
Discrete Dictionary-based Decomposition Layer
for Structured Representation Learning

Taewon Park1 Hyun-Chul Kim1 Minho Lee1,2
1Kyungpook National University, South Korea

2ALI Co., Ltd., South Korea
ptw7998@gmail.com, hyunchul_kim@knu.ac.kr, mholee@gmail.com

Abstract

Neuro-symbolic neural networks have been extensively studied to integrate sym-
bolic operations with neural networks, thereby improving systematic generalization.
Specifically, Tensor Product Representation (TPR) framework enables neural net-
works to perform differentiable symbolic operations by encoding the symbolic
structure of data within vector spaces. However, TPR-based neural networks often
struggle to decompose unseen data into structured TPR representations, undermin-
ing their symbolic operations. To address this decomposition problem, we propose
a Discrete Dictionary-based Decomposition (D3) layer designed to enhance the
decomposition capabilities of TPR-based models. D3 employs discrete, learnable
key-value dictionaries trained to capture symbolic features essential for decom-
position operations. It leverages the prior knowledge acquired during training
to generate structured TPR representations by mapping input data to pre-learned
discrete features within these dictionaries. D3 is a straightforward drop-in layer
that can be seamlessly integrated into any TPR-based model without modifications.
Our experimental results demonstrate that D3 significantly improves the system-
atic generalization of various TPR-based models while requiring fewer additional
parameters. Notably, D3 outperforms baseline models on the synthetic task that
demands the systematic decomposition of unseen combinatorial data.1

1 Introduction

Compositional generalization, aiming at understanding unseen data by combining known concepts, is
essential for neural networks to handle complex tasks [2, 13, 12, 16, 8, 6]. Tensor Product Representa-
tion (TPR) framework [33] facilitates this by embedding the symbolic structure of data within vector
spaces, providing neural networks with compositional capabilities. Within this framework, individual
objects are decomposed at the representation level into distinct symbolic components called role-filler
pairs2. The TPR framework encodes each object by taking a tensor product of its role vector and
filler vector, represented as T = filler ⊗ role, and then superimposes them to represent multiple
objects within a single representation. During decoding, the TPR framework retrieves specific
fillers—essential for solving tasks—from the superimposed representation through matrix multiplica-
tion using an unbinding operator correlated to a particular role, filler = T · unbind. This retrieved
filler is then utilized in downstream tasks. Based on this property, TPR-based neural networks
have demonstrated significant generalization and applicability in fields such as associative reasoning
[28, 30], mathematical problem-solving [29], and natural language processing [9, 32, 21, 34].

1The code of D3 is publicly available at https://github.com/taewonpark/D3
2The roles and fillers depend on the task at hand. For example, in a tree structure, the role corresponds to a

position within the tree, while the filler represents the label associated with that position [34]. In associative
memory, the role is analogous to an associative key, and the filler corresponds to the associative value [28, 30].

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

https://github.com/taewonpark/D3

Figure 1: Overview of D3. D3 generates structured TPR representations by mapping input data to the
nearest pre-learned symbolic features stored within discrete, learnable dictionaries. Each dictionary is
linked explicitly to specific TPR components, such as roles, filler, and unbinding operators. Notably,
D3 uses a shared dictionary configuration between the roles and unbinding operators. This figure
illustrates, for example, that role1 and unbind1 share one dictionary, while role2 and unbind2 share
another. T denotes a superimposed representation that represents multiple objects.

Despite their successes, the TPR-based approaches pose a significant challenge known as a decompo-
sition problem [33, 23], which refers to the difficulty of decomposing input data into TPR components,
such as roles, fillers, and unbinding operators. Without accurate decomposition, TPR-based models
fail to represent the symbolic structure of data, causing a decline in the performance of the TPR
operations. Recently, inspired by an object-centric learning method [18], Park et al. [23] proposes an
attention-based iterative decomposition (AID) module to address this issue. AID uses competitive
attention to iteratively refine structured representations, thereby enhancing the systematic general-
ization of TPR-based models. However, it still struggles to generalize all possible combinations
of known symbols in simple synthetic tasks. This failure is likely attributable to its insufficient
mechanism for explicitly mapping input data to known symbolic features observed during training.
Therefore, the decomposition module may need an additional mechanism to store observed symbolic
features during training and utilize it to effectively decompose unseen combinatorial data of known
symbols.

In another line of work, discrete representation learning has been explored to improve the efficiency,
interpretability, and generalization capabilities of neural networks [39, 14, 17, 37, 7]. This approach
involves mapping continuous input data into discrete representations by finding the nearest features
in a predefined codebook. The features within the codebook are learnable parameters, specifically
trained to capture the latent features of data during training phase [39]. Some researchers have applied
discrete representation techniques to extract specific types of representations from unstructured data
[11, 43, 44]. Other researchers have integrated discrete symbolic embeddings within the TPR
framework to improve its interpretability [21, 9]. However, these methods are designed for specific
applications, such as question-answering and summarization tasks, making them difficult to integrate
into other TPR-based models.

In this work, we propose a Discrete Dictionary-based Decomposition (D3) layer for structured
representation learning within the TPR framework. D3 employs the discrete representations techniques
to utilize prior knowledge acquired during training for decomposition operations. Inspired by prior
discrete key-value architectures [14, 38], D3 consists of multiple dictionaries, each comprising
discrete, learnable key-value pairs. Unlike prior work, each dictionary of D3 is linked explicitly to
individual TPR components, such as role, filler, and unbinding operator. This design allows each
dictionary to capture and store the discrete features of its corresponding TPR components during
training. D3 acts as a drop-in layer that maps input data into pre-learned discrete features for the
decomposition of TPR components through a three-step process, as illustrated in Fig. 1. First, it
generates multiple queries from the input data, with each query utilized for different TPR components.
Next, it identifies the nearest codebook keys within each dictionary based on these queries. Finally,
D3 generates structured TPR representations by aggregating the codebook values corresponding to
these keys. Moreover, D3 can be seamlessly integrated into any TPR-based model by replacing the
TPR component generation layer without requiring further modifications.

2

Our main contributions are as follows.

• We propose a novel D3 layer to tackle the decomposition problem inherent in the TPR-based
approaches. D3 leverages discrete, learnable dictionaries to enhance the decomposition capabilities
of TPR-based models. By mapping input data to pre-learned discrete features stored within the
dictionaries, D3 effectively generates structured TPR representations.

• We conduct extensive experiments across various systematic generalization tasks, including syn-
thetic associative recall and text/visual question-answering tasks. Our experimental results show
that D3 significantly enhances the generalization performance of TPR-based models, demonstrat-
ing its effectiveness on systematic generalization tasks.

• Our analyses show that D3 generates well-bound structured representations that are satisfactory
for the requirements of the TPR framework, utilizing the discrete, learnable dictionaries.

2 Related Work

Decomposition Problem. Compositional generalization in neural networks, which allows for
generalizing beyond training data, has been extensively studied [2, 13, 12, 16, 8, 6, 41]. One
important capability for achieving this is a segregation, as discussed in Greff et al. [6], which enables
the formation of meaningful representations from structured and unstructured data [3, 18]. TPR-based
neural networks also rely on this capability to generate structured representations for TPR components
such as roles, fillers, and unbinding operators. In the TPR framework, these structured representations
must satisfy specific conditions to ensure accurate encoding and decoding. First, roles need to be
linearly independent to avoid filler overlap. Second, the unbinding operator must correlate with
the corresponding roles to accurately retrieve associated fillers. Recent work [23] has shown that
existing TPR-based models often fail to generate structured representations that meet these conditions,
undermining their symbolic operations. To address this, an attention-based decomposition module
[23] has been introduced, but it still shows limited performance on synthetic tasks involving the
decomposition of unseen combinatorial data. In this work, we address the decomposition problem
within the TPR framework using a discrete dictionary-based method, advancing the research further.

Discrete Representation Learning. Discrete neural representation learning has introduced a
codebook of discrete, learnable representations into neural networks [39]. During training, each
discrete representation captures underlying latent features by mapping continuous input data to the
nearest features within the codebook, which are then used for downstream tasks. Recent work on
object-centric learning has utilized discrete representations to extract specific types of features from
unstructured data, leveraging latent features learned during training [11, 43]. Some researchers
have proposed a separate key-value codebook for learning discrete representations, demonstrating
its effectiveness in systematic generalization [17] and robustness against distributional shifts [38].
Inspired by these findings, we develop a separate key-value-based discrete dictionary method to
enhance the decomposition capabilities of TPR-based models. Other researchers have introduced a
discrete symbolic embedding layer to improve the interpretability of TPR-based models, showing the
feasibility of discrete representations in the TPR framework [21, 9]. However, their methods focus on
encoding processes and specific tasks such as question-answering [21] and abstractive summarization
[9]. In contrast, our work addresses the decomposition problem in TPR-based approaches, and our
D3 method is a drop-in solution that can be easily adapted to any TPR-based model.

Memory Network. Research on memory networks has focused on enhancing neural network
capacity by integrating external memory [36, 4, 5, 24, 27, 41]. Memory-augmented neural networks
store variable lengths of sequential data in this external memory and retrieve necessary information
using various addressing methods [36, 5]. These writing and reading mechanisms share many
similarities with our D3 approach. However, while memory networks store input features sequentially
in their memory states as a continuous stream, D3 updates symbolic feature information through
gradient descent into codebook parameters within dictionaries. This distinctive characteristic allows
D3 to leverage the learned discrete features to decompose unseen data after training. In another work,
Lample et al. [14] introduces a learnable key-value memory layer to improve the efficiency of the
Transformer by replacing the feed-forward layer. Unlike their memory layer, D3 employs key-value
pairs in dictionaries explicitly linked to individual TPR components, making it well-suited for the
TPR framework.

3

3 Method

In this section, we explain how the D3 module generates structured representations of the TPR
components using discrete, learnable dictionaries. We then introduce configurations of D3 and how it
can be applied to our baseline models.

3.1 Discrete Dictionary-based Decomposition module

D3 is a discrete dictionary-based drop-in layer designed to enhance the decomposition capabilities
of TPR-based approaches. At every time step, D3 decomposes input data into TPR components,
such as roles, fillers, and unbinding operators, by mapping input data to pre-learned symbolic
features within dictionaries. These dictionaries consist of discrete, learnable codebook key-value
pairs, denoted as {Dj}Ncomponent

j=1 as shown in Eq. 1. Each dictionary Dj is explicitly linked to a j-th
TPR component, allowing it to learn the symbolic features required for generating the specific TPR
component. This design also enables the generation of structured representations for different TPR
components individually and in parallel.

Dj := {(kji , v
j
i) | kji ∈ RDquery , vji ∈ RDcode}Ncode

i=1 where j = 1, ..., Ncomponent (1)

where Dj denotes the discrete, learnable dictionary for the j-th TPR component, k denotes a learnable
codebook key, and v denotes a learnable codebook value. In the next paragraph, we describe how D3
generates TPR components using these dictionaries in three steps.

Step 1: Query Generation. At each time step t, D3 takes input data, denoted as inputt ∈ RDinput,
and generates the query, denoted as queriest ∈ RNcomponent×Dinput , for each j-th TPR component
using a query network, f j

query : inputt 7→ queryjt ∈ RDquery. The query network can be any neural
network; in this study, we use a feed-forward network with a single layer. Additionally, we apply a
layer normalization [1] and a dropout of pdropout [35] to queryjt .

Step 2: Sparse Key Access. D3 searches for the nearest keys from each dictionary, Dj , based
on the generated queryjt . We measure the similarity using the inner product between queryjt and
{kji}

Ncode
i=1 . Then, D3 selects top-k codebook keys in order of largest similarity, as follows.

Ij = Tk(queryjt
⊤

k̂
j

i) where k̂
j

i = kji/||k
j
i ||2 (2)

where Tk denotes the top-k operator that finds the indices of k largest values, and Ij denotes the
indices of the k most similar keys within Dj . We found that applying L2 normalization to keys before
the inner product mitigates the codebook collapse problem.

Step 3: Aggregation of Code Values. D3 computes the normalized score for selected codebook
keys, denoted as wj

t , and aggregates codebook values corresponding to selected codebook keys with
wj

t , as follows.

codejt = Σi∈Iw
j
t,iv

j
i where wj

t = Softmax(queryjt
⊤

k̂
j

i))i∈Ij (3)

Then, D3 maps queryjt to a dimension of Dcode and adds this projected vector to codejt . The summed
vectors are mapped to a dimension of Dcomponent to generate structured representations of TPR
components, as follows.

componentjt = codejt + layerresidual(query
j
t) ∈ RDcode (4)

componentjt = layerfinal(component
j
t) ∈ RDcomponent (5)

where layerresidual and layerfinal denote a feed-forward network with a single layer. Those
componentst are then utilized for TPR operations to solve the downstream tasks.

3.2 Module Configurations

In this section, we describe the configurations of D3 when applied to TPR-based models.

4

Shared Dictionary between Role and Unbinding Operator. As discussed in Section 2, roles and
unbinding operators should have correlated features for accurate TPR operations. Considering this
characteristic of the TPR framework, we share the dictionaries of roles and unbinding operators.
This shared dictionary also reduces the number of learnable parameters.

D3 Applied to Filler. While the TPR framework requires specific conditions for roles and unbinding
operators for accurate TPR operations, there are no such requirements for fillers. Therefore, we
explore two configurations in this study: applying D3 to generate fillers (w/ F) and not applying D3 to
generate fillers (w/o F). In the w/o F configuration, we follow the baseline models to generate the
filler representations.

3.3 Integration of D3 into Existing TPR-based Models

In this section, we introduce our baseline models and explain how D3 is applied to them, considering
the configurations of D3. We use three TPR-based models as our baselines: FWM [30], TPR-RNN
[28], and Linear Transformer [10]. Notably, integrating D3 into these baseline models requires only
substituting their TPR component generation layer with D3 without further modifications.

Fast Weight Memory. Fast Weight Memory (FWM) [30] is a TPR-based memory network designed
for understanding long sequential contexts. It proposes a single word-level TPR operation related
to the perceptron learning rule [25]. It has shown significant associative reasoning capability in
reinforcement learning and natural language processing tasks. FWM requires two types of roles
(role1 and role2) and one filler for encoding, as well as two types of unbinding operators (unbind1
and unbind2) for decoding. When D3 is integrated into FWM, it employs three dictionaries for the
shared dictionary configuration: one for the role1 and unbind1, another for the role2 and unbind2,
and the other for filler, as shown in Fig. 1.

TPR-RNN. TPR-RNN [28] is a sentence-level TPR-based memory network designed for basic text
question-answering tasks [42]. It incorporates various encoding operations such as writing, moving,
and backlink to process sequential data at the sentence level. These operations necessitate different
encoding components with varying dimensions, making direct connections to the decoding compo-
nents challenging. As a result, we do not apply the shared dictionary configuration to TPR-RNN;
instead, we use a shared query network without layer normalization. Furthermore, due to the differing
dimensions of the TPR components in TPR-RNN, we employ distinct layerfinal layers for each TPR
component.

Linear Transformer. Linear Transformer [10] linearizes the attention mechanism to improve the
computational efficiency of the Transformer [40]. Recently, Schlag et al. [31] demonstrated the
equivalence between TPR and the linear attention mechanism, indicating that the key, value, and
query in linear attention correspond to the role, filler, and unbinding operator, respectively. Building
on this work, we apply D3 to generate the query, key, and value in the Linear Transformer. Unlike
TPR-RNN and FWM, the Linear Transformer utilizes multi-head operations. Therefore, we use
distinct dictionaries for each head, with the key and query of each head sharing the same dictionary.

4 Experiment

In this section, we evaluate the effectiveness of D3 across various tasks, including a synthetic task,
text/visual question-answering tasks, and a language modeling task. To assess the decomposition
capabilities, we follow the experimental settings of the AID [23], a prior work addressing the
decomposition problem in the TPR framework, and closely compare our D3 model to baseline models
and AID.

4.1 Task

Systematic Associative Recall (SAR) task. This task evaluates systematic generalization in mem-
orizing and recalling combinatorial data [23]. It consists of a discovery phase and an inference
phase. During the discovery phase, the model receives the combinatorial sequential items, each
combining two symbols, x ∈ X and y ∈ Y where X = X1 ∪ X2 ∪ X3 and Y = Y1 ∪ Y2. The

5

model is then required to predict an associated y when a specific x is presented. The SAR task
uses different combination settings between training and evaluation to target systematic general-
ization specifically. During training, the model learns the following combination settings: (1) X1

and Y1, (2) X2 and Y2, and (3) X3 and Y . At the evaluation, on the other hand, the model should
generalize unseen combination settings, specifically X1 and Y2. Additionally, the task includes a
hyper-parameter p = |X3|

|X2|+|X3| where |Xi| denotes the cardinality of set Xi. By adjusting p, this task
tests the systematic generalization of models under varying levels of exposure to different symbol
combinations during training. In our study, we focus solely on the most challenging setting of the
SAR task (p = 0.0), where the subset X3 is excluded. In the SAR task, the TPR framework regards
x as the role and the unbinding operator, and y as the filler. Therefore, TPR-based models should
systematically decompose the combinatorial data into structured representations by mapping x to the
role and y to the filler during the discovery phase, and mapping x to the unbinding operator during
the inference phase to solve this task.

Systematic bAbI (sys-bAbI) task. This task is a variant of the bAbI task [42] designed to evaluate
systematic generalization in text understanding and reasoning [23]. It consists of 20 distinct sub-tasks,
each comprising stories, relevant queries, and corresponding answers. The sys-bAbI task requires
the models to remember the stories and predict corresponding answers to the queries. Unlike the
original bAbI task, the sys-bAbI task evaluates the models with two aspects: (a) in-distribution (w/o
sys diff) and (b) with the systematic difference (w/ sys diff) where each sub-task includes unseen
words during training. Therefore, the models should learn task-independent text understanding to
solve the sys-bAbI task.

Sort-of-CLEVR task. This task [26] evaluates compositional generalization in visual relational
reasoning. It consists of scene images, queries, and corresponding answers. This task requires
the models to understand the properties of individual objects (Unary) or the relationships between
multiple objects (Binary or Ternary) within visual scene images, and predict the correct answers to
the queries [20]. Therefore, the model should capture relationships within each object and between
objects to solve this task.

WikiText-103 task. This task [19] is a language modeling dataset consisting of lengthy corpora
from Wikipedia. Although the WikiText-103 task does not directly measure the systematic general-
ization of the models, it is used to evaluate the effectiveness and applicability of D3 on a large-scale
task beyond relatively simple tasks.

4.2 Experimental Results

In this section, we present the experimental results of the SAR task, sys-bAbI task, sort-of-CLEVR
task, and WikiText-103 task. In our experiments, we set Dquery as Dcode/2.

4.2.1 TPR-based Memory Networks

Figure 2: Test accuracy curve [%] on the SAR task
for 10 seeds, with shadowed area indicating SD.

First, we evaluate FWM with D3 on the SAR
task, which requires understanding the compo-
sition of two types of symbols, x and y. TPR-
based models are expected to solve this task
perfectly by mapping each symbol to a specific
TPR component during decomposition. How-
ever, as shown in Fig. 2, FWM and AID fail to
generalize unseen combinations of known sym-
bols. In contrast, our D3 module significantly
outperforms other baseline models, achieving
nearly 100% accuracy. This result demonstrates
that D3 effectively decomposes unseen combina-
torial data into TPR components using discrete
dictionaries.

Next, we test TPR-RNN and FWM with D3 on the sys-bAbI task. This task involves compositional
information in each story sentence, such as the relation between objects and their locations. It makes

6

Table 1: The mean word error rate [%] on the sys-bAbI task for 10 seeds, with ± indicating SD.

Model w/o sys diff (↓) w/ sys diff (↓) Gap (↓) # params (↓)
TPR-RNN 0.79 ± 0.16 8.74 ± 3.74 7.95 0.14 M

+ AID 0.69 ± 0.08 5.61 ± 1.78 4.92 0.32 M

+ D3 0.65 ± 0.25 3.50 ± 2.07 2.85 0.17 M

FWM 0.79 ± 0.14 2.85 ± 1.61 2.06 0.73 M

+ AID 0.45 ± 0.16 1.21 ± 0.66 0.76 1.23 M

+ D3 (w/o F) 0.79 ± 0.30 2.58 ± 1.12 1.79 0.75 M

+ D3 (w/ F) 0.75 ± 0.17 1.96 ± 0.88 1.21 0.75 M

Table 2: The mean accuracy [%] on the sort-of-CLEVR task for 10 seeds, with ± indicating SD.

Model Dcode Unary (↑) Binary (↑) Ternary (↑) # params (↓)
Linear Transformer - 69.3 ± 14.8 75.5 ± 1.3 56.4 ± 4.3 0.68 M

+ AID - 98.9 ± 0.2 78.6 ± 0.3 63.7 ± 1.2 0.83 M

+ D3 (w/o F) 128 73.9 ± 16.5 77.2 ± 2.2 57.3 ± 4.6 0.75 M

256 73.7 ± 16.5 77.8 ± 2.5 57.9 ± 5.8 0.96 M

+ D3 (w/ F) 128 98.9 ± 0.2 79.5 ± 0.8 63.1 ± 1.9 0.80 M

256 99.0 ± 0.3 82.1 ± 2.4 68.8 ± 1.2 1.13 M

Table 3: Perplexity on the WikiText-103 task.

Model Dcode Valid (↓) Test (↓) # params (↓)
Linear Transformer - 36.473 37.533 44.02 M

+ AID - 36.159 37.151 44.16 M

+ D3 (w/o F) 32 36.061 37.220 44.12 M

64 35.975 37.009 44.36 M

+ D3 (w/ F) 32 36.630 37.620 44.22 M

64 36.220 37.128 44.62 M

a sentence-level model more suitable for capturing the structural information of data than a word-level
model. However, as shown in Table 1, TPR-RNN shows a larger performance gap between the w/o
sys diff and w/ sys diff cases than FWM. Notably, D3 enhances the systematic generalization of both
TPR-RNN and FWM with fewer additional parameters, significantly reducing the performance gap
for TPR-RNN. These results highlight the efficacy of D3 in text understanding tasks.

4.2.2 Linear Transformer

We also evaluate the Linear Transformer with D3 on the sort-of-CLEVR task and WikiText-103 task.
Following the AID [23], we use a 4-layered Linear Transformer with shared parameters for the sort-
of-CLEVR task and apply D3 to a 16-layered Linear Transformer at intervals of 4 out of the 16 layers
for the WikiText-103 task. As shown in Tables 2 and 3, D3 improves the performance of the Linear
Transformer, with these improvements increasing as the capacity of the dictionaries grows. These
results demonstrate the effectiveness of D3 on visual relational reasoning and language modeling
tasks, as well as its applicability to the Linear Transformer. In addition, D3 shows comparable
performance to the attention-based decomposition method, even with fewer parameters.

4.3 Analysis

In this section, we conduct a qualitative analysis of the structured TPR representations generated by
D3 and an ablation study of D3. For these analyses, we experiment with D3 (w/o F) on the SAR task.

4.3.1 Qualitative Analysis

TPR framework requires its structured representations to satisfy the following conditions for accurate
TPR operations: (i) linearly independence between distinct roles, and (ii) high correlation between

7

Figure 3: The heatmap displays the cosine similarity between the generated representations
during the discovery phase for the SAR task. We explore the similarity across different types
of representations: (a) queries of roles, (b) codes of roles, and (c) the roles themselves.

Figure 4: The heatmap displays the cosine similarity between the generated representations
during the discovery phase (represented on the x-axis) and the inference phase (represented
on the y-axis) for the SAR task. We explore the similarity across different types of
representations: (a) queries of roles and unbinding operators, (b) codes of roles and
unbinding operators, and (c) the roles and unbinding operators themselves.

Figure 5: The heatmap visualizes the cosine similarity of the learned codebook features for the
SAR task. There are two parts to each heatmap: (a) the similarity among codebook keys, denoted
as {ki}Ncode

i=1 , and (b) the similarity among codebook values, denoted as {vi}Ncode
i=1 . For better

visualization, the heatmap values are reordered to reflect the cluster of similar codebook keys.

role and unbinding operator for the same symbol x. We analyze the orthogonality of generated
representations to investigate whether they satisfy these TPR conditions. Specifically, we consider
the case of varying x while keeping y fixed for simplicity.

Fig. 3(c) shows the cosine similarity between the roles during the discovery phase, and Fig. 4(c)
shows the cosine similarity between the roles during the discovery phase and the unbinding operator
during the inference phase. Both results demonstrate that the generated representations by D3 satisfy
the TPR conditions, resulting in an accuracy of nearly 100%. We also conduct the same analysis
for intermediate features, particularly query and code. Figs. 3 and 4 show that each intermediate
representation complements the others to satisfy the TPR condition, indicating the effectiveness of
D3.

8

Figure 6: The mean accuracy on the SAR task for 10 seeds in the ablation study, with error bar
indicating SD. The default setting uses Dcode of 64, Ncode of 64, and top-k of 8. Each figure shows
the experimental results for the following settings: (a) Varying Dcode. (b) Varying Ncode with top-k
constant. (c) Varying top-k with Ncode constant.

Furthermore, we analyze the similarity patterns of codebook keys and codebook values. Fig. 5 shows
that the codebook features learn orthogonal patterns despite being learned without constraints. This
result implies that the learnable parameters of dictionaries implicitly capture TPR conditions to ensure
accurate TPR operations.

4.3.2 Ablation Study

We investigate the effect of hyper-parameters of D3, specifically Ncode, Dcode, and top-k, on perfor-
mance on the SAR task. Fig. 6(a) shows the effect of Dcode. We observe that the value of Dcode
significantly affects the performance of D3. Notably, D3 fails to solve the SAR task when Dcode is set
to 8, indicating a need for adequate capacity of Dcode. Fig. 6(b) shows the effect of varying top-k
while holding Ncode constant, indicating that D3 achieves optimal performance when top-k is set to 2.
This result demonstrates the efficacy of the sparse mechanism employed by D3. Fig. 6(c) examines
the effect of varying Ncode while holding top-k constant, showing that D3 generally performs better
with larger values of Ncode.

5 Discussion and Limitations

Motivation. From the perspective of systematic generalization, the decomposition operations in
the TPR framework can be viewed as mapping unseen data to TPR components observed during
training. Motivated by this, we design a decomposition module based on discrete representations,
which maps input data to discrete, learned features facilitating systematic generalization in the
decomposition operations of TPR. This design choice differentiates our contribution from AID’s
competitive attention-based decomposition module. Additionally, each dictionary in D3 is explicitly
linked to a specific TPR component, ensuring that each dictionary is responsible solely for generating
its corresponding component. The generated components are then utilized in predefined TPR
operations of the TPR-based models. This design ensures that each dictionary is trained to specialize
in a specific TPR component.

Interpretability. The TPR framework decomposes data at the representation level into distinct
symbols, such as role-filler pairs for encoding and unbinding operators for decoding. This character-
istic enhances the interpretability of models because the relationships between roles and unbinding
operators explain which parts of the input the model focuses on to predict the output. However,
this interpretability is reliable only when the generated structured representations satisfy the TPR
conditions. In this context, D3 enhances the interpretability of models by providing structured rep-
resentations that more effectively satisfy the TPR conditions than baseline models like FWM and
AID. Figs. 9 and 10 demonstrate that the representations generated by D3 better conform to the
TPR conditions than those from other baseline models, supporting our claim that D3 contributes to
increased interpretability.

D3 Applied to Filler (w/o F and w/ F). In the TPR framework, roles and unbinding operators
must meet specific conditions, such as linear independence among roles and high correlation between
roles and unbinding operators, to ensure accurate TPR operations. However, there are no such

9

requirements for fillers, which are features related to downstream tasks. This characteristic affects
the performance of D3 depending on whether it is applied to generate the fillers (w/ F) or not (w/o
F). In our experiments, the w/ F configuration performs well on the sys-bAbI and sort-of-CLEVR
tasks with relatively few labels (~200). In contrast, the w/o F configuration excels on the SAR and
WikiText-103 tasks, which have a larger number of labels (500~). These findings suggest that the
w/o F configuration may be more effective for large-scale practical tasks. Nevertheless, beyond
these experimental results, we do not fully understand the conditions under which each configuration
performs better. Consequently, one limitation of D3 is the additional burden of determining the
suitable configuration for various tasks when applying it to other domains.

Sparse Key Selection. D3 integrates seamlessly with existing TPR-based models, significantly
enhancing their generalization performance across various tasks. However, this integration introduces
additional computational overhead to the baseline models. Specifically, the sparse key selection
mechanism of D3 has a computational complexity of O(Ncode × (Dquery + logk)) for each TPR
component. Therefore, this complexity can become a drawback as the capacity of the dictionaries
increases. One potential solution to address this capacity issue is to incorporate product keys into the
sparse key selection mechanism of D3, a technique studied in prior discrete key-value architectures
[14]. We leave this enhancement for future work.

Scalability. The scalability of D3 is inherently linked to TPR operations of baseline models since
the number of dictionaries in the D3 layer aligns with the number of TPR components required for
their operations. As TPR operations require increasing components to handle large datasets, our
method also requires a proportional increase in dictionaries, resulting in significant computational
and memory overhead. As explored in prior work, one potential solution to mitigate this issue is
distributing shared dictionaries across multiple heads or layers [14]. However, this approach requires
further investigation and experimentation, which we plan to research in future work.

6 Conclusion

In this paper, we tackle the decomposition problem inherent in the TPR framework, which poses a
significant challenge for TPR-based models. To address this, we introduce a discrete dictionary-based
layer, D3, designed to enhance the decomposition capabilities of TPR-based models. D3 employs
the discrete dictionaries to map input data to pre-learned symbolic features within each dictionary,
thereby generating structured TPR representations. Our comprehensive experiments demonstrate
that D3 significantly enhances the systematic generalization of the TPR-based models with fewer
additional parameters. Furthermore, our qualitative analysis verifies that D3 effectively generates
structured representations that are satisfactory for the requirements of the TPR framework.

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by
the Korea government (MSIT) (No. 2021R1A2C3011169 & No. 2022R1A5A7026673 & No.
RS-2022-00166735 & No. RS-2023-00218987).

References
[1] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016.

[2] J. A. Fodor and Z. W. Pylyshyn. Connectionism and cognitive architecture: A critical analysis.
Cognition, 28(1-2):3–71, 1988.

[3] A. Goyal, A. Lamb, J. Hoffmann, S. Sodhani, S. Levine, Y. Bengio, and B. Schölkopf. Recurrent
independent mechanisms. arXiv preprint arXiv:1909.10893, 2019.

[4] A. Graves, G. Wayne, and I. Danihelka. Neural turing machines. arXiv preprint arXiv:1410.5401,
2014.

10

[5] A. Graves, G. Wayne, M. Reynolds, T. Harley, I. Danihelka, A. Grabska-Barwińska, S. G.
Colmenarejo, E. Grefenstette, T. Ramalho, J. Agapiou, et al. Hybrid computing using a neural
network with dynamic external memory. Nature, 538(7626):471–476, 2016.

[6] K. Greff, S. Van Steenkiste, and J. Schmidhuber. On the binding problem in artificial neural
networks. arXiv preprint arXiv:2012.05208, 2020.

[7] K. Hsu, W. Dorrell, J. Whittington, J. Wu, and C. Finn. Disentanglement via latent quantization.
Advances in Neural Information Processing Systems, 36, 2024.

[8] D. Hupkes, V. Dankers, M. Mul, and E. Bruni. Compositionality decomposed: How do neural
networks generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.

[9] Y. Jiang, A. Celikyilmaz, P. Smolensky, P. Soulos, S. Rao, H. Palangi, R. Fernandez, C. Smith,
M. Bansal, and J. Gao. Enriching transformers with structured tensor-product representations
for abstractive summarization. arXiv preprint arXiv:2106.01317, 2021.

[10] A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast autoregressive
transformers with linear attention. In International conference on machine learning, pages
5156–5165. PMLR, 2020.

[11] A. Kori, F. Locatello, F. D. S. Ribeiro, F. Toni, and B. Glocker. Grounded object-centric learning.
In The Twelfth International Conference on Learning Representations, 2023.

[12] B. Lake and M. Baroni. Generalization without systematicity: On the compositional skills of
sequence-to-sequence recurrent networks. In International conference on machine learning,
pages 2873–2882. PMLR, 2018.

[13] B. M. Lake, T. D. Ullman, J. B. Tenenbaum, and S. J. Gershman. Building machines that learn
and think like people. Behavioral and brain sciences, 40:e253, 2017.

[14] G. Lample, A. Sablayrolles, M. Ranzato, L. Denoyer, and H. Jégou. Large memory layers with
product keys. Advances in Neural Information Processing Systems, 32, 2019.

[15] H. Le, T. Tran, and S. Venkatesh. Self-attentive associative memory. In International Conference
on Machine Learning, pages 5682–5691. PMLR, 2020.

[16] A. Liška, G. Kruszewski, and M. Baroni. Memorize or generalize? searching for a compositional
rnn in a haystack. arXiv preprint arXiv:1802.06467, 2018.

[17] D. Liu, A. M. Lamb, K. Kawaguchi, A. G. ALIAS PARTH GOYAL, C. Sun, M. C. Mozer, and
Y. Bengio. Discrete-valued neural communication. Advances in Neural Information Processing
Systems, 34:2109–2121, 2021.

[18] F. Locatello, D. Weissenborn, T. Unterthiner, A. Mahendran, G. Heigold, J. Uszkoreit, A. Doso-
vitskiy, and T. Kipf. Object-centric learning with slot attention. Advances in Neural Information
Processing Systems, 33:11525–11538, 2020.

[19] S. Merity, C. Xiong, J. Bradbury, and R. Socher. Pointer sentinel mixture models. arXiv preprint
arXiv:1609.07843, 2016.

[20] S. Mittal, S. C. Raparthy, I. Rish, Y. Bengio, and G. Lajoie. Compositional attention: Disentan-
gling search and retrieval. arXiv preprint arXiv:2110.09419, 2021.

[21] H. Palangi, P. Smolensky, X. He, and L. Deng. Question-answering with grammatically-
interpretable representations. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 32, 2018.

[22] T. Park, I. Choi, and M. Lee. Distributed associative memory network with memory refreshing
loss. Neural Networks, 144:33–48, 2021.

[23] T. Park, I. Choi, and M. Lee. Attention-based iterative decomposition for tensor product
representation. In The Twelfth International Conference on Learning Representations, 2023.

11

[24] J. Rae, J. J. Hunt, I. Danihelka, T. Harley, A. W. Senior, G. Wayne, A. Graves, and T. Lillicrap.
Scaling memory-augmented neural networks with sparse reads and writes. In Advances in
Neural Information Processing Systems, pages 3621–3629, 2016.

[25] F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization
in the brain. Psychological review, 65(6):386, 1958.

[26] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu, P. Battaglia, and T. Lillicrap.
A simple neural network module for relational reasoning. Advances in neural information
processing systems, 30, 2017.

[27] A. Santoro, R. Faulkner, D. Raposo, J. Rae, M. Chrzanowski, T. Weber, D. Wierstra, O. Vinyals,
R. Pascanu, and T. Lillicrap. Relational recurrent neural networks. Advances in neural
information processing systems, 31, 2018.

[28] I. Schlag and J. Schmidhuber. Learning to reason with third order tensor products. Advances in
neural information processing systems, 31, 2018.

[29] I. Schlag, P. Smolensky, R. Fernandez, N. Jojic, J. Schmidhuber, and J. Gao. Enhancing
the transformer with explicit relational encoding for math problem solving. arXiv preprint
arXiv:1910.06611, 2019.

[30] I. Schlag, T. Munkhdalai, and J. Schmidhuber. Learning associative inference using fast weight
memory. arXiv preprint arXiv:2011.07831, 2020.

[31] I. Schlag, K. Irie, and J. Schmidhuber. Linear transformers are secretly fast weight programmers.
In International Conference on Machine Learning, pages 9355–9366. PMLR, 2021.

[32] Z. Shi, Q. Zhang, and A. Lipani. Stepgame: A new benchmark for robust multi-hop spatial
reasoning in texts. In Proceedings of the AAAI conference on artificial intelligence, volume 36,
pages 11321–11329, 2022.

[33] P. Smolensky. Tensor product variable binding and the representation of symbolic structures in
connectionist systems. Artificial intelligence, 46(1-2):159–216, 1990.

[34] P. Soulos, E. J. Hu, K. McCurdy, Y. Chen, R. Fernandez, P. Smolensky, and J. Gao. Differentiable
tree operations promote compositional generalization. In International Conference on Machine
Learning, pages 32499–32520. PMLR, 2023.

[35] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. The journal of machine learning research, 15
(1):1929–1958, 2014.

[36] S. Sukhbaatar, J. Weston, R. Fergus, et al. End-to-end memory networks. In Advances in neural
information processing systems, pages 2440–2448, 2015.

[37] A. Tamkin, M. Taufeeque, and N. D. Goodman. Codebook features: Sparse and discrete
interpretability for neural networks. arXiv preprint arXiv:2310.17230, 2023.

[38] F. Träuble, A. Goyal, N. Rahaman, M. C. Mozer, K. Kawaguchi, Y. Bengio, and B. Schölkopf.
Discrete key-value bottleneck. In International Conference on Machine Learning, pages
34431–34455. PMLR, 2023.

[39] A. Van Den Oord, O. Vinyals, et al. Neural discrete representation learning. Advances in neural
information processing systems, 30, 2017.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing systems,
30, 2017.

[41] T. W. Webb, I. Sinha, and J. D. Cohen. Emergent symbols through binding in external memory.
arXiv preprint arXiv:2012.14601, 2020.

12

[42] J. Weston, A. Bordes, S. Chopra, A. M. Rush, B. Van Merriënboer, A. Joulin, and T. Mikolov.
Towards ai-complete question answering: A set of prerequisite toy tasks. arXiv preprint
arXiv:1502.05698, 2015.

[43] Y.-F. Wu, M. Lee, and S. Ahn. Structured world modeling via semantic vector quantization.
arXiv preprint arXiv:2402.01203, 2024.

[44] X. Zhuang, Q. Zhang, K. Ding, Y. Bian, X. Wang, J. Lv, H. Chen, and H. Chen. Learning
invariant molecular representation in latent discrete space. Advances in Neural Information
Processing Systems, 36, 2024.

13

Appendix
A Experiment Details

This section provides a detailed description of our experiments on the SAR task, sys-bAbI task,
sort-of-CLEVR task, and WikiText-103 task. We followed the experimental settings outlined by
AID [23] to assess the decomposition capabilities of D3. To ensure stability and reproducibility, we
ran all experiments, except for the WikiText-103 task, using 10 different random seeds3. For the
WikiText-103 task, we experimented with a single seed of 1111. Each experiment was conducted on
a single 48GB NVIDIA RTX A6000 GPU and an AMD EPYC 7513 32-Core Processor.

A.1 Systematic Associative Recall task

The SAR task [23] evaluates systematic generalization in memorizing and recalling combinatorial
data. It consists of a discovery phase and an inference phase. During the discovery phase, the model
receives the combinatorial sequential items, each combining two symbols, x ∈ X and y ∈ Y where
X = X1 ∪X2 ∪X3 and Y = Y1 ∪ Y2. The model is then required to predict an associated y when
a specific x is presented. The SAR task uses different combination settings between training and
evaluation to target systematic generalization specifically. During the training, the model learns the
following combination settings: (1) X1 and Y1, (2) X2 and Y2, and (3) X3 and Y . At evaluation,
however, the model should generalize unseen combination settings, specifically X1 and Y2. In our
study, unlike the AID paper [23], we only consider the most challenging setting of the SAR task by
excluding the subset X3.

Each combinatorial item is constructed as follows. First, symbols x and y are sampled from their
respective sets X and Y , where |X1| = |X2| = |Y1| = |Y2| = 250. The sampled symbols are
mapped into a 50-dimensional space using a word embedding method. These embedding vectors
are then concatenated to construct the combinatorial item. For training, 100 randomly generated
combinatorial items are sequentially provided to the model during the discovery phase. During the
inference phase, the model receives only the x symbols sequentially, with the embedding vector of y
set to zero. This task also provides binary flags to indicate the start of each phase. At evaluation, all
possible combinations that can be formed in X1 and Y2 are tested.

To build the experimental environment for the SAR task, we utilize the open-source implementation4

from the AID [23]. We train the model using the Adam optimizer with a batch size of 64 and a
learning rate of 1e−3, β1 of 0.9, and β2 of 0.98 for training iterations of 30K. Each experiment took
approximately 3 hours per each seed.

A.2 Systematic bAbI task

The sys-bAbI task [23] is a variant of the bAbI task [42] designed to evaluate systematic generalization
in text understanding and reasoning. It consists of 20 distinct sub-tasks, each comprising stories,
relevant queries, and corresponding answers. The sys-bAbI task requires the models to remember
the stories and predict corresponding answers to the queries. Unlike the original bAbI task, the
sys-bAbI task evaluates the models with two aspects: (a) in-distribution (w/o sys diff) and (b) with
the systematic difference (w/ sys diff) where each sub-task includes unseen words during training.
Therefore, the models should learn task-independent text understanding to solve the sys-bAbI task.

The bAbI dataset includes various versions, such as en-10k and en-valid-10k. The sys-bAbI
task uses the en-valid-10k version, which is already divided into training, validation, and test
datasets. To create the experimental environment for the sys-bAbI task, we use the open-source
implementation5 provided by the AID.

3We used the following seed values: {0, 1111, 2222, 3333, 4444, 5555, 6666, 7777, 8888, 9999}
4https://github.com/taewonpark/AID/tree/main/SARtask
5https://github.com/taewonpark/AID/tree/main/bAbItask

14

https://github.com/taewonpark/AID/tree/main/SARtask
https://github.com/taewonpark/AID/tree/main/bAbItask

We use the open-source implementation of the baseline models, TPR-RNN6 [28] and FWM7 [30].
Following the experimental settings of baseline models, we use different configurations for each
model. We train the TPR-RNN with D3 using an embedding size of 179 and the Adam optimizer
with a batch size of 128 and a learning rate of 1e−3, β1 of 0.9, and β2 of 0.99 for 100 training epochs.
For FWM with D3, we use an embedding size of 256 and the Adam optimizer with a batch size of 64
and a learning rate of 1e−3, β1 of 0.9, and β2 of 0.98 for training iterations of 60K. Furthermore,
following the AID, we use the reconstruction loss for the bAbI task, introduced in Park et al. [22], in
our experiments on the sys-bAbI task. Each experiment took approximately 7 hours per seed for the
TPR-RNN with D3 and 8 hours per seed for the FWM with D3.

A.3 Sort-of-CLEVR task

The sort-of-CLEVR task [26] evaluates compositional generalization in visual relational reasoning.
It consists of scene images, queries, and corresponding answers. This task requires the models
to understand the properties of individual objects (Unary) or the relationships between multiple
objects (Binary or Ternary) within visual scene images and predict the correct answers to the queries.
Therefore, the model should capture relationships within each object and between objects to solve
this task.

Each scene image, with a size of 75×75 pixels, includes 6 distinct objects in 6 different colors
(red, blue, green, orange, yellow, or gray) and 2 different shapes (square or circle). This scene
image is encoded by a visual encoder. The encoded visual feature is then concatenated with the
embedding vector of the query. These concatenated features are provided to the model. Following
the experimental settings of the AID [23], we use a single CNN layer with a kernel size of 15 and a
stride of 15 for the visual encoder, and an embedding size of 128 for the word embedding method.
Also, we use a 4-layered Transformer, where each layer shares its parameters with others, as our
baseline model.

To build the experimental environment for the sort of CLEVR task, we utilize the open-source
implementation8 from Mittal et al. [20]. We train the model using the Adam optimizer with a batch
size of 64 and a learning rate of 1e−4 for 100 training epochs. Each experiment took approximately
2.5 hours per each seed.

A.4 WikiText-103 task

The WikiText-103 task [19] is a language modeling dataset consisting of lengthy corpora from
Wikipedia. Although the WikiText-103 task does not directly measure the systematic generalization
of the models, it is used to evaluate the effectiveness and applicability of D3 on a large-scale task
beyond relatively simple tasks.

The WikiText-103 task comprises 28,475 articles for training, 60 for validation, and 60 for testing.
Following the experimental settings of Schlag et al. [31], we partition the articles into segments
of L words. During training, the gradient is back-propagated only within spans of L words. The
performance of the model is evaluated using the measure of perplexity. During evaluation, the model
processes an input sequence of L words by sliding a segment over the article with a stride size of 1.
Perplexity is then computed based on the last position of each segment, except for the first segment,
where every position is taken into account.

To build the experimental environment for the WikiText-103 task, we utilize the open-source imple-
mentation9 from [31]. Following the AID [23], we apply D3 to a 16-layered Linear Transformer at
intervals of 4 out of the 16 layers. We train the model using the Adam optimizer with a batch size of
96, an initial learning rate of 2.5e−4, and a learning rate warmup step of 2,000 for 120 epochs. Each
experiment took approximately ~3 days.

6https://github.com/APodolskiy/TPR-RNN-Torch
7https://github.com/ischlag/Fast-Weight-Memory-public
8https://github.com/sarthmit/Compositional-Attention/tree/main/Sort-of-CLEVR
9https://github.com/IDSIA/lmtool-fwp

15

https://github.com/APodolskiy/TPR-RNN-Torch
https://github.com/ischlag/Fast-Weight-Memory-public
https://github.com/sarthmit/Compositional-Attention/tree/main/Sort-of-CLEVR
https://github.com/IDSIA/lmtool-fwp

B Hyper-parameter Settings

Table 4: Hyper-parameter settings of the D3.

SAR task sys-bAbI task Sort-of-CLEVR task WikiText-103 task

Dcode 8, 16, 32, 64, 128 32, 64, 128, 256 128, 256 32, 64

Ncode 64

Dquery Dcode/2

top-k 8

pdropout 0.1

Table 5: Hyper-parameters of TPR-RNN.

sys-bAbI task

Dentity (Dcomponent) 90

Drelation (Dcomponent) 20

N enc
component 5

N dec
component 4

Table 6: Hyper-parameters of FWM.

SAR task sys-bAbI task

DLSTM 256 256

DFWM (Dcomponent) 32 32

Nreads 1 3

N enc
component 3 3

N dec
component 1+Nreads 1+Nreads

Table 7: Hyper-parameters of Linear Transformer.

Sort-of-CLEVR task WikiText-103 task

Dheads (Dcomponent) 64 16

Nheads 4 8

N enc
component 2 * Nheads 2 * Nheads

N dec
component Nheads Nheads

16

C Additional Experiments

Table 8: The mean word error rate [%] on additional experiments of the sys-bAbI task for 10 seeds.

Model Dcode w/o sys diff (↓) w/ sys diff (↓) Gap (↓) # params (↓)

TPR-RNN - 0.79 ± 0.16 8.74 ± 3.74 7.95 0.14 M

+ AID - 0.69 ± 0.08 5.61 ± 1.78 4.92 0.32 M

+ D3 32 1.16 ± 0.25 3.44 ± 1.78 2.28 0.13 M

64 0.65 ± 0.25 3.50 ± 2.07 2.85 0.17 M

128 0.68 ± 0.14 3.94 ± 2.20 3.26 0.26 M

FWM - 0.79 ± 0.14 2.85 ± 1.61 2.06 0.73 M

+ AID - 0.45 ± 0.16 1.21 ± 0.66 0.76 1.23 M

+ D3 (w/o F) 64 0.79 ± 0.30 2.58 ± 1.12 1.79 0.75 M

128 0.93 ± 0.20 3.82 ± 1.21 2.89 0.82 M

256 1.04 ± 0.40 3.33 ± 1.21 2.29 0.97 M

+ D3 (w/ F) 32 1.20 ± 0.31 7.23 ± 4.33 6.03 0.71 M

64 0.75 ± 0.17 1.96 ± 0.88 1.21 0.75 M

128 0.89 ± 0.32 2.48 ± 0.67 1.59 0.84 M

256 0.75 ± 0.23 3.09 ± 1.83 2.34 1.02 M

D Additional Comparisons

In this section, we expand our comparisons to include a broader range of state-of-the-art methods, as
detailed below.

sys-bAbI task. We compare D3 to state-of-the-art methods (DAM [22] and STM [15]) on the
original bAbI task. Table 9 shows that existing memory networks struggle with the sys-bAbI task,
highlighting the efficacy of D3 compared to these state-of-the-art memory networks.

Table 9: The mean word error rate [%] on additional comparison of the sys-bAbI task for 10 seeds.

Model w/o sys diff (↓) w/ sys diff (↓) Gap (↓)
DAM 0.48 ± 0.20 5.25 ± 1.64 4.77
STM 0.49 ± 0.16 4.79 ± 1.53 3.70
TPR-RNN 0.79 ± 0.16 8.74 ± 3.74 7.95

+ AID 0.69 ± 0.08 5.61 ± 1.78 4.92
+ D3 0.65 ± 0.25 3.50 ± 2.07 2.85

FWM 0.79 ± 0.14 2.85 ± 1.61 2.06
+ AID 0.45 ± 0.16 1.21 ± 0.66 0.76
+ D3 (w/o F) 0.79 ± 0.30 2.58 ± 1.12 1.79
+ D3 (w/ F) 0.75 ± 0.17 1.96 ± 0.88 1.21

Sort-of-CLEVR task. We compare D3 to vanilla Transformer [40] and Compositional Transformer
[20], designed to enhance the systematic generalization capabilities of multi-head self-attention
methods. Table 10 shows that the Linear Transformer significantly degrades systematic generalization
performance compared to the vanilla Transformer and the Compositional Transformer. While D3
improves the performance of the Linear Transformer from a TPR perspective, it still shows limited
performance in reasoning the relationships between multiple objects (Binary and Ternary) compared
to the vanilla Transformer and Compositional Transformer.

WikiText-103 task. We compared D3 to the Delta Network [31], which introduced a delta updating
rule instead of the additive outer product-based updating rule in the Linear Transformer. Table 11

17

Table 10: The mean accuracy [%] on additional comparison of the sort-of-CLEVR task for 10 seeds.

Model Dcode Unary (↑) Binary (↑) Ternary (↑)
Transformer - 97.4 ± 3.5 84.3 ± 4.3 62.7 ± 3.9

Compositional Transformer - 98.9 ± 0.2 88.4 ± 1.4 66.5 ± 1.9

Linear Transformer - 69.3 ± 14.8 75.5 ± 1.3 56.4 ± 4.3

+ AID - 98.9 ± 0.2 78.6 ± 0.3 63.7 ± 1.2

+ D3 (w/o F) 128 73.9 ± 16.5 77.2 ± 2.2 57.3 ± 4.6

256 73.7 ± 16.5 77.8 ± 2.5 57.9 ± 5.8

+ D3 (w/ F) 128 98.9 ± 0.2 79.5 ± 0.8 63.1 ± 1.9

256 99.0 ± 0.3 82.1 ± 2.4 68.8 ± 1.2

indicates that although D3 improves the performance of the Linear Transformer in language modeling
tasks, the choice of updating rules has a more substantial impact on performance for tasks involving
the comprehension of lengthy corpora than the decomposition operation.

Table 11: Perplexity on additional comparison of the WikiText-103 task.

Model Dcode Valid (↓) Test (↓)
Delta Network - 35.640 36.659
Linear Transformer - 36.473 37.533

+ AID - 36.159 37.151
+ D3 (w/o F) 32 36.061 37.220

64 35.975 37.009
+ D3 (w/ F) 32 36.630 37.620

64 36.220 37.128

E Additional Ablation Study

In this section, we extend our ablation studies to investigate the effects of varying the number of keys
in the codebook and the impact of removing either the residual connection or the codebook from the
D3 layer.

The Effect of Varying the Number of Codebook Keys. Fig. 7 shows that even with a significantly
reduced number of keys, the model with D3maintains high accuracy on the SAR task. This observation
prompts the question of how consistent performance is achieved despite the reduction in codebook
size. To explore this further, we examine the impact of removing the codebook or the residual
connection within the D3 layer on the SAR and sys-bAbI tasks. Specifically, removing the codebook
means that the components are generated solely by the shared feed-forward networks (layerresidual
and layerfinal) while removing the residual connection implies that the components are derived solely
from the codebook values.

Figure 7: The mean accuracy on the SAR task for 10 seeds in the ablation study for the effect of
varying Ncode from 2 to 128 with top-k constant.

18

The Effect of Residual Connection. Fig. 8 shows that without the residual connection, the
generalization performance of D3 dramatically degrades. This result indicates that the residual
connection is crucial for effectively training the D3 layer.

Figure 8: Ablation study for the effect of the residual connection on (a) the SAR task and (b) the
sys-bAbI task for 10 seeds.

The Effect of Codebook. Table 12 shows that even without the codebook ("w/o codebook"), the
D3 layer improves the generalization performance of the baseline model on the SAR task. This result
indicates that the shared feed-forward networks significantly contribute to performance enhancement,
which may explain why the model maintains robust performance even with fewer keys.

However, it is important to note that without the codebook, the D3 layer does not achieve near-perfect
accuracy on the SAR task (as shown in Table 12) and fails to significantly enhance the systematic
generalization of the baseline model on the sys-bAbI task (as shown in Table 13). These results
demonstrate that the codebook plays a crucial role in enhancing the model’s overall performance and
generalization capabilities, especially in tasks requiring systematic generalization.

Furthermore, we experiment with Ncode = 1 on the SAR task, where the codebook may act as a
bias term. The results in Table 12) show that using a single codebook element leads to degraded
generalization performance compared to the "w/o codebook" configuration, indicating that multiple
codebook elements are essential for achieving optimal results.

Table 12: Ablation study for the effect of the codebook on the SAR task for 10 seeds.

Model Dcode Ncode top-k Accuracy (↑)
FWM - - - 44.90 ± 31.5

+ D3 4 2 87.38 ± 11.10

+ D3 64 8 99.27 ± 0.88

+ D3 (w/o codebook)
32

- - 89.02 ± 4.56

+ D3 1 1 89.10 ± 7.99

+ D3 4 2 94.47 ± 2.35

+ D3 64 8 94.29 ± 8.06

+ D3 (w/o codebook)

64

- - 91.65 ± 3.66

Table 13: Ablation study for the effect of the codebook on the sys-bAbI task for 10 seeds.

Model w/o sys diff (↓) w/ sys diff (↓) Gap (↓)
FWM 0.79 ± 0.14 2.85 ± 1.61 2.06

+ D3 0.75 ± 0.17 1.96 ± 0.88 1.21
+ D3 (w/o codebook) 1.19 ± 0.41 3.55± 1.04 2.36

Discussion. Our ablation study on the codebook in the SAR task (Table 12) indicates that the shared
residual networks within the D3 layer significantly enhance generalization performance. However,
the results from the sys-bAbI task (Table 13) suggest that while these networks improve performance,
they alone struggle to generalize more structured data.

19

The ablation studies in Tables 12 and 13 demonstrate that incorporating the codebook mechanism leads
to nearly 100% accuracy on the SAR task and significantly improves the systematic generalization of
models on the sys-bAbI task. However, as shown in the ablation study on the residual connection
(Fig. 8), the codebook alone does not achieve the same level of generalization and exhibits instability
within the D3 layer.

In conclusion, our experimental results indicate that the combination of the codebook and the shared
residual networks within the D3 layer is crucial for enhancing systematic generalization performance
and stability. By integrating these two components, our D3 layer significantly improves the systematic
generalization capabilities of TPR-based models.

F Additional Qualitative Analysis

F.1 Comparison to Baselines

We conduct an orthogonal analysis for the baseline models (FWM and AID) similar to the analysis
presented in Section 4.3.1. Figs. 9 and 10 indicate that the D3 model generates more structured and
orthogonal representations than the baseline models, FWM and AID, demonstrating its effectiveness.

Figure 9: The heatmap displays the cosine similarity between the roles during the discovery
phase for the SAR task.

Figure 10: The heatmap displays the cosine similarity between the roles (x-axis) during the discovery
phase and the unbinding operators (y-axis) during the inference phase for the SAR task.

20

F.2 Qualitative Analysis for Different Seeds

Additionally, we present the results of the qualitative analysis for different seeds in the SAR task.

F.2.1 Ncode: 64, Dcode: 32, top-k: 8, seed: 3333

Figure 11: The heatmap displays the cosine similarity between the generated representations
during the discovery phase for the SAR task. We explore the similarity across different types
of representations: (a) queries of roles, (b) codes of roles, and (c) the roles themselves.

Figure 12: The heatmap displays the cosine similarity between the generated representations
during the discovery phase (represented on the x-axis) and the inference phase (represented
on the y-axis) for the SAR task. We explore the similarity across different types of
representations: (a) queries of roles and unbinding operators, (b) codes of roles and
unbinding operators, and (c) the roles and unbinding operators themselves.

Figure 13: The heatmap visualizes the cosine similarity of the learned codebook features
for the SAR task. There are two parts to each heatmap: (a) the similarity among codebook
keys, denoted as {ki}Ncode

i=1 , and (b) the similarity among codebook values, denoted as
{vi}Ncode

i=1 . For better visualization, the heatmap values are reordered to reflect the cluster
of similar codebook keys.

21

F.2.2 Ncode: 64, Dcode: 32, top-k: 8, seed: 4444

Figure 14: The heatmap displays the cosine similarity between the generated representations
during the discovery phase for the SAR task. We explore the similarity across different types
of representations: (a) queries of roles, (b) codes of roles, and (c) the roles themselves.

Figure 15: The heatmap displays the cosine similarity between the generated representations
during the discovery phase (represented on the x-axis) and the inference phase (represented
on the y-axis) for the SAR task. We explore the similarity across different types of
representations: (a) queries of roles and unbinding operators, (b) codes of roles and
unbinding operators, and (c) the roles and unbinding operators themselves.

Figure 16: The heatmap visualizes the cosine similarity of the learned codebook features
for the SAR task. There are two parts to each heatmap: (a) the similarity among codebook
keys, denoted as {ki}Ncode

i=1 , and (b) the similarity among codebook values, denoted as
{vi}Ncode

i=1 . For better visualization, the heatmap values are reordered to reflect the cluster
of similar codebook keys.

22

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: This paper includes the paper’s contributions and scope in the abstract and
introduction, as follows. This paper tackles the decomposition problem inherent in the
TPR-based approaches. To address this, this paper proposes a discrete dictionary-based
decomposition (D3) layer designed to enhance the decomposition capabilities of the TPR-
based models.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This paper discusses the limitations of the work performed by the authors in
Section 5, as follows. The model introduced in this paper requires additional computational
overhead and configuration search when the proposed model is integrated into the existing
baseline models.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

23

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper discloses all the information needed to reproduce the experimental
results. This paper explains the mechanism of the proposed model and how it is applied
to existing baseline models in Section 3 and presents the experiment details and hyper-
parameter settings in Appendices A and B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

24

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: This paper provides supplementary materials to reproduce all experimental
results of the proposed method, including source codes about our model implementation,
data processing, scripts for execution, etc.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: This paper presents our experiment details and hyper-parameter settings in
Appendices A and B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: This paper reports the mean and standard deviation values in the experimental
results conducted using fixed 10 different random seeds.

25

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This paper provides the computer resources used in our experiments and the
time it took to learn each task in Appendix A.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in this paper conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

26

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]

Justification: The authors do not foresee a negative societal impact on the work presented in
this paper beyond the general effects of ML advancements.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not have a high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This paper cites the original paper that produced the code package or dataset,
and includes URLs in Appendix A.

Guidelines:

• The answer NA means that the paper does not use existing assets.

27

• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: This paper provides supplementary materials with source code, license, and
README.md files. The README.md files cite the code packages utilized in this paper
and provide all the instructions to reproduce the experimental results.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]

28

paperswithcode.com/datasets

Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

29

	Introduction
	Related Work
	Method
	Discrete Dictionary-based Decomposition module
	Module Configurations
	Integration of D3 into Existing TPR-based Models

	Experiment
	Task
	Experimental Results
	TPR-based Memory Networks
	Linear Transformer

	Analysis
	Qualitative Analysis
	Ablation Study

	Discussion and Limitations
	Conclusion
	Appendices
	Experiment Details
	Systematic Associative Recall task
	Systematic bAbI task
	Sort-of-CLEVR task
	WikiText-103 task

	Hyper-parameter Settings
	Additional Experiments
	Additional Comparisons
	Additional Ablation Study
	Additional Qualitative Analysis
	Comparison to Baselines
	Qualitative Analysis for Different Seeds
	Ncode: 64, Dcode: 32, top-k: 8, seed: 3333
	Ncode: 64, Dcode: 32, top-k: 8, seed: 4444

