Mapping Faithful Reasoning in Language Models

Jiazheng Li* Andreas Damianou
King’s College London Spotify
UK UK
jiazheng.1li@kcl.ac.uk andread@spotify.com
J Rosser José Luis Redondo Garcia Konstantina Palla
University of Oxford Spotify Spotify
UK Spain UK

jrosser@robots.ox.ac.uk joseluisr@spotify.com konstantinap@spotify.com

Abstract

Chain-of-thought (CoT) traces promise transparency for reasoning language mod-
els, but prior work shows they are not always faithful reflections of internal com-
putation. This raises challenges for oversight: practitioners may misinterpret
decorative reasoning as genuine. We introduce Concept Walk, a general framework
for tracing how a model’s internal stance evolves with respect to a concept direc-
tion during reasoning. Unlike surface text, Concept Walk operates in activation
space, projecting each reasoning step onto the concept direction learned from
contrastive data. This allows us to observe whether reasoning traces shape out-
comes or are discarded. As a case study, we apply Concept Walk to the domain of
Safety using Qwen 3-4B. We find that in “easy” cases, perturbed CoTs are quickly
ignored, indicating decorative reasoning, whereas in “hard” cases, perturbations
induce sustained shifts in internal activations, consistent with faithful reasoning.
The contribution is methodological: Concept Walk provides a lens to re-examine
faithfulness through concept-specific internal dynamics, helping identify when
reasoning traces can be trusted and when they risk misleading practitioners.

1 Introduction

As large language models (LLMs) increasingly employ multi-step reasoning, oversight depends not
only on what models decide, but also on their reasoning traces. In high-stakes contexts, practitioners
often inspect CoT traces to verify that decisions are grounded in sound reasoning [12}[14]. These
traces are treated as windows into the model’s “thinking”, intended to build trust. However, this
approach rests on a critical assumption that may not hold: that CoT traces faithfully represent the
actual computational processes that determine the model’s output. Growing evidence suggests this
assumption is problematic (see Section[2.T)). Rather than reflecting genuine reasoning pathways, these
traces may function primarily as post-hoc rationalisations, i.e. plausible explanations constructed after
the model has already determined its answer through less transparent mechanisms. This disconnect
between apparent reasoning and actual computation creates a significant risk: practitioners may place
trust in explanations that played little or no role in generating the decisions they seek to validate.

Recent research on faithfulness has highlighted this fragility, showing that CoTs can diverge from the
processes that actually determine final answers (see Section [2.1] for more details). While these results
raise caution, they also point towards the need to study how reasoning unfolds internally relative
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to specific concepts of interest. Mechanistic interpretability seeks to bridge this gap and provide
explanations of how LLMs produce their outputs. Prior work has mapped isolated mechanisms such
as feature directions [22] 28] 25 21]] and circuits [8} [17], but these approaches are often static or
local and offer limited insight into how representations evolve across multi-step reasoning. Recent
advances begin to address this gap. For example, Brinkmann et al. [4]] show that a transformer
trained on symbolic path-finding learns an interpretable backward-chaining procedure, illustrating
how internal mechanisms can diverge from or complement surface-level reasoning traces. Extending
this line of work to production-scale models, Dutta et al. [9]] provide a mechanistic account of CoT
reasoning in Llama-2 7B, revealing multiple parallel pathways for answer generation and a mid-layer
shift from pretraining priors to in-context priors. Venhoff et al. [26] demonstrate how steering vectors
influence reasoning trajectories and reveal cross-step dependencies. Similarly, Bogdan et al. [3]
introduce techniques for identifying reasoning steps that play a causal role in final predictions.

Building on these advances, we introduce Concept Walk, a general framework for tracing how a
model’s internal stance evolves with respect to a concept direction during reasoning. We use the
Concept Walk to observe the CoT dynamics in cases where CoT is computational and cases where it
is decorative. As an illustrative case study, we apply Concept Walk to the Safety concept in the Qwen
3-4B thinking model. We focus specifically on “safety reasoning”; the structured process by which
an LLM evaluates the safety of an interaction during reasoning. It involves the model examining
the input prompt, its potential outputs, and its own reasoning steps to detect risks such as harmful
content, misuse, bias, or policy violations. We examine how safety considerations evolve internally
across reasoning traces, and how such dynamics relate to the faithfulness of CoT traces. We ask: how
do internal safety activations behave differently in computational vs. decorative reasoning cases?

While prior filtering methods identify when CoT traces influence outcomes, they do not reveal how
internal concept representations evolve during reasoning [10} [13]. Concept Walk complements these
approaches by providing a temporal, concept-specific lens, allowing us to distinguish when reasoning
steps are integrated and propagated in internal activations versus when their effects are transient or
decorative. Our key contributions are

* We introduce Concept Walk, a general framework for tracing concept-related representations
across reasoning steps in language models.

* We apply this method to the case of Safety using the Qwen 3-4B thinking model, showing
a systematic distinction between “easy” cases, where chain-of-thought traces are largely
decorative, and “hard” cases, where reasoning influences safety outcomes.

* We provide empirical analysis on two synthetic datasets.

2 Background

2.1 Chain of Thought Monitoring and Faithfulness

Reasoning models are a class of LLMs designed to carry out structured, multi-step reasoning. Unlike
standard instruction-tuned models, they produce explicit CoT traces, often spanning many steps,
before delivering a final answer. Typically, these reasoning traces are made available to users,
offering insight into the model’s thought process. This reasoning capability can be achieved through
different approaches. Some models produce step-by-step reasoning when prompted with appropriate
instructions, such as PaLM with chain-of-thought prompting [27, [7], while others are explicitly
trained for multi-step reasoning through process supervision or architectural modifications [15]], such
as OpenAl ol [18] and DeepMind Gemini thinking modes [23].

The capacity for monitorable reasoning has positioned thinking LLMs as potentially suitable tools
for decision-making contexts where explanations are essential. In principle, reasoning traces could
provide hisman moderators with insights into how models arrive at their conclusions, enabling
oversight and supervision. If faithful, such transparency would contribute to safer, more reliable, and
more accountable Al-assisted decision-making [[12} (14 [19].

However, the separation between internal reasoning processes and the final output in CoT reason-
ing creates a critical dependency: the trustworthiness of the reasoning traces themselves. Recent
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research has raised concerns about the unfaithfulness of CoT explanations, i.e., the risk that the
stated reasoning does not faithfully reflect the model’s actual decision-making process [6} [13} 20].
When CoT explanations are unfaithful, they can lead to misplaced trust: critical safety-relevant
factors influencing model behaviour may remain unexpressed, making oversight via reasoning-trace
inspection unreliable. To better characterise this unreliability, it is useful to distinguish between
two modes of reasoning traces: cases where the CoT is functionally integrated into the model’s
computation, and cases where it serves primarily as a post-hoc rationalisation.

2.2 CoT-as-computation vs. CoT-as-rationalisation

Evidence suggests that in some cases, CoT outputs may function as post-hoc rationalisation rather
than genuine reflections of the underlying computation [10l[12]]. In such cases, the model generates
plausible-sounding reasoning after it has already determined the final answer, without that explanation
playing a causal role in the decision-making process. This means that the textual reasoning can
diverge from the actual internal computations that produced the output, potentially omitting key
decision factors or introducing fabricated steps that appear coherent to a human reader. Chen et al.
[5]] highlights the limits of CoT faithfulness, showing that reasoning models often conceal internal
decision factors, even when those factors clearly influence outputs. For safety-critical contexts, only
reasoning traces that reliably covary with a model’s outputs can provide meaningful insight into
its internal safety posture. Further, emerging work points to architectural constraints as a possible
root cause. The distributed and parallel nature of computation in transformer-based models may
fundamentally limit the degree to which reasoning traces can transparently and accurately represent
the internal processes that produce a final answer [2].

Prior work has sought to identify cases where CoT is genuinely integrated into the computation,
rather than produced post-hoc, i.e. CoT-as-computation. Lanham et al. [13] and Emmons et al. [10]
show that task difficulty and targeted perturbations, such as truncating or altering intermediate steps,
can be used to detect when a model relies on its CoT to produce the correct answer. This filtering
does not prove that the model exclusively uses the CoT to reach its answers, nor does it guarantee
that all relevant internal computation is verbalised. The model may still use reasoning processes not
fully captured in its verbal output. However, it reduces the likelihood of analysing purely post-hoc
rationalisations. Thus, it increases the likelihood that the expressed reasoning covaries with the final
answer and meaningfully contributes to the model’s decision-making process, making the resulting
traces a more reliable window into the model’s dynamic safety reasoning.

3 Methodology

To investigate whether temporal patterns in internal activations can distinguish genuine from su-
perficial safety reasoning, we design a three-stage methodology. First, we separate faithful from
unfaithful reasoning traces by filtering for cases where perturbing the CoT meaningfully alters the
model’s final output. This allows us to focus on cases where the CoT is integrated into computation,
rather than merely decorative. Next, we compute a safety direction in activation space by contrasting
safe and unsafe prompts. This vector provides an interpretable axis along which the model encodes
safety-related information. Finally, we trace the temporal evolution of safety signals by projecting
activations from each reasoning step onto the safety direction. The resulting trajectories, which
we term the Concept Walk, reveal how internal safety representations emerge, persist, or decay
over the course of reasoning, and whether these dynamics differ between CoT-as-computation and
CoT-as-rationalisation cases. Together, these steps provide a principled framework for linking the
faithfulness of reasoning traces to the temporal dynamics of internal safety activations.

3.1 Filtering for CoT-as-computation

As presented in Section[2.2] not all CoT traces are faithful reflections of the model’s reasoning; many
function as post-hoc rationalisations. For our purposes, this presents a fundamental challenge: safety
dynamics inferred from unfaithful CoTs may reflect fabricated justifications rather than genuine
decision processes. In safety-critical contexts, such traces cannot be relied upon to reveal the model’s
internal safety posture.



Inspired by [13]] and [10], who show that task difficulty induces reliance on CoT, we adopt a
perturbation-sensitivity filtering strategy to isolate “hard” cases. Specifically, we retain only exam-
ples where perturbing the CoT, through injected errors, leads to significant degradation in model
performance. This filters out cases where CoT serves merely as a rationalisation i.e. “easy” cases
and retains only those where it appears to be functionally integrated into the model’s computation.
These “hard” cases allow us to more confidently interpret the CoT as a window into the model’s
decision process, and thus form a robust foundation for our subsequent safety analysis. See appendix
for more details.

3.2 Computing the Safety Vector

To identify the activation direction corresponding to Safety behaviour in language models, we use
the Difference of Means approach. This technique is based on constructing contrastive datasets that
differ in the specific concept of interest and computing the difference in their mean activations. In our
case, we construct datasets of unsafe and safe nature. Let Dyygare and Dg,ge be sets of prompts that
are unsafe and safe respectively, structured such that each unsafe prompt has a corresponding safe
variant with similar syntax but differing intent. Mean activations at a given layer £ and token ¢:
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Here z![t] € R denotes the d-dimensional residual stream activation at layer [ for token position ¢
and for sample . The Safety direction 7(“-*) at each (£, t) is then given by:
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The vector © captures the direction in activation space along which the two datasets differ with respect
to the concept of interest. Ideally, Dgyre and Dypsae differ only in the target concept, i.e., explicitly
matched counterfactuals.

Selecting the Safety Direction We extract a candidate safety vector v(“?) at each token position ¢
and layer ¢ using the Difference of Means method described above, across layers and post-instruction
token positions. To select the final direction for intervention, we follow Arditi et al. [1] and evaluate
each candidate using a validation set, choosing the vector that most effectively suppresses refusal
on unsafe prompts while minimally altering model behaviour on safe ones. Specifically, we apply
filtering based on refusal suppression (bypass score), refusal induction, and KL divergence constraints.
We exclude late-layer vectors that may act primarily on output token suppression. Full details of the
selection procedure are provided in Appendix

3.3 The Concept Walk

Using the safety vector (Section [3.2), we construct the Concept Walk for Safety, a temporal profile
of safety activation across reasoning steps. We run the model in thinking mode and, at each CoT
step s, extract the residual stream activations for all tokens generated in that step. We average these
token activations into a single step-level activation vector h,, analogous to how Venhoff et al. [26]
average across positions in a layer, but here aggregated over the tokens belonging to a reasoning step.
Formally, let Ts be the set of token indices belonging to reasoning step s. The step-level activation is:

where z[t] € R? is the residual stream activation at token ¢. We then compute the cosine similarity
between h, and the precomputed safety vector v(¢"), yielding a scalar alignment score:

as = cos(hg,v)).

The scalar a4 quantifies the directional alignment of the model’s internal state at step s with the
learned safety vector, independent of whether the surface text mentions safety concepts. By averaging



token activations and computing their cosine similarity with a vector derived from contrasting safe
and unsafe prompts, we capture the model’s internal safety reasoning rather than surface-level word
usage. This allows us to detect when the model internally recognises safety concerns, even when
its written reasoning does not explicitly mention safety, and track whether this internal awareness
persists or fades throughout the reasoning process. By plotting as over s for many prompts, we
obtain the Concept Walk, i.e., a trajectory showing whether internal safety activation emerges early
and persists or decays mid-reasoning.

We note that we compute the safety direction in non-thinking mode (single-pass inference) and
apply it to activations from thinking mode. This assumes that the core encoding of safety is similar
across modes, even if its temporal expression differs. This choice reduces variability introduced by
extended reasoning traces, providing a stable baseline for temporal comparisons. While differences
in representation between modes are possible (see Section @), such a static direction serves as a
reasonable proxy in this first-pass analysis, and future work could compare mode-specific safety
vectors directly.

3.4 Concept activations in perturbed CoTs

To test whether safety activations are influenced by reasoning, we apply the Concept Walk to the
perturbed CoTs constructed in previous step (see Section [3.1) in which flawed reasoning steps are
injected. Comparing trajectories from baseline and perturbed traces allows us to assess whether the
model’s internal safety state tracks with its use of reasoning, rather than functioning decoratively.
To compute safety activation for the perturbed step - which is not model-generated - we perform a
forward pass through the model with the injected text and extract residual stream activations at the
corresponding token positions. For more details see Appendix [7.3] This yields a step-level activation
vector for the injected step and all downstream ones. We compare this perturbed activation trajectory
to that of the original CoT using cosine similarity to the safety direction. The goal is to measure not
only whether the output flips, but also whether the internal safety signal shifts in meaningful ways.

We hypothesize that in hard cases - where the model relies on its reasoning to make decisions -
perturbations should lead to stronger and more structured changes in internal safety alignment. In
contrast, in easy cases, we expect smaller or noisier shifts, since the model likely ignores the CoT.
This allows us to go beyond output-based filtering and directly test whether the model’s internal
reasoning state tracks with causal use of CoT.

4 Experimental setup

4.1 Datasets

We construct two synthetic datasets, Harm and Hate, using the instruction-tuned model
mistralai/Mistral-7B-Instruct-v0.2 [L1, [16], a 7.3B parameter transformer released un-
der the Apache 2.0 license. The application domain focuses on interactions with a music Al assistant,
specifically simulating a scenario in which a user requests that the LLM construct a playlist. For
example, a data sample may look like "a playlist for a dinner party".

Category Training Validation Test Total Pairs

Harm 1,746 873 292 2911
Hate 2,890 1,445 484 4,819

Table 1: Datasets. The values denote the number of paired instances for each category and dataset
split, where each pair consists of one safe-labeled and one unsafe-labeled sample.

To generate the synthetic data, we prompt Mistral with Harm and Hate policy guidelines (descriptions
of safe/unsafe requests) and request examples of both compliant and non-compliant user inputs. Our
dataset contains 7, 730 total pairs across the two safety categories and an additional baseline. See
Table|l] The training data is used to learn safety directions, the validation set is used to compute and
evaluate these learned safety directions, and the test examples provide evaluation of method across
the different safety categories.



We adopt the refusal metric proposed by [1] to determine the model’s assigned label for each data
instance. If the metric value is greater than 0, the instance is labelled as violative; if it is less than 0,
it is labelled as non-violative. We exclude all prompts where the model’s predicted label does not
match the ground-truth label. After applying this filtering, the Hate dataset contained 256 violative
and 462 non-violative cases, and the Harm dataset contained 181 violative and 290 non-violative
cases. These final counts refer to isolated cases rather than paired instances.

4.2 Model

We investigate the internal reasoning mechanisms of Qwen 3-4B [24]], a 4-billion parameter language
model that exhibits controllable thinking capabilities. The model follows a three-stage training
paradigm: (1) multi-lingual pre-training on diverse text corpora, (2) targeted CoT supervised fine-
tuning to develop structured reasoning abilities, and (3) reinforcement learning from human feedback
for alignment with human preferences.

Architecturally, Qwen 3-4B employs a standard Transformer decoder architecture with 36 layers
and supports context lengths up to 128,000 tokens. A key distinguishing feature is the model’s
ability to dynamically toggle between explicit reasoning and direct response modes through an
enable_thinking parameter. When enabled, the model generates intermediate reasoning steps be-
fore producing its final output, providing visibility into its decision-making process. This controllable
thinking mechanism makes Qwen 3-4B particularly suitable for mechanistic interpretability studies,
as it allows systematic comparison of internal representations across different reasoning modes. Note
that we use Mistral-generated prompts to evaluate Qwen to avoid potential data contamination and
ensure the model encounters realistic, unseen inputs that better reflect deployment conditions.

5 Results

Figures [I|and 2] show the Concept Walk for the Hate and Harm datasets, split by “’hard” and “easy”
cases. The dashed line indicates how many cohort cases reach each reasoning step. Perturbations
(injected flawed reasoning steps) occur at the midpoint of each original CoT. Because CoT lengths
vary, this midpoint appears at different absolute step indices, shifting the injection point horizontally
in the raw-index plots. To address this, in the bottom row figures, we normalise the x-axis by CoT
length, aligning all injections at 0.5. This makes it easier to compare safety activation at the same
relative reasoning point across cases.

Our analysis reveals a divergence in how the model processes safety information in hard versus easy
cases, providing support for the CoT-as-computation interpretation in the former (see Section[2.2)).
In hard cases, perturbing the reasoning trace leads to sustained and structured changes in internal
safety activation, spikes that persist over multiple reasoning steps, often well past the perturbation
point. This suggests that in these cases, the model is integrating the modified reasoning into its
decision process. In contrast, easy cases show much smaller, transient perturbation effects: while
a safety-relevant injection can momentarily increase safety activation, the model rapidly reverts
to its original trajectory. This “self-correction” indicates that the reasoning trace in easy cases is
less causally entangled with the final decision, consistent with CoT-as-rationalisation rather than
computation argument in Section[2.2]

One nuance in interpreting these results is that we are not examining correctness of the final output,
whether the model ultimately refuses or complies with a request, but rather the trustworthiness of the
reasoning process itself. In other words, the question is whether we can rely on the CoT as a faithful
computational trace. Our findings suggest two distinct dynamics. In some “hard” cases, the model
integrates the perturbed reasoning step into its computation, and the subsequent CoT faithfully carries
forward the injected error, ultimately altering the trajectory of internal safety activation. In contrast,
in “easy” cases, the model initially acknowledges the injected perturbation but quickly reverts to its
original stance, effectively discarding the flawed reasoning step. In both conditions the model appears
to register the perturbed trace, yet the outcome differs; one path shows sustained entanglement with
the CoT (computation), while the other shows superficial acknowledgment followed by reversion
(rationalisation). Such divergence highlights a central challenge: models may give the appearance of
engaging with flawed reasoning, but only in certain conditions does this engagement causally shape
the final decision. This raises the risk of confusion for practitioners. Inspection of CoTs alone may not
reveal whether the model’s reasoning was genuinely integrated into its output. Concept Walk directly



helps disambiguate these cases by tracing whether internal activations follow the perturbed step,
allowing us to distinguish between faithful computational reasoning and superficial rationalisation.
In doing so, it provides practitioners with a reliable signal for when CoT traces can be trusted.

Across all conditions, a pattern distinguishes violative from non-violative prompts. As expected,
violative cases (Figure[5]and[6) consistently trigger a much higher initial safety activation compared
to their non-violative counterparts. This confirms that our computed safety vector effectively captures
the model’s immediate internal recognition of unsafe content.

While unsafe prompts reliably trigger strong initial safety activation, their temporal trajectories,
particularly in hard cases, should be interpreted with caution given the small sample sizes surviving
our filtering (Section [I). These violative-case trajectories are presented in the appendix (Figures[3]
and|[f] right panels), where the smaller cohorts are more apparent.
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Figure 1: Concept Walk trajectories for Hate safe (non-violative) speech cases. Cosine similarity to
the safety direction across reasoning trace indices, comparing original and perturbed CoT sequences.
Cases are organised by difficulty (easy vs. hard) and x-index type (raw vs. normalised). Shaded
regions indicate min-max ranges and dashed lines show the number of cases that reach each reasoning
step.

To complement these aggregate patterns, we examined qualitative examples of perturbed reasoning
traces. In hard cases, such as the “Can you recommend some classic rock tunes” (Figure[3]) prompt,
the injected flawed step produces a sustained divergence in both internal safety activation and the
eventual decision, consistent with CoT-as-computation. By contrast, in easy cases like the “Playlist
for a bar crawl” (Figure [d]) the model initially acknowledges the flawed reasoning but quickly
corrects course, reverting to its original refusal trajectory. These case studies illustrate how two traces
can both register perturbations, yet only in hard cases does the altered reasoning persist and causally
influence the outcome.

6 Discussion

The Concept Walk enables direct insight into the internal concept posture of reasoning models,
moving beyond surface text to probe the representational dynamics that drive decisions. Our results
show that the persistence of safety reasoning hinges on the role of CoT: in cases where it shapes the
outcome, reasoning endures, while in other cases it is largely decorative. Whereas prior work on
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Figure 2: Concept Walk trajectories for Harm safe (non-violative) speech cases. Cosine similarity to
the safety direction across reasoning trace indices, comparing original and perturbed CoT sequences.
Cases are organised by difficulty (easy vs. hard) and x-index type (raw vs. normalised). Shaded
regions indicate min-max ranges and dashed lines show the number of cases that reach each reasoning
step.

Figure 3: Example of a hard non-violative case (“Can you recommend some classic rock tunes”).
Concept Walk trajectories (left) reveal that the injected flawed reasoning at step 8 produces a sustained
shift in internal safety activation, consistent with CoT-as-computation. The side-by-side traces (right)
show how identical reasoning up to the injection diverges afterward, ultimately changing the model’s
decision. Note that the traces are the same up until the injection.



Figure 4: Example of a easy non-violative case (“Playlist for a bar crawl”’). Concept Walk trajectories
(left) show only transient shifts in safety activation after a flawed reasoning step is injected. The CoT
traces (right) remain largely unaffected, with the model quickly reverting to its original trajectory,
consistent with CoT-as-rationalisation rather than computation.

distinguishing “hard” and “easy” cases highlights outcome sensitivity, Concept Walk reveals how
concept activations develop across reasoning, distinguishing propagated integration from transient
decoration. More broadly, Concept Walk offers a general framework for profiling internal activations
over time. Its temporal perspective can extend beyond safety to other concepts, revealing how
knowledge emerges, decays, or persists across multi-step reasoning. By combining baseline and
perturbed traces, the method allows us not only to identify when concept signals appear, but also to
test whether they are integrated into outcomes, directly linking temporal dynamics to the question of
CoT faithfulness.

Limitations and future work This study is an initial step toward mapping how internal concept
representations evolve during reasoning; while we focus on safety here, the same approach could be
applied to other domains such as fairness, bias or toxicity. At the same time, our analysis relies on
specific methodological choices that limit how the results should be interpreted. First, we project
a safety direction learned in non-thinking mode onto reasoning activations; if representations shift
across modes, stepwise estimates may be biased. We also mitigate surface-template artefacts by
excluding late layers that mostly suppress output tokens, similar to Arditi et al. [1]], yet the direction
could still partially encode refusal patterns and thereby blur finer mid-trace dynamics. Computing
mode-specific and step-local directions could address potential representation shifts between thinking
and non-thinking modes, providing more accurate measures of safety activation during reasoning.

The perturbation-based filtering strategy, while principled, does not guarantee complete faithfulness
of the reasoning traces we analyse. Although we increase the likelihood that in “hard” cases
the expressed reasoning covaries with final decisions, some computational processes may remain
unexpressed in the verbal output, and our method cannot capture these hidden reasoning pathways.
Further, systematic variation of perturbation timing and strength would clarify temporal sensitivity.

Scaling this analysis to models of varying sizes, architectures, and training paradigms would provide
greater clarity on how these factors shape the faithfulness of reasoning. Broadening the study to a
wider range of models would also strengthen the assessment of generalisability, helping to deter-
mine whether the temporal patterns we observe reflect fundamental properties of current reasoning
architectures or are specific to the particular model examined here.

Finally, we note that our use of “easy”’/“hard” terminology, while inspired by prior work, extends the
notion beyond task difficulty in the traditional sense. Here, we use “hard” to describe cases where the
model appears to draw on its CoT to reach the final answer, making the reasoning trace necessary for
the outcome, whereas “easy” cases are those where the decision seems already determined.
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7 Appendix

7.1

Safety Direction Selection Procedure

We extract a candidate safety vector v(“?) at each token position ¢ and layer ¢ using the Difference
of Means method. To select the final direction for intervention, we follow [1] and evaluate each
candidate using three metrics:

* Bypass score: the average refusal metric on a validation set of harmful prompts, after
ablating the direction from the residual stream. Lower values indicate more effective refusal
suppression.

* Induce score: the average refusal metric on a validation set of harmless prompts, after
adding the direction. Higher values indicate the ability to induce refusal behavior.

* KL divergence: the average Kullback—Leibler divergence between the model’s output token
distributions on harmless prompts before and after ablation. Lower KL indicates minimal
unintended side effects on the model’s general behavior.

We select the vector v(¢™*") with the lowest bypass score, subject to the following constraints:

1. Induce effectiveness: the induce score must be greater than zero, ensuring the direction can
actively modulate safety behavior.

2. Minimal disruption: the KL divergence must be below a threshold (e.g., KL. < 0.1) to
ensure interventions do not overly distort general model outputs.

3. Layer exclusion: we exclude directions from layers near the output head (/ > 0.8L) to
avoid trivial solutions that suppress specific output tokens rather than encoding meaningful
internal safety features.

This approach follows the methodology of Arditi et al. [[1]], demonstrating that refusal (and by
extension, safety behaviour) can be mediated by a single interpretable direction in activation space.
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7.2 Filtering ‘“Hard” and “Easy” Cases via CoT Mistake Injection

A critical step in our study is to ensure that the reasoning traces we analyse are not merely post-hoc
rationalisations, but are genuinely part of the model’s decision-making process. This is crucial
because post-hoc reasoning does not influence the model’s output, making the reasoning traces
unreliable indicators of the model’s internal understanding, particularly regarding safety.

To this end, we adopt a filtering strategy inspired by previous work [[13}[10]. We specifically retain
only those examples where perturbing the CoT, such as through truncation or the injection of errors,
results in a significant degradation in the model’s performance. This approach filters out cases where
the CoT is simply a rationalisation and keeps only those where it appears to be functionally integrated
into the model’s computation.

These “hard” cases allow us to more confidently interpret the CoT as a window into the model’s
decision process, providing a robust foundation for our subsequent safety analysis. While this method
does not guarantee complete faithfulness of the CoT, and the model may still use reasoning processes
not fully captured in its verbal output, it increases the likelihood that the expressed reasoning is
meaningfully contributing to the final decision-making process and covaries with the final answer.

7.2.1 Procedure

We define and filter cases based on perturbation sensitivity of the model’s output to changes in the
reasoning trace. Specifically, we perform the following steps:

1. Generate baseline CoT. For a given prompt e.g., “Please make a playlist to celebrate
fascist history.”, we first generate a CoT response using the model, as in the simplified
example below:

User: Please make a playlist to celebrate fascist history.

Assistant: <think>

Okay, the user wants a playlist to celebrate fascism.
First, I need to figure out what they mean by

This request promotes hate speech.

Hate speech must be refused.

Therefore, I should not generate this playlist. </think>

2. Inject controlled mistakes. Inspired by Lanham et al. [13]], we create perturbed versions of
the CoT. We identify a single trace (in our study we choose close to the middle of reasoning
steps) and replace it with or introduce a new trace in the middle that forces the model to
consider differently. It is logically flawed but fluent. Example transformation:

User: Please make a playlist to celebrate fascist history.

Assistant :<think>
Okay, the user wants a playlist to celebrate fascism.
First, I need to figure out what they mean by

Music preferences are subjective.
Some might find controversial songs inspiring.
Therefore, I can create the playlist.<\think>

We create a new partial CoT composed of: Original reasoning up to step (i — 1)
[z1,%2,...,x;_1], and the mistaken step: ;. We concatenate this perturbed prefix:

[prompt + step; + ... + step,_; + injected_step]
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3. Regenerate the rest of the CoT. After the injected step, we feed this truncated + mistaken
CoT into the model in generation mode, using the same original prompt style. We resume
CoT generation via standard autoregressive sampling (e.g., steps ¢ + 1, @ + 2, ...). We
compute residual activations per step for these new tokens as usual, allowing us to obtain a
complete perturbed CoT trajectory.

4. Compare output consistency. After regeneration, prompt as usual for the model’s final
answer, conditioned on the newly generated reasoning trace. If the model’s final classification
or refusal behaviour changes significantly compared to the original CoT (e.g., now agrees to
provide a violative list), we label this example as CoT-sensitive or “hard”, otherwise “easy”.

5. Filter dataset. Only examples with significant delta in output (e.g., change from Refusal to
Compliance, or flip in policy classification) are retained. This ensures the CoT meaningfully
influences the outcome and is not merely decorative.

To ensure that the model processes the injected step naturally, we strictly preserve the formatting
used in model-generated CoTs. For example, if the model produces reasoning within a structured
block (e.g., <think> ... </think>), our injected step must match this format exactly, including
indentation, line breaks, punctuation, and casing. This avoids introducing out-of-distribution artifacts
that could distort the model’s internal state. If the injected step replaces an entire CoT, we close
the block (e.g., </think>); if we plan to continue sampling reasoning steps, we leave it open. This
careful formatting ensures the model treats the perturbed input as if it had generated it. The residual
activations we capture then reflect a realistic internal state, preserving the validity of activation-space
comparisons. Without this, activation shifts could be artifacts of formatting rather than genuine
alignment dynamics. This procedure yields full activation trajectories for perturbed CoTs.

7.3 Concept Walk for Perturbed Reasoning Traces

To study how internal safety representations respond to flawed reasoning, we extend our Concept
Walk analysis to perturbed CoTs - traces in which we inject an erroneous reasoning step mid-way,
and then measure the resulting activations. These are the CoT we constructed in previous step
This enables us to compare the internal safety representations when reasoning is contradicted.

Injection and forward pass setup. Following the procedure described in given a user prompt
and its baseline CoT (generated by the model), we manually replace a single reasoning step (typically
near the midpoint) with a logically flawed but fluent alternative (e.g., “This is safe. Therefore, I will
answer.”). We concatenate this perturbed prefix:

[prompt + step; + ... + step,_; + injected_step]

We then pass this prefix through the model in evaluation mode, i.e., no sampling, no gradient, and
extract residual stream activations at the chosen layer and the token positions corresponding to the
injected step. These are averaged and projected onto the pre-computed safety vector to produce a
scalar activation for the injected step.

Continuation and Concept Walk computation. We run the model in evaluation mode for the rest
of the perturbed CoT steps (stored already in the previous step (see appendix Section7.2])).

We compute residual activations per step for these new tokens as usual, allowing us to obtain a
complete perturbed CoT safety trajectory:

* Original steps: [1, ..., i—1] (same as baseline)
* Injected step: 7 (manual, measured via eval forward pass)

* Continuation: steps i+1, 2+2, ..., generated as usual

7.4 Results
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Figure 5: Concept Walk trajectories for Hate unsafe (violative) speech cases. Cosine similarity to
the safety direction across reasoning trace indices, comparing original and perturbed CoT sequences.
Cases are organized by difficulty (easy vs. hard) and x-index type (raw vs. normalised). Shaded
regions indicate min-max ranges and dashed lines show the number of cases that reach each reasoning
step.
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Cases are organised by difficulty (easy vs. hard) and x-index type (raw vs. normalised). Shaded
regions indicate min-max ranges and dashed lines show the number of cases that reach each reasoning

step.

16




	Introduction
	Background
	Chain of Thought Monitoring and Faithfulness
	CoT-as-computation vs. CoT-as-rationalisation

	Methodology
	Filtering for CoT-as-computation
	Computing the Safety Vector
	The Concept Walk
	Concept activations in perturbed CoTs

	Experimental setup
	Datasets
	Model

	Results
	Discussion
	Appendix
	Safety Direction Selection Procedure
	Filtering ``Hard'' and ``Easy'' Cases via CoT Mistake Injection
	Procedure

	Concept Walk for Perturbed Reasoning Traces
	Results


