; 58].

2.2 Variational GP for linear inverse problems

In variational Bayes the approximation of the posterior is casted as an optimization problem. First a
tractable class of distributions Q is considered, called the variational class. Then the approximation
Ψ∗ is computed by minimizing the Kullback-Leibler divergence between the variational class and the
true posterior, i.e.

Ψ∗ = arg infQ∈QKL (Q||Π [ · |X,Y ]) .

There is a natural trade-off between the computational complexity and the statistical accuracy of
the resulting approximation. Smaller variational class results in faster methods and easier interpre-
tation, while more enriched classes preserve more information about the posterior ensuring better
approximations.

In context of the Gaussian process regression model (with the operator A taken to be the identity),
[58] proposed a low-rank approximation approach based on inducing variables. The idea is to
compress the information encoded in the observations of size n into m so called inducing variables.
We extend this idea for linear inverse problems. Let us consider real valued random variables
u = (u1, . . . , um) ∈ L2 (Π), expressed as measurable linear functionals of f and whose prior
distribution is Πu. In view of the linearity of u, the joint distribution of (f,u) is a Gaussian process,
hence the conditional distribution f |u denoted by Π(·|u), is also a Gaussian process with mean
function and covariance kernel given by

t 7→ KtuK
−1
uuu and (t, s) 7→ k(t, s)−KtuK

−1
uuKus,

respectively, where Ktu = EΠ(f(t)u) ∈ Rm and Kuu = EΠ(uuT ) ∈ Rm×m. Then the posterior
is approximated via a probability measure Ψu on (Rm,B(Rm)) by Ψ =

∫
Π[·|u]dΨu(u), which is
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absolutely continuous against Π and satisfies dΨ
dΠ (f) = dΨu

dΠu
(u(f)) . We note that the variables u

were first considered to be point evaluations of the GP prior process before these ideas were extended
to interdomain inducing variables, e.g. integral forms of the process [30; 58].

Taking Ψu = N (µu,Σ) as a multivariate Gaussian, the corresponding Ψ ∝ Π(·|u)Ψu is a Gaussian
process, with mean and covariance functions

t 7→ KtuK
−1
uuµu, and (t, s) 7→ k(t, s)−KtuK

−1
uu(Kuu − Σ)K−1

uuK
T
su. (5)

Letting µu and Σ be the free variational parameters, the variational family is taken as

Q :=
{

Ψ | Ψu = N (µu,Σu), µu ∈ Rm, Σu ∈ Sm++

}
,

consisting of “m–sparse” Gaussian processes.

By similar computations as those from [37], it can be shown that Π [ · |X,Y ] is equivalent to any
element of Q (they are mutually dominated) so that the KL divergence is always finite and there
exists a Ψ∗u, corresponding to the minimizer Ψ∗ of KL (Ψ||Π[·|X,Y ]). Furthermore, we have

dΨ∗

dΠ
(f) =

dΨ∗u
dΠu

(u) ∝ exp
(
− 1

2σ2

∫ ∑n

i=1
(Yi −Af(xi))

2dΠ(f |u)
)

∝ exp
(
− 1

2σ2

∑n

i=1
(Yi −KAf(xi)uK

−1
uuu)2

)
where KAf(xi)u = EΠAf(xi)u

T . One can observe that the parameters of the variational approxi-
mations are

µ∗u = σ−2Kuu

(
Kuu + σ−2KuAfKAfu

)−1
KuAfy,

Σ∗u = Kuu

(
Kuu + σ−2KuAfKuAf

)−1
Kuu,

(6)

for KuAf = KT
Afu = EΠu(Af)T the m× n matrix whose jth column is KAf(xi)u and (Af)T =

(Af(x1), . . . ,Af(xn)). Then the explicit form for the variational posterior Ψ∗ can be attained by
plugging in the parameters (6) into the variational mean and covariance function (5). We also define
QAfAf = KT

uAfKuuKuAf .

We investigate the statistical inference properties of the above variational posterior distribution Ψ∗.
More concretely we focus on how well the variational approximation can recover the underlying true
functional parameter f0 of interest in the indirect, linear inverse problem (1). We derive contraction
rate for Ψ∗ both in the mildly and severely ill-posed inverse problem case. Furthermore, we consider
both the standard exponential and polynomial spectral structures for the prior, i.e. we assume that the
eigenvalues of the prior covariance kernel satisfies either λj � j−αe−ξj

p

or λj � j−1−2α for some
α ≥ 0, ξ > 0. Finally, in view of [37], we introduce additional assumptions on the covariance kernel
of the conditional distribution of f |u ensuring that the variational posterior is not too far from the
true posterior in Kullback-Leibler divergence.

Theorem 1. Let’s assume that f0 ∈ H̄β and ‖fj‖∞ . jγ for β > 0, γ ≥ 0.

1. In the mildly-ill posed problem where κj � j−p, p > 0, if λj � j−1−2α for α > 0 and

(α ∧ β) + p > 3/2 + 2γ, the posterior contracts at the rate εinv
n = n−

α∧β
1+2α+2p .

2. In the severely ill-posed problem where κj � e−cj
p

, c > 0, p ≥ 1, if λj � j−αe−ξj
p

for
α ≥ 0, ξ > 0, the posterior contracts at the rate εinv

n = log−β/p n.

Furthermore, if there exists a constant C independent of n such that

EX ‖KAfAf −QAfAf‖ ≤ C, and EXTr (KAfAf −QAfAf ) ≤ Cnε2
n, (7)

where εn = n−
α∧β+p

1+2α+2p in 1., and εn = n−c/(ξ+2c) log−β/p+cα/(ξ+2c)(n) in 2., Ψ∗ contracts around
f0 at the rate εinv

n for the mildly and severely ill-posed problems i.e.

Ef0Ψ∗
[
f : ‖f − f0‖L2(T ;µ) ≥Mnε

inv
n

]
→ 0, Mn →∞.
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Proof. We provide the sketch of the proof here, the detailed derivation of the theorem is deferred
to the supplementary material. In a first step, we derive posterior contraction rates around Af0 in
empirical L2-norm under fixed design. In particular, we obtain an exponential decay of the probability
expectation in the form

EY |XΠ
[
f : n−1

∑n

i=1

(
Af −Af0

)2
(xi) ≥Mnε

2
n | X,Y

]
1An ≤ Ce−cM

2
nnε

2
n , (8)

for arbitrary Mn →∞, where εn = n−
α∧β+p

1+2α+2p in the mildly and εn = n−
c

ξ+2c log−
β
p+ cα

ξ+2c n in the
severely ill-posed problems and An is an event on the sample space Rn with probability tending to
one asymptotically. In the mildly ill-posed case, this follows from results in [17; 62], while additional
care is needed in the severely ill-posed case. As a second step, we go back to the random design
setting. We show, using concentration inequalities and controlling the tail probability of GPs in the
spectral decomposition, that the empirical and population L2-norms are equivalent on a large enough
event. This implies contraction rate with respect to the ‖ · ‖L2(X ,G)-norm around Af0, similarly to
(8). In the third step, using the previous result on the forward map, we derive contraction rates around
f0. To achieve this we apply the modulus of continuity techniques introduced in [25]. Notably, we
extend their ideas to infinite Gaussian series priors in the severely ill-posed case as well. Since in
all these steps we can preserve the exponential upper bound for the posterior contraction (on a large
enough event), we can apply Theorem 5 of [46], resulting in contraction rates for the VB procedure.
It requires a control of the expected KL divergence between these two distributions, which follows
from our assumptions on the expected trace and spectral norm of the covariance matrix of Af |u, see
Lemma 3 in [37] for the identity operator A.

We briefly discuss the above results. First of all, the L2(T ;µ)-contraction rate of the true posterior,
to the best of our knowledge, wasn’t derived explicitly in the literature before, hence it is of interest
in its own right. Nevertheless, the main message is that the variational posterior achieves the same
contraction rate as the true posterior under the assumption (7). Note that in the mildly ill-posed
inverse problem case for eigenvalues λj � j−1−2β (i.e. taking α = β), the posterior contracts with
the minimax rate n−β/(1+2β+2p). Note that the d–dimensional case directly follows from this result
when one defines the regularity class (2) and ill-posedness (Definition 1) with β/d and p/d which
would imply the rate n−β/(d+2β+2p). Similarly in the severely-ill posed case one can achieve the
minimax logarithmic contraction rate. Furthermore, the choice of the eigenvalue structure in the
theorem was done for computational convenience, the results can be generalised for other choices of
λj as well. Though we considered the random variables u fixed as we do not optimize them above,
they could conceivably be considered as free variational parameters and selected at the same time as
µu and Σu.

In the next subsection we consider two specific choices of the inducing variables, i.e. the population
spectral feature method and its empirical counter part. We show that under sufficient condition on the
number of inducing variables condition (7) is satisfied implying the contraction rate results derived in
the preceding theorem.

2.3 Population and empirical spectral features methods

We focus here on two inducing variables methods, based on the spectral features (i.e. eigenspectrum)
of the empirical covariance matrix KAfAf = EΠAfAfT and the corresponding population level
covariance operator (x, y) 7→ EΠAf(x)Af(y).

We start with the former method and consider inducing variables of the form

uj =
∑n

i=1
vijAf(xi), j = 1, . . . ,m, (9)

where vj = (v1
j , . . . , v

n
j ) is the eigenvector ofKAfAf corresponding to the jth largest eigenvalue ρj

of this matrix. Similarly to the direct problem studied in [8; 37], this results in (KAfAf )ij = ρjδij ,
(KAfu)ij = ρjv

i
j , QAfAf =

∑m
j=1 ρjvjv

T
j , and KAfAf − QAfAf =

∑n
j=m+1 ρjvjv

T
j . The

computational complexity of deriving the first m eigenvectors of KAfAf is O(n2m). This is still
quadratic in n, which sets limitations to its practical applicability, but it can be computed for arbitrary
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choices of the prior covariance operator and map A. We also note that this choice gives the optimal
rank–m approximation QAfAf of KAfAf and it was noted in [8] that it gives the minimiser of the
trace and norm terms in (7).

The second inducing variables method is based on the eigendecomposition of covariance kernel
(x, y) 7→ EΠAf(x)Af(y). Let us consider the variables

uj =

∫
X
Af(x)ej(x)dG(x), j = 1, . . . ,m. (10)

Again, by extending the results derived in the direct problem [8] to the inverse setting, this
results in (KAfAf )ij = λjκjδij , (KAfu)ij = λjκjφ

i
j , QAfAf =

∑m
j=1 λjκjφjφ

T
j , and

KAfAf − QAfAf =
∑n
j=m+1 λjκjφjφ

T
j , where φj = (φj(x1), . . . , φj(xn))

T . The compu-
tational complexity of this method is O(nm2), which is substantially faster than its empirical counter
part. However, it requires the exact knowledge of the eigenfunctions of the prior covariance kernel,
and therefore in general has limited practical applicability.
Corollary 1. Let’s assume that f0 ∈ H̄β , ‖gj‖∞ . jγ for β > 0, γ ≥ 0 and in the

1. mildly-ill posed case κj � j−p: take prior eigenvalues λj � j−1−2α for some α > 0,
(α ∧ β) + p > 3/2 + 2γ, number of inducing variables mn ≥ n

1
(1+2p+2α) and denote by

εinv
n = n−

α∧β
1+2α+2p .

2. severely ill-posed case κj � e−cj
p

: take prior eigenvalues λj � j−αe−ξj
p

for α ≥ 0,
ξ > 0, number of inducing variables mp

n ≥
(
ξ + 2c

)−1
log n, and introduce the notation

εinv
n = log−β/p n.

Then both for the population (if γ = 0 in 1.) and empirical spectral features variational methods the
corresponding variational posterior distribution contracts around the truth with the rate εinv

n , i.e.

Ef0Ψ∗
[
f : ‖f − f0‖L2(T ;µ) ≥Mnε

inv
n

]
→ 0, Mn →∞.

Remark 1. In the mildly ill-posed inverse problem taking α = β results in the minimax contraction
rate for mn ≥ n

1
1+2p+2α . Note that it is substantially less compared to the direct problem with p = 0,

hence the computation is even faster in the inverse problem case.

3 Examples

In this section we provide three specific linear inverse problems as examples. The Volterra (integral)
operator and the Radon transformations are mildly ill-posed, while the heat-equation is a severely
ill-posed inverse problem. We show that in all cases by optimally tunning the GP prior and including
enough inducing variables, the variational approximation of the posterior provides (from a minimax
perspective) optimal recovery of the underlying signal f0.

3.1 Volterra operator

First, let us consider the Volterra operator, A : L2[0, 1] −→ L2[0, 1] satisfying that

Af(x) =

∫ x

0

f(s)ds, A∗f(x) =

∫ 1

x

f(s)ds. (11)

The eigenvalues of A∗A and the corresponding eigenbases are given by κ2
j = (j −

1/2)−2π−2, ej(x) =
√

2 cos ((j − 1/2)πx) , gj(x) =
√

2 sin ((j − 1/2)πx) respectively, see [21].
Therefore the problem is mildly ill-posed with degree p = 1 and these bases are uniformly bounded,
i.e. supj ‖ej‖∞ ∨ ‖gj‖∞ <∞. The following lemma is then a direct application of Corollary 1.

Corollary 2. Consider the Volterra operator in (1) and assume that f0 ∈ H̄β , for some β > 1/2. Set
the eigenvalues in (4) as λj = j−1−2β . Then the variational posterior Ψ∗ resulting from either the
empirical or population spectral features inducing variable methods achieves the minimax contraction
rate if the number of inducing variables exceeds mn & n

1
3+2β , i.e. for arbitrary Mn →∞

Ef0Ψ∗
[
‖f − f0‖L2[0,1] ≥Mnn

−β/(3+2β)
]
→ 0.
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3.2 Heat equation

Next let us consider the problem of recovering the initial condition for the heat equation. The heat
equation is often considered as the starting example in the PDE literature and, for instance, the
Black-Scholes PDE can be converted to the heat equation as well. We consider the Dirichlet boundary
condition

∂

∂t
u(x, t) =

∂2

∂x2
u(x, t), u(x, 0) = µ(x), u(0, t) = u(1, t) = 0, (12)

for u defined on [0, 1] × [0, T ], T > 0. For µ ∈ L2[0, 1], u(x, t) =
√

2
∑∞
j=1 µje

−j2π2t sin(jπx),

with µj =
√

2
∫ 1

0
µ(s) sin(jπs)ds. Therefore, if A : D 7→ D, with D :=

{f ∈ L2[0, 1], f(0) = f(1) = 0}, is such that, for µ = f , Af(x) = u(x, T ), then the cor-
responding singular-values and singular-functions of the operator A are κj = e−j

2π2T and
ej(x) = gj(x) =

√
2 sin(jπx). Therefore it is a severely ill-posed problem with p = 2 and

c = π2T . We also note that supj ‖ej‖∞ ∨ ‖gj‖∞ <∞. This problem has been well studied both in
the frequentist [6; 19; 32] and Bayesian setting [28; 54]. Then, by direct application of Corollary 1
we can provide optimality guarantees for the variational Bayes procedure in this model as well.
Corollary 3. Consider the heat equation operator A as above in the linear inverse regression model
(1) and assume that f0 ∈ H̄β for some β > 0. Furthermore, we set the eigenvalues λj = j−αe−ξj

2

,
α ≥ 0, ξ > 0 in (4). Then the variational approximation Ψ∗ resulting from either of the spectral
features inducing variables method with mn ≥

(
ξ + π2T

)−1/2
log1/2 n achieves the minimax

contraction rate, i.e. for arbitrary Mn →∞

Ef0Ψ∗
[
‖f − f0‖L2([0,1]) ≥Mn log−β/2 n

]
→ 0.

3.3 Radon transform

Finally, we consider the Radon transform [24], where for some (Lebesgue)–square-integrable function
f : D → R defined on the unit disc D =

{
x ∈ R2 : ‖x‖2 ≤ 1

}
, we observe its integrals along any

line intersecting D. If we parameterized the lines by the length s ∈ [0, 1] of their perpendicular from
the origin and the angle φ ∈ [0.2π) of the perpendicular to the x-axis, we observe

Af(s, φ) =
π

2
√

1− s2

∫ √1−s2

−
√

1−s2
f(s cosφ− t sinφ, s sinφ+ t cosφ)dt, (13)

where (s, φ) ∈ S = [0, 1] × [0, 2π). The Radon transform is then a map from A : L2(D;µ) →
L2(S;G), where µ is π−1 times the Lebesgue measure and dG(s, φ) = 2π−1

√
1− s2dsdφ. Then

A is a bijective, mildly ill-posed linear operator of order p = 1/4. Furthermore, the operator’s
singular value decomposition can be computed via Zernike polynomials Zkm (degree m, order k)
and Chebyshev polynomials of the second kind Um(cos θ) = sin ((m+ 1)θ) / sin θ ≤ m+ 1, see
[24]. Translating it to the single index setting, we get for some functions l,m : N 7→ N satisfying
m(j) �

√
j and |l(j)| ≤ m(j), that

ej(r, θ) =
√
m(j) + 1Z

|l(j)|
m(j) e

jl(j)θ, gj(s, φ) = Um(j)(s)e
jl(j)φ,

if polar coordinates are used on D. Therefore, we have supj(‖ej‖∞ ∨ ‖gj‖∞)/
√
j <∞. Then, by

directly applying Corollary 1 to this setting we can show that the variational Bayes method achieves
the minimax contraction rate.
Corollary 4. Consider the Radon transform operator (13) in the inverse regression model (1) and
let us take f0 ∈ H̄β , β > 9/4. Taking polynomially decaying eigenvalues λj � j−1−2β , the
empirical spectral features variational Bayes method achieves the optimal minimax contraction rate
if mn & n1/(3/2+2β), i.e. for any Mn →∞

Ef0Ψ∗
[
‖f − f0‖L2(D;µ) ≥Mnn

−β/(3/2+2β)
]
→ 0.

4 Numerical analysis

We demonstrate the approximation accuracy of the variational Bayes method on synthetic data. We
consider here the recovery of the initial condition of the heat condition 3.2, which is a severely
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ill-posed. In the supplement we provide additional simulation study for mildly ill-posed inverse
problems as well. We set the sample size n = 8000, take uniformly distributed covariates on [0, 1),
and let

f0(t) =
√

2
∑

j
cjj
−(1+β) sin(jπt), cj =

{
1 + 0.4 sin(

√
5πj), j odd,

2.5 + 2 sin(
√

2πj), j even,

for β = 1. The independent- observations are generated as Yi ∼ N (Af0(xi), 1), depending on the
solution of the forward map Af0 after time T = 10−2.

We consider the prior with λj = e−ξj
2

for ξ = 10−1. In view of Corollary 3 the optimal number

of inducing variables is m =
(
ξ + 2π2T

)−1/2
log1/2 n ≈ 6. We consider the population spectral

feature method described in (10) and plot the variational approximation of the posterior for m = 6
and m = 3 inducing variables in Figure 1. We represent the true posterior mean by solid red and
the upper and lower pointwise 2.5% quantiles by dashed red curves. The true function is given by
blue and the mean and quantiles of the variational approximation by solid and dotted purple curves,
respectively.

Observe that with m = 6, see left part of Figure 1, the variational approximation results in similar
95% pointwise credible bands and posterior mean as the true posterior, providing an accurate
approximation. Also note that both the true and the variational posterior contain f0 at most of the
points, indicating frequentist confidence validity of the set. At the same time, by taking a factor
of two less inducing points, i.e. m = 3, the credible sets will be overly large, resulting in good
frequentist coverage, but suboptimally large posterior spread, see the second plot in Figure 1.

The computations were carried out with a 2,6 GHz Quad-Core Intel Core i7 processor. The compu-
tation of the exact posterior mean and covariance kernel on a grid of 100 points took over half an
hour (in CPU time), while the variational approximation was substantially faster, taking only 50.5
ms, resulting in a 3.68 ∗ 104 times speed.

Figure 1: True and variational posterior means and credible regions for Gaussian series prior (sine
basis) on the initial condition µ = f0 of the heat equation (12), for m = 6 (left) or m = 3 (right)
inducing variables from method (10).

A more extensive numerical analysis is available in the appendix, considering the application of our
method to the settings of Sections 3.1 and 3.3 as well. We conduct these experiments several times
and compare the average Mean Integrated Squared Error (MISE), see appendix A, and compute time
for different choices of m. We observe that in all our examples, while increasing m results in longer
computation, the MISE does not improve after a threshold close to the one presented in our results.
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Therefore, it is sufficient to include as many inducing variables as we considered in Corollary 1 to
obtain better performance. More than that would would only increase the computation complexity.
In the Appendix, we also provide a literature review and some justifications of how relevant these
problems are in practice

5 Discussion

We have extended the inducing variables variational Bayes method for linear inverse problems and
derived asymptotic contraction rate guarantees for the corresponding variational posterior. Our
theoretical results provide a guide for practitioners on how to tune the prior distribution and how
many inducing variables to apply (in the spectral feature variational Bayes method) to obtain minimax
rate optimal recovery of the true functional parameter of interest. We have demonstrated the practical
relevance of this guideline numerically on synthetic data and have shown that using less variables
results in highly suboptimal recovery.

In our analysis we have considered priors built on the singular basis of the operator A. In principle
our results can be extended to other priors as well, until the eigenbasis of the covariance operator is
not too different from the basis of the operator A. This, however, would complicate the computation
of the Kullback -Leibler divergence between the variational family and the posterior, resulting in extra
technical challenges. In this setting the empirical spectral features method seems practically more
feasible, especially, if the eigenbasis of the covariance kernel is not known explicitly. In the literature
several different types of inducing variable methods were proposed, considering other, practically
more relevant approaches of interest. Furthermore, extension to other type of inverse problems is also
feasible. For instance in the deconvolution problem, when f0 is convoluted with a rectangular kernel,
the eigenvalues given by the SVD are the product of a polynomially decaying and oscillating part and
the “average degree” of ill-posedness does not match the lower and upper bounds [23]. Extension
to non-linear inverse problem is highly relevant, as these problems tend to be computationally even
more complex, but very challenging. One possible approach is to linearize the problem and take its
variational approximation. Finally, it is of importance to derive frequentist coverage guarantees for
VB credible sets. Our approach cannot directly be extended for this task. However, in the direct
case, for some special choices of inducing variables, frequentist coverage guarantees were derived
using kernel ridge regression techniques [38; 60]. This result, although computationally somewhat
cumbersome, in principle can be extended to the inverse setting as well. One last drawback of
our results is that the priors we consider are non-adaptative in the mildly ill-posed case. Minimax
contraction rates are attainable only if the covariance eigenvalues are properly tuned, given the
smoothness β. While this is not an issue the severely ill-posed case in our results, we keep the study
of adaptation for future works as it is a much more involved question.

Funding. Co-funded by the European Union (ERC, BigBayesUQ, project number: 101041064).
Views and opinions expressed are however those of the author(s) only and do not necessarily reflect
those of the European Union or the European Research Council. Neither the European Union nor the
granting authority can be held responsible for them.
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