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Abstract

Summarizing novel chapters is a difficult task001
due to the length of the chapter to be summa-002
rized and the fact that summary sentences draw003
content from multiple sentences in the chapter.004
We present a pipelined extractive-abstractive005
approach where the extractive step filters the006
content that is passed to the abstractive com-007
ponent. Extremely lengthy input also results008
in a dataset highly skewed towards negative009
instances and we thus adopt a margin ranking010
loss for extraction to encourage separation be-011
tween positive and negative input. To generate012
summary sentences that fuse information from013
different sentences, our extraction component014
operates at the constituent level; our novel ap-015
proach to this problem enriches the text with016
spinal tree information which provides context017
to the extraction model. We show an improve-018
ment of 3.71 Rouge-1 points over the state-of-019
the-art on an existing novel chapter dataset.020

1 Introduction021

Research on summarizing novels (Mihalcea and022

Ceylan, 2007; Wu et al., 2017; Ladhak et al., 2020;023

Kryściński et al., 2021; Wu et al., 2021) has re-024

cently gained popularity following advancements025

in sequence to sequence pre-trained models (Zhang026

et al., 2019a; Lewis et al., 2019; Raffel et al.,027

2019) and in summarization of newswire datasets028

(Narayan et al., 2018; Hermann et al., 2015; Grusky029

et al., 2018). Novel chapters present challenges not030

commonly encountered when summarizing news031

articles. Phrases from multiple, non-contiguous032

sentences within the chapter are often fused to033

form new sentences for the summary. One would034

be inclined to use an abstractive approach, but the035

length of chapters (on average, seven times longer036

than news articles (Ladhak et al., 2020)) makes it037

unfeasible to use state of the art generative mod-038

els, such as BART (Lewis et al., 2019) and even039

Longformer (Beltagy et al., 2020). Chapter length040

causes the additional problem of an imbalanced041

dataset, as a much higher percentage of the input 042

will not be selected for the summary than is typical 043

in domains such as news. 044

To address these challenges, we adopt an 045

extractive-abstractive architecture, where content is 046

first selected by extracting units from the input and 047

then an abstractive model is used on the filtered in- 048

put to produce fluent text. Kryściński et al. (2021) 049

benchmarked the extractive-abstractive architec- 050

ture, first proposed by Chen and Bansal (2018), for 051

novel summarization, but did not extend it. In this 052

work, we propose several novel extensions to im- 053

prove its performance on the novel chapter summa- 054

rization task. The large amount of compression in 055

novel chapter summarization (372 summary words 056

per 5,165 chapter words on average) creates an ex- 057

treme imbalance in the training data; a successful 058

extractive summarization algorithm would have to 059

discard most of the text. The standard practice of 060

using Cross-Entropy loss (Good, 1992) when train- 061

ing a neural network model backfires in our case: a 062

network that opts to discard everything will achieve 063

near-perfect performance. We alleviate the issue 064

by improving the margin structure of the minor- 065

ity class boundary using the Margin Ranking loss 066

(Rosasco et al., 2004), which encourages separa- 067

tion between the two classes. Other study, such as 068

Cruz et al. (2016), also shows that a pairwise rank- 069

ing improves model performances on imbalanced 070

data. 071

Second, in order to model the fusion of chap- 072

ter phrases into summary sentences, we carry out 073

extraction at the constituent level. Ladhak et al. 074

(2020) also tried this approach, but with mixed re- 075

sults. They noted that sometimes the sub-sentential 076

unit can be too small and, therefore, lack meaning- 077

ful content (e.g., phrases such as “what has?” in the 078

extractive summary, Table 1). These small unintel- 079

ligible pieces can negatively affect the performance 080

of the extractive model and, more importantly, the 081

subsequent abstractive model. We hypothesize that 082
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Figure 1: The encoding part of the model for spinal
tree encoding. We don’t show the CLS and SEP tokens
here for space-saving purposes, but they are treated as
in BertSumm (Liu and Lapata, 2019).

we can improve the performance of the extractive083

model—and, consequently, that of the downstream084

abstractive model—by augmenting the meaning of085

the extracted sub-sentential units using additional086

information from the sentence. To that end, we pro-087

pose an enrichment process, during model training,088

where we augment the sub-sentential units with089

linguistic information. For this purpose, we use a090

spinal tree (Carreras et al., 2008; Ballesteros and091

Carreras, 2015) which carries information about092

both the dependency and the constituent structure093

of the segment. We encode the spine’s information094

using a recurrent network and concatenate its out-095

put to the embedding of the token, as illustrated in096

Figure 1.097

Our contributions are threefold: (1) We adopt an098

extractive-abstractive architecture, improving the099

decision boundary of the content selection by using100

a Margin Ranking loss, (2) perform extraction at101

the constituent level, introducing an enrichment102

process that uses spinal tree information and (3)103

show that our approach improves over the state-of-104

the-art with a 3.71 gain in Rouge-1 points.105

2 Related Work106

Several previous works on novel chapter summa-107

rization, such as Mihalcea and Ceylan (2007), Wu108

et al. (2017), Ladhak et al. (2020), Kryściński et al.109

(2021) and Wu et al. (2021), are closely related to110

ours. Mihalcea and Ceylan (2007) uses MEAD, an111

unsupervised extractive summarization described 112

in Radev et al. (2004); this approach includes fea- 113

tures focusing on terms weighting that take into 114

account the different topics in the text. In this work, 115

topic boundaries are determined using a graph- 116

based segmentation algorithm that uses normalized 117

cuts (Malioutov, 2006). A similar line of work, in- 118

cluding Mihalcea and Ceylan (2007) and Wu et al. 119

(2017), also performs topic modelling with Latent 120

Dirichlet Allocation (Blei et al., 2003) followed by 121

greedy unsupervised extraction. 122

Conversely, Ladhak et al. (2020) experiment 123

with extracting information at the sentence and 124

at the syntactic constituent level, via a supervised 125

learning approach. To train their model, they use an 126

aligning process based on the weighted ROUGE 127

scores between the reference and novel text to as- 128

sign proxy extract labels, in the absence of manu- 129

ally annotated ground truth. Their results at the con- 130

stituent level are mixed; human evaluation shows a 131

lower performance of constituent extraction mod- 132

els presumably because the summaries are not very 133

readable. Kryściński et al. (2021) construct a novel 134

chapter dataset that is slightly larger than that of 135

Ladhak et al. (2020) and benchmark existing sum- 136

marization algorithms on the dataset. Wu et al. 137

(2021), on the other hand, use a human-in-the- 138

loop approach to obtain summaries via behaviour 139

cloning and reward modelling. 140

3 Novel Chapter Summarization 141

We use a two-step process where we first run an 142

extractive model (Mihalcea and Ceylan, 2007; Wu 143

et al., 2017; Ladhak et al., 2020) to select infor- 144

mative content and then run a separate abstractive 145

model (Lewis et al., 2019; Zhang et al., 2019a; Raf- 146

fel et al., 2019) to produce a coherent and readable 147

version of this content. 148

3.1 Dataset and Pre-processing 149

For our novel dataset, we use summary-chapter 150

pairs collected by Ladhak et al. (2020) from Project 151

Gutenberg and various study guide sources. The 152

size of the dataset is 8,088 chapter/summary pairs 1. 153

The average length of the chapters is 5,165 words 154

with the longest being 33,167 words2. 155

1Train/dev/test splits are 6,288/938/862
2We are aware that there is a larger dataset called Book-

Sum (Kryściński et al., 2021), which uses similar sources;
however, due to licensing issues, we are unable to use it in our
work.
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Extracts from our best performance Extractive Model
tess went down the hill to trantridge cross , and inattentively waited to take her seat in the van returning from chaseborough
to shaston .<q>her mother had advised her to stay here for the night , at the house of a cottage-woman<q>what has ? ”<q>“
they say – mrs d’urberville says –<q>that she wants you to look after a little fowl-farm which is her hobby .<q>cried joan to
her husband .

Abstracts from our best performance Abstractive Model
tess goes down the hill to trantridge cross and waits to take her seat in the van returning from chaseborough to shaston . her
mother has advised her to stay for the night at the house of a cottage-woman who has a fowl-farm . joan tells her husband
that mrs. d’urberville has written a letter asking her daughter to look after her poultry-farm

Reference
when tess returns home the following day. a letter from mrs. d’urberville offering her a job tending fowl awaits her . despite
her mother ’s ecstatic eagerness , tess is displeased and looks instead for local jobs to earn money to replace the family ’s
horse .alec d’urberville stops by and prompts her mother for an answer about the job . her efforts to find alternative work
prove fruitless and so tess accepts d’urberville ’s offer . she remarks that mrs. d’urberville ’s handwriting looks masculine .

Table 1: The outputs from two different models. The extract is obtained through a content selection model while the
abstract is obtained by passing the extract into BART (Lewis et al., 2019) language generation model. The <q>
tokens in the extract are the delimiters for constituents.

In order to prepare the data for the experiments,156

we follow the same pre-processing steps as Ladhak157

et al. (2020) to obtain the sub-sentential units and158

their alignment to reference summaries. In addition,159

we truncate chapters to 30k tokens to fit into the160

GPU memory3; as a result, a single chapter of the161

dataset is actually truncated.162

3.2 Extractive Model163

The extractive summarization task can be posed as164

a classic regression and ranking problem where the165

model produces a score for each of a given set of166

units and then ranks them based on that score. The167

top k units are then used as an extract. The input of168

our model is the sub-sentential units of the novel169

chapter text. We train the model with the oracle170

labels which we obtain from the alignment between171

sub-sentential units and reference summaries.172

Baseline Our baseline is BERTSUMMEXT173

model (Liu and Lapata, 2019) modified as follows.174

First, we replaced the underlying Transformer175

models (Vaswani et al., 2017) with Longformers,176

which can better capture long context and requires177

less computing memory than BERT (Devlin et al.,178

2019). Second, we removed the inter-sentence179

Transformer layers stacked on top of the BERT180

output, to further reduce memory usage.181

Spinal Tree A spinal tree is a dependency struc-182

ture of a sentence that is augmented with con-183

stituent information (Carreras et al., 2008; Balles-184

teros and Carreras, 2015). For each sub-sentential185

unit, we retrieve the spinal tree parse by first us-186

ing the constituency parser (Manning et al., 2014)187

and then apply Collins Head-Word Finder (Collins,188

3We use Amazon AWS EC2 P4dn 40GB GPU memory

1997) to calculate the spines. We then encode4 the 189

spinal tree using bidirectional-GRU networks (Cho 190

et al., 2014)5. We construct the input of the Long- 191

former by concatenating the embeddings of the 192

tokens6, the corresponding positional embeddings 193

per token, and the encoding of the spines for each 194

token via the bidirectional-GRU encoders, as illus- 195

trated in Figure 1. 196

Ranking Loss The baseline model uses the 197

Cross-Entropy (CE) loss function and minimizes 198

the loss via gradient descent. However, the CE loss 199

function focuses on optimizing both the negative 200

and positive labels at the same time. To compensate 201

for the imbalance in our dataset, we add a Margin 202

Ranking (MR) loss that gives the positive labels 203

higher ranks than the negative labels 7. 204

Re-ordering Scheme The default baseline of 205

Liu and Lapata (2019) produces extracts with sub- 206

sentential units that are ordered based on their score. 207

This scheme, however, destroys the plot of the story. 208

Hence, we re-order the units according to the origi- 209

nal positional order in the source text, thus preserv- 210

ing the correct plot order in the story. 211

3.3 Abstractive Model 212

Since the extractive model outputs are sometimes 213

incoherent and hard to read, we forward them to an 214

abstractive model, with the goal to produce a more 215

fluent and coherent result. 216

4We use the hidden size of 512
5We experimented with other architectures including bi-

LSTM and found that bidirectional-GRU were the best.
6We use the embedding size of 768
7We also have tried the weighted CE loss function but

we get worse results. We also found that training our model
first with the CE loss function until convergence and then
continuing using the MR loss gives the best result.
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We use BART (Lewis et al., 2019) as our engine217

for abstractive summarization. To train BART, we218

use the oracle extracts as the input source and the219

reference summaries as the target. During predic-220

tion, we use the output of our content selection221

model as the input source.

Model R1 R2 RL WMD BERTScore
Extractive

Oracle Ext 46.75 14.27 45.64 0.633 0.823
CB const R-wtd
(Ladhak, 2020)

36.62 6.9 35.4 N/A N/A

Longformer Ext 39.24 7.61 38.29 0.712 0.803
+ Spinal Infor-
mation

39.35 7.62 38.45 0.711 0.802

+ Ranking Loss 39.48 7.63 38.58 0.708 0.802
+ Re-ordering 39.48 7.70 38.58 0.708 0.806

Abstractive
Oracle Abs 45.82 14.14 42.74 0.641 0.828
BART Abs 39.77 9.28 37.56 0.693 0.807
+ Spinal Infor-
mation

39.83 9.33 37.61 0.691 0.807

+ Ranking Loss 39.88 9.35 37.68 0.691 0.807
+ Re-ordering 40.33 9.10 37.95 0.690 0.810

Table 2: ROUGE, Word Mover Distance and
BERTScore for extractive and abstractive models.

222

4 Results223

Examples of outputs from our best abstractive and224

extractive models are shown in Table 1. Here we225

report results from an automatic and a manual eval-226

uation. From previous work, Ladhak et al. (2020)227

we included three models: CB Sent K, CB Sent228

R-wtd, and CB Const R-wtd. Their models are ex-229

tractive and use the same pre-processing approach230

as ours. We also included the oracle for both the231

extractive and abstractive models.232

4.1 Automatic Evaluation233

We use three different metrics for automatic eval-234

uation: ROUGE (Lin, 2004), BERTScore (Zhang235

et al., 2019b) and Word Mover Distance (WMD)236

(Kusner et al., 2015). ROUGE measures syntac-237

tic similarities between system and reference sum-238

maries and BERTScore and WMD measure seman-239

tic similarities. BERTScore measures similarities240

at the sentence level while WMD at the token level.241

We run each experiment three times using different242

random seeds and we report the mean score.243

Table 2 shows our models performance against244

the baseline and previous works. Our best extrac-245

tive model (Longformer Ext+spinal+Ranking+Re-246

ordering) outperforms previous work (CB const247

R-wtd) by 2.86 ROUGE-1, 0.8 ROUGE-2, and248

3.18 ROUGE-L points. Meanwhile, the abstractive249

model (BART Abs+spinal+Ranking+Re-ordering) 250

outperforms previous work (CB const R-wtd) by 251

3.71 ROUGE-1, 2.2 ROUGE-2, and 2.55 ROUGE- 252

L points. We have also shown that both the best 253

abstractive and extractive models exceed their cor- 254

responding baselines (Longformer Ext and BART 255

Abs) in all metrics. Our models still have room to 256

grow as shown by the oracle results. The limitation 257

of our work is that the dataset is small8 and inves- 258

tigation on larger datasets would be necessary to 259

further validate our conclusions. 260

4.2 Human Evaluation 261

For human evaluation, we use the lightweight Pyra- 262

mid (Shapira et al., 2019). We randomly selected 263

99 samples 9 from the test dataset for human evalua- 264

tion. We also re-run Ladhak et al. (2020)’s output’s 265

using the same samples in order to compare ours 266

with their work. 267

Model Pyramid
CB Const R-wtd (Ladhak, 2020) 17.91
BART Abs 22.03
BART Abs+Spinal+Rank+Re-ordering 22.86

Table 3: Pyramid score for our best abstractive perfor-
mance model compared to previous works

Table 3 shows that our models outperform pre- 268

vious work by at least 2 points. We also show that 269

the application of spinal tree enrichment, ranking 270

loss and re-ordering show an improvement of 0.83 271

points in the human evaluation. 272

5 Conclusion and Future Work 273

We have built a novel chapter summarization that 274

produces abstract summaries using a spinal tree 275

aware sub-sentential content selection method. Our 276

results show that we have improved over the state- 277

of-the-art of an existing novel chapter dataset in 278

both automatic and human evaluations. 279

For future work, we propose an approach where 280

the segmentation of sub-sentential units is jointly 281

trained with the content selection instead of pre- 282

processed before the training process. We hypoth- 283

esize that this could improve the alignment with 284

reference summaries, therefore, increasing the per- 285

formance of the overall models. 286

8It is difficult to show significance using a small dataset.
9We prepared 100 samples, but one sample got corrupted

during the evaluation.
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6 Ethical Impact287

We don’t foresee any ethical issues with our ap-288

proach. One could argue that our system might289

ultimately take jobs away from the people who cur-290

rently write such summaries. However, given the291

number of books being written, it is more likely292

that some summaries would never be written and293

a good system for novel chapter summarization294

might help to increase the amount of summaries295

that are available online.296
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