

000  
001  
002  
003  
004  
005  
006  
007  
008  
009  
010  
011  
012  
013  
014  
015  
016  
017  
018  
019  
020  
021  
022  
023  
024  
025  
026  
027  
028  
029  
030  
031  
032  
033  
034  
035  
036  
037  
038  
039  
040  
041  
042  
043  
044  
045  
046  
047  
048  
049  
050  
051  
052  
053  

# FRACTIONAL-ORDER SPIKING NEURAL NETWORK

**Anonymous authors**

Paper under double-blind review

**ABSTRACT**

Spiking Neural Networks (SNNs) draw inspiration from biological neurons to enable brain-like computation, demonstrating effectiveness in processing temporal information with energy efficiency and biological realism. Most existing SNNs are based on neural dynamics such as the (leaky) integrate-and-fire (IF/LIF) models, which are described by *first-order* ordinary differential equations (ODEs) with Markovian characteristics. This means the potential state at any time depends solely on its immediate past value, potentially limiting network expressiveness. Empirical studies of real neurons, however, reveal long-range correlations and fractal dendritic structures, suggesting non-Markovian behavior better modeled by *fractional-order* ODEs. Motivated by this, we propose a *fractional-order* spiking neural network (*f*-SNN) framework that strictly generalizes integer-order SNNs and captures long-term dependencies in membrane potential and spike trains via fractional dynamics, enabling richer temporal patterns. We also release an open-source toolbox to support the *f*-SNN framework, applicable to diverse architectures and real-world tasks. Experimentally, fractional adaptations of established SNNs into the *f*-SNN framework achieve superior accuracy, comparable energy efficiency, and improved robustness to noise, underscoring the promise of *f*-SNNs as an effective extension of traditional SNNs.

**1 INTRODUCTION**

Neural networks have evolved substantially as researchers continuously explore models that better reflect biological neural systems while maintaining strong performance. Traditional artificial neural networks (ANNs) excel across many tasks (Krizhevsky et al., 2012; LeCun et al., 2015; Vaswani et al., 2017) but differ from real biological mechanisms, and modern models require far more compute than the human brain (Dhar, 2020). This gap has motivated Spiking Neural Networks (SNNs) (Maass, 1997; Ghosh-Dastidar & Adeli, 2009; Lee et al., 2016; Wu et al., 2018; Zheng et al., 2021; Zhou et al., 2022), which model neural activity more realistically by communicating through discrete spikes rather than continuous values. Their event-driven computation paradigm allows for significant energy savings, particularly when implemented on neuromorphic hardware (Roy et al., 2019; Pei et al., 2019). Additionally, SNNs naturally handle time as part of their processing, making them well-suited for tasks with time-series data or real-time interactions in changing environments (Yao et al., 2023b; Luo et al., 2024; Yao et al., 2021). These features make SNNs strong candidates for applications that need both energy efficiency and good temporal processing.

Despite these advantages, existing SNN models predominantly describe spiking neuronal membrane-potential dynamics using the widely adopted Integrate-and-Fire (IF) and Leaky Integrate-and-Fire (LIF) neurons (Stein, 1967), along with variants including nonlinear spike initiation (Ermentrout, 1996; Fourcaud-Trocmé et al., 2003), ternary spikes (Guo et al., 2024), adaptive membrane time constants (Koch et al., 1996; Zhang et al., 2025), and threshold adaptation or learning (Belloc et al., 2018; Benda, 2021). These models discretize *first-order* ordinary differential equations (ODEs) which contains only  $d/dt$  terms (Hodgkin & Huxley, 1952; Maass, 1997; Ghosh-Dastidar & Adeli, 2009; Eshraghian et al., 2023b) and assume a Markovian property in which the current state depends mainly on the immediate previous state (see (9)). While this simplification enables computational tractability, it fundamentally limits the expressiveness of these networks. Neurophysiological research has demonstrated that real neurons display far more complex behaviors influenced by long-term correlations (Gilboa et al., 2005), fractal dendritic structures (Coop et al., 2010; Kirch & Gollo, 2020), and the interaction of multiple active membrane conductances (La Camera et al., 2006; Miller & Troyer, 2002). These dynamics cannot be adequately captured by integer-order models (Ulanovsky

et al., 2004; La Camera et al., 2006; Miller & Troyer, 2002; Spain et al., 1991) and suggest that non-Markovian dynamics play a significant role in biological neural computation. Fractional calculus instead offers mathematical tools for modeling such dynamics better than standard first-order ODEs (Diethelm, 2010; Baleanu et al., 2012). In contrast to integer-order calculus, the *fractional-order* derivative  $d^\alpha/dt^\alpha$ , with non-integer  $\alpha$  values, considers the entire history of a function, weighted by a power-law kernel. The fractional leaky integrate-and-fire ( $f$ -LIF) neuron dynamic, introduced and studied in (Teka et al., 2014; Deng et al., 2022), serves as an example of applying these concepts. This model can effectively explain spiking frequency adaptations observed in most biological neurons (Ha & Cheong, 2017) and has been shown to generate more reliable spike patterns than integer-order models when subjected to noisy input (Teka et al., 2014). Despite these promising findings, the integration of SNNs and fractional neurons remains a largely unexplored area (Lee & Monahan).

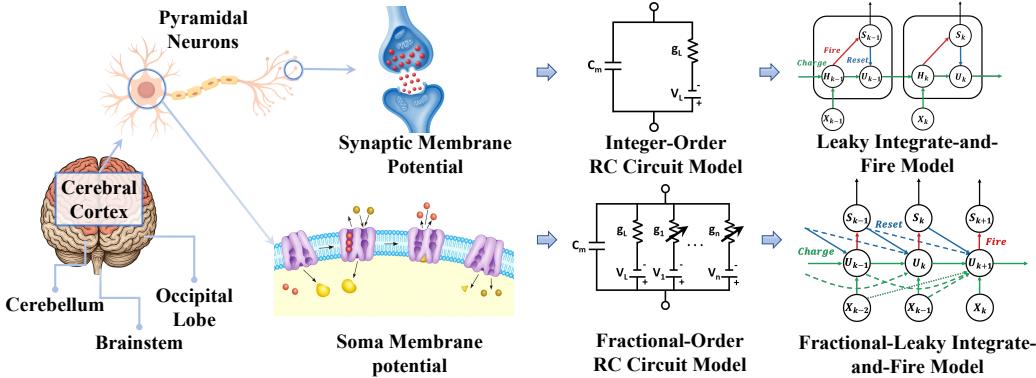


Figure 1: Comparison of traditional SNN and  $f$ -SNN framework.

In this paper, we introduce a generalized *fractional-order* SNN ( $f$ -SNN) framework, which incorporates fractional-order dynamics into the neuronal membrane potential charging. By replacing the first-order ODE neurons traditionally used in SNNs with fractional-order ODEs ( $f$ -ODEs),  $f$ -SNN naturally captures long-term dependencies that are beyond the capability of standard SNN models, leading to improved performance on tasks that require complex temporal processing. We highlight that our framework is a more general framework which subsumes many traditional SNNs as special instances by setting  $\alpha = 1$ . **We evaluate  $f$ -SNN models on multiple benchmark datasets spanning neuromorphic event-driven vision, graph domains, and static vision fields.** Experimental results show that  $f$ -SNN models consistently outperform conventional SNN models across various evaluation metrics. Moreover,  $f$ -ODEs are robust to perturbations (Sabatier et al., 2015; Kang et al., 2024c); in particular, neural  $f$ -ODEs admit tighter input–output perturbation bounds than integer-order models (Kang et al., 2024c). Building on this, an additional advantage of our proposed  $f$ -SNN framework is its superior robustness under input perturbations. These findings underscore the practical advantages of integrating fractional-order dynamics into SNNs and point to the broader applicability of our  $f$ -SNN in real-world scenarios.

**Main contributions.** Our objective in this paper is to formulate a generalized fractional-order SNN framework. Our key contributions are summarized as follows:

- We propose an  $f$ -SNN framework that integrates  $f$ -ODEs into SNNs to naturally capture long-term dependencies using the fractional-order operator  $d^\alpha/dt^\alpha$ . This framework generalizes the traditional class of integer-order SNNs that use IF, LIF neuron dynamics, and their variants, subsuming them as a special case by setting  $\alpha = 1$ .
- We establish fundamental theoretical distinctions between  $f$ -SNNs and traditional SNNs, proving that fractional-order dynamics confer three key advantages: persistent memory through power-law relaxation, irreducibility to finite classical ensembles, and enhanced robustness to perturbations.
- We underscore the compatibility of  $f$ -SNN, emphasizing its ability to be seamlessly integrated to augment the performance of many existing SNNs by using non-integer  $\alpha$  with various neural network architectures like convolutional neural networks (CNN), Transformer, ResNet, and multilayer perceptron (MLP) (Vaswani et al., 2017; LeCun et al., 1989; He et al., 2016; Zhou et al., 2022). We provide the community with an open-source, out-of-the-box toolbox to support the  $f$ -SNN framework (see supplementary code and Section E). We conduct extensive experiments on multiple datasets, demonstrating that  $f$ -SNN consistently improves traditional SNNs, achieving superior accuracy, comparable energy efficiency, and enhanced robustness.

108 **Related Work.** We first review the prior application of fractional calculus into SNNs/ANNs and then  
 109 position our contribution accordingly.

110 **Fractional biological neuron modelling and shallow fractional Hopfield spiking network.** At  
 111 the neuron level, the  $f$ -LIF modelling (Teka et al., 2014; Deng et al., 2022) of biological neurons  
 112 explains spike-frequency adaptation in pyramidal neurons (Ha & Cheong, 2017) and yields more  
 113 reliable spike patterns under noise (Teka et al., 2014). The work (Rombouts & Bohte, 2010) proposes  
 114 that a neuron’s spike-train can be interpreted as a fractional derivative of its input signal. They show  
 115 encoding/decoding efficiency and link fractional dynamics to predictive coding. At the network  
 116 level, related efforts investigate shallow fractional Hopfield-type spiking networks (Zhang et al.,  
 117 2026). These studies primarily focus on dynamical system properties, proving the coexistence of  
 118 multiple equilibrium points, solution boundedness, and global attractivity—rather than learning  
 119 representations for complex tasks.

120 *Distinction:* Crucially, prior work is restricted to biological modeling, signal-approximation, or  
 121 dynamical analysis of fixed-weight, shallow networks, neglecting the learning problem. We bridge this  
 122 gap by formulating the first generalizable  $f$ -SNNs framework for end-to-end training. This advances  
 123  $f$ -SNNs from theoretical constructs to a trainable computational paradigm compatible with modern  
 124 deep architectures (e.g., Transformers), strictly generalizing integer-order SNNs.

125 **Fractional deep learning and fractional differential equation neural solvers.** In the continuous  
 126 ANN domain, fractional calculus has been integrated into deep learning frameworks to enhance  
 127 expressivity. For instance (Kang et al., 2024a;b) leverage fractional calculus to improve graph neural  
 128 network performance and robustness, while Nobis et al. (2024) utilizes fractional diffusion processes  
 129 to improve diversity in generative modeling. Separately, in the domain of scientific computing,  
 130 Physics-Informed Neural Networks (PINNs) have been extended to solve fractional partial differential  
 131 equations ( $f$ -PINNs) (Pang et al., 2019). Subsequent developments have focused on scalability, such  
 132 as gradient-enhanced variants for convergence (Yu et al., 2022b), and optimized training via operator-  
 133 matrix methods for high-dimensional problems (Ma et al., 2023; Taheri et al., 2024)

134 *Distinction:* Our  $f$ -SNN model fundamentally differs from these approaches. First, unlike  $f$ -PINNs,  
 135 which serve as function approximators to solve a given fractional equation, we embed fractional  
 136 dynamics inside the neuron model as a computational engine. Second, unlike fractional ANNs that  
 137 operate on continuous signals,  $f$ -SNNs function in the discrete, event-driven domain.

138 **Fractional-order gradients for training nns.** A complementary line of research applies fractional  
 139 derivatives to define gradient operators and learning dynamics for training SNNs/ANNs. For example,  
 140 fractional gradient descent algorithms (Khan et al., 2018; Shin et al., 2023) replace the standard  
 141 integer-order gradient update with a fractional counterpart. These methods smooth the optimization  
 142 landscape, enabling faster convergence and better escape from local minima compared to standard  
 143 stochastic gradient descent (SGD). In the spiking domain, Gyöngyössy et al. (2022); Yang et al.  
 144 (2025; 2023) have applied fractional gradients for training SNNs.

145 *Distinction:* These approaches use fractional calculus as an optimization tool to adjust the weight  
 146 update trajectory, whereas our work embeds fractional dynamics within the neurons themselves.  
 147 This is analogous to the difference between designing a network optimizer (Adam vs. SGD) versus  
 148 changing the network architecture (CNN vs. Transformer).

## 2 PRELIMINARIES

149 This section reviews essential concepts. We introduce fractional calculus, which generalizes derivatives  
 150 to non-integer orders and naturally models systems with memory or non-local dependencies.  
 151 We then outline conventional SNN approaches based on discretizing integer-order neuron dynamics.

### 2.1 FRACTIONAL CALCULUS

152 When examining a function  $y(t)$  with respect to (w.r.t.) time  $t$ , we traditionally define the first-order  
 153 derivative as the instantaneous rate of change:  $\frac{dy(t)}{dt} := \lim_{\Delta t \rightarrow 0} \frac{y(t+\Delta t) - y(t)}{\Delta t}$ . The literature offers  
 154 various definitions of fractional derivatives (Tarasov, 2011). We focus on the Caputo fractional  
 155 derivative  $D^\alpha$  for the formal definition of  $d^\alpha/dt^\alpha$  (Diethelm, 2010), which has the notable advantage  
 156 of allowing initial conditions to be specified in the same manner as integer-order differential equations.

157 **Definition 1** (Caputo Fractional Derivative). *For a function  $y(t)$  defined over an interval  $[0, T]$ , its  
 158 Caputo fractional derivative of order  $\alpha \in (0, 1]$  is given by (Diethelm, 2010):*

$$160 \quad D^\alpha y(t) := \frac{1}{\Gamma(1-\alpha)} \int_0^t (t-\tau)^{-\alpha} y'(\tau) d\tau, \quad (1)$$

162 where  $y'(\tau)$  denotes the first-order derivative of  $y(\tau)$ .  
 163

164 **Remark 1.** (1) reveals that the fractional derivative incorporates the historical states of the function  
 165 through a power-weighted integral term when  $\alpha \in (0, 1)$ , highlighting its memory dependence.  
 166 As  $\alpha \rightarrow 1$ , the Caputo derivative  $D^\alpha$  converges to the standard first-order derivative  $\frac{d}{dt}$ . Indeed,  
 167 letting  $F(s) = \mathcal{L}\{f(t)\}$  be Laplace transform of  $f(t)$ , we have  $\mathcal{L}\{D_t^\alpha f(t)\} = s^\alpha F(s) - s^{\alpha-1}f(0)$   
 168 (Diethelm, 2010)[Theorem 7.1]. As  $\alpha \rightarrow 1$ , the Laplace transform of the Caputo fractional derivative  
 169 converges to that of the traditional first-order derivative  $sF(s) - f(0)$ . Consequently, for  $\alpha = 1$ ,  
 170  $D^1 y = y'$ , uniquely determined via the inverse Laplace transform (Cohen, 2007).

171 A first-order ODE and its fractional extension with Caputo derivative can be written as  
 172

$$\text{integer-order ODE: } \frac{dy(t)}{dt} = f(t, y(t)); \quad (2)$$

$$\text{fractional-order ODE: } D^\alpha y(t) = f(t, y(t)), \quad (3)$$

173 where  $f$  defines the system dynamics and initial condition  $y(0) = y_0$  is specified in both cases.  
 174

## 175 2.2 INTEGER-ORDER SPIKING NEURON AND SNN

176 Existing SNN models predominantly describe spiking neuronal membrane-potential dynamics using  
 177 discretized first-order ODEs with derivative  $d/dt$ , including the widely adopted IF and LIF dynamics  
 178 (Stein, 1967) and variants with adaptive membrane time constants or threshold adaptation/learning  
 179 (Koch et al., 1996; Zhang et al., 2025; Bellec et al., 2018; Benda, 2021). We present only standard  
 180 IF and LIF in the main paper as a showcase; however, SNNs based on other neuron variants can be  
 181 encapsulated and extended within our  $f$ -SNN framework.  
 182

183 **IF and LIF neurons.** Let  $U(t)$  denote the membrane potential,  $I_{\text{in}}(t)$  the input current,  $R > 0$  the  
 184 membrane resistance, and  $\tau > 0$  the membrane time constant. The standard subthreshold dynamics  
 185 of IF and LIF are described by the following first-order ODEs:  
 186

$$\text{IF neuron dynamics: } \tau \frac{dU(t)}{dt} = R I_{\text{in}}(t), \quad (4)$$

$$\text{LIF neuron dynamics: } \tau \frac{dU(t)}{dt} = -U(t) + R I_{\text{in}}(t). \quad (5)$$

187 A spike  $S(t)$  is emitted when  $U(t^-)$  crosses the threshold  $\theta$ , i.e.,  $S(t) = H(U(t^-) - \theta)$ , where  $H(\cdot)$   
 188 denotes the Heaviside step function. Upon spiking, one uses either a *soft reset* or a *hard reset*:

$$189 \quad 1) \text{ soft reset: } U(t^+) \leftarrow U(t^-) - \theta; \quad \text{or} \quad 2) \text{ hard reset: } U(t^+) \leftarrow U_{\text{reset}}. \quad (6)$$

190 **Traditional SNN based on standard IF and LIF neuron dynamics.** Many SNNs are based on the  
 191 neuron dynamics described in (4) and (5). In the simplest case, the forward Euler method is employed  
 192 to solve a first-order ODE (2). Let  $h > 0$  be the discretization step size,  $t_k = kh$ ,  $N = T/h$ , and let  
 193  $y_k$  denote the numerical approximation of  $y(t_k)$ . We have  
 194

$$195 \quad y_{k+1} = y_k + h f(t_k, y_k), \quad k = 0, 1, \dots, N-1. \quad (7)$$

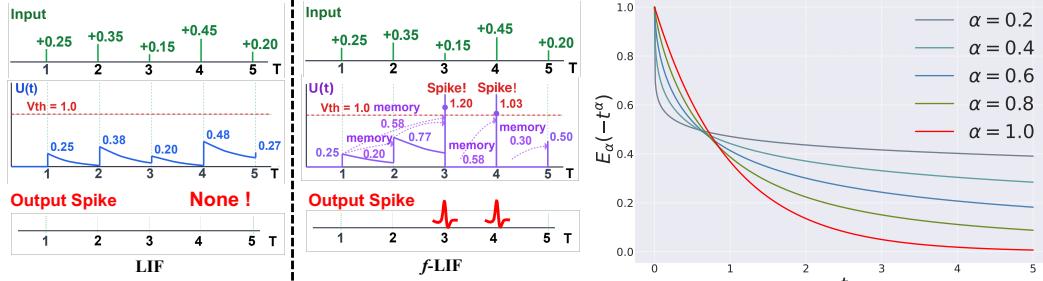
196 To make this time-varying solution compatible with sequence-based neural network models, we  
 197 discretize time and treat  $k$  as the sequence index. Correspondingly, applying (7) to (4) and (5) yields  
 198

$$199 \quad \text{IF (discrete): } U_{k+1} = U_k + \frac{hR}{\tau} I_{\text{in},k}, \quad \text{LIF (discrete): } U_{k+1} = \left(1 - \frac{h}{\tau}\right) U_k + \frac{hR}{\tau} I_{\text{in},k}. \quad (8)$$

200 In practice, the factor is often absorbed into learnable synaptic weights, and the input current is  
 201 represented as  $X_k^{(\Phi)}$ , where  $X_k^{(\Phi)}$  the presynaptic spike vector or feature map (e.g., produced by  
 202 Convolution, MLP, ResNet, or Transformer) with  $\Phi$  denoting the learnable synaptic weights of those  
 203 layers. For simplicity, in the following we omit  $\Phi$  and denote it simply by  $X_k$ . For computational  
 204 efficiency, we adopt the common simplifications  $h = 1$  and  $R = 1$ , and define  $\beta := 1 - \frac{1}{\tau}$ . Together  
 205 with spiking and reset mechanisms, we have the following iterations:  
 206

$$207 \quad \begin{aligned} & \text{IF charge: } U_k = U_{k-1} + X_k, \\ & \text{or LIF charge: } U_k = \beta U_{k-1} + X_k. \\ & \text{spike: } S_k = H(U_k - \theta), \\ & \text{reset: (soft) } U_k \leftarrow U_k - \theta S_k \text{ or (hard) } U_k \leftarrow (1 - S_k) U_k + S_k U_{\text{reset}}. \end{aligned} \quad (9)$$

216 Spikes are discrete and non-differentiable, which complicates SNN training. The surrogate-gradient  
 217 method (Wu et al., 2018) keeps the hard spike  $H(U - \theta)$  in the forward pass but uses a smooth  
 218 surrogate for its derivative in backpropagation. A common choice is a threshold-shifted sigmoid,  
 219  $H(U - \theta) \approx \sigma(U) = \frac{1}{1+e^{\theta-U}}$  which preserves discrete firing while enabling gradient flow.  
 220



231 Figure 2: SNN vs  $f$ -SNN dynamics. In  $f$ -SNNs, past mem- For  $\alpha = 1$ , LIF shows fast exponential decay  
 232 brane potentials influence the current state via a power-law ( $E_1(-t) = e^{-t}$ ); for  $0 < \alpha < 1$ ,  $f$ -LIF exhibits  
 233 memory kernel; traditional integer-order SNNs lack this. slow algebraic decay, reflecting memory.

### 3 $f$ -SNN FRAMEWORK

236 We present the  $f$ -SNN framework in this section using fractional spiking neuronal dynamics based on  
 237  $f$ -ODEs, which generalize integer-order neuron dynamics such as standard IF and LIF neurons (4)  
 238 and (5). To make the time-varying solution compatible with neural network models, we follow the  
 239 procedure in Section 2.2 to discretize time and enable iterations. [Section 3.2 reveals the fundamental  
 240 distinctions between  \$f\$ -SNNs and traditional SNNs through analysis of their long-time behavior,  
 241 demonstrating how  \$f\$ -SNNs provide persistent memory via power-law relaxation, irreducibility to  
 242 finite classical ensembles, and enhanced robustness.](#)

#### 3.1 FRAMEWORK

244 Traditional integer-order SNNs, as discussed in Section 2.2, model subthreshold spiking neuronal  
 245 dynamics with first-order ODEs; (4) and (5) are representative examples. In our general  $f$ -SNN  
 246 framework, we replace the first-order derivative  $d/dt$  with the generalized Caputo fractional derivative  
 247  $D^\alpha$  of order  $\alpha \in (0, 1]$ . Since IF and LIF are the dominant neuron models used in traditional SNNs,  
 248 we present only their fractional extensions in the main paper as a showcase; however, many other  
 249 neuron variants can likewise be encapsulated and extended within our  $f$ -SNN framework. We begin  
 250 with the presentation of  $f$ -IF and  $f$ -LIF neurons.

251  **$f$ -IF and  $f$ -LIF neurons.** The fractional dynamics of IF and LIF are described by the  $f$ -ODEs:

$$252 \quad f\text{-IF neuron dynamics: } \tau D^\alpha U(t) = R I_{in}(t), \quad (10)$$

$$253 \quad f\text{-LIF neuron dynamics: } \tau D^\alpha U(t) = -U(t) + R I_{in}(t). \quad (11)$$

254 Spike generation and reset follow the same rules as in the integer-order case:  $S(t) = H(U(t^-) - \theta)$ .  
 255 These dynamics naturally introduce a memory effect: the current membrane potential depends on  
 256 the entire history of the potential because, by definition (see (1)), the Caputo derivative includes an  
 257 integral over past states. Biologically, such modeling is consistent with observed spike-frequency  
 258 adaptation and long-memory behaviors (Teka et al., 2014; Ha & Cheong, 2017). The order  $\alpha$  controls  
 259 the degree of adaptation— $\alpha = 1$  recovers the standard IF/LIF models, while  $\alpha < 1$  induces power-  
 260 law memory and increased temporal correlations in the potential trace. Fractional neuron models are  
 261 also observed to produce reliable spike patterns under noisy input (Baker et al., 2024).

262  **$f$ -SNN based on  $f$ -IF and  $f$ -LIF neuron dynamics:** In Section 2.2, we apply the forward Euler  
 263 method to discretize standard IF/LIF dynamics and obtain integer-order SNNs. Here, the  $f$ -IF (10)  
 264 and  $f$ -LIF (11) neurons exhibit fractional dynamics that belong to the  $f$ -ODE class (3). We instead  
 265 use the fractional Adams–Bashforth–Moulton (ABM) predictor discretization (Diethelm et al., 2004)  
 266 to achieve this goal. Using the same time grid as above,  $t_k = kh$  with  $N = T/h$  and step size  $h > 0$ ,  
 267 and letting  $y_k$  denote the numerical approximation of  $y(t_k)$ , we obtain

$$268 \quad y_k = y_0 + \frac{1}{\Gamma(\alpha)} \sum_{j=0}^{k-1} \mu_{j,k} f(t_j, y_j), \quad k = 0, 1, \dots, N-1. \quad (12)$$

270 where the weight coefficients are  $\mu_{j,k} = \frac{h^\alpha}{\alpha} [(k-j)^\alpha - (k-1-j)^\alpha]$ . This formulation makes the  
 271 memory effect explicit by incorporating weighted contributions from all past function evaluations,  
 272 reflecting the nonlocal nature of  $D^\alpha$ . When  $\alpha = 1$ , (12) reduces exactly to the Euler method (7),  
 273 further highlighting the compatibility between the  $f$ -SNN framework and traditional SNNs.  
 274

275 Applying (12) to (10) and (11) yields the fractional discrete updates:

$$276 \quad f\text{-IF (discrete): } U_k = U_0 + \frac{R}{\tau \Gamma(\alpha)} \sum_{j=0}^{k-1} \mu_{j,k} I_{\text{in},j}, \quad f\text{-LIF (discrete): } U_k = U_0 + \frac{1}{\tau \Gamma(\alpha)} \sum_{j=0}^{k-1} \mu_{j,k} (-U_j + R I_{\text{in},j}).$$

278 Similar to Section 2.2, we denote the general input as  $X_k$ , where  $X_k$  is the presynaptic spike vector  
 279 or feature map produced by various architectures (convolution, MLP, ResNet, Transformer, etc.).  
 280 For simplicity, we set  $h = 1$  and  $R = 1$ . Note that  $\beta = 1 - \frac{1}{\tau}$  in IF/LIF neurons does not apply to  
 281 the fractional cases. Instead, one obtains a history-convolution with a stationary power-law kernel.  
 282 Define  $c_m^{(\alpha)} = \frac{1}{\tau^\alpha \alpha \Gamma(\alpha)} [(m+1)^\alpha - m^\alpha]$ . Then the fractional iterations (charge-spike-reset) are as  
 283 follows:

$$284 \quad f\text{-IF charge: } U_k = U_0 + \sum_{m=0}^{k-1} c_m^{(\alpha)} X_{k-m},$$

$$285 \quad \text{or } f\text{-LIF charge: } U_k = U_0 + \sum_{m=0}^{k-1} c_m^{(\alpha)} (-U_{k-1-m} + X_{k-m}). \quad (13)$$

$$286 \quad \text{spike: } S_k = H(U_k - \theta),$$

$$287 \quad \text{reset: (soft) } U_k \leftarrow U_k - \theta S_k \text{ or (hard) } U_k \leftarrow (1 - S_k)U_k + S_k U_{\text{reset}}.$$

288 Here, spiking and reset are applied at each step as usual. We follow the literature to use the surrogate-  
 289 gradient method (Wu et al., 2018) to train  $f$ -SNN that keeps the hard spike  $H(U - \theta)$  in the forward  
 290 pass but uses a smooth surrogate for its derivative in backpropagation.

291 **Remark 2.** Note that  $c_m^{(\alpha)}$  is causal and decays as a power law, explicitly encoding memory. *The  
 292 profile of  $c_m^{(\alpha)}$  is visualized in Fig. 8, highlighting the algebraic decay characteristic of fractional  
 293 order systems.* When  $\alpha \rightarrow 1$ , we have  $c_m^{(1)} = 1/\tau$  for all  $m$  (a constant kernel), and taking first  
 294 differences of (13) recovers the Euler recursions (9). For efficiency, we may leverage the short-  
 295 memory approximation principle (Deng, 2007; Podlubny, 1999) and truncate the sum in (13) to  
 296  $\sum_{m=\max(0, k-M)}^{k-1}$ , i.e., a sliding memory window of fixed width  $M$ . With fast (FFT-based) convolution,  
 297 the full-memory case can be computed in  $O(N \log N)$  time (Mathieu et al., 2013), while the truncated  
 298 window yields  $O(NM)$ . The full model complexity is summarized in Section C.5.

### 3.2 THEORETICAL ANALYSIS

300 In this section, we theoretically distinguish the  $f$ -SNN framework from traditional SNNs. We begin  
 301 by proving that  $f$ -SNNs exhibit a persistent memory effect characterized by genuine long-range  
 302 temporal dependence. We then demonstrate that the dynamics of  $f$ -SNNs generally cannot be exactly  
 303 realized by any finite-dimensional linear system of integer-order modes, thereby establishing that  
 304 fractional-order systems strictly exceed the expressive capacity of integer-order models. Finally, we  
 305 prove that  $f$ -SNNs demonstrate superior robustness to input perturbations.

306 We first analyze membrane-potential relaxation under constant input, showing how distant past inputs  
 307 keep influencing the present. For intuition, we focus on the LIF and  $f$ -LIF neurons and use the  
 308 continuous formulations (5) and (11):

309 **Proposition 1 (Long-memory Behavior).** Under a constant current input  $I_{\text{in}}(t) \equiv I_c$ , assume the  
 310 input is small enough that no spiking occurs over the interval considered (subthreshold regime). Then  
 311 the solutions to the LIF (5) and the  $f$ -LIF dynamics (11) are

$$312 \quad U^{\text{LIF}}(t) = RI_c + [U_0 - RI_c] e^{-t/\tau}, \quad (14)$$

$$313 \quad U^{f\text{-LIF}}(t) = RI_c + (U_0 - RI_c) E_\alpha(-t^\alpha/\tau), \quad (15)$$

314 respectively, where  $E_\alpha(z) = \sum_{k=0}^{\infty} \frac{z^k}{\Gamma(\alpha k + 1)}$  is the Mittag-Leffler function Diethelm (2010). Key  
 315 properties include:

316 • When  $\alpha = 1$ ,  $E_1(-t/\tau) = e^{-t/\tau}$ , which is the classical exponential relaxation (Eshraghian et al.,  
 317 2023a)[Eq(2)].

324 • For  $0 < \alpha < 1$ ,  $E_\alpha$  exhibits (i) initial stretched-exponential decay and (ii) a power-law tail for  
 325 large  $t$ :

326

$$327 E_\alpha\left(-\frac{t^\alpha}{\tau^\alpha}\right) \sim \frac{\tau^\alpha}{\Gamma(1-\alpha)t^\alpha} \quad \text{as } t \rightarrow \infty,$$

328

329 These behaviors are visualized in Fig. 3.

330 **Remark 3.** While both LIF and  $f$ -LIF converge to the same steady state, Proposition 1 highlights  
 331 fundamentally different relaxation behaviors. The LIF uses an integer-order derivative (Markovian  
 332 dynamics; future evolution depends only on the current state) and shows exponential relaxation  $e^{-t/\tau}$ ,  
 333 characteristic of memoryless processes. In contrast, the  $f$ -LIF employs the fractional derivative  
 334  $D^\alpha$ , which is inherently non-Markovian, incorporating a power-weighted integral over the entire  
 335 past history. This is reflected in the Mittag-Leffler relaxation  $E_\alpha(-t^\alpha/\tau)$ : for  $0 < \alpha < 1$ , its  
 336 power-law tail ( $\sim t^{-\alpha}$ ) indicates that past inputs decay algebraically slow rather than exponentially  
 337 fast, creating a persistent memory influence. This slow decay means that inputs from the distant  
 338 past continue to influence the current membrane potential, enabling the  $f$ -LIF to naturally capture  
 339 long-term temporal correlations.

340 The  $f$ -SNN framework demonstrates superior robustness compared to traditional SNNs. Empirical  
 341 studies show that  $f$ -LIF neurons maintain reliable spike patterns under noisy inputs (Teka et al., 2014).  
 342 Here, we provide theoretical robustness guarantees.

343 **Theorem 1** (Robustness of  $f$ -SNN). *Consider a fractional  $f$ -IF neuron governed by the dynamics  
 344  $\tau D^\alpha U(t) = RI_{in}(t)$  with fractional order  $0 < \alpha < 1$  and initial condition  $U_0 = 0$ . Under a  
 345 constant input current  $I_c$  subject to an additive perturbation  $\epsilon$  (where  $|\epsilon| \ll I_c$ ), the system exhibits  
 346 the following robustness properties relative to the classical integer-order model ( $\alpha = 1$ ):*

347 • **Membrane Potential Robustness:** The membrane potential deviation due to perturbation  
 348 evolves as:

349

$$350 \Delta U^{f\text{-IF}}(t) = \frac{R\epsilon}{\tau\Gamma(\alpha+1)}t^\alpha \quad (\text{sub-linear growth}) \quad (16)$$

351

$$352 \Delta U^{IF}(t) = \frac{R\epsilon}{\tau}t \quad (\text{linear growth}) \quad (17)$$

353 For  $0 < \alpha < 1$ , the fractional-order dynamics suppress long-term perturbation accumulation  
 354 through sub-linear temporal scaling.

355 • **Spike Timing Sensitivity:** For small perturbations  $\epsilon \ll I_c$ , the spike time shift magnitude scales as:

356

$$357 |\Delta t_s^{f\text{-IF}}| \propto \epsilon \cdot I_c^{-(1+1/\alpha)} \quad (18)$$

358

$$|\Delta t_s^{IF}| \propto \epsilon \cdot I_c^{-2} \quad (19)$$

359 Since  $(1+1/\alpha) > 2$  for  $0 < \alpha < 1$ , the fractional-order model exhibits enhanced spike timing  
 360 robustness for high input currents.

361 **Remark 4.** The fractional-order dynamics yield distinct robustness advantages. The sub-linear  
 362 perturbation growth  $t^\alpha$  ( $\alpha < 1$ ) significantly suppresses long-term accumulation compared to linear  
 363 growth in classical models. Additionally, the enhanced spike timing stability becomes crucial for  
 364 precise temporal coding applications (Bohte et al., 2002; Booij & tat Nguyen, 2005; Rathi et al.,  
 365 2019). These properties make  $f$ -SNNs particularly suited for tasks requiring sustained accuracy and  
 366 temporal precision under varying input conditions, as confirmed by our experiments in Section 4.

367 We now establish that  $f$ -SNNs possess computational capabilities that fundamentally exceed those of  
 368 finite integer-order systems:

369 **Theorem 2** (Irreducibility of  $f$ -IF Dynamics to Finite Classic LIF Ensembles). *Let  $U^{f\text{-IF}}$  denote the  
 370 trajectory of a  $f$ -IF neuron with order  $\alpha \in (0, 1)$ . There exist no finite integer  $W$ , weights  $\{\phi_i\}_{i=1}^W$ ,  
 371 and leak factors  $\{\beta_i\}_{i=1}^W$  such that the following holds:*

372

$$373 \hat{U}_k = \sum_{i=1}^W \phi_i U_k^{LIF(\beta_i)} \equiv U_k^{f\text{-IF}} \quad \forall k.$$

374

375 for general input  $X_k$ . The impulse response error of the approximation is  $O(k^{\alpha-1})$ , decaying  
 376 algebraically slowly. The  $f$ -IF neuron is mathematically equivalent to an aggregate of integer-order  
 377 LIF neurons if and only if  $W \rightarrow \infty$ , specifically as an integral over a continuum of leak factors.

378  
 379 Table 1: Neuromorphic data classification results in terms of classification accuracy (%) on the  
 380 multiple datasets. The best results are **boldfaced**, while the runner-ups are underlined.

| Datasets/Configs     | Architecture      | Timesteps | LIF<br>(SpikingJelly) | LIF<br>(snnTorch) | $f$ -LIF<br>( $f$ -SNN) |
|----------------------|-------------------|-----------|-----------------------|-------------------|-------------------------|
| <b>N-MNIST</b>       | CNN-based         | 16        | <u>0.9927</u>         | 0.9908            | <b>0.9948</b>           |
| <b>DVS-Lip</b>       | CNN-based         | 16        | <u>0.4241</u>         | 0.3271            | <b>0.4342</b>           |
| <b>DVS128Gesture</b> | CNN-based         | 16        | <u>0.9340</u>         | 0.8899            | <b>0.9480</b>           |
|                      | Transformer-based | 16        | <u>0.9514</u>         | 0.8715            | <b>0.9583</b>           |
| <b>N-Caltech101</b>  | CNN-based         | 16        | <u>0.6682</u>         | 0.6521            | <b>0.7026</b>           |
|                      | Transformer-based | 16        | <u>0.7263</u>         | 0.6567            | <b>0.7627</b>           |
| <b>HarDVS</b>        | CNN-based         | 8         | 0.4610                | 0.4626            | <b>0.4766</b>           |
|                      | Transformer-based | 8         | 0.4520                | 0.4614            | <b>0.4723</b>           |

393  
 394 **Remark 5 (Implications for Expressive Power).** *A single  $f$ -IF neuron represents a continuum of*  
 395 *timescales that would require infinitely many integer-order SNN units for exact equivalence. The slow*  
 396  *$O(k^{\alpha-1})$  error decay confirms that such long-range dependencies are inaccessible to finite-order*  
 397 *models. Moreover, this expressivity advantage is not “washed out” by the spiking nonlinearity: in*  
 398 *Corollary 1, we show that  $f$ -IF spike trains encode temporal information that no finite LIF ensemble*  
 399 *can reproduce, even under arbitrary Boolean combinations.*

## 4 EXPERIMENTS

400 In this section, we evaluate  $f$ -SNNs on benchmarks spanning neuromorphic event-driven vision  
 401 and graph domains. Additional experiments on static datasets, including CIFAR10, CIFAR100,  
 402 and ImageNet, are detailed in Section D.2.3. Across metrics,  $f$ -SNNs consistently outperform  
 403 conventional SNNs. In particular, fractional adaptations of established SNN architectures within the  
 404  $f$ -SNN framework achieve higher accuracy, comparable energy efficiency, and improved robustness  
 405 to noise, supporting  $f$ -SNNs as an effective extension of traditional SNNs. Importantly, our primary  
 406 aim is not to achieve state-of-the-art (SOTA) results, but to demonstrate that the generalized  $f$ -SNN  
 407 framework can improve existing integer-order SNNs. To our knowledge, SOTA performance on very  
 408 large datasets typically requires substantial computational resources, even within the energy-efficient  
 409 SNN community. We focus on fair comparisons by replacing the integer-order IF/LIF modules (9) in  
 410 traditional SNNs with the  $f$ -IF/ $f$ -LIF modules (13) from our  $f$ -SNN framework.

### 4.1 NEUROMORPHIC DATA CLASSIFICATION TASKS

411 Neuromorphic data are event-driven and exhibit strong spatiotemporal correlations. SNNs, with  
 412 their natural adaptability to spatiotemporal data (e.g., dynamic event processing and sparse coding),  
 413 efficiently model these correlations. Therefore, we conducted a series of experiments on neuromorphic  
 414 datasets. Our experiments primarily focus on the following key evaluation aspects: (1) **Classification**  
 415 **performance**, and (2) **Robustness** of the proposed  $f$ -SNN model. More ablation  
 416 studies and experimental details will be presented in the Section D. **Dataset & Baselines.** We conduct  
 417 comprehensive evaluations of the proposed  $f$ -SNN framework on neuromorphic datasets including  
 418 N-MNIST (Orchard et al., 2015), DVS128Gesture (Amir et al., 2017), N-Caltech101 (Orchard et al.,  
 419 2015), DVS-Lip (Tan et al., 2022), and the large-scale dataset HarDVS (Wang et al., 2024). The  
 420 dataset details and experiment setting details are provided in Appendix Section D.

421 **Experimental Setup.** For the N-MNIST dataset, we set the batch size to 512, the number of time  
 422 steps  $T$  to 16, and train for 100 epochs using the Adam optimizer. For other neuromorphic datasets,  
 423 we follow the standard preprocessing pipeline of the SpikingJelly framework to convert event data  
 424 into frame representations. For time step configuration, DVS128Gesture, N-Caltech101, and DVS-Lip  
 425 are set to 16 time steps, while HarDVS is set to 8 time steps due to the large data size. N-Caltech101  
 426 is split into training and test sets with an 8:2 ratio. These datasets use a batch size of 16, with input  
 427 dimensions uniformly adjusted to 128×128 pixels. We train for 200 epochs using the Adam optimizer.

428 **Classification Performance.** In  $f$ -SNN, we have a hyperparameter  $\alpha$  indicating the fractional order,  
 429 which gives the model an additional degree of freedom to capture richer temporal patterns. During  
 430 experiments, the optimal  $\alpha$  is obtained via hyperparameter tuning. The experimental results on  
 431 neuromorphic datasets are shown in Table 1. We conduct comprehensive comparisons between

*f*-SNN and baseline models. The experimental results demonstrate that under the same network configurations, regardless of whether CNN or Transformer architectures are employed, *f*-SNN significantly and consistently outperforms baseline networks implemented based on SpikingJelly and snnTorch frameworks. These results validate the effectiveness and superiority of the proposed *f*-SNN method in terms of classification performance. This is because *f*-SNN captures long-term dependencies in membrane potential via fractional dynamics, enabling richer temporal patterns than traditional models.

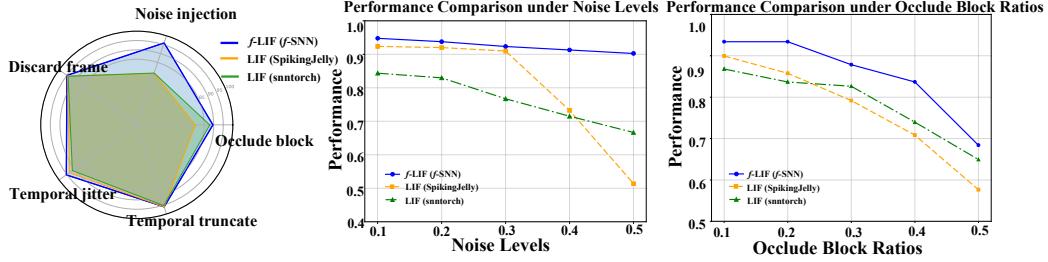


Figure 4: Robustness comparison between the proposed *f*-SNN and two integer-order baselines (LIF in SpikingJelly and LIF in snnTorch). Left: Radar chart aggregating five corruption types (larger is better): Gaussian noise injection, center occlude block, temporal truncate, temporal jitter, and discard frame. Middle: Performance vs. noise level (x-axis: Gaussian noise std). Right: Performance vs. occlusion ratio (x-axis: area ratio of the center block). The *f*-LIF (*f*-SNN) shows consistently higher performance and slower degradation under all corruption types.

**Robustness Analysis.** We further validate the robustness advantages of *f*-SNN. We comprehensively test the model’s stability from five dimensions: noise injection, occlude block, temporal truncate, temporal jitter, and discard frame. [Detailed experimental settings are provided in Section D.1.3](#).

The experimental results are shown in Fig. 4, where *f*-SNN significantly outperforms baseline methods across all five robustness testing dimensions. Particularly under high-intensity noise injection and occlude block interference conditions, our method demonstrates exceptional anti-interference capability and stability. To more intuitively validate our viewpoint, we visualize the shallow feature maps with occlude blocks, with results shown in Fig. 5. Our *f*-SNN model can better capture object features under occlusion conditions compared to the other two models. This advantage is primarily attributed to the inherent characteristics of the *f*-LIF neuron module, which can generate more stable and reliable spike patterns, thereby effectively enhancing the noise suppression capability and robustness performance of the entire network. We refer the readers to the discussions in Section 3.1. Detailed test data and evaluation criteria can be found in the appendix.

#### 4.2 GRAPH LEARNING TASKS.

For graph learning tasks, our experiments focus on the following key aspects of evaluation: (1) **Node Classification** performance; (2) **Energy Efficiency**; and (3) the **Robustness** of the proposed *f*-SNN framework.

**Dataset & Baselines.** We conduct experiments on two mainstream GNN methods: SGCN (Zhu et al., 2022), and DRSGNN (Zhao et al., 2024), using several commonly used graph learning datasets. Specifically, Node classification is performed with SGCN and DRSGNN on Cora (McCallum et al., 2000), Citeseer (Sen et al., 2008), Pubmed (Wang et al., 2019), Photo, Computers, and ogbn-arxiv (Hu et al., 2020). To ensure fairness, we only replace the integer-order neuron modules in the baseline models with our proposed modules, i.e., the LIF neuron (9) in SGCN and DRSGNN are changed to our *f*-LIF iterations (13). This ensures our fractional adaptations have the same trainable parameters as the baselines; only the charging phases (9) and (13) differ. Dataset details are provided in Section D.

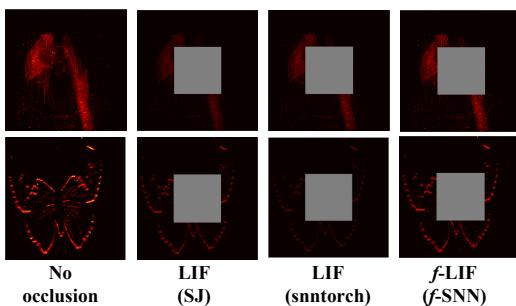


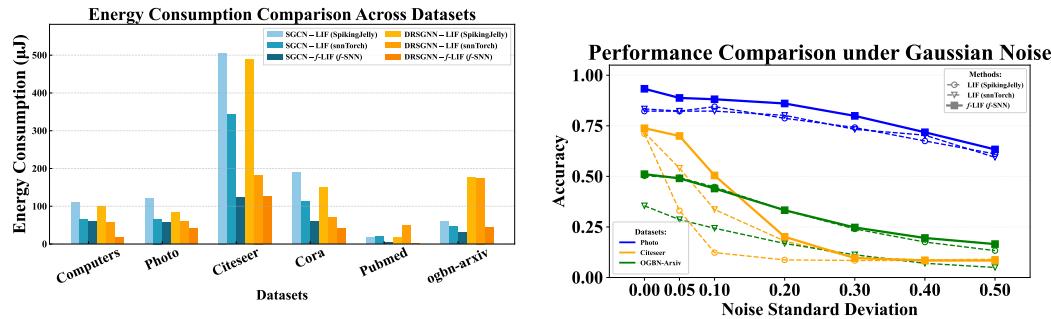
Figure 5: Feature map visualizations of LIF and *f*-LIF in occluded block scenarios.

**Experiment Setup.** For node classification tasks based on SGCN and DRSGNN, we use Poisson spike encoding. The number of timesteps  $N$  is set to 100, and the batch size to 32. Datasets are split into training/validation/test with ratios 0.7/0.2/0.1. For DRSGNN experiments, the positional-encoding dimension is 32, using Laplacian (LSPE) (Dwivedi et al., 2023) or random-walk (RWPE) (Dwivedi et al., 2021) encodings. All experiments are run independently 20 times; we report the mean and standard deviation. Other experimental details are included in Section D.

Table 2: Node classification results in terms of classification accuracy (%) on multiple datasets. The best results are **boldfaced**, while the runner-ups are underlined. Standard deviations are provided as subscripts. The choice of  $f$ -SNNs' parameter  $\alpha$  will be shown in Table 4.

| Methods            | Cora                               | Citeseer                           | Pubmed                             | Photo                              | Computers                          | ogbn-arxiv                         |
|--------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|------------------------------------|
| SGCN (SJ)          | $81.81 \pm 0.69$                   | $71.83 \pm 0.23$                   | $86.79 \pm 0.32$                   | $87.72 \pm 0.25$                   | $70.86 \pm 0.24$                   | $50.26 \pm 0.11$                   |
| SGCN (snnTorch)    | $83.12 \pm 1.41$                   | $71.68 \pm 0.95$                   | $59.82 \pm 1.07$                   | $83.34 \pm 0.89$                   | $74.88 \pm 0.87$                   | $21.55 \pm 0.13$                   |
| SGCN ( $f$ -SNN)   | <b><math>88.08 \pm 0.58</math></b> | <b><math>73.80 \pm 0.51</math></b> | <b><math>87.17 \pm 0.28</math></b> | <b><math>92.49 \pm 0.32</math></b> | <b><math>89.12 \pm 0.21</math></b> | <b><math>51.10 \pm 0.14</math></b> |
| DRSGNN (SJ)        | $83.30 \pm 0.64$                   | $72.72 \pm 0.24$                   | $87.13 \pm 0.34$                   | $88.31 \pm 0.15$                   | $76.55 \pm 0.17$                   | $50.13 \pm 0.14$                   |
| DRSGNN (snnTorch)  | $80.98 \pm 1.71$                   | $68.00 \pm 0.69$                   | $59.56 \pm 1.05$                   | $82.28 \pm 0.93$                   | $76.78 \pm 0.81$                   | $28.46 \pm 0.25$                   |
| DRSGNN ( $f$ -SNN) | <b><math>88.51 \pm 0.62</math></b> | <b><math>75.11 \pm 0.45</math></b> | <b><math>87.29 \pm 0.32</math></b> | <b><math>91.93 \pm 0.20</math></b> | <b><math>88.77 \pm 0.20</math></b> | <b><math>53.13 \pm 0.13</math></b> |

**Node Classification Performance.** The experimental results based on SGCN and DRSGNN are shown in Table 2. Our fractional extension of SGCN and DRSGNN outperforms the original versions implemented with traditional *integer-order* SNN toolboxes (SpikingJelly or snnTorch) in terms of accuracy. These results highlight the clear advantage of our method in improving model accuracy.



(a) Comparison of energy consumption between integer-order SpikingJelly and snnTorch baselines and our  $f$ -SNN framework.

(b) Robustness test for SGCN.

Figure 6: Energy consumption and robustness evaluation. Best zoomed on screen.

**Energy Consumption Analysis.** Following (Yao et al., 2023a; 2024), we compare the energy consumption of  $f$ -SNN and the integer-order method (SpikingJelly). Fig. 6a shows that  $f$ -SNN achieves higher accuracy and significantly lower energy consumption across datasets, demonstrating its superior energy efficiency. Details will be discussed in the Section D.3.

**Robustness Test.** We further validate the robustness advantage of  $f$ -SNN. Specifically, we randomly add Gaussian noise (Hall, 1994) of varying intensities to the spike signals input to the network to evaluate the robustness of spiking graph neural networks under different noise conditions. The experimental results are shown in Fig. 6b.

## 5 CONCLUSION

In this work, we introduced a new  $f$ -SNN framework, which extends traditional SNNs by replacing first-order ODEs with fractional-order ODEs to capture the non-Markovian characteristics and long-term dependencies observed in biological neurons. Our experiments demonstrate that  $f$ -SNNs consistently outperform integer-order SNNs across neuromorphic vision and graph benchmarks, achieving higher accuracy, comparable energy efficiency, and improved noise robustness. The accompanying open-source toolbox facilitates adoption of the  $f$ -SNN framework across diverse architectures and applications. These results establish  $f$ -SNNs as a promising extension of traditional SNNs, offering a mathematically rigorous and biologically plausible approach to enhancing neuromorphic computing capabilities.

540 **6 REPRODUCIBILITY STATEMENT**

541

542 We release an open-source, out-of-the-box toolbox, `spikeDE`, built on the PyTorch platform to  
 543 support our *f*-SNN framework. The toolbox provides PyTorch-aligned interfaces and supports  
 544 convolutional neural networks (CNN), Transformer, ResNet, and multilayer perceptron (MLP)  
 545 architectures (Vaswani et al., 2017; LeCun et al., 1989; He et al., 2016; Zhou et al., 2022). We refer  
 546 readers to Section E and the supplementary code for usage; the toolbox supports all experiments in  
 547 this paper. Experimental settings and additional results are presented in Section D; preprocessing  
 548 steps and parameters are given in Section D.1 and in the supplementary code (zip archive). Complete  
 549 proofs of the theoretical results are presented in Section C. All datasets used are public; we follow  
 550 literature-standard train/validation/test splits without adjustment.

551

552 **7 ETHICS STATEMENT**

553

554 **The Use of Large Language Models (LLMs):** To improve the readability, parts of this paper  
 555 have been grammatically revised using ChatGPT (OpenAI, 2022). However, LLMs did not play a  
 556 significant role in the ideation of the paper or did not contribute to writing to the extent that they  
 557 could be regarded as a contributor.

558 **Ethical Compliance:** This submission adheres to the conference’s Code of Ethics. All authors  
 559 confirm that they have read and strictly followed the Code of Ethics, as acknowledged during the  
 560 submission process.

561 **REFERENCES**

562

563 Larry F Abbott. Lapicque’s introduction of the integrate-and-fire model neuron (1907). *Brain*  
 564 *research bulletin*, 50(5-6):303–304, 1999.

565 Arnon Amir, Brian Taba, David Berg, Timothy Melano, Jeffrey McKinstry, Carmelo Di Nolfo, Tapan  
 566 Nayak, Alexander Andreopoulos, Guillaume Garreau, Marcela Mendoza, et al. A low power, fully  
 567 event-based gesture recognition system. In *Proceedings of the IEEE conference on computer vision  
 568 and pattern recognition*, pp. 7243–7252, 2017.

569 Justin M Baker, Qingsong Wang, Martin Berzins, Thomas Strohmer, and Bao Wang. Monotone  
 570 operator theory-inspired message passing for learning long-range interaction on graphs. In  
 571 *International Conference on Artificial Intelligence and Statistics*, pp. 2233–2241. PMLR, 2024.

573 Dumitru Baleanu, Kai Diethelm, Enrico Scalas, and Juan J Trujillo. *Fractional calculus: models and*  
 574 *numerical methods*, volume 3. World Scientific, 2012.

576 Guillaume Bellec, Darjan Salaj, Anand Subramoney, Robert Legenstein, and Wolfgang Maass. Long  
 577 short-term memory and learning-to-learn in networks of spiking neurons. *Advances in neural  
 578 information processing systems*, 31, 2018.

579 Jan Benda. Neural adaptation. *Current Biology*, 31(3):R110–R116, 2021.

580 Sander M Bohte, Joost N Kok, and Han La Poutre. Error-backpropagation in temporally encoded  
 581 networks of spiking neurons. *Neurocomputing*, 48(1-4):17–37, 2002.

583 Olaf Booij and Hieu tat Nguyen. A gradient descent rule for spiking neurons emitting multiple spikes.  
 584 *Information Processing Letters*, 95(6):552–558, 2005.

585 Alan M. Cohen. *Inversion Formulae and Practical Results*, pp. 23–44. Springer US, Boston,  
 586 MA, 2007. ISBN 978-0-387-68855-8. doi: 10.1007/978-0-387-68855-8\_2. URL [https://doi.org/10.1007/978-0-387-68855-8\\_2](https://doi.org/10.1007/978-0-387-68855-8_2).

588 Allan D Coop, Hugo Cornelis, and Fidel Santamaria. Dendritic excitability modulates dendritic  
 589 information processing in a purkinje cell model. *Frontiers in computational neuroscience*, 4:827,  
 590 2010.

592 Javier Cuadrado, Ulysse Rançon, Benoit R Cottereau, Francisco Barranco, and Timothée Masquelier.  
 593 Optical flow estimation from event-based cameras and spiking neural networks. *Frontiers in  
 Neuroscience*, 17:1160034, 2023.

594 Weihua Deng. Short memory principle and a predictor–corrector approach for fractional differential  
 595 equations. *J. Comput. Appl. Math.*, 206(1):174–188, 2007.

596

597 Yabin Deng, Bijing Liu, Zenan Huang, Xiaojie Liu, Shan He, QiuHong Li, and Donghui Guo.  
 598 Fractional spiking neuron: Fractional leaky integrate-and-fire circuit described with dendritic  
 599 fractal model. *IEEE Transactions on Biomedical Circuits and Systems*, 16(6):1375–1386, 2022.

600 P. Dhar. The carbon impact of artificial intelligence. *Nature Machine Intelligence*, 2(8):423–425,  
 601 Aug 2020.

602

603 Kai Diethelm. *The analysis of fractional differential equations: an application-oriented exposition*  
 604 using differential operators of Caputo type, volume 2004. Lect. Notes Math., 2010.

605 Kai Diethelm, Neville J Ford, and Alan D Freed. Detailed error analysis for a fractional adams  
 606 method. *Numer. Algorithms*, 36:31–52, 2004.

607

608 Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.  
 609 Graph neural networks with learnable structural and positional representations. *arXiv preprint*  
 610 *arXiv:2110.07875*, 2021.

611 Vijay Prakash Dwivedi, Chaitanya K Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and  
 612 Xavier Bresson. Benchmarking graph neural networks. *Journal of Machine Learning Research*, 24  
 613 (43):1–48, 2023.

614 Bard Ermentrout. Type i membranes, phase resetting curves, and synchrony. *Neural computation*, 8  
 615 (5):979–1001, 1996.

616

617 Jason K Eshraghian, Max Ward, Emre Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi, Mo-  
 618 hammed Bennamoun, Doo Seok Jeong, and Wei D Lu. Training spiking neural networks using  
 619 lessons from deep learning. *Proceedings of the IEEE*, 111(9):1016–1054, 2023a.

620 Jason K Eshraghian, Max Ward, Emre O Neftci, Xinxin Wang, Gregor Lenz, Girish Dwivedi,  
 621 Mohammed Bennamoun, Doo Seok Jeong, and Wei D Lu. Training spiking neural networks using  
 622 lessons from deep learning. *Proceedings of the IEEE*, 111(9):1016–1054, 2023b.

623

624 Wei Fang, Zhaofei Yu, Yanqi Chen, Tiejun Huang, Timothée Masquelier, and Yonghong Tian. Deep  
 625 residual learning in spiking neural networks. *Advances in Neural Information Processing Systems*,  
 626 34:21056–21069, 2021.

627 Wei Fang, Yanqi Chen, Jianhao Ding, Zhaofei Yu, Timothée Masquelier, Ding Chen, Liwei Huang,  
 628 Huihui Zhou, Guoqi Li, and Yonghong Tian. Spikingjelly: An open-source machine learning  
 629 infrastructure platform for spike-based intelligence. *Science Advances*, 9(40):ead1480, 2023a.

630

631 Wei Fang, Zhaofei Yu, Zhaokun Zhou, Ding Chen, Yanqi Chen, Zhengyu Ma, Timothée Masquelier,  
 632 and Yonghong Tian. Parallel spiking neurons with high efficiency and ability to learn long-term  
 633 dependencies. *Advances in Neural Information Processing Systems*, 36:53674–53687, 2023b.

634 Nicolas Fourcaud-Trocmé, David Hansel, Carl Van Vreeswijk, and Nicolas Brunel. How spike gener-  
 635 ation mechanisms determine the neuronal response to fluctuating inputs. *Journal of neuroscience*,  
 636 23(37):11628–11640, 2003.

637

638 Guillermo Gallego, Tobi Delbrück, Garrick Orchard, Chiara Bartolozzi, Brian Taba, Andrea Censi,  
 639 Stefan Leutenegger, Andrew J Davison, Jörg Conradt, Kostas Daniilidis, et al. Event-based vision:  
 640 A survey. *IEEE Trans. Pattern Anal. Mach. Intell.*, 44(1):154–180, 2020.

641 Samanwoy Ghosh-Dastidar and Hojjat Adeli. Spiking neural networks. *International journal of*  
 642 *neural systems*, 19(04):295–308, 2009.

643 Gail Gilboa, Ronen Chen, and Naama Brenner. History-dependent multiple-time-scale dynamics in a  
 644 single-neuron model. *Journal of Neuroscience*, 25(28):6479–6489, 2005.

645

646 Yufei Guo, Yuanpei Chen, Xiaode Liu, Weihang Peng, Yuhang Zhang, Xuhui Huang, and Zhe Ma.  
 647 Ternary spike: Learning ternary spikes for spiking neural networks. In *Proceedings of the AAAI*  
 conference on artificial intelligence, volume 38, pp. 12244–12252, 2024.

648 Natabara Máté Gyöngyössy, Gábor Eros, and János Botzheim. Exploring the effects of caputo  
 649 fractional derivative in spiking neural network training. *Electronics*, 11(14):2114, 2022.  
 650

651 Go Eun Ha and Eunji Cheong. Spike frequency adaptation in neurons of the central nervous system.  
 652 *Experimental neurobiology*, 26(4):179, 2017.  
 653

654 Michael JW Hall. Gaussian noise and quantum-optical communication. *Physical Review A*, 50(4):  
 655 3295, 1994.  
 656

657 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image  
 658 recognition. In *Proc. Conf. Comput. Vision Pattern Recognition*, 2016.  
 659

660 Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and its  
 661 application to conduction and excitation in nerve. *The Journal of physiology*, 117(4):500, 1952.  
 662

663 Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele  
 664 Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.  
 665 *arXiv:2005.00687*, 2020.  
 666

667 Yulong Huang, Xiaopeng Lin, Hongwei Ren, Haotian Fu, Yue Zhou, Zunchang Liu, Biao Pan, and  
 668 Bojun Cheng. Clif: Complementary leaky integrate-and-fire neuron for spiking neural networks.  
 669 *arXiv preprint arXiv:2402.04663*, 2024.  
 670

671 Murat Isik, Karn Tiwari, Muhammed Burak Eryilmaz, and I Can Dikmen. Accelerating sensor fusion  
 672 in neuromorphic computing: A case study on loihi-2. In *2024 IEEE High Performance Extreme  
 673 Computing Conference (HPEC)*, pp. 1–7. IEEE, 2024.

674 Qiyu Kang, Kai Zhao, Qinxu Ding, Feng Ji, Xuhao Li, Wenfei Liang, Yang Song, and Wee Peng Tay.  
 675 Unleashing the potential of fractional calculus in graph neural networks with FROND. In *Proc.  
 676 International Conference on Learning Representations*, 2024a.  
 677

678 Qiyu Kang, Kai Zhao, Yang Song, Yihang Xie, Yanan Zhao, Sijie Wang, Rui She, and Wee Peng Tay.  
 679 Coupling graph neural networks with fractional order continuous dynamics: A robustness study.  
 680 In *Proc. AAAI Conference on Artificial Intelligence*, Vancouver, Canada, Feb. 2024b.  
 681

682 Qiyu Kang, Kai Zhao, Yang Song, Yihang Xie, Yanan Zhao, Sijie Wang, Rui She, and Wee Peng Tay.  
 683 Coupling graph neural networks with fractional order continuous dynamics: A robustness study.  
 684 In *Proc. AAAI Conference on Artificial Intelligence*, Vancouver, Canada, Feb. 2024c.  
 685

686 Shujaat Khan, Jawwad Ahmad, Imran Naseem, and Muhammad Moinuddin. A novel fractional  
 687 gradient-based learning algorithm for recurrent neural networks. *Circuits, Systems, and Signal  
 688 Processing*, 37(2):593–612, 2018.

689 Christoph Kirch and Leonardo L Gollo. Spatially resolved dendritic integration: Towards a functional  
 690 classification of neurons. *PeerJ*, 8:e10250, 2020.  
 691

692 Christof Koch, Moshe Rapp, and Idan Segev. A brief history of time (constants). *Cerebral cortex*, 6  
 693 (2):93–101, 1996.  
 694

695 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.  
 696 Technical report, 2009.  
 697

698 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional  
 699 neural networks. *Advances in neural information processing systems*, 25, 2012.  
 700

701 Giancarlo La Camera, Alexander Rauch, David Thurbon, Hans-R Luscher, Walter Senn, and Stefano  
 702 Fusi. Multiple time scales of temporal response in pyramidal and fast spiking cortical neurons.  
 703 *Journal of neurophysiology*, 96(6):3448–3464, 2006.  
 704

705 Yann LeCun, Bernhard Boser, John Denker, Donnie Henderson, Richard Howard, Wayne Hubbard,  
 706 and Lawrence Jackel. Handwritten digit recognition with a back-propagation network. *Advances  
 707 in neural information processing systems*, 2, 1989.  
 708

709 Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. *nature*, 521(7553):436–444,  
 710 2015.

702 Holden T Lee and Daniel M Monahan. Exploring fractional leaky integrate-and-fire neurons in  
 703 spiking neural networks. *Artem Arefev*, pp. 138.  
 704

705 Jun Haeng Lee, Tobi Delbruck, and Michael Pfeiffer. Training deep spiking neural networks using  
 706 backpropagation. *Frontiers in neuroscience*, 10:508, 2016.

707 Xinhao Luo, Man Yao, Yuhong Chou, Bo Xu, and Guoqi Li. Integer-valued training and spike-driven  
 708 inference spiking neural network for high-performance and energy-efficient object detection. In  
 709 *European Conference on Computer Vision*, pp. 253–272. Springer, 2024.

710 Lei Ma, Fanhai Zeng, Ling Guo, George Em Karniadakis, et al. Bi-orthogonal fpinn: A physics-  
 711 informed neural network method for solving time-dependent stochastic fractional pdes. *arXiv*  
 712 preprint *arXiv:2303.10913*, 2023.

713 Wolfgang Maass. Networks of spiking neurons: the third generation of neural network models.  
 714 *Neural networks*, 10(9):1659–1671, 1997.

715 Michael Mathieu, Mikael Henaff, and Yann LeCun. Fast training of convolutional networks through  
 716 ffts. *arXiv preprint arXiv:1312.5851*, 2013.

717 Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the  
 718 construction of internet portals with machine learning. *Information Retrieval*, 3:127–163, 2000.

719 Kenneth D Miller and Todd W Troyer. Neural noise can explain expansive, power-law nonlinearities  
 720 in neural response functions. *Journal of neurophysiology*, 87(2):653–659, 2002.

721 Emre O Neftci, Hesham Mostafa, and Friedemann Zenke. Surrogate gradient learning in spiking  
 722 neural networks: Bringing the power of gradient-based optimization to spiking neural networks.  
 723 *IEEE Signal Processing Magazine*, 36(6):51–63, 2019.

724 Gabriel Nobis, Maximilian Springenberg, Marco Aversa, Michael Detzel, Rembert Daems, Roderick  
 725 Murray-Smith, Shinichi Nakajima, Sebastian Lapuschkin, Stefano Ermon, Tolga Birdal, et al.  
 726 Generative fractional diffusion models. *Advances in Neural Information Processing Systems*, 37:  
 727 25469–25509, 2024.

728 OpenAI. Chatgpt-4, 2022. Available at: <https://www.openai.com> (Accessed: 10 April 2024).

729 Garrick Orchard, Ajinkya Jayawant, Gregory K Cohen, and Nitish Thakor. Converting static image  
 730 datasets to spiking neuromorphic datasets using saccades. *Frontiers in neuroscience*, 9:437, 2015.

731 Guofei Pang, Lu Lu, and George Em Karniadakis. fpinns: Fractional physics-informed neural  
 732 networks. *SIAM J. Sci. Comput.*, 41(4):A2603–A2626, 2019.

733 Jing Pei, Lei Deng, Sen Song, Mingguo Zhao, Youhui Zhang, Shuang Wu, Guanrui Wang, Zhe  
 734 Zou, Zhenzhi Wu, Wei He, et al. Towards artificial general intelligence with hybrid tianjic chip  
 735 architecture. *Nature*, 572(7767):106–111, 2019.

736 Igor Podlubny. *Fractional Differential Equations*. Academic Press, 1999.

737 Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, and Kaushik Roy. Enabling deep  
 738 spiking neural networks with hybrid conversion and spike timing dependent backpropagation. In  
 739 *International Conference on Learning Representations*, pp. 1–14, 2019.

740 Henri Rebecq, René Ranftl, Vladlen Koltun, and Davide Scaramuzza. Events-to-video: Bringing  
 741 modern computer vision to event cameras. In *CVPR*, pp. 3857–3866, 2019.

742 Jaldert Rombouts and Sander Bohte. Fractionally predictive spiking neurons. *Advances in Neural*  
 743 *Information Processing Systems*, 23, 2010.

744 Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. Towards spike-based machine intelligence  
 745 with neuromorphic computing. *Nature*, 575(7784):607–617, 2019.

746 Jocelyn Sabatier, Patrick Lanusse, Pierre Melchior, and Alain Oustaloup. Fractional order differ-  
 747 entiation and robust control design. *Intelligent systems, control and automation: science and*  
 748 *engineering*, 77:13–18, 2015.

756 Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.  
 757 Collective classification in network data. *AI magazine*, 29(3):93–93, 2008.  
 758

759 Yeonjong Shin, Jérôme Darbon, and George Em Karniadakis. Accelerating gradient descent and  
 760 adam via fractional gradients. *Neural Networks*, 161:185–201, 2023.

761 WJ Spain, PC Schwindt, and WE Crill. Two transient potassium currents in layer v pyramidal  
 762 neurones from cat sensorimotor cortex. *The Journal of physiology*, 434(1):591–607, 1991.  
 763

764 Richard B Stein. A theoretical analysis of neuronal variability. *Biophysical journal*, 5(2):173–194,  
 765 1965.

766 Richard B Stein. Some models of neuronal variability. *Biophysical journal*, 7(1):37–68, 1967.  
 767

768 Li Sun, Zhenhao Huang, Qiqi Wan, Hao Peng, and Philip S Yu. Spiking graph neural network on  
 769 riemannian manifolds. *arXiv preprint arXiv:2410.17941*, 2024.

770 Tayebeh Taheri, Alireza Afzal Aghaei, and Kourosh Parand. Accelerating fractional pinns using  
 771 operational matrices of derivative. *arXiv preprint arXiv:2401.14081*, 2024.

772

773 Ganchao Tan, Yang Wang, Han Han, Yang Cao, Feng Wu, and Zheng-Jun Zha. Multi-grained  
 774 spatio-temporal features perceived network for event-based lip-reading. In *Proceedings of the  
 775 IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 20094–20103, 2022.

776

777 Vasily E Tarasov. *Fractional dynamics: applications of fractional calculus to dynamics of particles,  
 778 fields and media*. Springer Science & Business Media, 2011.

779

780 Corinne Teeter, Ramakrishnan Iyer, Vilas Menon, Nathan Gouwens, David Feng, Jim Berg, Aaron  
 781 Szafer, Nicholas Cain, Hongkui Zeng, Michael Hawrylycz, et al. Generalized leaky integrate-and-  
 782 fire models classify multiple neuron types. *Nature communications*, 9(1):709, 2018.

783

784 Wondimu Teka, Toma M Marinov, and Fidel Santamaria. Neuronal spike timing adaptation described  
 785 with a fractional leaky integrate-and-fire model. *PLoS computational biology*, 10(3):e1003526,  
 2014.

786

787 Nachum Ulanovsky, Liora Las, Dina Farkas, and Israel Nelken. Multiple time scales of adaptation in  
 788 auditory cortex neurons. *Journal of Neuroscience*, 24(46):10440–10453, 2004.

789

790 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz  
 791 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing  
 792 systems*, 30, 2017.

793

794 Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S Yu. Heterogeneous  
 795 graph attention network. In *The world wide web conference*, pp. 2022–2032, 2019.

796

797 Xiao Wang, Zongzhen Wu, Bo Jiang, Zhimin Bao, Lin Zhu, Guoqi Li, Yaowei Wang, and Yonghong  
 798 Tian. Hardvs: Revisiting human activity recognition with dynamic vision sensors. In *Proceedings  
 799 of the AAAI conference on artificial intelligence*, volume 38, pp. 5615–5623, 2024.

800

801 Yujie Wu, Lei Deng, Guoqi Li, Jun Zhu, and Luping Shi. Spatio-temporal backpropagation for  
 802 training high-performance spiking neural networks. *Frontiers in neuroscience*, 12:331, 2018.

803

804 Ninghui Xu, Lihui Wang, Zhiting Yao, and Takayuki Okatani. Mets: Motion-encoded time-surface  
 805 for event-based high-speed pose tracking. *International Journal of Computer Vision*, pp. 1–19,  
 806 2025.

807

808 Honggang Yang, Jiejie Chen, Ping Jiang, Mengfei Xu, and Haiming Zhao. Fractional gradient descent  
 809 method for spiking neural networks. In *2023 2nd Conference on Fully Actuated System Theory  
 810 and Applications (CFASTA)*, pp. 636–641. IEEE, 2023.

811

812 Yi Yang, Richard M Voyles, Haiyan H Zhang, and Robert A Nawrocki. Fractional-order spike-timing-  
 813 dependent gradient descent for multi-layer spiking neural networks. *Neurocomputing*, 611:128662,  
 814 2025.

810 Man Yao, Huanhuan Gao, Guangshe Zhao, Dingheng Wang, Yihan Lin, Zhaoxu Yang, and Guoqi Li.  
 811 Temporal-wise attention spiking neural networks for event streams classification. In *Proceedings*  
 812 *of the IEEE/CVF international conference on computer vision*, pp. 10221–10230, 2021.

813 Man Yao, Jiakui Hu, Zhaokun Zhou, Li Yuan, Yonghong Tian, Bo Xu, and Guoqi Li. Spike-driven  
 814 transformer. *Advances in neural information processing systems*, 36:64043–64058, 2023a.

815 Man Yao, Guangshe Zhao, Hengyu Zhang, Yifan Hu, Lei Deng, Yonghong Tian, Bo Xu, and Guoqi Li.  
 816 Attention spiking neural networks. *IEEE transactions on pattern analysis and machine intelligence*,  
 817 45(8):9393–9410, 2023b.

818 Man Yao, Jiakui Hu, Tianxiang Hu, Yifan Xu, Zhaokun Zhou, Yonghong Tian, Bo Xu, and Guoqi Li.  
 819 Spike-driven transformer v2: Meta spiking neural network architecture inspiring the design of  
 820 next-generation neuromorphic chips. *arXiv preprint arXiv:2404.03663*, 2024.

821 Chengting Yu, Zheming Gu, Da Li, Gaoang Wang, Aili Wang, and Erping Li. Stsc-snn: Spatio-  
 822 temporal synaptic connection with temporal convolution and attention for spiking neural networks.  
 823 *Frontiers in Neuroscience*, 16:1079357, 2022a.

824 Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced physics-informed  
 825 neural networks for forward and inverse pde problems. *Computer Methods in Applied Mechanics  
 826 and Engineering*, 393:114823, 2022b.

827 Jiqing Zhang, Malu Zhang, Yuanchen Wang, Qianhui Liu, Baocai Yin, Haizhou Li, and Xin Yang.  
 828 Spiking neural networks with adaptive membrane time constant for event-based tracking. *IEEE  
 829 Transactions on Image Processing*, 2025.

830 Shuo Zhang, Lu Liu, Chunhua Wang, Xiaomeng Zhang, and Rong Ma. Multistability and global  
 831 attractivity for fractional-order spiking neural networks. *Applied Mathematics and Computation*,  
 832 508:129617, 2026.

833 Han Zhao, Xu Yang, Cheng Deng, and Junchi Yan. Dynamic reactive spiking graph neural network.  
 834 In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pp. 16970–16978,  
 835 2024.

836 Hanle Zheng, Yujie Wu, Lei Deng, Yifan Hu, and Guoqi Li. Going deeper with directly-trained  
 837 larger spiking neural networks. In *Proceedings of the AAAI conference on artificial intelligence*,  
 838 volume 35, pp. 11062–11070, 2021.

839 Zhaokun Zhou, Yuesheng Zhu, Chao He, Yaowei Wang, Shuicheng Yan, Yonghong Tian, and Li Yuan.  
 840 Spikformer: When spiking neural network meets transformer. *arXiv preprint arXiv:2209.15425*,  
 841 2022.

842 Zulun Zhu, Jiaying Peng, Jintang Li, Liang Chen, Qi Yu, and Siqiang Luo. Spiking graph convolutional  
 843 networks. *arXiv preprint arXiv:2205.02767*, 2022.

844

## 845 A RELATED WORK

846

### 847 A.1 SPIKING NEURAL NETWORKS

848

849 Traditional artificial neural networks (ANNs) have achieved remarkable success across a wide  
 850 range of tasks (Krizhevsky et al., 2012; LeCun et al., 2015; Vaswani et al., 2017). However, these  
 851 models differ significantly from biological neural networks, and their computational requirements far  
 852 exceed those of the human brain (Dhar, 2020). This discrepancy has motivated the development of  
 853 Spiking Neural Networks (SNNs) (Maass, 1997; Ghosh-Dastidar & Adeli, 2009; Lee et al., 2016;  
 854 Wu et al., 2018; Zheng et al., 2021; Zhou et al., 2022), which offer a more biologically plausible  
 855 model by communicating through discrete spikes instead of continuous signals. Their event-driven  
 856 computation enables significant energy savings, particularly on neuromorphic hardware (Roy et al.,  
 857 2019; Pei et al., 2019). Furthermore, SNNs treat time as an intrinsic component, making them  
 858 well-suited for applications in time-series prediction and real-time interactive systems (Yao et al.,  
 859 2023b; Luo et al., 2024; Yao et al., 2021). Early biophysical models such as the Hodgkin-Huxley  
 860

model (Hodgkin & Huxley, 1952) offer an accurate description of action-potential generation but are computationally expensive, particularly for large-scale learning tasks. Consequently, simplified neuron models, such as the Integrate-and-Fire (IF) and Leaky Integrate-and-Fire (LIF) models, have become widely adopted in SNN research (Abbott, 1999; Stein, 1965; 1967). **Beyond the basic IF/LIF models**, a variety of extensions have been proposed to address different modeling challenges. Adaptive Leaky Integrate-and-Fire (ALIF) SNN neuron incorporates neural adaptation mechanisms, such as adaptive thresholds, enhancing the temporal dependency modeling and working memory capacity of SNNs (Belloc et al., 2018; Benda, 2021). The Generalized LIF (GLIF) introduces a more physiologically motivated framework, enabling accurate spike detection and unsupervised differentiation of cortical cell types (Teeter et al., 2018). The Complementary LIF (CLIF) model further enhances temporal gradient propagation and long-term dependency learning by incorporating a complementary membrane potential state (Huang et al., 2024). The Parallel Spiking Neuron (PSN) model eliminates the need for reset mechanisms, facilitating fully connected temporal modeling that allows for time-step parallelism, which accelerates both training and inference (Fang et al., 2023b). Additional neuron models, such as ternary spikes (Guo et al., 2024) and adaptive membrane time constants (Koch et al., 1996; Zhang et al., 2025), further extend the capabilities of SNNs. Despite these advances, most existing SNNs discretize only first-order ordinary differential equations (ODEs), which describe dynamics governed by  $d/dt$  terms, and assume a Markovian property, where the state at any time depends only on its immediate past (see (9)) (Maass, 1997; Ghosh-Dastidar & Adeli, 2009; Eshraghian et al., 2023b). While this simplification aids tractability, it imposes limitations on expressiveness. Neurophysiological evidence indicates that real neurons exhibit long-range temporal correlations (Gilboa et al., 2005), fractal dendritic morphologies (Coop et al., 2010; Kirch & Gollo, 2020), and interactions among multiple active membrane conductances (La Camera et al., 2006; Miller & Troyer, 2002), leading to dynamics that integer-order, Markovian models capture only imperfectly (Ulanovsky et al., 2004; La Camera et al., 2006; Miller & Troyer, 2002; Spain et al., 1991).

**Distinction from Prior SNN Families.** The models discussed above all belong to the *integer-order* family, where the subthreshold dynamics can be expressed as a first-order ordinary differential equation (ODE) of the form

$$\text{First-order SNN neuron dynamics: } \frac{dU(t)}{dt} = \text{Dynamic}(U(t), I_{\text{in}}(t)), \quad (20)$$

where  $\text{Dynamic}(\cdot)$  denotes the specific membrane-potential update rule used by models such as IF, LIF (cf. (10) and (11)), ALIF, GLIF, CLIF, and other related variants. These approaches mainly explore different choices for the function  $\text{Dynamic}(\cdot)$ , all within the same first-order, Markovian framework.

In contrast, our work introduces a *fractional-order* SNN framework, which is based on

$$\text{Fractional-order SNN neuron dynamics: } D_t^\alpha U(t) = \text{Dynamic}(U(t), I_{\text{in}}(t)), \quad 0 < \alpha \leq 1, \quad (21)$$

where  $D_t^\alpha$  represents a fractional (nonlocal-in-time) derivative. This formulation generalizes the integer-order case, which is recovered when  $\alpha = 1$ , and incorporates long-term memory in the membrane potential and spike trains through fractional dynamics. In the main text, we instantiate this framework with fractional IF and LIF neurons, but the same approach can naturally extend to more complex neuron models, such as ALIF, GLIF, and CLIF. Our `spikeDE` toolbox offers modular implementations that facilitate the realization of these fractional variants. We believe this contribution significantly advances the field by introducing nonlocal-in-time discrete dynamics to SNN modeling.

## A.2 EVENT CAMERA

Event cameras, as novel bio-inspired sensors, capture pixel-level brightness changes through an asynchronous triggering mechanism (Gallego et al., 2020). With microsecond-level temporal resolution (equivalent to 10,000 fps) and a high dynamic range (140 dB) (Rebecq et al., 2019), they provide a groundbreaking solution for perception in high-speed dynamic scenes. Unlike traditional frame-based vision sensors, event cameras only record pixels undergoing changes in the scene, generating sparse event streams. This data structure not only significantly reduces redundant information but also enables robust perception under rapid motion and challenging lighting conditions. In the field of

event stream processing, the asynchronous and sparse nature of event data poses challenges for conventional frame-based CNN algorithms. To address these challenges, researchers have proposed various encoding and processing methods tailored to the unique characteristics of event data. For instance, (Neftci et al., 2019) introduced a surrogate gradient-based method to transform event streams into pulse sequences compatible with neural network processing. (Xu et al., 2025) proposed the Motion-Encoded Time-Surface (METS), which dynamically encodes pixel-level decay rates in time surfaces to capture the spatiotemporal dynamics reflected by events. This approach successfully addresses the challenge of pose tracking in high-speed scenarios using event cameras. Significant progress has also been made in network architecture optimization. (Yu et al., 2022a) developed the STSC-SNN model, which introduces synaptic connections with spatiotemporal dependencies, significantly enhancing the ability of spiking neural networks to process temporal information. Furthermore, event cameras, with their low latency and high dynamic range, have demonstrated broad application potential in fields such as robotic control, autonomous driving, and object tracking. For example, (Cuadrado et al., 2023) proposed a 3D convolution-based spatiotemporal feature encoding method, utilizing a hierarchical separable convolution architecture to greatly improve the accuracy and efficiency of optical flow estimation in driving scenarios using event cameras. On the hardware optimization front, researchers have actively developed systems tailored for efficient event stream processing. (Isik et al., 2024) constructed a neuromorphic vision system based on the Intel Loihi 2 chip, achieving significantly lower power consumption compared to traditional GPU solutions, thus providing critical support for the efficient deployment of event cameras.

## B MORE TECHNICAL DETAILS

### B.1 MORE ABOUT FRACTIONAL CALCULUS

In Section 2.1 of the main paper, we presented the (left) Caputo fractional derivative and discussed numerical schemes for solving fractional-order ODEs. Here we provide additional background on fractional calculus that underpins our approach. For clarity, we note that throughout the main paper, all references to the Caputo fractional derivative specifically denote the left Caputo fractional derivative  $D^\alpha$ .

### CLASSICAL DERIVATIVES AND INTEGRALS

For a scalar function  $y(t)$ , the ordinary first-order derivative captures its instantaneous rate of change:

$$\frac{dy(t)}{dt} = \dot{y}(t) := \lim_{\Delta t \rightarrow 0} \frac{y(t + \Delta t) - y(t)}{\Delta t}. \quad (22)$$

Let  $J$  denote the integral operator that assigns to each function  $y(t)$ , which we assume to be Riemann integrable on the closed interval  $[0, T]$ , its antiderivative starting from  $a$ :

$$Jy(t) := \int_a^t y(\tau) d\tau \quad \text{for } t \in [0, T]. \quad (23)$$

When considering positive integers  $n \in \mathbb{N}^+$ , we write  $J^n$  to indicate the  $n$ -fold composition of  $J$ , where  $J^1 = J$  and  $J^n := J \circ J^{n-1}$  for  $n \geq 2$ . Through repeated integration by parts, one can show that (Diethelm, 2010)[Lemma 1.1.]:

$$J^n y(t) = \frac{1}{(n-1)!} \int_a^t (t - \tau)^{n-1} y(\tau) d\tau \quad \text{for } n \in \mathbb{N}^+. \quad (24)$$

### EXTENDING TO NON-INTEGER ORDERS: FRACTIONAL INTEGRALS AND DERIVATIVES

**Fractional Integrals Operators:** Fractional integrals extend classical integration theory by allowing non-integer orders of integration. Among various formulations, the Riemann-Liouville fractional integrals are particularly fundamental (Tarasov, 2011)[page 4]. For a positive real parameter  $\alpha \in \mathbb{R}^+$ , we define the left-sided and right-sided Riemann-Liouville fractional integral operators, denoted  $J_{\text{left}}^\alpha$

972 and  $J_{\text{right}}^\alpha$ , as follows:  
 973

$$\begin{aligned} 974 \quad J_{\text{left}}^\alpha y(t) &:= \frac{1}{\Gamma(\alpha)} \int_a^t (t-\tau)^{\alpha-1} y(\tau) d\tau, \\ 975 \quad J_{\text{right}}^\alpha y(t) &:= \frac{1}{\Gamma(\alpha)} \int_t^b (\tau-t)^{\alpha-1} y(\tau) d\tau, \end{aligned} \quad (25)$$

979 where  $\Gamma(\alpha)$  represents the gamma function, which provides a continuous extension of the factorial  
 980 operation to real and complex domains. The key distinction from classical repeated integration lies in  
 981 the flexibility of the order parameter: while traditional calculus restricts the order  $n$  in (24) to positive  
 982 integers, the fractional order  $\alpha$  in (25) spans the entire positive real line, enabling a continuous  
 983 spectrum of integration orders.

984 **Fractional Derivative Operators:** Parallel to fractional integration, the concept of a fractional  
 985 derivative extends the operation of differentiation to arbitrary non-integer orders. This allows for a  
 986 more nuanced understanding of rates of change in complex systems.  
 987

988 One common formulation is the Riemann-Liouville fractional derivative. The left-sided ( ${}^{\text{RL}}D^\alpha$ ) and  
 989 right-sided ( ${}^{\text{RL}}D_{b-}^\alpha$ ) versions are formally defined by first applying a fractional integral and then an  
 990 integer-order derivative (Tarasov, 2011):  
 991

$$\begin{aligned} 992 \quad {}^{\text{RL}}D^\alpha y(t) &:= \frac{1}{\Gamma(m-\alpha)} \frac{d^m}{dt^m} \int_0^t \frac{y(\tau) d\tau}{(t-\tau)^{\alpha-m+1}} \\ 993 \quad {}^{\text{RL}}D_{b-}^\alpha y(t) &:= (-1)^m \frac{d^m}{dt^m} J_{\text{right}}^{m-\alpha} y(t) = \frac{(-1)^m}{\Gamma(m-\alpha)} \frac{d^m}{dt^m} \int_t^T \frac{y(\tau) d\tau}{(\tau-t)^{\alpha-m+1}}, \end{aligned} \quad (26)$$

996 Here,  $m$  is the smallest integer such that  $m-1 < \alpha \leq m$ .  
 997

998 Another widely used definition is the Caputo fractional derivative. The left-sided ( $D^\alpha$ ) and right-  
 999 sided ( $D_{b-}^\alpha$ ) Caputo derivatives are distinct from the Riemann-Liouville formulation in the order of  
 1000 operations: they involve first taking an integer-order derivative and then applying a fractional integral  
 1001 (Tarasov, 2011). They are defined as follows:  
 1002

$$\begin{aligned} 1003 \quad D^\alpha y(t) &:= J_{\text{left}}^{m-\alpha} \frac{d^m}{dt^m} y(t) = \frac{1}{\Gamma(m-\alpha)} \int_a^t \frac{\frac{d^m}{d\tau^m} y(\tau) d\tau}{(t-\tau)^{\alpha-m+1}}, \\ 1004 \quad D_{b-}^\alpha y(t) &:= (-1)^m J_{\text{right}}^{m-\alpha} \frac{d^m}{dt^m} y(t) = \frac{(-1)^m}{\Gamma(m-\alpha)} \int_t^b \frac{\frac{d^m}{d\tau^m} y(\tau) d\tau}{(\tau-t)^{\alpha-m+1}}. \end{aligned} \quad (27)$$

1007 The Caputo formulation offers several advantages: it produces zero when applied to constant functions  
 1008 (matching classical derivatives), and it accommodates standard initial conditions in differential  
 1009 equations, making it particularly suitable for modeling physical systems. We therefore choose the  
 1010 Caputo formulation.  
 1011

1012 A fundamental characteristic distinguishing fractional derivatives from their integer-order counterparts  
 1013 is their inherent non-locality. The integral representations in (26) and (27) reveal that fractional  
 1014 derivatives incorporate weighted contributions from the function's entire history on the interval  
 1015  $[a, t]$  (for left-sided) or  $[t, b]$  (for right-sided). This memory effect contrasts sharply with classical  
 1016 derivatives, which depend only on infinitesimal neighborhoods around the evaluation point. The  
 1017 weighting kernel  $(t-\tau)^{\alpha-m+1}$  determines how past states influence the present derivative value,  
 1018 with the fractional order  $\alpha$  controlling the decay rate of this historical influence.  
 1019

1020 This memory-dependent nature makes fractional derivatives particularly valuable for modeling  
 1021 systems with hereditary properties, long-range interactions, or anomalous diffusion phenomena.  
 1022 In the limiting case where  $\alpha$  approaches an integer value, these fractional operators smoothly  
 1023 transition to their classical counterparts (Diethelm, 2010), establishing fractional calculus as a genuine  
 1024 generalization of traditional calculus. For instance, when  $\alpha = n \in \mathbb{N}$ , both Riemann-Liouville and  
 1025 Caputo derivatives reduce to the standard  $n$ -th order derivative, ensuring theoretical consistency  
 1026 and practical applicability across the entire spectrum of differentiation orders. When dealing with  
 1027 vector-valued functions, the fractional operators act independently on each component, in direct  
 1028 analogy to the multivariate extension of ordinary differentiation and integration.  
 1029

1026 B.2 SURROGATE FUNCTIONS IN  $f$ -SNN  
1027

1028 Training SNNs presents a fundamental challenge: the spiking function (Heaviside step function) is  
1029 non-differentiable, making standard backpropagation impossible. To address this, similar to other  
1030 works (Wu et al., 2018), we employ surrogate gradient methods that replace the undefined derivative  
1031 of the step function with smooth approximations during the backward pass. In the main paper, we  
1032 present the threshold-shifted sigmoid function. Our toolbox also implements other commonly used  
1033 surrogate functions. We present them in this section.

1034 For all surrogate functions, the forward pass computes the standard Heaviside step function:  
1035

$$1036 H(x) = \begin{cases} 1, & \text{if } x \geq 0 \\ 1037 0, & \text{if } x < 0 \end{cases} \quad (28)$$

1039 The backward pass, however, replaces  $H'(x)$  with a surrogate gradient  $s(x)$ . Below, we detail each  
1040 surrogate function implemented in our toolbox `spikeDE`, which can be chosen freely by users.  
1041

1042 B.2.1 SIGMOID SURROGATE  
1043

1044 The sigmoid surrogate uses the derivative of the scaled sigmoid function:  
1045

$$1046 s_{\text{sigmoid}}(x) = \kappa \cdot \sigma(\kappa x) \cdot (1 - \sigma(\kappa x)) \quad (29)$$

1047 where  $\sigma(x) = \frac{1}{1+e^{-x}}$  is the sigmoid function and  $\kappa$  is a scaling parameter (default:  $\kappa = 5.0$ ).  
1048 This surrogate provides smooth gradients centered around the threshold, with the scale parameter  
1049 controlling the sharpness of the approximation.  
1050

1051 B.2.2 ARCTANGENT SURROGATE  
1052

1053 The arctangent surrogate employs the derivative of the arctangent function:  
1054

$$1055 s_{\text{arctan}}(x) = \frac{\kappa}{1 + (\kappa x)^2} \quad (30)$$

1056 where  $\kappa$  is the scale parameter (default:  $\kappa = 2.0$ ). This function provides a bell-shaped gradient  
1057 profile with heavier tails compared to the sigmoid surrogate, potentially allowing gradient flow for  
1058 neurons further from the threshold.  
1059

1060 B.2.3 PIECEWISE LINEAR SURROGATE  
1061

1062 The piecewise linear surrogate defines a simple triangular approximation:  
1063

$$1064 s_{\text{linear}}(x) = \begin{cases} \frac{1}{2\gamma}, & \text{if } -\gamma \leq x \leq \gamma \\ 1065 0, & \text{otherwise} \end{cases} \quad (31)$$

1066 where  $\gamma$  defines the width of the linear region (default:  $\gamma = 1.0$ ). This surrogate provides constant  
1067 gradients within a fixed window around the threshold, offering computational efficiency at the cost of  
1068 gradient smoothness.  
1069

1070 B.2.4 GAUSSIAN SURROGATE  
1071

1072 The Gaussian surrogate uses a normalized Gaussian function:  
1073

$$1074 s_{\text{gaussian}}(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{x^2}{2\sigma^2}\right) \quad (32)$$

1075 where  $\sigma$  is the standard deviation parameter (default:  $\sigma = 1.0$ ). This surrogate provides the smoothest  
1076 gradient profile with exponential decay away from the threshold.  
1077

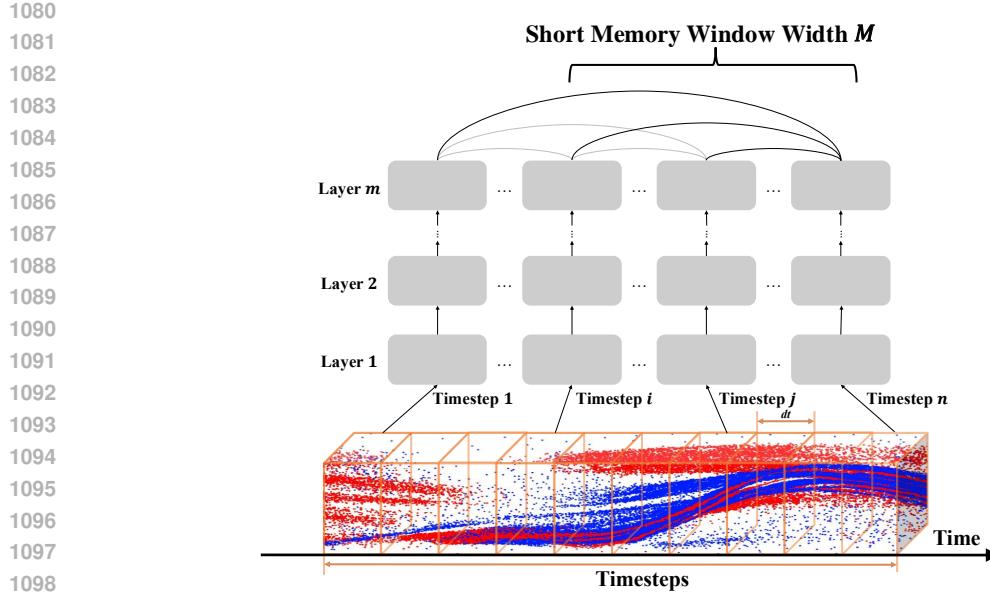


Figure 7:  $f$ -SNN illustration. Within each layer, the current update aggregates all past states of that layer. For efficiency, the short-memory principle approximates the fractional dynamics by retaining only the last  $M$  timesteps.

### B.2.5 SURROGATE GRADIENT IMPLEMENTATION

In practice, during backpropagation through a spiking layer, the gradient of the loss  $\mathcal{L}$  with respect to the membrane potential  $u$  is computed as:

$$\frac{\partial \mathcal{L}}{\partial u} = \frac{\partial \mathcal{L}}{\partial s} \cdot s(u) \quad (33)$$

where  $s$  represents the spike output and  $s(u)$  is the chosen surrogate gradient function. The choice of surrogate function and its hyperparameters impacts training dynamics, with sharper surrogates (larger scale parameters) providing more precise threshold behavior but potentially suffering from vanishing gradients.

### B.3 MORE ABOUT FRAMEWORK AND ITS VISUALIZATION

In the main paper, we illustrate the distinct information flow characteristics of  $f$ -SNN compared to traditional SNNs in Fig. 1. In conventional SNNs, the iterative nature results in skip connections. In contrast,  $f$ -SNN utilizes dense connections, which arise from the weighted summation within the ABM predictor, as described in (13). The diagram can be seen in Fig. 7. Within each layer, the current update aggregates all past states of that layer. For efficiency, the short-memory principle approximates the fractional dynamics by retaining only the last  $M$  timesteps.

The coefficients  $c_m^{(\alpha)} = \frac{1}{\tau^\alpha \alpha \Gamma(\alpha)} [(m+1)^\alpha - m^\alpha]$  define a causal memory kernel that decays according to a power-law, capturing the historical influence of the system. As depicted in Fig. 8, this decay is “heavy-tailed”, meaning that although recent states dominate the influence, the contributions from past events remain significant over time, in contrast to the rapid decay for integer-order systems.

For large  $m$ , the decay of input influence follows the relationship:

$$c_m^{(\alpha)} \propto (m+1)^\alpha - m^\alpha$$

Expanding this expression, we get:

$$c_m^{(\alpha)} \approx m^\alpha \left( \left(1 + \frac{1}{m}\right)^\alpha - 1 \right) \propto m^{\alpha-1},$$

for large  $m$ . This confirms that the kernel exhibits algebraic decay.

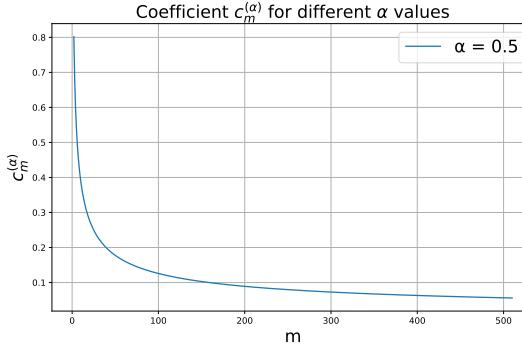


Figure 8:  $f$ -SNN coefficient  $c_m^{(\alpha)}$  visualization.  $c_m^{(\alpha)}$  is causal and decays as a power law, explicitly encoding memory. This decay profile is “heavy-tailed,” meaning that while recent states exert the strongest influence, distant past events retain a non-negligible impact compared to exponential decay.

## C THEORETICAL RESULTS AND COMPLEXITY ANALYSIS

### C.1 PROOF OF PROPOSITION 1

*Proof.* For the first-order case, we multiply both sides of (5) by  $e^{t/\tau}$ , yielding

$$e^{t/\tau} \frac{dU}{dt} + \frac{1}{\tau} e^{t/\tau} U = \frac{R}{\tau} I_c e^{t/\tau}.$$

This simplifies to

$$\frac{d}{dt} (U e^{t/\tau}) = \frac{R}{\tau} I_c e^{t/\tau}.$$

Integrating both sides with respect to  $t$ , we obtain

$$U(t) e^{t/\tau} = \int \frac{R}{\tau} I_c e^{t/\tau} dt + C = R I_c e^{t/\tau} + C,$$

where  $C$  is the constant of integration. Solving for  $U(t)$ , we find

$$U(t) = R I_c + C e^{-t/\tau}.$$

Applying the initial condition  $U(0) = U_0$ , we get  $U_0 = R I_c + C$ . So  $C = U_0 - R I_c$ . Therefore, the solution is

$$U(t) = R I_c + (U_0 - R I_c) e^{-t/\tau}.$$

For the fractional case, we take a more general Laplace transform approach. Applying the Laplace transform to both sides of (11), and using the property

$$\mathcal{L} \{ {}^C D_t^\alpha U(t) \} = s^\alpha U(s) - s^{\alpha-1} U_0,$$

we obtain the transformed equation:

$$s^\alpha U(s) - s^{\alpha-1} U_0 + \frac{1}{\tau} U(s) = \frac{R I_c}{\tau} \cdot \frac{1}{s}.$$

Rearranging terms and solving for  $U(s)$ , we get:

$$U(s) \left( s^\alpha + \frac{1}{\tau} \right) = s^{\alpha-1} U_0 + \frac{R I_c}{\tau s}.$$

So we have

$$U(s) = \frac{s^{\alpha-1} U_0}{s^\alpha + \frac{1}{\tau}} + \frac{R I_c}{\tau} \cdot \frac{1}{s (s^\alpha + \frac{1}{\tau})}.$$

1188 To simplify the second term, observe the partial fraction identity:  
 1189

$$1190 \frac{1}{s(s^\alpha + \frac{1}{\tau})} = \frac{\tau}{s} - \frac{\tau s^{\alpha-1}}{s^\alpha + \frac{1}{\tau}}. \\ 1191 \\ 1192$$

1193 Substituting this expression, we obtain:  
 1194

$$1195 U(s) = \frac{s^{\alpha-1}U_0}{s^\alpha + \frac{1}{\tau}} + RI_c \left( \frac{1}{s} - \frac{s^{\alpha-1}}{s^\alpha + \frac{1}{\tau}} \right) = \frac{RI_c}{s} + \frac{s^{\alpha-1}(U_0 - RI_c)}{s^\alpha + \frac{1}{\tau}}. \\ 1196 \\ 1197$$

1198 Taking the inverse Laplace transform and using the identity  
 1199

$$1200 \mathcal{L}^{-1} \left\{ \frac{s^{\alpha-1}}{s^\alpha + a} \right\} = E_\alpha(-at^\alpha), \\ 1201$$

1202 where  $E_\alpha(\cdot)$  is the Mittag-Leffler function, we arrive at the time-domain solution:  
 1203

$$1204 U(t) = RI_c + (U_0 - RI_c) E_\alpha \left( -\frac{t^\alpha}{\tau} \right). \\ 1205$$

1206 The power-law tail  $E_\alpha(-t^\alpha/\tau_\alpha) \sim \frac{\tau_\alpha}{\Gamma(1-\alpha)t^\alpha}$  for large  $t$  follows from (Diethelm, 2010)[Theorem  
 1207 4.3.].  
 1208  $\square$

## 1211 C.2 PROOF OF THEOREM 1

1213 In this section, we analyze the robustness of our  $f$ -SNN framework under input perturbations. We  
 1214 examine two critical aspects: (i) the temporal evolution of membrane potential perturbations, and (ii)  
 1215 the sensitivity of spike timing to input variations. Our analysis reveals that fractional-order dynamics  
 1216 exhibit distinct robustness properties compared to classical integer-order models.

1217 To facilitate the analysis in this section, we choose the  $F$ -IF neuron dynamics with the continuous  
 1218 formulation (10):  
 1219

$$1220 \tau D^\alpha U(t) = RI_{\text{in}}(t).$$

1221 From Diethelm, 2010[Lemma 6.2.], the above fractional-order ODE can be equivalently written as  
 1222 the following Volterra integral equation:  
 1223

$$1224 U(t) = U_0 + \frac{1}{\Gamma(\alpha)} \int_0^t (t-u)^{\alpha-1} \frac{R}{\tau} I_{\text{in}}(u) du \quad (34) \\ 1225$$

1226 In the following, we consider a constant current input  $I_{\text{in}}(t) \equiv I_c$  perturbed by a small deviation  $\epsilon$ ,  
 1227 yielding  $I_{\text{pert}}(t) = I_c + \epsilon$ . Without loss of generality, we assume  $U_0 = 0$ .  
 1228

### • Membrane Potential Robustness

1230 We denote by  $U_{\text{clean}}(t)$  and  $U_{\text{pert}}(t)$  the membrane potential under the clean input  $I_c$  and perturbed  
 1231 input  $I_c + \epsilon$ , respectively. From (34), we obtain:  
 1232

$$1233 U_{\text{clean}}(t) = \frac{RI_c}{\tau\Gamma(\alpha)} \int_0^t (t-u)^{\alpha-1} du = \frac{RI_c}{\tau\Gamma(\alpha)} \left[ \frac{t^\alpha}{\alpha} \right] = \frac{RI_c}{\tau\Gamma(\alpha+1)} t^\alpha \quad (35) \\ 1234$$

1235 Similarly, we have:  
 1236

$$1237 U_{\text{pert}}(t) = \frac{R(I_c + \epsilon)}{\tau\Gamma(\alpha)} \int_0^t (t-u)^{\alpha-1} du = \frac{R(I_c + \epsilon)}{\tau\Gamma(\alpha+1)} t^\alpha \\ 1238$$

1239 The difference between perturbed and unperturbed membrane potentials evolves as:  
 1240

$$1241 \Delta U^{f\text{-IF}}(t) = U_{\text{pert}}(t) - U_{\text{clean}}(t) = \frac{R\epsilon}{\tau\Gamma(\alpha+1)} t^\alpha$$

1242 In contrast, for the classical IF model (limit of  $\alpha \rightarrow 1$ ), we have:  
 1243

$$1244 \Delta U^{\text{IF}}(t) = \frac{R\epsilon}{\tau} t \\ 1245$$

1246 Since  $0 < \alpha < 1$ , the perturbation growth follows  $t^\alpha$  (sub-linear) for the fractional model versus  $t$   
 1247 (linear) for the IF model. This sub-linear accumulation demonstrates that fractional-order dynamics  
 1248 inherently suppress long-term accumulation of perturbation through memory effects encoded in the  
 1249 fractional derivative.

1250 **• Spike Timing Sensitivity**  
 1251

1252 The first spike time occurs when the membrane potential reaches threshold  $\theta$ . We emphasize the  
 1253 necessity of robust spike timing, noting that various learning algorithms rely explicitly on these  
 1254 temporal values (Bohte et al., 2002; Booij & tat Nguyen, 2005; Rathi et al., 2019).

1255 For the  $f$ -IF system, from (35), we have:  
 1256

$$1257 t_s^{\text{clean}} = \left( \frac{\theta\tau\Gamma(\alpha+1)}{RI_c} \right)^{1/\alpha} \\ 1258$$

1259 Under perturbation  $I_c \rightarrow I_c + \epsilon$ , the spike time changes to:  
 1260

$$1261 t_s^{\text{pertb}} = \left( \frac{\theta\tau\Gamma(\alpha+1)}{R(I_c + \epsilon)} \right)^{1/\alpha} \\ 1262$$

1263 We define the spike time shift magnitude as  $\Delta t_s = |t_s^{\text{clean}} - t_s^{\text{pertb}}|$   
 1264

$$1265 \Delta t_s^{f\text{-IF}} = \left( \frac{\theta\tau\Gamma(\alpha+1)}{RI_c} \right)^{1/\alpha} \left[ 1 - \left( \frac{I_c}{I_c + \epsilon} \right)^{1/\alpha} \right] \quad (36) \\ 1266$$

1267 For small perturbations  $\epsilon \ll I_c$ , using Taylor expansion:  
 1268

$$1269 \left( \frac{I_c}{I_c + \epsilon} \right)^{1/\alpha} = \left( 1 + \frac{\epsilon}{I_c} \right)^{-1/\alpha} \\ 1270 = 1 + \left( -\frac{1}{\alpha} \right) \left( \frac{\epsilon}{I_c} \right) + \mathcal{O}(\epsilon^2) \\ 1271$$

1272 The first-order approximation is therefore:  
 1273

$$1274 |\Delta t_s^{f\text{-IF}}| \approx \left( \frac{\theta\tau\Gamma(\alpha+1)}{RI_c} \right)^{1/\alpha} \cdot \frac{\epsilon}{\alpha I_c} \\ 1275$$

1276 For the classical IF model, following the same procedure, we obtain:  
 1277

$$1278 |\Delta t_s^{\text{IF}}| \approx \frac{\theta\tau}{RI_c} \cdot \frac{\epsilon}{I_c} \\ 1279$$

1280 Examining the dependence on input current  $I_c$ , we observe that for the fractional model, the sensitivity  
 1281 decays more rapidly with increasing  $I_c$ , as the dependence is:  
 1282

$$1283 \Delta t_s^{f\text{-IF}} \propto \epsilon \cdot I_c^{-(1+1/\alpha)} \\ 1284$$

1285 For the IF model, it decays as:  
 1286

$$1287 |\Delta t_s^{\text{IF}}| \propto \epsilon \cdot I_c^{-2} \\ 1288$$

1289 Since  $1 + 1/\alpha > 2$  for  $0 < \alpha < 1$ , this shows that the fractional model is more robust in terms of  
 1290 spike timing for high input currents.  
 1291

1292 These findings demonstrate that fractional-order dynamics introduce a nuanced robustness profile,  
 1293 with distinct advantages in specific operational regimes rather than universal superiority.  
 1294

1296 C.3 PROOF OF THEOREM 2  
1297

1298 In this section, we analyze the representational capacity of the  $f$ -SNN neuron compared to finite  
1299 banks of standard integer-order SNN neurons. We demonstrate that fractional dynamics induce an  
1300 infinite-memory structure that cannot be exactly realized by any finite linear combination of integer-  
1301 order SNN neurons with arbitrary weights. This structure can only be represented as an infinite  
1302 continuum of integer-order modes.

1303 Let the discrete time index be  $k \in \mathbb{Z}_{\geq 0}$ . In the main paper, we use a fractional ABM predictor  
1304 to discretize the  $f$ -SNN with Caputo derivative  $D^\alpha$  for presentation. The literature offers various  
1305 definitions of fractional derivatives. To facilitate the theoretical analysis in this section, we instead  
1306 utilize the Grünwald-Letnikov (GL) definition (Diethelm, 2010) here. We emphasize that our  $f$ -SNN  
1307 toolbox **spikeDE** supports multiple fractional definitions, including Caputo, GL, and others. The  
1308 analysis here does not restrict the implementation.

1309 **Definition 2** (Grünwald-Letnikov Fractional Derivative). *For a function  $y(t)$  defined over an interval  
1310  $[0, T]$ , its Grünwald-Letnikov fractional derivative of order  $\alpha \in (0, 1]$  is given by (Diethelm, 2010):*

$$1311 \quad 1312 \quad D_{\text{GL}}^\alpha y(t) := \lim_{h \rightarrow 0} \frac{1}{h^\alpha} \sum_{j=0}^{\lfloor \frac{t}{h} \rfloor} (-1)^j \binom{\alpha}{j} y(t - jh). \quad (37)$$

1313 The GL weights are defined as:

$$1314 \quad c_j^{(\alpha)} = (-1)^j \binom{\alpha}{j} \quad (38)$$

1315 Recall the fractional-order ODE from (3):  $D_{\text{GL}}^\alpha y(t) = f(t, y(t))$ . Approximating  $D_{\text{GL}}^\alpha y(t_k)$  by the  
1316 finite GL sum gives:

$$1317 \quad \sum_{j=0}^k c_j^{(\alpha)} y_{k-j} = h^\alpha f(t_{k-1}, y_{k-1}).$$

1318 Without loss of generality, for the neurons, we set  $\tau = 1$ ,  $h = 1$ , and  $R = 1$  to simplify the analysis  
1319 (the constants here just rescale things and can be absorbed into input  $X$ ). For simplicity, we primarily  
1320 consider the  $f$ -IF neuron to demonstrate that any finite linear combination of integer-order LIF  
1321 neurons with arbitrary weights cannot exactly realize it. Noting that  $c_0^{(\alpha)} = 1$ , the discrete-time  
1322 membrane potential update for the  $f$ -IF, based on the GL definition, is given by:

$$1323 \quad \sum_{j=0}^k c_j^{(\alpha)} U_{k-j}^{f\text{-IF}} = X_k. \quad (39)$$

1324 where  $U_{k-j}^{f\text{-IF}}$  is the membrane potential of  $f$ -IF neuron.

1325 Recall a standard discrete-time LIF neuron with a leak factor  $\beta \in (0, 1)$  is governed by the recurrence:

$$1326 \quad U_k^{\text{LIF}(\beta)} = \beta U_{k-1}^{\text{LIF}(\beta)} + X_k, \quad U_0^{\text{LIF}(\beta)} = 0$$

1327 By unrolling the recurrence, we obtain the solution

$$1328 \quad U_k^{\text{LIF}(\beta)} = \sum_{m=0}^{k-1} \beta^m X_{k-m} = \left( h^{(\beta)} * X \right)_k$$

1329 where the impulse response is the geometric sequence

$$1330 \quad h_m^{(\beta)} = \beta^m, \quad m \geq 0$$

1331 We now consider a finite bank of integer-order neurons with leak factors  $\{\beta_i\}_{i=1}^W \subset (0, 1]$  and readout  
1332 weights  $\{\phi_i\}_{i=1}^W \subset \mathbb{R}$ . The aggregate output is denoted as:

$$1333 \quad \hat{U}_k = \sum_{i=1}^W \phi_i U_k^{\text{LIF}(\beta_i)}$$

1350  
 1351 **Theorem 3** (Playback of Theorem 2). *Let  $U^{f\text{-IF}}$  denote the trajectory of a  $f$ -IF neuron with order*  
 1352  *$\alpha \in (0, 1)$ . There exist no finite integer  $W$ , weights  $\{\phi_i\}_{i=1}^W$ , and leak factors  $\{\beta_i\}_{i=1}^W$  such that the*  
 1353 *following holds:*

1354  
 1355 
$$\hat{U}_k = \sum_{i=1}^W \phi_i U_k^{\text{LIF}(\beta_i)} \equiv U_k^{f\text{-IF}} \quad \forall k.$$
  
 1356

1357 *for general input  $X_k$ . The impulse response error of the approximation is  $O(k^{\alpha-1})$ , decaying*  
 1358 *algebraically slowly. The  $f$ -IF neuron is mathematically equivalent to an aggregate of integer-order*  
 1359 *LIF neurons if and only if  $W \rightarrow \infty$ , specifically as an integral over a continuum of leak factors.*

1360 **Remark 6.** *The result above emphasizes the infinite-dimensional nature of the  $f$ -IF neuron compared*  
 1361 *to any finite-dimensional approximation via integer-order neurons. Intuitively, the impulse response of*  
 1362 *a standard integer-order neuron decays exponentially ( $\beta^k = e^{-\lambda k}$ ), characterizing a “short-memory”*  
 1363 *process. In contrast, the fractional neuron exhibits an impulse response that decays according to a*  
 1364 *power law ( $k^{\alpha-1}$ ), characterizing a “long-memory” process. A finite sum of exponentials can never*  
 1365 *exactly match a power law tail.*

1366 *Proof.* Recall from (39) that:

1367  
 1368 
$$\sum_{j=0}^k c_j^{(\alpha)} U_{k-j}^{f\text{-IF}} = X_k,$$
  
 1369  
 1370

1371 *which represents a discrete convolution  $(c^{(\alpha)} * U^{f\text{-IF}})_k = X_k$ . Applying the  $\mathcal{Z}$ -transform converts*  
 1372 *this convolution into the algebraic product:*

1373  
 1374 
$$C(z)U(z) = X(z),$$
  
 1375

1376 *where  $C(z) = \sum_{j=0}^{\infty} c_j^{(\alpha)} z^{-j}$  is the  $\mathcal{Z}$ -transform of the kernel, and  $U(z)$  and  $X(z)$  are the  $\mathcal{Z}$ -*  
 1377 *transforms of  $U_k^{f\text{-IF}}$  and  $X_k$ , respectively.*

1378 Using the generalized binomial theorem, we identify the series expansion of the kernel as:

1379  
 1380 
$$C(z) = \sum_{j=0}^{\infty} \binom{\alpha}{j} (-z^{-1})^j = (1 - z^{-1})^{\alpha}.$$
  
 1381  
 1382

1383 Thus, the transfer function  $H_{\alpha}^{f\text{-IF}}(z) = \frac{U(z)}{X(z)} = \frac{1}{C(z)}$  is the reciprocal of the kernel:

1384  
 1385 
$$H_{\alpha}^{f\text{-IF}}(z) = (1 - z^{-1})^{-\alpha}.$$
  
 1386

1387 Since  $(1 - z^{-1})^{-\alpha}$  has an algebraic branch point at  $z = 1$  for  $\alpha \notin \mathbb{Z}$ , it is non-rational.

1388 By the linearity of the  $\mathcal{Z}$ -transform, the aggregate transfer function  $\hat{H}(z)$  is the weighted sum of  
 1389 the individual transfer functions. Since the impulse response of the  $i$ -th LIF neuron is the geometric  
 1390 sequence  $h_m^{(\beta_i)} = \beta_i^m$ , its  $\mathcal{Z}$ -transform is the standard geometric series:

1391  
 1392 
$$H_i(z) = \sum_{m=0}^{\infty} \beta_i^m z^{-m} = \frac{1}{1 - \beta_i z^{-1}}.$$
  
 1393  
 1394

1395 Therefore, the aggregate transfer function is:

1396  
 1397 
$$\hat{H}(z) = \sum_{i=1}^W \phi_i H_i(z) = \sum_{i=1}^W \frac{\phi_i}{1 - \beta_i z^{-1}}.$$
  
 1398  
 1399

1400 This is strictly a rational function of  $z$  with degree at most  $W$ . A discrete-time linear time-invariant  
 1401 (LTI) system has a finite-dimensional state-space realization if and only if its transfer function is  
 1402 rational. Since  $H_{\alpha}^{f\text{-IF}}(z)$  is irrational, it implies that the system possesses an infinite-dimensional state  
 1403 space and cannot be realized by any finite  $W$ .

The rigorous link between the the transfer functions is established through the asymptotic decay rates of the impulse responses. The impulse response of the finite bank,  $h_k^{\text{finite}}$ , is the inverse  $\mathcal{Z}$ -transform of the rational function  $\hat{H}(z)$ . This yields a linear combination of geometric sequences:

$$h_k^{\text{finite}} = \mathcal{Z}^{-1} \left\{ \sum_{i=1}^W \frac{\phi_i}{1 - \beta_i z^{-1}} \right\} = \sum_{i=1}^W \phi_i \beta_i^k.$$

Let  $\beta_{\max} = \max_i |\beta_i|$ . Since stability requires  $|\beta_i| < 1$ , the decay is bounded exponentially:

$$|\hat{h}_k| \leq \left( \sum_{i=1}^W |\phi_i| \right) \beta_{\max}^k. \quad (40)$$

In contrast, the impulse response of the fractional neuron corresponds to the coefficients of the irrational function  $(1 - z^{-1})^{-\alpha}$ . By the generalized binomial theorem, for  $|z^{-1}| < 1$ ,

$$(1 - z^{-1})^{-\alpha} = \sum_{k=0}^{\infty} (-1)^k \binom{-\alpha}{k} z^{-k} = \sum_{k=0}^{\infty} \frac{\Gamma(k + \alpha)}{\Gamma(\alpha)\Gamma(k + 1)} z^{-k}.$$

Thus the coefficient of  $z^{-k}$  is

$$h_k^{\text{f-IF}} = \frac{\Gamma(k + \alpha)}{\Gamma(\alpha)\Gamma(k + 1)}$$

Using the asymptotic property of the ratio of Gamma functions, this response follows a power-law decay:

$$h_k^{\text{f-IF}} \sim \frac{1}{\Gamma(\alpha)} k^{\alpha-1} \quad \text{as } k \rightarrow \infty. \quad (41)$$

Comparing the exponential decay of the finite bank and the power-law decay of the fractional neuron, we observe that the exponential decay is strictly faster than the algebraic decay. Hence, for any fixed  $W$ , there exists a time step  $T^*$  such that for all  $k > T^*$ , the finite approximation becomes negligible relative to the fractional signal:

$$\lim_{k \rightarrow \infty} \left| \frac{h_k^{\text{finite}}}{h_k^{\text{f-IF}}} \right| = 0.$$

This implies that for sufficiently large  $k$ , the finite approximation  $\hat{h}_k$  becomes negligible relative to  $h_k^{\text{f-IF}}$ . Specifically, there exists a time  $T^*$  such that for all  $k > T^*$ ,  $|\hat{h}_k| < \frac{1}{2} |h_k^{\text{f-IF}}|$ . Consequently, the pointwise error at the tail is lower-bounded:

$$|\hat{h}_k - h_k^{\text{f-IF}}| \geq |h_k^{\text{f-IF}}| - |\hat{h}_k| > \frac{1}{2} |h_k^{\text{f-IF}}| \sim \frac{1}{2\Gamma(\alpha)} k^{\alpha-1}.$$

Thus, the "heavy-tailed" memory induced by the irrational transfer function cannot be captured by the "light-tailed" exponential memory of any finite rational system.

Although no finite realization exists, we show that an infinite representation is valid. Use the Beta-function identity

$$B(m + \alpha, 1 - \alpha) = \int_0^1 t^{m+\alpha-1} (1 - t)^{-\alpha} dt = \frac{\Gamma(m + \alpha)\Gamma(1 - \alpha)}{\Gamma(m + 1)}.$$

Divide both sides by  $\Gamma(\alpha)\Gamma(1 - \alpha) = B(\alpha, 1 - \alpha)$  to obtain

$$\frac{\Gamma(m + \alpha)}{\Gamma(\alpha)\Gamma(m + 1)} = \int_0^1 t^m \frac{t^{\alpha-1} (1 - t)^{-\alpha}}{B(\alpha, 1 - \alpha)} dt.$$

Hence, with

$$d\nu_{\alpha}(\beta) := \frac{\beta^{\alpha-1} (1 - \beta)^{-\alpha}}{B(\alpha, 1 - \alpha)} d\beta$$

1458 we have

$$1460 \quad h_m^{f\text{-IF}} = \int_0^1 \beta^m d\nu_\alpha(\beta).$$

1462 Therefore, there exists a spectral measure  $\nu_\alpha$  supported on  $[0, 1]$  such that:

$$1464 \quad U_k^{f\text{-IF}} = \sum_{m=0}^{k-1} \left( \int_0^1 \beta^m d\nu_\alpha(\beta) \right) X_{k-1-m}$$

1468 By Fubini’s theorem (the sum and integral are both over non-negative indices and the integrand is  
1469 non-negative), we may exchange the summation and integration:

$$1471 \quad U_k^{f\text{-IF}} = \int_0^1 \left( \sum_{m=0}^{k-1} \beta^m X_{k-1-m} \right) d\nu_\alpha(\beta) = \int_0^1 U_k^{\text{LIF}(\beta)} d\nu_\alpha(\beta)$$

1474 where  $U_k^{\text{LIF}(\beta)}$  is the state of a LIF neuron with leak factor  $\beta$ .

1475 This establishes that the fractional neuron state  $U_k^{f\text{-IF}}$  is the aggregate output of a population of LIF  
1476 neurons  $U_k^{\text{LIF}(\beta_i)}$ , distributed over the leak factor  $\beta_i \in (0, 1]$  according to the density  $\nu_\alpha$ . In other  
1477 words, the fractional neuron state is a continuous mixture of integer-order LIF neurons.

1479  $\square$

#### 1481 C.4 COROLLARY: SPIKE TRAIN IRREDUCIBILITY

1483 We thank the reviewer for this insightful question and apologize if our presentation was unclear. The  
1484 reviewer raises an important point: Theorem 2 establishes irreducibility at the membrane potential  
1485 level, but the functional output of a spiking neuron is the spike train. We now clarify the connection  
1486 between membrane potential dynamics and spike output expressivity.

#### 1487 Clarification: From Membrane Potential to Spike Output

1489 The spike generation mechanism directly couples membrane potential to output: a spike is emitted  
1490 when  $U_k \geq \theta$  (threshold). Therefore, the spike train  $S_k \in \{0, 1\}$  is a deterministic function of the  
1491 membrane trajectory:

$$1493 \quad S_k = H(U_k - \theta)$$

1495 where  $H(\cdot)$  is the Heaviside step function. **This coupling implies that differences in membrane**  
1496 **potential dynamics propagate to differences in spike train patterns.**

1498 We formalize this connection with the following corollary:

1499 **Corollary 1** (Spike Train Irreducibility). *Let  $0 < \alpha < 1$ . For any finite integer  $W$ , weights  
1500  $\{\phi_i\}_{i=1}^W \subset \mathbb{R}$ , leak factors  $\{\beta_i\}_{i=1}^W \subset (0, 1)$ , and any Boolean function  $f: \{0, 1\}^W \rightarrow \{0, 1\}$ , there  
1501 exists an input sequence  $\{X_k\}_{k \geq 0}$  and threshold  $\theta > 0$  such that the spike train of the  $f$ -IF neuron  
1502 cannot be reproduced by any Boolean combination of spike trains from the  $W$  LIF neurons. That is,*

$$1503 \quad S_k^{f\text{-IF}} \neq f(S_k^{\text{LIF}(\beta_1)}, \dots, S_k^{\text{LIF}(\beta_W)}) \quad \text{for some } k. \quad (42)$$

1505 **Remark 7.** This corollary establishes that the expressivity advantage of  $f$ -IF neurons extends to the  
1506 spike train level. While Theorem 2 demonstrates irreducibility in membrane potential dynamics, one  
1507 might wonder whether this advantage could be “washed out” by the thresholding nonlinearity. The  
1508 corollary confirms it is not: the spike patterns generated by a single  $f$ -IF neuron encode temporal  
1509 information that no finite ensemble of LIF neurons can reproduce, even when their outputs are  
1510 combined through arbitrary Boolean logic. This implies that  $f$ -SNNs possess fundamentally richer  
1511 spike-based representations, enabling them to communicate long-range temporal dependencies  
1512 through their spike trains in ways that conventional SNNs cannot.

1512 *Proof.* We prove this by construction using an *impulse-silent-trigger* sequence. This construction  
 1513 explicitly demonstrates the role of long-range temporal memory.  
 1514

1515 **Step 1: Input design.** Define the input sequence as  
 1516

$$1517 \quad X_k = \begin{cases} A & \text{if } k = 0, \\ 1518 \quad 0 & \text{if } 1 \leq k \leq T - 1, \\ 1519 \quad \delta & \text{if } k = T, \end{cases} \quad (43)$$

1520 where  $A, \delta > 0$  are chosen appropriately, and  $T$  is a large delay parameter.  
 1521

1522 **Step 2: Membrane potential at detection time  $T$ .** At time  $T$ , the membrane potential comprises  
 1523 two components: (i) the memory of the initial impulse  $A$ , decayed over  $T$  time steps, and (ii) the  
 1524 immediate response to the test pulse  $\delta$ .  
 1525

1526 For  $f$ -IF:

$$1527 \quad U_T^{f\text{-IF}} = A \cdot h_T^{f\text{-IF}} + \delta \cdot h_0^{f\text{-IF}} = A \cdot h_T^{f\text{-IF}} + \delta, \quad (44)$$

1528 where  $h_T^{f\text{-IF}} \sim T^{\alpha-1}/\Gamma(\alpha)$  exhibits power-law decay.  
 1529

1530 For the finite LIF ensemble:

$$1531 \quad \hat{U}_T = A \cdot \hat{h}_T + \delta, \quad (45)$$

1532 where  $\hat{h}_T = \sum_{i=1}^W \phi_i \beta_i^T$ .  
 1533

1534 **Step 3: Asymptotic separation.** Define  $M = \sum_{i=1}^W |\phi_i|$  and  $\beta_{\max} = \max_i |\beta_i| < 1$ . Then  
 1535

$$1536 \quad |\hat{h}_T| \leq M \beta_{\max}^T. \quad (46)$$

1537 The ratio of memory contributions satisfies

$$1538 \quad \frac{|\hat{h}_T|}{h_T^{f\text{-IF}}} \leq \frac{M \beta_{\max}^T \cdot \Gamma(\alpha)}{T^{\alpha-1}} \xrightarrow{T \rightarrow \infty} 0, \quad (47)$$

1541 since exponential decay dominates power-law decay.  
 1542

1543 **Step 4: Parameter selection.** For any fixed finite ensemble  $(W, \{\phi_i\}, \{\beta_i\})$ , choose  $T$  sufficiently  
 1544 large such that

$$1545 \quad |\hat{h}_T| < \frac{1}{4} h_T^{f\text{-IF}}. \quad (48)$$

1546 Set the remaining parameters as follows:  
 1547

- 1548 •  $A = 1$ ,
- 1549 •  $\delta = \frac{1}{2} h_T^{f\text{-IF}}$ ,
- 1550 •  $\theta = \frac{3}{4} h_T^{f\text{-IF}} + \delta = \frac{5}{4} h_T^{f\text{-IF}}$ .

1553 **Step 5: Spike analysis.** We analyze the spike behavior at two critical times.  
 1554

1555 At time  $T$ : For  $f$ -IF,

$$1556 \quad U_T^{f\text{-IF}} = h_T^{f\text{-IF}} + \delta = \frac{3}{2} h_T^{f\text{-IF}} > \theta, \quad (49)$$

1558 so the  $f$ -IF neuron spikes:  $S_T^{f\text{-IF}} = 1$ .  
 1559

1560 For each LIF neuron in the ensemble,

$$1561 \quad |\hat{U}_T| \leq |\hat{h}_T| + \delta < \frac{1}{4} h_T^{f\text{-IF}} + \frac{1}{2} h_T^{f\text{-IF}} = \frac{3}{4} h_T^{f\text{-IF}} < \theta, \quad (50)$$

1562 so all LIF neurons are silent:  $S_T^{\text{LIF}(\beta_i)} = 0$  for all  $i \in \{1, \dots, W\}$ .  
 1563

1564 At times  $0 < k < T$ : The  $f$ -IF membrane potential satisfies  
 1565

$$U_k^{f\text{-IF}} = A \cdot h_k^{f\text{-IF}} \leq A \cdot h_0^{f\text{-IF}} = 1 < \theta, \quad (51)$$

1566 so the  $f$ -IF neuron is silent:  $S_k^{f\text{-IF}} = 0$ . Similarly, all LIF neurons remain silent during this interval.  
 1567

1568 **Step 6: Establishing a mismatch for any Boolean function.** At time  $T$ , all LIF neurons are silent,  
 1569 so

$$1570 f(S_T^{\text{LIF}(\beta_1)}, \dots, S_T^{\text{LIF}(\beta_W)}) = f(0, \dots, 0). \quad (52)$$

1571 We consider two cases based on the value of  $f(0, \dots, 0)$ :

1572 *Case 1:* If  $f(0, \dots, 0) = 0$ , then at time  $T$ ,

$$1574 S_T^{f\text{-IF}} = 1 \neq 0 = f(0, \dots, 0). \quad (53)$$

1575 *Case 2:* If  $f(0, \dots, 0) = 1$ , then at any time  $0 < k < T$ , all neurons are silent, so

$$1577 S_k^{f\text{-IF}} = 0 \neq 1 = f(0, \dots, 0). \quad (54)$$

1578 In both cases, the spike trains differ for some  $k$ , completing the proof.  $\square$   
 1579

## 1580 C.5 COMPLEX ANALYSIS

1582 In the iteration of (13) using the ABM predictor (12), at each time-step  $t_j$  we must evaluate the  
 1583 fractional derivative  $f(t_j, y_j)$  which is  $R I_{\text{in}}(t)$  in  $f$ -IF and  $-U(t) + R I_{\text{in}}(t)$  in  $f$ -LIF neuron. If  
 1584 there are  $N = T/h$  steps in total, then summing the base cost  $C$  per evaluation at each time step for  
 1585 all layers with the growing cost  $O(k)$  of accumulating  $k$ -term histories yields  $\sum_{k=0}^N (C + O(k)) =$   
 1586  $O(NC + N^2)$ . By leveraging a fast convolution routine (e.g. the FFT-based method of (Mathieu  
 1587 et al., 2013)), the quadratic term can be reduced to  $O(N \log N)$ , giving an overall forward-pass  
 1588 cost of  $O(NC + N \log N)$ . Since each step also stores its hidden state vector of dimension  $d$ , and  
 1589 computing  $f$  at one timestamp incurs a peak memory  $P$ , the forward memory requirement grows  
 1590 as  $O(P + Nd)$ , where the  $Nd$  term accounts for saving all  $N$  evaluations  $\{f(t_j, y_j)\}_{j=1}^N$ . Finally,  
 1591 note that one can trim the  $O(Nd)$  storage of all past  $f(t_j, y_j)$  values down to  $O(Md)$  by invoking  
 1592 the “short-memory” approximation, keeping only the most recent  $M$  terms in the iterations. The  
 1593 experimental computational complexity is presented in Section D.2.3.  
 1594

## 1595 D IMPLEMENTATION DETAILS, DATASET SPECIFICS AND MORE 1596 EXPERIMENTS

### 1599 D.1 EXPERIMENT SETTINGS

#### 1601 D.1.1 GRAPH LEARNING TASKS.

1602 **Datasets & Baselines.** Our experiments evaluate model performance on a diverse collection of  
 1603 graph-structured datasets spanning multiple domains, following standard preprocessing protocols  
 1604 in geometric deep learning, with their detailed statistics summarized in Table 3. Specifically, node  
 1605 classification is performed with SGCN and DRSGNN on Cora, Citeseer, Pubmed, Photo, Computers,  
 1606 and ogbn-arxiv. Additionally, we conduct link prediction experiments with MSG-based methods (Sun  
 1607 et al., 2024) on Computers, Photo, CS, and Physics, with results presented in the following section  
 1608 Section D.2.1.

1609 **Training & Inference settings.** For node classification tasks based on SGCN and DRSGNN, we use  
 1610 Poisson encoding to generate spike data following a Poisson distribution. The number of timesteps  
 1611  $N$  is set to 100, and the batch size is set to 32. The dataset is divided into training, validation, and  
 1612 test sets in the ratio of 0.7, 0.2 and 0.1. Additionally, for experiments based on DRSGNN, we set the  
 1613 dimension of the positional encoding to 32 and adopt the Laplacian eigenvectors (LSPE) (Dwivedi  
 1614 et al., 2023) or random walk (RWPE) (Dwivedi et al., 2021) method. For link prediction tasks on  
 1615 MSG, we follow the experimental settings described in the original MSG paper. Specifically, we  
 1616 use IF neurons and the Lorentz model, set the dimension of the representation space to 32, and  
 1617 configure the timesteps to [5, 15]. The optimizer used is Adam, with an initial learning rate of 0.001.  
 1618 All experiments are independently run 20 times, with the mean and standard deviation reported.

1619 **Selection of Different  $\alpha$  Values.** Table 4 shows the parameter  $\alpha$  we chose in the graph learning tasks.  
 The corresponding results are shown in Table 2.

1620

1621

Table 3: Dataset Statistics of Node Classification Task

1622

1623

| Name       | # of Nodes | # of Classes | # of Features | # of Edges |
|------------|------------|--------------|---------------|------------|
| Cora       | 2,708      | 7            | 1,433         | 10,556     |
| Pubmed     | 19,717     | 3            | 500           | 88,648     |
| Citeseer   | 3,327      | 6            | 3,703         | 9,104      |
| Photo      | 7,650      | 8            | 745           | 238,162    |
| Computers  | 13,752     | 10           | 767           | 491,722    |
| OGBN-Arxiv | 169,343    | 40           | 128           | 1,166,243  |
| CS         | 18,333     | 15           | 6,805         | 163,788    |
| Physics    | 34,493     | 5            | 8,415         | 495,924    |

1632

1633

1634

Table 4: The selection of the parameter  $\alpha$ . The **boldfaced** values represent the values where our model achieved the best performance, while the non-bold values indicate cases where the best performance was achieved at  $\alpha = 1$ .

1635

1636

1637

| Methods                 | Cora       | Citeseer   | Pubmed     | Photo | Computers  | ogbn-arxiv |
|-------------------------|------------|------------|------------|-------|------------|------------|
| SGNN ( <i>f</i> -SNN)   | <b>0.3</b> | <b>0.3</b> | <b>0.9</b> | 0.8   | <b>0.8</b> | 0.9        |
| DRSGNN ( <i>f</i> -SNN) | <b>0.3</b> | <b>0.3</b> | <b>0.8</b> | 0.8   | <b>0.8</b> | 0.5        |

1642

1643

## 1644 D.1.2 NEUROMORPHIC DATA CLASSIFICATION TASKS.

1645

**Datasets & Baselines.** We conduct experiments on five visual classification tasks, including N-MNIST (Orchard et al., 2015), DVS128Gesture (Amir et al., 2017), N-Caltech101 (Orchard et al., 2015), DVS-Lip (Tan et al., 2022), and the large-scale dataset HarDVS (Wang et al., 2024). N-MNIST is a dataset that converts the classic MNIST handwritten digit dataset into neuromorphic event data. It generates event streams by observing moving MNIST digit images on a screen through a Dynamic Vision Sensor (DVS), covering 10 digit categories (0-9). DVS128Gesture is a neuromorphic dataset collected using a Dynamic Vision Sensor (DVS) event camera, designed for dynamic gesture recognition tasks. The event camera captures pixel-level brightness changes with microsecond temporal resolution. The dataset includes 1,342 samples across 11 gesture categories, such as clockwise rotation, counterclockwise rotation, and left-hand waving. N-Caltech101 is an event camera-based dataset derived from the traditional static image dataset Caltech101. The original Caltech101 dataset contains 101 object categories (e.g., animals, vehicles, household items), with each category containing 40 to 800 static images. By simulating translational, rotational, and other movements, event cameras dynamically capture these static images to generate the corresponding neuromorphic data. Similar to DVS128Gesture, the data from N-Caltech101 is represented as event streams, which encode pixel-wise brightness changes over time. The classification task focuses on recognizing object categories in dynamic scenes. DVS-Lip is an event camera dataset specifically designed for lip reading, utilizing the high temporal resolution characteristics of event cameras to record fine-grained changes in lip movements. HarDVS is a large-scale human action recognition event dataset containing over 100,000 temporal event stream samples, covering 300 different human activity categories.

1666

1667

1668

1669

1670

1671

1672

1673

To ensure fairness and comparability, we employ two backbone network architectures, CNN and Transformer, on the same datasets, differing only in the choice of spiking neuron modules. The baseline methods use the `neuron.LIFNode` module from the SpikingJelly framework (Fang et al., 2023a) and the `snn.leaky` module from the `snnTorch` framework (Eshraghian et al., 2023a), respectively, while our method adopts the *f*-LIF neuron module (13) defined in *f*-SNN. The CNN-based-SNN network architecture follows the design of DVSNet in SpikingJelly, while the Transformer-based-SNN uses the structure of Spikformer (Zhou et al., 2022) as the backbone network.

**Training& Inference settings.** For the N-MNIST dataset, we set the batch size to 512, the number of timesteps  $T$  to 16, and use the Adam optimizer to train for 100 epochs.

1674 For other neuromorphic datasets, we follow the standard preprocessing pipeline of the Spiking-  
 1675 Jelly framework, converting event data into frame representations. For timesteps configuration,  
 1676 DVS128Gesture, N-Caltech101, and DVS-Lip are set to 16 timesteps, while HarDVS is set to 8  
 1677 timesteps. N-Caltech101 is split into training and test sets with an 8:2 ratio. All neuromorphic datasets  
 1678 use a batch size of 16, with the input size uniformly adjusted to 128×128 pixels. For CNN-based  
 1679 models, training is conducted using the Adam optimizer for 200 epochs, while Transformer-based  
 1680 models are trained for 500 epochs.

1681

### 1682 D.1.3 ROBUSTNESS ANALYSIS SETTING

1683

1684 We validate the robustness advantages of  $f$ -SNN in Section 4.1. Specifically, we comprehensively  
 1685 test the model’s stability from five dimensions: noise injection, occlude block, temporal truncate,  
 1686 temporal jitter, and discard frame.

1687

**1688 Noise Injection:** Real-world applications often encounter sensor noise and environmental interference,  
 1689 which challenges the model’s stability under noisy conditions. To evaluate this robustness, we  
 1690 randomly add Gaussian noise of different intensities to the input spike sequences.

1691

**1692 Occlude Block:** Real-world scenarios frequently involve occlusion and partial field-of-view loss,  
 1693 testing the model’s ability to handle incomplete visual information. Accordingly, we place square  
 1694 blocks of different sizes at the center of input frames to assess the model’s robustness to local  
 1695 information loss.

1696

**1697 Temporal Truncate:** Practical data collection often results in incomplete temporal information due  
 1698 to various constraints, challenging the model’s performance with partial temporal data. Thus, we  
 1699 randomly truncate a portion of temporal data by proportion to evaluate the model’s adaptability to  
 1700 incomplete sequences.

1701

**1702 Temporal Jitter:** Real systems often suffer from temporal synchronization errors and clock drift,  
 1703 affecting the precise timing of spike events. To simulate these timing uncertainties, we add random  
 1704 temporal offsets to spike events in the time dimension.

1705

**1706 Discard Frame:** Data transmission and processing systems frequently experience packet loss and  
 1707 intermittent data missing, testing the model’s tolerance to discontinuous input. Consequently, we  
 1708 randomly discard partial frames in the temporal sequence to evaluate the model’s robustness to data  
 1709 loss.

1710

## 1711 D.2 EXTENDED EXPERIMENTAL RESULTS

1712

### 1713 D.2.1 LINK PREDICTION.

1714

1715 We have demonstrated the effectiveness of the  $f$ -SNN framework on graph node classification. Here,  
 1716 we present additional results for the graph *link-prediction* task using the graph SNN MSG (Sun  
 1717 et al., 2024). Our fractional adaptation, MSG ( $f$ -SNN), consistently outperforms MSG (SJ) across all  
 1718 datasets in terms of area under the ROC curve (AUC). Specifically, MSG ( $f$ -SNN) achieves the best  
 1719 AUC on the Computers, Photo, CS, and Physics datasets, with scores of 94.91%, 96.80%, 96.53%,  
 1720 and 96.57%, respectively.

1721

1722

1723 Table 5: Link prediction results in terms of Area Under Curve (AUC) (%) on multiple datasets. The  
 1724 best results are **boldfaced**.

1725

1726

1727

1728 As shown in Table 5, compared to the MSG method implemented with the integrator-based approach  
 1729 (SpikingJelly), our  $f$ -SNN achieves significant improvements in link prediction tasks. These results  
 1730 underscore the effectiveness of  $f$ -SNN across diverse datasets.

1728 D.2.2 ABLATION STUDIES, CHOICE OF NUMERICAL SCHEMES AND PARAMETERS  
1729

1730 In this section, we will conduct ablation experiments on various hyperparameters in  $f$ -SNN, including  
1731 the selection of different order  $\alpha$  values, whether to set learnable  $\alpha$ , whether to set learnable neuron  
1732 thresholds, different timestamps  $T$ , different network parameters, and different neuron selections. All  
1733 experiments, unless otherwise specified, are tested on **CNN-based SNN** and the **DVS128Gesture**  
1734 dataset.

1735 **Selection of Different  $\alpha$  Values:** In our  $f$ -SNN architecture, different  $\alpha$  values can impact experimen-  
1736 tal results. We evaluate the network performance under various  $\alpha$  value conditions. The experimental  
1737

| $\alpha$ | 0.2    | 0.4    | 0.5    | 0.6    | 0.8    | 1.0    | Learnable                        |
|----------|--------|--------|--------|--------|--------|--------|----------------------------------|
| Acc1     | 0.9336 | 0.9236 | 0.9480 | 0.9193 | 0.9143 | 0.9340 | 0.9362 (Final $\alpha$ : 0.5083) |

1741 Table 6: Ablation study on different  $\alpha$  values  
1742

1743 results demonstrate that the network does not achieve optimal performance when  $\alpha = 1$ , which  
1744 further validates the superior performance of  $f$ -SNN compared to conventional SNN. Notably, setting  
1745  $\alpha$  as a learnable parameter also yields promising results. Although the accuracy is slightly lower than  
1746 manual hyperparameter tuning, it still outperforms the case when  $\alpha = 1$ . Moreover, the converged  
1747 final  $\alpha$  value closely approximates our manually fine-tuned result, indicating the effectiveness of the  
1748 learnable parameter approach.

1749 **Different Network Parameters**

1750 To verify the experimental effectiveness of our  $f$ -SNN model on larger parameter models under  
1751 different timesteps, we tested the performance of the  $f$ -SNN model under different parameters and  
1752 different  $T$  values. Since the performance on DVS128Gesture has already approached saturation, we  
1753 conducted ablation experiments on **N-Caltech101**.  
1754

|                     | Channel 128 (1.7M) | Channel 256 (4.5M) | Channel 512 (13.7M) |
|---------------------|--------------------|--------------------|---------------------|
| LIF(SpikingJelly)   | 0.6682             | 0.7053             | 0.7108              |
| LIF(snnTorch)       | 0.6521             | 0.6765             | 0.7423              |
| $f$ -LIF( $f$ -SNN) | 0.7026             | 0.7416             | 0.7684              |

1760 Table 7: Performance comparison under different network parameters on **N-Caltech101**  
1761

1762 It can be seen that with increased parameter count, our  $f$ -SNN consistently maintains leading  
1763 performance, validating the excellent performance of  $f$ -SNN.  
1764

1765 D.2.3 STATIC DATASET TESTING  
1766

1767 In addition to testing on neuromorphic datasets, we also evaluated our method on traditional static  
1768 datasets, including **CIFAR-10**, **CIFAR-100** (Krizhevsky & Hinton, 2009), and **ImageNet** (Krizhevsky  
1769 et al., 2012). For the relatively smaller **CIFAR-10** and **CIFAR-100** datasets, we adopt Spiking-ResNet-  
1770 18 (Fang et al., 2021) as the baseline. For ImageNet, we follow the SpikFormer (Zhou et al., 2022)  
1771 configuration with 29.7M parameters and set both the training and validation image sizes to  $160 \times 160$   
1772 for a fair comparison. Additionally, we include experiments with ImageNet generated using the  
1773 Beornil spike encoder. The results are shown in Table 8. Our  $f$ -LIF achieves clear gains over both  
1774 **LIF SpikingJelly** and **LIF snnTorch** on all datasets.  
1775

1776 Table 8: Comparison of LIF variants across datasets and architectures.  
1777

| Datasets                 | Architecture      | Timesteps | LIF (SJ) | LIF (snnTorch) | $f$ -LIF ( $f$ -SNN) |
|--------------------------|-------------------|-----------|----------|----------------|----------------------|
| CIFAR-10                 | Spiking-ResNet-18 | 4         | 0.9134   | 0.9026         | <b>0.9215</b>        |
| CIFAR-100                | Spiking-ResNet-18 | 4         | 0.6813   | 0.6445         | <b>0.6874</b>        |
| ImageNet                 | SpikFormer        | 4         | 0.6637   | 0.6584         | <b>0.6791</b>        |
| ImageNet (spike encoder) | SpikFormer        | 4         | 0.5549   | 0.5432         | <b>0.5738</b>        |

1782 As shown in the results, our proposed *f*-SNN demonstrates superior performance on static datasets as  
 1783 well.

1784 **Different Neuron Type.** To validate the effectiveness of *f*-LIF neurons, we further compare the  
 1785 performance of different neuron types. In addition to *f*-LIF neurons, we also test *f*-IF neurons and  
 1786 traditional IF neurons (SJ) under the same network architecture. The experimental results are shown  
 1787 in Table 9. On the DVS128Gesture dataset, the CNN-based-SNN with *f*-IF neurons achieves an  
 1788 accuracy of 93.83%, while the version using traditional IF neurons achieves 92.70%, representing a  
 1789 1.13 percentage point improvement for *f*-IF neurons over traditional IF neurons. On the N-Caltech101  
 1790 dataset, *f*-IF neurons also demonstrate significant advantages, achieving an accuracy of 69.23%  
 1791 compared to 66.59% for traditional IF neurons, representing an improvement of 2.64 percentage  
 1792 points. These results indicate that our proposed functionalized neuron design (whether *f*-LIF or  
 1793 *f*-IF) can bring significant performance improvements compared to traditional spiking neurons. The  
 1794 functionalized design effectively enhances the learning capability and expressive power of spiking  
 1795 neural networks through more flexible dynamic characteristics.

1796  
 1797 Table 9: Performance comparison of different neuron types

| Dataset       | <i>f</i> -IF( <i>f</i> -SNN) | IF (SJ) | Improvement |
|---------------|------------------------------|---------|-------------|
| DVS128Gesture | 0.9383                       | 0.9270  | +1.13%      |
| N-Caltech101  | 0.6923                       | 0.6659  | +2.64%      |

### 1803 Memory Parameter Analysis

1804 To evaluate the effectiveness of the memory parameter in the *f*-SNN framework for accelerating  
 1805 training and saving memory, we conduct experiments with different memory settings. The experiments  
 1806 are performed with batch size 16 and timesteps  $T=16$ . The results are shown in Table 10. These results  
 1807 demonstrate that the memory parameter in our *f*-SNN framework provides an effective mechanism  
 1808 for balancing memory consumption and training speed. Users can adjust this parameter according to  
 1809 their hardware constraints and training requirements to achieve optimal performance.

1810  
 1811  
 1812 Table 10: Performance comparison of different memory parameters (Batch=16,  $T=16$ )

| Short Memory Size $M$ | Memory (GB) | test-speed(imgs/s) | train-speed(imgs/s)) | Acc    |
|-----------------------|-------------|--------------------|----------------------|--------|
| 2                     | 14.8        | 190                | 32.0                 | 0.9175 |
| 4                     | 16.9        | 183                | 29.5                 | 0.9164 |
| 6                     | 17.1        | 175                | 29.1                 | 0.9158 |
| 8                     | 17.5        | 163                | 28.3                 | 0.9130 |
| 10                    | 17.5        | 156                | 27.5                 | 0.9158 |
| 12                    | 17.8        | 153                | 27.3                 | 0.9137 |
| 14                    | 18.3        | 151                | 27.0                 | 0.9270 |
| 16                    | 19.8        | 151                | 26.8                 | 0.9362 |

### 1825 D.2.4 EXTENDED ROBUSTNESS EXPERIMENTS.

1826 To further verify the robustness advantages of *f*-SNN, we design and conduct a series of experiments  
 1827 for investigation.

### 1829 Graph Learning Tasks.

1830 **Robustness to Feature Masking Ratios in Graph Learning.** To evaluate the robustness of the  
 1831 network in graph learning tasks, we conduct feature ablation experiments on two benchmark datasets:  
 1832 Cora and Citeseer. Specifically, we implement a random feature masking strategy where a proportion  
 1833 of features in the graph feature matrix are zeroed out according to predefined ratios. This tests  
 1834 the irregular sampling scenarios with partially observed multivariate event series. The modified  
 1835 feature matrices are then fed into the models for prediction accuracy evaluation. As shown in Fig. 9,

1836 our proposed *f*-SNN method demonstrates significantly improved performance compared to the  
 1837 integrator-methods (SpikingJelly or snnTorch) baseline method across all tested missing rates. This  
 1838 consistent superiority under varying feature dropout scenarios substantiates the enhanced robustness  
 1839 of our approach against input perturbations.

1840 **Structural Robustness Under Edge Dropping Scenarios.** To comprehensively evaluate the robustness  
 1841 of the network in graph-structured data learning, we conduct edge perturbation experiments on  
 1842 two datasets: Photo and Computers. Specifically, we implement a random edge dropping strategy  
 1843 where a predefined proportion of edges in the graph adjacency matrix are randomly zeroed out  
 1844 according to controlled corruption ratios. The modified adjacency matrices are then utilized for model  
 1845 evaluation through standard prediction accuracy metrics. As illustrated in Fig. 10, our proposed  
 1846 *f*-SNN framework demonstrates superior performance compared to the SpikingJelly or snnTorch  
 1847 baseline across varying edge dropping rates. This consistent advantage under structural perturbations  
 1848 validates the enhanced robustness of our method, particularly in maintaining predictive stability when  
 1849 encountering incomplete graph information.

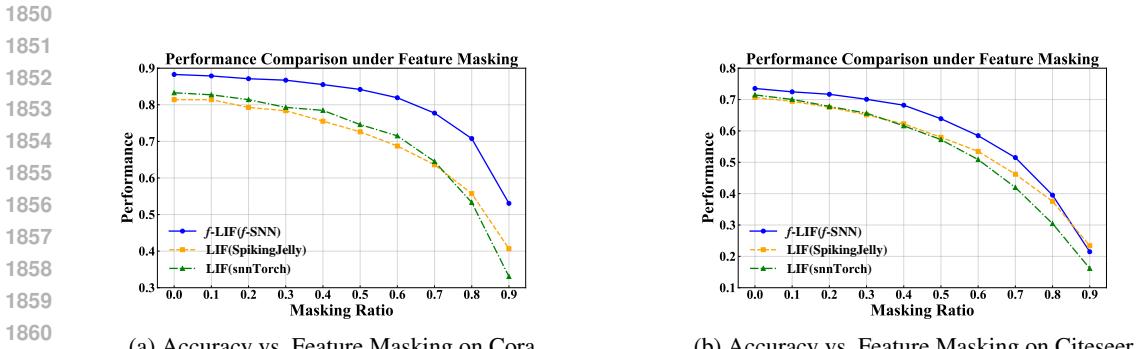


Figure 9: Robustness Comparison: Baseline vs. *f*-SNN in Graph Learning under Feature Dropout Perturbations.

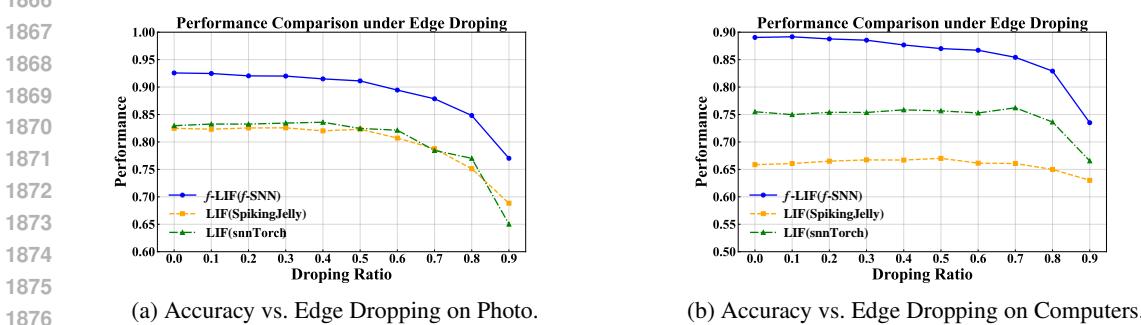
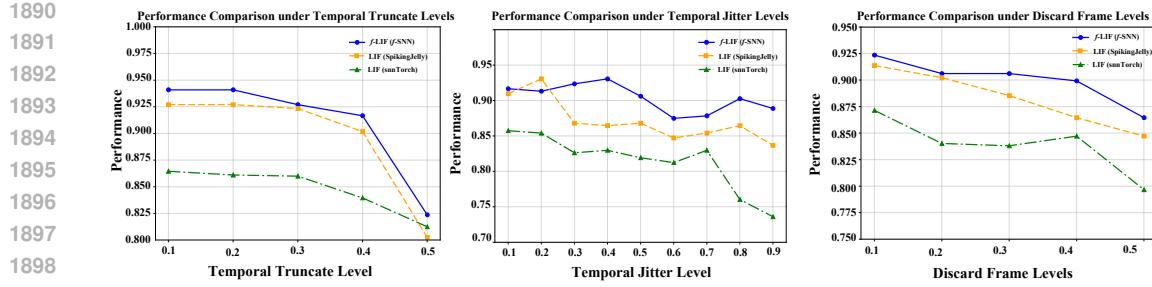


Figure 10: Structural Robustness Evaluation: Baseline vs. *f*-SNN in Graph Learning under Edge Dropping Perturbations.

### 1881 Neuromorphic Data Classification Tasks.

1882 We supplement all robustness test data here and provide a specific list of the tests. As shown in Fig. 11  
 1883 and Tables 11 to 15. To evaluate the robustness of models under **corrupted frame conditions**, we  
 1884 propose a weighted scoring method. This method is suitable for various frame corruption scenarios,  
 1885 such as frame discarding, noise perturbations, and occlusions. By quantifying model performance  
 1886 under different corruption levels, this method provides a comprehensive assessment of robustness.  
 1887 Specifically, for several corruption levels (e.g., 10%, 20%, 30%, etc.), the model performance is  
 1888 recorded and normalized using its original performance (i.e., performance under no corruption).  
 1889 The normalized performance values are then weighted and summed, and the final weighted score is  
 normalized to a range of 0 – 100 as the robustness score. The calculation formula is as follows:

Figure 11: Robustness comparison between traditional SNN and  $f$ -SNN framework.

$$\text{Final Score}_j = \sum_{i=1}^N w_i \cdot \frac{\text{Performance}_{i,j}}{\text{Original Performance}_j} \times 100,$$

where:

- $i$  represents the corruption condition (e.g., frame discard ratio, noise intensity, etc.);
- $j$  represents the model;
- $w_i$  is the weight assigned to the  $i$ -th corruption condition;
- $\text{Performance}_{i,j}$  and  $\text{Original Performance}_j$  are the model's performance under the  $i$ -th corruption condition and the original condition, respectively.

In this study, to simplify the experimental design and ensure fair comparisons across models, we assign **equal weights** to all corruption conditions, i.e.,  $w_i = \frac{1}{N}$ , where  $N$  is the total number of corruption conditions. This choice avoids introducing any bias and ensures that the robustness score calculation remains objective.

This method provides a unified and intuitive metric to quantify the performance degradation of models across various corruption scenarios, offering a standardized basis for robustness evaluation.

|          | Noise  | $f$ -SNN | SJ     | snnTorch |
|----------|--------|----------|--------|----------|
| 0.1      | 0.9479 | 0.9236   | 0.8438 |          |
| 0.2      | 0.9379 | 0.9201   | 0.8299 |          |
| 0.3      | 0.9236 | 0.9097   | 0.7674 |          |
| 0.4      | 0.9132 | 0.7326   | 0.7153 |          |
| 0.5      | 0.9028 | 0.5139   | 0.6667 |          |
| Score    | 95.96  | 78.81    | 79.12  |          |
| Original | 0.9480 | 0.9340   | 0.8899 |          |

Table 11: Performance comparison under noise conditions

### D.3 ENERGY CONSUMPTION ANALYSIS

Most existing SNN energy analyses primarily account for synaptic operations, while there is no widely adopted methodology for the intrinsic energy of neurons themselves. Therefore, we follow the commonly used practice to estimate the overall SNN energy. In the highlighted energy-analysis part, we use the same methodology as prior work(Yao et al., 2023a; 2024). For neuron-intrinsic costs, we provide the following notation and derivations. The specific algorithm is as follows:

#### • Notation

- $T$ : Number of timesteps.

|      | Discard Frame | <i>f</i> -SNN | SJ     | snnTorch |
|------|---------------|---------------|--------|----------|
| 1944 | 0.1           | 0.9236        | 0.9137 | 0.8715   |
| 1945 | 0.2           | 0.9062        | 0.9023 | 0.8403   |
| 1946 | 0.3           | 0.9062        | 0.8854 | 0.8381   |
| 1947 | 0.4           | 0.8993        | 0.8646 | 0.8472   |
| 1948 | 0.5           | 0.8646        | 0.8472 | 0.7967   |
| 1949 | Score         | 94.93         | 94.50  | 94.25    |
| 1950 | Original      | 0.9480        | 0.9340 | 0.8899   |
| 1951 |               |               |        |          |
| 1952 |               |               |        |          |
| 1953 |               |               |        |          |

Table 12: Performance comparison under frame discard conditions

|      | Temporal Jitter | <i>f</i> -SNN | SJ     | snnTorch |
|------|-----------------|---------------|--------|----------|
| 1956 | 0.1             | 0.9167        | 0.9097 | 0.8576   |
| 1957 | 0.2             | 0.9132        | 0.9306 | 0.8542   |
| 1958 | 0.3             | 0.9236        | 0.8681 | 0.8264   |
| 1959 | 0.4             | 0.9306        | 0.8646 | 0.8299   |
| 1960 | 0.5             | 0.9062        | 0.8681 | 0.8194   |
| 1961 | 0.6             | 0.8750        | 0.8472 | 0.8125   |
| 1962 | 0.7             | 0.8785        | 0.8542 | 0.8299   |
| 1963 | 0.8             | 0.9028        | 0.8646 | 0.7604   |
| 1964 | 0.9             | 0.8889        | 0.8368 | 0.7361   |
| 1965 | Score           | 95.35         | 93.31  | 91.47    |
| 1966 | Original        | 0.9480        | 0.9340 | 0.8899   |
| 1967 |                 |               |        |          |
| 1968 |                 |               |        |          |
| 1969 |                 |               |        |          |
| 1970 |                 |               |        |          |
| 1971 |                 |               |        |          |

Table 13: Performance comparison under temporal jitter conditions

- $\kappa := E_{MAC}/E_{AC}$ : Conversion factor from one multiply–accumulate (MAC) operation to equivalent additions ( $E_{AC}$ ).
- $E_{AC}$ : Energy of one equivalent addition;  $E_{MAC}$ : Energy of one multiply–accumulate operation.
- Relation:  $E_{MAC} = (\kappa + 1)E_{AC}$ .
- $N$ : Number of SNN convolutional stages.
- $M$ : Number of SNN fully connected layers.
- $L$ : Number of self-attention (SSA) blocks.
- $\text{FLOPs}(l)$ : Floating-point operations of layer  $l$  in its dense counterpart.
- $E_{MAC}$ : Energy per multiply–accumulate operation.
- $E_{AC}$ : Energy per equivalent addition.
- $\rho$ : Average firing rate.

Following (Yao et al., 2023a; 2024), we assume that the data for various operations are implemented using 32-bit floating-point arithmetic in 45nm technology, where  $E_{MAC} = 4.6\text{pJ}$  and  $E_{AC} = 0.9\text{pJ}$ .

**I. LIF (discrete time, hard reset; single neuron,  $T$  steps)** Per-term energy (in units of  $E_{AC}$ ):

$$E_{\text{update,in}} = T \cdot \kappa \cdot E_{AC} \quad (\text{update: input multiplication}), \quad (55)$$

$$E_{\text{leak}} = T \cdot \kappa \cdot E_{AC} \quad (\text{leak: multiplication}), \quad (56)$$

$$E_{\text{update,sum}} = T \cdot 1 \cdot E_{AC} \quad (\text{update summation: add the two terms}), \quad (57)$$

$$E_{\text{cmp}} = T \cdot 1 \cdot E_{AC} \quad (\text{threshold comparison}), \quad (58)$$

$$E_{\text{spike}} = T \cdot \rho \cdot (2\kappa + 1) \cdot E_{AC} \quad (\text{spike: hard reset, arithmetic gating}). \quad (59)$$

Total energy of a single LIF neuron over  $T$  steps:

$$E_{\text{neuron}} = E_{\text{total}}^{\text{LIF,hard}} = T \cdot [(2 + 2\rho)\kappa + (2 + \rho)] \cdot E_{AC}. \quad (60)$$

|      | Temporal Truncate | <i>f</i> -SNN | SJ     | snnTorch |
|------|-------------------|---------------|--------|----------|
| 1998 | 0.1               | 0.9410        | 0.9271 | 0.8646   |
| 1999 | 0.2               | 0.9410        | 0.9271 | 0.8611   |
| 2000 | 0.3               | 0.9271        | 0.9235 | 0.8600   |
| 2001 | 0.4               | 0.9167        | 0.9018 | 0.8396   |
| 2002 | 0.5               | 0.8237        | 0.8026 | 0.8125   |
| 2003 | Score             | 95.98         | 95.97  | 95.24    |
| 2004 | Original          | 0.9480        | 0.9340 | 0.8899   |
| 2005 |                   |               |        |          |
| 2006 |                   |               |        |          |
| 2007 |                   |               |        |          |

Table 14: Performance comparison under temporal truncate conditions

|      | Occlude Block | <i>f</i> -SNN | SJ     | snnTorch |
|------|---------------|---------------|--------|----------|
| 2010 | 0.1           | 0.9340        | 0.8993 | 0.8681   |
| 2011 | 0.2           | 0.9340        | 0.8576 | 0.8368   |
| 2012 | 0.3           | 0.8785        | 0.7917 | 0.8264   |
| 2013 | 0.4           | 0.8368        | 0.7083 | 0.7396   |
| 2014 | 0.5           | 0.6840        | 0.5764 | 0.6493   |
| 2015 | Score         | 90.02         | 82.08  | 88.10    |
| 2016 | Original      | 0.9480        | 0.9340 | 0.8899   |
| 2017 |               |               |        |          |
| 2018 |               |               |        |          |

Table 15: Performance comparison under occlude block conditions.

## II. *f*-LIF (discrete time, hard reset; single neuron, $T$ steps) Per-term energy (in units of $E_{AC}$ ):

$$E_{\text{update+leak}} = T \cdot \log_2 T \cdot (\kappa + 1) \cdot E_{AC} \quad (\text{update + leak: merged}), \quad (61)$$

$$E_{\text{cmp}} = T \cdot 1 \cdot E_{AC} \quad (\text{threshold comparison}), \quad (62)$$

$$E_{\text{spike}} = T \cdot \rho \cdot (2\kappa + 1) \cdot E_{AC} \quad (\text{spike: hard reset, arithmetic gating}). \quad (63)$$

Total energy of a single *f*-LIF neuron over  $T$  steps:

$$E_{\text{neuron}} = E_{\text{total}}^{f\text{-LIF,hard}} = T \cdot \left[ (\kappa + 1) \log_2 T + 1 + \rho(2\kappa + 1) \right] \cdot E_{AC}. \quad (64)$$

**Energy accounting for a Spiking-Transformer (SpikFormer).** Based on the updated formula, we further consider a more complex Spiking-Transformer setting and compare energy consumption accordingly. The energy of SpikFormer can be written as

$$E_{\text{SpikFormer}} = E_{MAC} \times \text{FLOPs}_{\text{SNN Conv}}^1 + E_{AC} \times \left( \sum_{n=2}^N \text{SOP}_{\text{SNN Conv}}^n + \sum_{m=1}^M \text{SOP}_{\text{SNN FC}}^m + \sum_{l=1}^L \text{SOP}_{\text{SSA}}^l \right), \quad (65)$$

where SOP denotes the number of spike-based accumulate operations.

For each layer  $l$ , the spike-based operation count is

$$\text{SOPs}(l) = \rho \times T \times \text{FLOPs}(l). \quad (66)$$

Combining the above equations, the overall energy consumption can be expressed as

$$E_{\text{total}} = E_{\text{SpikFormer}} + E_{\text{neuron}} \times N_{\text{neurons}}. \quad (67)$$

$$(68)$$

Here,  $N_{\text{neurons}}$  denotes the total number of neurons in the network.

As shown in Fig. 12, Table 16, and Table 17, our *f*-LIF neurons enable the network to achieve a lower average firing rate compared to the standard LIF node, although the fractional dynamics introduce additional computational overhead. This results in overall energy usage that remains at a comparable level, balancing the trade-off between energy efficiency and enhanced temporal modeling capabilities.

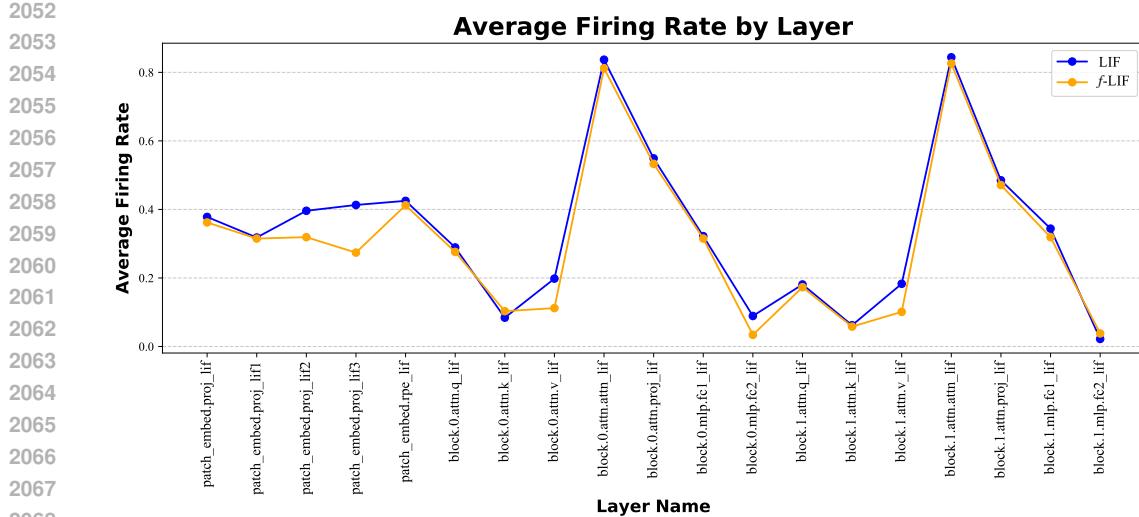


Figure 12: Comparison of average firing rates across layers for LIF and  $f$ -LIF models. The blue line corresponds to the LIF model, and the orange line corresponds to the  $f$ -LIF model.

**Layer-wise energy accounting (SpikFormer).** We report per-layer energy with sparsity-aware synaptic costs and neuron-intrinsic costs. ‘‘Energy Type’’ indicates whether the layer is counted with  $E_{MAC}$  or  $E_{AC}$ ; entries of the form ‘‘ $E_{AC} \times r$ ’’ denote  $E_{AC}$  cost scaled by the measured average firing rate.

$$E_{\text{synaptic total}} = 2,698,236.13 \text{ nJ}, \quad (69)$$

$$E_{\text{neuron total}} = 235,486.99 \text{ nJ}, \quad (70)$$

$$E_{\text{overall}} = 2,933,723.12 \text{ nJ} = 2.933723 \text{ mJ}. \quad (71)$$

Energy composition:

- Synaptic energy share: 92.0%.
- Neuron energy share: 8.0%.

| 2106 | Layer Name             | Type    | $T \times \text{FLOPs (M)}$ | Average Firing Rate | Energy Type           | Energy (mJ) |
|------|------------------------|---------|-----------------------------|---------------------|-----------------------|-------------|
| 2107 | patch_embed.proj_conv  | Conv2d  | 150.99                      | 1.000               | $E_{MAC}$             | 0.69        |
| 2108 | patch_embed.proj_lif   | LIFNode | 0.00                        | 0.378               | Neuron                | 0.12        |
| 2109 | patch_embed.proj_conv1 | Conv2d  | 1207.96                     | 0.378               | $E_{AC} \times 0.378$ | 0.41        |
| 2110 | patch_embed.proj_lif1  | LIFNode | 0.00                        | 0.318               | Neuron                | 0.06        |
| 2111 | patch_embed.proj_conv2 | Conv2d  | 1207.96                     | 0.318               | $E_{AC} \times 0.318$ | 0.35        |
| 2112 | patch_embed.proj_lif2  | LIFNode | 0.00                        | 0.396               | Neuron                | 0.03        |
| 2113 | patch_embed.proj_conv3 | Conv2d  | 1207.96                     | 0.396               | $E_{AC} \times 0.396$ | 0.43        |
| 2114 | patch_embed.proj_lif3  | LIFNode | 0.00                        | 0.413               | Neuron                | 0.02        |
| 2115 | patch_embed.rpe_conv   | Conv2d  | 603.98                      | 0.413               | $E_{AC} \times 0.413$ | 0.22        |
| 2116 | patch_embed.rpe_lif    | LIFNode | 0.00                        | 0.425               | Neuron                | 0.00        |
| 2117 | block.0.attn.q_conv    | Conv1d  | 67.11                       | 0.425               | $E_{AC} \times 0.425$ | 0.03        |
| 2118 | block.0.attn.q_lif     | LIFNode | 0.00                        | 0.289               | Neuron                | 0.00        |
| 2119 | block.0.attn.k_conv    | Conv1d  | 67.11                       | 0.289               | $E_{AC} \times 0.289$ | 0.02        |
| 2120 | block.0.attn.k_lif     | LIFNode | 0.00                        | 0.084               | Neuron                | 0.00        |
| 2121 | block.0.attn.v_conv    | Conv1d  | 67.11                       | 0.084               | $E_{AC} \times 0.084$ | 0.01        |
| 2122 | block.0.attn.v_lif     | LIFNode | 0.00                        | 0.198               | Neuron                | 0.00        |
| 2123 | block.0.attn           | SSA     | 33.55                       | 0.198               | $E_{AC} \times 0.198$ | 0.01        |
| 2124 | block.0.attn.attn_lif  | LIFNode | 0.00                        | 0.837               | Neuron                | 0.00        |
| 2125 | block.0.attn.proj_conv | Conv1d  | 67.11                       | 0.837               | $E_{AC} \times 0.837$ | 0.05        |
| 2126 | block.0.attn.proj_lif  | LIFNode | 0.00                        | 0.549               | Neuron                | 0.00        |
| 2127 | block.0.mlp.fc1_conv   | Conv1d  | 268.44                      | 0.549               | $E_{AC} \times 0.549$ | 0.13        |
| 2128 | block.0.mlp.fc1_lif    | LIFNode | 0.00                        | 0.322               | Neuron                | 0.00        |
| 2129 | block.0.mlp.fc2_conv   | Conv1d  | 268.44                      | 0.322               | $E_{AC} \times 0.322$ | 0.08        |
| 2130 | block.0.mlp.fc2_lif    | LIFNode | 0.00                        | 0.089               | Neuron                | 0.00        |
| 2131 | block.1.attn.q_conv    | Conv1d  | 67.11                       | 0.089               | $E_{AC} \times 0.089$ | 0.01        |
| 2132 | block.1.attn.q_lif     | LIFNode | 0.00                        | 0.181               | Neuron                | 0.00        |
| 2133 | block.1.attn.k_conv    | Conv1d  | 67.11                       | 0.181               | $E_{AC} \times 0.181$ | 0.01        |
| 2134 | block.1.attn.k_lif     | LIFNode | 0.00                        | 0.062               | Neuron                | 0.00        |
| 2135 | block.1.attn.v_conv    | Conv1d  | 67.11                       | 0.062               | $E_{AC} \times 0.062$ | 0.00        |
| 2136 | block.1.attn.v_lif     | LIFNode | 0.00                        | 0.183               | Neuron                | 0.00        |
| 2137 | block.1.attn           | SSA     | 33.55                       | 0.183               | $E_{AC} \times 0.183$ | 0.01        |
| 2138 | block.1.attn.attn_lif  | LIFNode | 0.00                        | 0.844               | Neuron                | 0.00        |
| 2139 | block.1.attn.proj_conv | Conv1d  | 67.11                       | 0.844               | $E_{AC} \times 0.844$ | 0.05        |
| 2140 | block.1.attn.proj_lif  | LIFNode | 0.00                        | 0.485               | Neuron                | 0.00        |
| 2141 | block.1.mlp.fc1_conv   | Conv1d  | 268.44                      | 0.485               | $E_{AC} \times 0.485$ | 0.12        |
| 2142 | block.1.mlp.fc1_lif    | LIFNode | 0.00                        | 0.344               | Neuron                | 0.00        |
| 2143 | block.1.mlp.fc2_conv   | Conv1d  | 268.44                      | 0.344               | $E_{AC} \times 0.344$ | 0.08        |
| 2144 | block.1.mlp.fc2_lif    | LIFNode | 0.00                        | 0.022               | Neuron                | 0.00        |
| 2145 | head                   | Linear  | 0.03                        | 0.022               | $E_{AC} \times 0.022$ | 0.00        |

Table 16: Layer-wise energy breakdown with sparsity. “Energy Type” uses  $E_{MAC}$  for multiply-accumulate energy and  $E_{AC}$  scaled by the output average firing rate.

$$E_{\text{synaptic total}} = 2,490,467.47 \text{ nJ}, \quad (72)$$

$$E_{\text{neuron total}} = 421,324.24 \text{ nJ}, \quad (73)$$

$$E_{\text{overall}} = 2,911,791.71 \text{ nJ} = 2.911792 \text{ mJ}. \quad (74)$$

Energy composition:

- Synaptic energy share: 85.5%.
- Neuron energy share: 14.5%.

2160  
 2161  
 2162  
 2163  
 2164  
 2165  
 2166  
 2167

| 2168 | Layer Name             | Type                | $T \times \text{FLOPs (M)}$ | Average Firing Rate | Energy Type           | Energy (mJ) |
|------|------------------------|---------------------|-----------------------------|---------------------|-----------------------|-------------|
| 2169 | patch_embed.proj_conv  | Conv2d              | 150.99                      | 1.000               | $E_{MAC}$             | 0.69        |
| 2170 | patch_embed.proj_lif   | <i>f</i> -LIFNeuron | 0.00                        | 0.362               | Neuron                | 0.22        |
| 2171 | patch_embed.proj_conv1 | Conv2d              | 1207.96                     | 0.362               | $E_{AC} \times 0.362$ | 0.39        |
| 2172 | patch_embed.proj_lif1  | <i>f</i> -LIFNeuron | 0.00                        | 0.315               | Neuron                | 0.11        |
| 2173 | patch_embed.proj_conv2 | Conv2d              | 1207.96                     | 0.315               | $E_{AC} \times 0.315$ | 0.34        |
| 2174 | patch_embed.proj_lif2  | <i>f</i> -LIFNeuron | 0.00                        | 0.319               | Neuron                | 0.05        |
| 2175 | patch_embed.proj_conv3 | Conv2d              | 1207.96                     | 0.319               | $E_{AC} \times 0.319$ | 0.35        |
| 2176 | patch_embed.proj_lif3  | <i>f</i> -LIFNeuron | 0.00                        | 0.274               | Neuron                | 0.03        |
| 2177 | patch_embed.rpe_conv   | Conv2d              | 603.98                      | 0.274               | $E_{AC} \times 0.274$ | 0.15        |
| 2178 | patch_embed.rpe_lif    | <i>f</i> -LIFNeuron | 0.00                        | 0.412               | Neuron                | 0.01        |
| 2179 | block.0.attn.q_conv    | Conv1d              | 67.11                       | 0.412               | $E_{AC} \times 0.412$ | 0.02        |
| 2180 | block.0.attn.q_lif     | <i>f</i> -LIFNeuron | 0.00                        | 0.276               | Neuron                | 0.00        |
| 2181 | block.0.attn.k_conv    | Conv1d              | 67.11                       | 0.276               | $E_{AC} \times 0.276$ | 0.02        |
| 2182 | block.0.attn.k_lif     | <i>f</i> -LIFNeuron | 0.00                        | 0.091               | Neuron                | 0.00        |
| 2183 | block.0.attn.v_conv    | Conv1d              | 67.11                       | 0.091               | $E_{AC} \times 0.091$ | 0.01        |
| 2184 | block.0.attn.v_lif     | <i>f</i> -LIFNeuron | 0.00                        | 0.112               | Neuron                | 0.00        |
| 2185 | block.0.attn.attn      | SSA                 | 33.55                       | 0.112               | $E_{AC} \times 0.112$ | 0.00        |
| 2186 | block.0.attn.attn_lif  | <i>f</i> -LIFNeuron | 0.00                        | 0.812               | Neuron                | 0.00        |
| 2187 | block.0.attn.proj_conv | Conv1d              | 67.11                       | 0.812               | $E_{AC} \times 0.812$ | 0.05        |
| 2188 | block.0.attn.proj_lif  | <i>f</i> -LIFNeuron | 0.00                        | 0.533               | Neuron                | 0.00        |
| 2189 | block.0.attn.fc1_conv  | Conv1d              | 268.44                      | 0.533               | $E_{AC} \times 0.533$ | 0.13        |
| 2190 | block.0.attn.fc1_lif   | <i>f</i> -LIFNeuron | 0.00                        | 0.315               | Neuron                | 0.00        |
| 2191 | block.0.attn.fc2_conv  | Conv1d              | 268.44                      | 0.315               | $E_{AC} \times 0.315$ | 0.08        |
| 2192 | block.0.attn.fc2_lif   | <i>f</i> -LIFNeuron | 0.00                        | 0.034               | Neuron                | 0.00        |
| 2193 | block.1.attn.q_conv    | Conv1d              | 67.11                       | 0.034               | $E_{AC} \times 0.034$ | 0.00        |
| 2194 | block.1.attn.q_lif     | <i>f</i> -LIFNeuron | 0.00                        | 0.173               | Neuron                | 0.00        |
| 2195 | block.1.attn.k_conv    | Conv1d              | 67.11                       | 0.173               | $E_{AC} \times 0.173$ | 0.01        |
| 2196 | block.1.attn.k_lif     | <i>f</i> -LIFNeuron | 0.00                        | 0.058               | Neuron                | 0.00        |
| 2197 | block.1.attn.v_conv    | Conv1d              | 67.11                       | 0.058               | $E_{AC} \times 0.058$ | 0.00        |
| 2198 | block.1.attn.v_lif     | <i>f</i> -LIFNeuron | 0.00                        | 0.101               | Neuron                | 0.00        |
| 2199 | block.1.attn.attn      | SSA                 | 33.55                       | 0.101               | $E_{AC} \times 0.101$ | 0.00        |
| 2200 | block.1.attn.attn_lif  | <i>f</i> -LIFNeuron | 0.00                        | 0.826               | Neuron                | 0.00        |
| 2201 | block.1.attn.proj_conv | Conv1d              | 67.11                       | 0.826               | $E_{AC} \times 0.826$ | 0.05        |
| 2202 | block.1.attn.proj_lif  | <i>f</i> -LIFNeuron | 0.00                        | 0.471               | Neuron                | 0.00        |
| 2203 | block.1.attn.fc1_conv  | Conv1d              | 268.44                      | 0.471               | $E_{AC} \times 0.471$ | 0.11        |
| 2204 | block.1.attn.fc1_lif   | <i>f</i> -LIFNeuron | 0.00                        | 0.319               | Neuron                | 0.00        |
| 2205 | block.1.attn.fc2_conv  | Conv1d              | 268.44                      | 0.319               | $E_{AC} \times 0.319$ | 0.08        |
| 2206 | block.1.attn.fc2_lif   | <i>f</i> -LIFNeuron | 0.00                        | 0.038               | Neuron                | 0.00        |
| 2207 | head                   | Linear              | 0.03                        | 0.038               | $E_{AC} \times 0.038$ | 0.00        |

Table 17: Layer-wise energy breakdown with sparsity. “Energy Type” uses  $E_{MAC}$  for multiply-accumulate energy and  $E_{AC}$  scaled by the output firing rate for addition-only equivalents.

2208  
 2209  
 2210  
 2211  
 2212  
 2213

2214 E *f*-SNN TOOLBOX “SPIKEDE” PRESENTATION  
22152216 We propose an open-source, out-of-the-box toolbox, named **spikeDE**, to support our *f*-SNN frame-  
2217 work, built on the PyTorch platform. The toolbox enables the construction of SNNs through  
2218 interfaces closely aligned with PyTorch. It supports various neural network architectures like  
2219 convolutional neural networks (CNN), Transformer, ResNet, and multilayer perceptron (MLP) (Vaswani  
2220 et al., 2017; LeCun et al., 1989; He et al., 2016; Zhou et al., 2022). We believe it will serve the  
2221 SNN community well, encouraging the advancement of a broader class of SNNs that capture richer  
2222 temporal patterns. The directory structure of the toolbox is as follows:  
2223

```

2224     __init__.py          # Package initialization
2225     layer.py            # Base layer definitions
2226     neuron.py           # Base neuron definitions
2227     odefunc.py          # f-ODE function definitions for SNNs
2228     snn.py              # High-level SNN wrapper
2229     solver.py           # f-ODE solvers
2230     surrogate.py        # Surrogate gradient implementations
2231

```

2231 The neuron module provides a variety of classic spiking neurons, including LIFNeuron (Leaky  
2232 Integrate-and-Fire) and IFNeuron (Integrate-and-Fire), along with a unified interface for custom  
2233 neuron dynamics. The snn module offers a high-level SNN interface that supports either direct  
2234 conversion of artificial neural networks (ANNs) into SNNs or wrapping SNNs into trainable network  
2235 objects.2236 **SNN Neurons.** **spikeDE** supports spiking neurons like LIFNeuron and IFNeuron. Besides,  
2237 **spikeDE** supports custom spiking neurons. Users can define their own neuron types by inheriting  
2238 from the provided BaseNeuron class:  
2239

```

2240
2241 class LIFNeuron(BaseNeuron):
2242     def forward(self, v_mem, current_input=None):
2243         if current_input is None:
2244             return v_mem
2245         tau = self.get_tau()
2246         dt = 1.0
2247         dv_no_reset = (-v_mem + current_input) / tau
2248         v_post_charge = v_mem + dt * dv_no_reset
2249         spike = self.surrogate_f(v_post_charge - self.threshold,
2250                               self.surrogate_grad_scale)
2251         dv_dt = dv_no_reset - (spike.detach() * self.threshold) / tau
2252         return dv_dt, spike
2253
2254 class IFNeuron(BaseNeuron):
2255     def forward(self, v_mem, current_input=None):
2256         if current_input is None:
2257             return v_mem
2258         tau = self.get_tau()
2259         v_scaled = v_mem - self.threshold
2260         spike = self.surrogate_f(v_scaled, self.surrogate_grad_scale)
2261         dv_dt = (-spike * self.threshold + current_input) / tau
2262         return dv_dt, spike

```

2261 Our LIFNeuron and IFNeuron produce two outputs: the first is the derivative of the membrane  
2262 potential dv\_dt, and the second is a binary spike signal spike.2263 The surrogate\_opt parameter specifies the surrogate gradient function used to enable  
2264 backpropagation through the non-differentiable spiking operation. Multiple options (e.g.,  
2265 "arctan\_surrogate") are provided, allowing users to choose based on their needs.2266 **How to Build and Train a Custom SNN Network.**2267 **1. Building a CNN-based Network**

2268 Our **spikeDE** is highly flexible and supports various network backbones, including CNNs, ResNets,  
 2269 GNNs, and even Transformers. Simply replace the activation functions in conventional ANNs with  
 2270 our spiking neurons. Below is an example using a simple CNN backbone:  
 2271

```

 2272 import torch.nn as nn
 2273
 2274 class CustomCNN(nn.Module):
 2275
 2276
 2277     def __init__(self, args):
 2278         super(CustomCNN, self).__init__()
 2279
 2280         # Conv Blocks
 2281         self.conv1 = nn.Conv2d(2, 128, 3, 1, bias=False)
 2282         self.bn1 = nn.BatchNorm2d(128)
 2283         self.lif1 = LIFNeuron(
 2284             args.tau, args.threshold, args.surrogate_grad_scale
 2285         )
 2286         self.pool1 = nn.MaxPool2d(2)
 2287
 2288         self.conv2 = nn.Conv2d(128, 128, 3, 1, bias=False)
 2289         self.bn2 = nn.BatchNorm2d(128)
 2290         self.lif2 = LIFNeuron(
 2291             args.tau, args.threshold, args.surrogate_grad_scale
 2292         )
 2293         self.pool2 = nn.MaxPool2d(2)
 2294
 2295         self.conv3 = nn.Conv2d(128, 128, 3, 1, bias=False)
 2296         self.bn3 = nn.BatchNorm2d(128)
 2297         self.lif3 = LIFNeuron(
 2298             args.tau, args.threshold, args.surrogate_grad_scale
 2299         )
 2300         self.pool3 = nn.MaxPool2d(2)
 2301
 2302         self.conv4 = nn.Conv2d(128, 128, 3, 1, bias=False)
 2303         self.bn4 = nn.BatchNorm2d(128)
 2304         self.lif4 = LIFNeuron(
 2305             args.tau, args.threshold, args.surrogate_grad_scale
 2306         )
 2307         self.pool4 = nn.MaxPool2d(2)
 2308
 2309         self.conv5 = nn.Conv2d(128, 128, 3, 1, bias=False)
 2310         self.bn5 = nn.BatchNorm2d(128)
 2311         self.lif5 = LIFNeuron(
 2312             args.tau, args.threshold, args.surrogate_grad_scale
 2313         )
 2314         self.pool5 = nn.MaxPool2d(2)
 2315
 2316         # Fully Connected Layers
 2317         self.flatten = nn.Flatten()
 2318         self.dropout1 = nn.Dropout(0.5)
 2319         self.fc1 = nn.Linear(128 * 4 * 4, 512)
 2320         self.lif6 = LIFNeuron(
 2321             args.tau, args.threshold, args.surrogate_grad_scale
 2322         )
 2323
 2324         self.dropout2 = nn.Dropout(0.5)
 2325         self.fc2 = nn.Linear(512, 110)
 2326         self.lif7 = LIFNeuron(
 2327             args.tau, args.threshold, args.surrogate_grad_scale
 2328         )
 2329
 2330         # Output Layer
 2331         self.output_layer = (

```

```

2322         VotingLayer(10) if args.voting else nn.Linear(110, 11)
2323     )
2324
2325     def forward(self, x):
2326         # First convolutional block
2327         x = self.conv1(x)
2328         x = self.bn1(x)
2329         x = self.lif1(x)
2330         x = self.pool1(x)
2331
2332         # Second convolutional block
2333         x = self.conv2(x)
2334         x = self.bn2(x)
2335         x = self.lif2(x)
2336         x = self.pool2(x)
2337
2338         # Third convolutional block
2339         x = self.conv3(x)
2340         x = self.bn3(x)
2341         x = self.lif3(x)
2342         x = self.pool3(x)
2343
2344         # Fourth convolutional block
2345         x = self.conv4(x)
2346         x = self.bn4(x)
2347         x = self.lif4(x)
2348         x = self.pool4(x)
2349
2350         # Fifth convolutional block
2351         x = self.conv5(x)
2352         x = self.bn5(x)
2353         x = self.lif5(x)
2354         x = self.pool5(x)
2355
2356         # Fully connected layers
2357         x = self.flatten(x)
2358         x = self.dropout1(x)
2359         x = self.fc1(x)
2360         x = self.lif6(x)
2361
2362         x = self.dropout2(x)
2363         x = self.fc2(x)
2364         x = self.lif7(x)
2365
2366         # Output layer
2367         x = self.output_layer(x)
2368
2369         return x
2370
2371
2372
2373
2374
2375

```

2363 Users are free to design other backbone architectures tailored to their specific tasks.

2364 **2. Warpping Your Network.** Once a suitable network backbone is defined, it can be wrapped into a  
2365 trainable SNN object using our SNNWrapper:  
2366

```

2367 from spikeDE.snn import SNNWrapper
2368
2369 model = SNNWrapper(CNNBackbone,
2370     integrator="fdeint",
2371     interpolation_method="linear"
2372 )
2373
2374 # Set the initial input shape of the network (Needed!!!!)
2375 model._set_neuron_shapes(input_shape=(1, 3, h, w))
2376 # h, w denotes the input image's height and width

```

2376 The resulting `model` is a fully trainable SNN that can be trained using standard PyTorch workflows,  
 2377 including automatic differentiation and backpropagation.  
 2378

2379 The input to this object is a tensor  $\mathbf{X} \in \mathbb{R}^{T \times N \times *}$ , where  $T$  denotes the number of time steps and  $N$   
 2380 is the batch size. The output  $O$  is a tuple containing the membrane potentials of each layer at every  
 2381 time step, as well as the accumulated spikes from the final layer.

2382 The `integrator` argument supports two modes: "`odeint`" (for integer-order ODE integration)  
 2383 and "`fdeint`" (for fractional-order differential equation integration). Each integrator supports  
 2384 multiple numerical methods, allowing users to balance accuracy and computational efficiency.

2385 **3. Training your Network.** Since our implementation is based on the Neural ODE framework, the  
 2386 training procedure differs slightly from standard PyTorch networks: time integration parameters can  
 2387 be specified or learnable. Below is a basic training loop.

```
2388 def train(args, model, device, train_loader, optimizer, criterion):
2389     """Train for one epoch."""
2390     model.train()
2391     for batch_idx, (data, target) in enumerate(train_loader):
2392         data, target = data.to(device), target.to(device)
2393         # data shape: [T, N, *]
2394
2395         # Define input time points
2396         data_time = torch.linspace(
2397             0,
2398             args.time_interval * (args.time_steps - 1),
2399             args.time_steps,
2400             device=device
2401         ).float()
2402
2403         method = args.method # Integration method, e.g., 'euler'
2404         options = {'step_size': args.step_size}
2405         optimizer.zero_grad()
2406
2407         # Define output time points (can be adjusted to save memory,
2408         # especially with odeint_adjoint)
2409         output_time = torch.linspace(
2410             0,
2411             args.time_interval * (args.T - 1),
2412             args.T,
2413             device=device
2414         ).float()
2415
2416         output = model(data, data_time, output_time, method, options)
2417         # output.mean(0) computes the mean of the output spikes
2418         # across the time steps in the output layer.
2419         loss = criterion(output.mean(0), target)
2420         loss.backward()
2421         optimizer.step()
2422         # ... additional logging or evaluation logic
2423
2424         output.mean(0) corresponds to the network's final prediction across the time steps in the output
2425         layer, which can be used flexibly depending on the task (e.g., classification, regression).
```

## 2421 F LIMITATIONS AND BROADER IMPACTS

### 2423 F.1 LIMITATIONS

2425 First, the hyperparameter tuning process for fractional dynamics, such as selecting the fractional  
 2426 order, can be non-trivial and requires domain expertise or extensive experimentation. This may pose  
 2427 challenges for practitioners aiming to deploy the framework in new applications. Second, although our  
 2428 experiments show robustness to noise and strong performance on several datasets, the method has not  
 2429 been extensively tested on ultra-large-scale datasets (e.g., full ImageNet) or in latency-critical real-  
 time systems. Further study is needed to assess the practical constraints of deploying *fspikeDE* in such

2430 settings. The current *f*-SNN toolbox also lacks mature distributed-training support and remains under  
2431 active optimization. In addition, modern toolboxes such as SpikingJelly implement CuPy-accelerated  
2432 computation; integrating similar acceleration is a promising direction for our framework.  
2433

## 2434 F.2 BROADER IMPACTS 2435

2436 The proposed *f*-SNN framework introduces a biologically inspired approach to spiking neural  
2437 networks, with the potential for significant positive impact on both research and application domains.  
2438 By incorporating fractional-order dynamics, *f*-SNN advances the modeling of complex temporal  
2439 dependencies, offering new insights into brain-like computation and contributing to the understanding  
2440 of non-Markovian behavior in biological neurons. This could inspire further interdisciplinary research  
2441 in neuroscience and machine learning.

2442 From an application perspective, the ability of *f*-SNN to process temporal information with enhanced  
2443 accuracy and energy efficiency makes it well-suited for tasks such as edge computing, Internet  
2444 of Things (IoT) devices, and neuromorphic hardware. The open-sourced toolbox provides a practical  
2445 resource for researchers and practitioners, potentially accelerating innovation in fields like  
2446 computational neuroscience, robotics, and bio-inspired artificial intelligence.

2447 However, as with any machine learning framework, ethical considerations must be addressed. The  
2448 deployment of *f*-SNN in sensitive applications, such as autonomous systems or decision-making  
2449 tasks, should be carefully evaluated to avoid unintended consequences. Additionally, the increased  
2450 computational requirements of fractional dynamics raise concerns about energy consumption during  
2451 training, which may counteract the energy efficiency benefits of SNNs in some scenarios. Responsible  
2452 use, combined with efforts to improve computational efficiency, will be essential to maximize the  
2453 positive societal impact of this technology.

2454  
2455  
2456  
2457  
2458  
2459  
2460  
2461  
2462  
2463  
2464  
2465  
2466  
2467  
2468  
2469  
2470  
2471  
2472  
2473  
2474  
2475  
2476  
2477  
2478  
2479  
2480  
2481  
2482  
2483