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ABSTRACT

Spiking Neural Networks (SNNs) draw inspiration from biological neurons to
enable brain-like computation, demonstrating effectiveness in processing temporal
information with energy efficiency and biological realism. Most existing SNNs are
based on neural dynamics such as the (leaky) integrate-and-fire (IF/LIF) models,
which are described by first-order ordinary differential equations (ODEs) with
Markovian characteristics. This means the potential state at any time depends solely
on its immediate past value, potentially limiting network expressiveness. Empirical
studies of real neurons, however, reveal long-range correlations and fractal dendritic
structures, suggesting non-Markovian behavior better modeled by fractional-order
ODEs. Motivated by this, we propose a fractional-order spiking neural network
(f-SNN) framework that strictly generalizes integer-order SNNs and captures long-
term dependencies in membrane potential and spike trains via fractional dynamics,
enabling richer temporal patterns. We also release an open-source toolbox to
support the f-SNN framework, applicable to diverse architectures and real-world
tasks. Experimentally, fractional adaptations of established SNNs into the f-SNN
framework achieve superior accuracy, comparable energy efficiency, and improved
robustness to noise, underscoring the promise of f-SNNs as an effective extension
of traditional SNNss.

1 INTRODUCTION

Neural networks have evolved substantially as researchers continuously explore models that better
reflect biological neural systems while maintaining strong performance. Traditional artificial neural
networks (ANNs) excel across many tasks (Krizhevsky et al., 2012; LeCun et al., 2015; Vaswani et al.,
2017) but differ from real biological mechanisms, and modern models require far more compute than
the human brain (Dhar, 2020). This gap has motivated Spiking Neural Networks (SNNs) (Maass,
1997; Ghosh-Dastidar & Adeli, 2009; Lee et al., 2016; Wu et al., 2018; Zheng et al., 2021; Zhou et al.,
2022), which model neural activity more realistically by communicating through discrete spikes
rather than continuous values. Their event-driven computation paradigm allows for significant energy
savings, particularly when implemented on neuromorphic hardware (Roy et al., 2019; Pei et al.,
2019). Additionally, SNNs naturally handle time as part of their processing, making them well-suited
for tasks with time-series data or real-time interactions in changing environments (Yao et al., 2023b;
Luo et al., 2024; Yao et al., 2021). These features make SNNs strong candidates for applications that
need both energy efficiency and good temporal processing.

Despite these advantages, existing SNN models predominantly describe spiking neuronal membrane-
potential dynamics using the widely adopted Integrate-and-Fire (IF) and Leaky Integrate-and-Fire
(LIF) neurons (Stein, 1967), along with variants including nonlinear spike initiation (Ermentrout,
1996; Fourcaud-Trocmé et al., 2003), ternary spikes (Guo et al., 2024), adaptive membrane time
constants (Koch et al., 1996; Zhang et al., 2025), and threshold adaptation or learning (Bellec et al.,
2018; Benda, 2021). These models discretize first-order ordinary differential equations (ODEs) which
contains only d/d¢ terms (Hodgkin & Huxley, 1952; Maass, 1997; Ghosh-Dastidar & Adeli, 2009;
Eshraghian et al., 2023b) and assume a Markovian property in which the current state depends
mainly on the immediate previous state (see (9)). While this simplification enables computational
tractability, it fundamentally limits the expressiveness of these networks. Neurophysiological research
has demonstrated that real neurons display far more complex behaviors influenced by long-term
correlations (Gilboa et al., 2005), fractal dendritic structures (Coop et al., 2010; Kirch & Gollo, 2020),
and the interaction of multiple active membrane conductances (La Camera et al., 2006; Miller &
Troyer, 2002). These dynamics cannot be adequately captured by integer-order models (Ulanovsky
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et al., 2004; La Camera et al., 2006; Miller & Troyer, 2002; Spain et al., 1991) and suggest that
non-Markovian dynamics play a significant role in biological neural computation. Fractional calculus
instead offers mathematical tools for modeling such dynamics better than standard first-order ODEs
(Diethelm, 2010; Baleanu et al., 2012). In contrast to integer-order calculus, the fractional-order
derivative d*/dt®, with non-integer « values, considers the entire history of a function, weighted by
a power-law kernel. The fractional leaky integrate-and-fire (f-LIF) neuron dynamic, introduced and
studied in (Teka et al., 2014; Deng et al., 2022), serves as an example of applying these concepts.
This model can effectively explain spiking frequency adaptations observed in most biological neurons
(Ha & Cheong, 2017) and has been shown to generate more reliable spike patterns than integer-order
models when subjected to noisy input (Teka et al., 2014). Despite these promising findings, the
integration of SNNs and fractional neurons remains a largely unexplored area (Lee & Monahan).
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Figure 1: Comparison of traditional SNN and f-SNN framework.

In this paper, we introduce a generalized fractional-order SNN (f-SNN) framework, which incor-
porates fractional-order dynamics into the neuronal membrane potential charging. By replacing the
first-order ODE neurons traditionally used in SNNs with fractional-order ODEs (f-ODEs), f-SNN
naturally captures long-term dependencies that are beyond the capability of standard SNN models,
leading to improved performance on tasks that require complex temporal processing. We highlight
that our framework is a more general framework which subsumes many traditional SNNs as special
instances by setting o = 1. We evaluate f-SNN models on multiple benchmark datasets spanning
neuromorphic event-driven vision, graph domains, and static vision fields. Experimental results show
that f-SNN models consistently outperform conventional SNN models across various evaluation
metrics. Moreover, f-ODEs are robust to perturbations (Sabatier et al., 2015; Kang et al., 2024c¢); in
particular, neural f-ODEs admit tighter input—output perturbation bounds than integer-order models
(Kang et al., 2024c¢). Building on this, an additional advantage of our proposed f-SNN framework is
its superior robustness under input perturbations. These findings underscore the practical advantages
of integrating fractional-order dynamics into SNNs and point to the broader applicability of our
f-SNN in real-world scenarios.

Main contributions. Our objective in this paper is to formulate a generalized fractional-order SNN
framework. Our key contributions are summarized as follows:

e We propose an f-SNN framework that integrates f-ODEs into SNNs to naturally capture long-
term dependencies using the fractional-order operator d*/d¢®. This framework generalizes the
traditional class of integer-order SNNs that use IF, LIF neuron dynamics, and their variants,
subsuming them as a special case by setting o = 1.

e We establish fundamental theoretical distinctions between f-SNNs and traditional SNNs, proving
that fractional-order dynamics confer three key advantages: persistent memory through power-law
relaxation, irreducibility to finite classical ensembles, and enhanced robustness to perturbations.

e We underscore the compatibility of f-SNN, emphasizing its ability to be seamlessly integrated
to augment the performance of many existing SNNs by using non-integer o with various neu-
ral network architectures like convolutional neural networks (CNN), Transformer, ResNet, and
multilayer perceptron (MLP) (Vaswani et al., 2017; LeCun et al., 1989; He et al., 2016; Zhou
et al., 2022).We provide the community with an open-source, out-of-the-box toolbox to support
the f-SNN framework (see supplementary code and Section E). We conduct extensive experiments
on multiple datasets, demonstrating that f~-SNN consistently improves traditional SNNs, achieving
superior accuracy, comparable energy efficiency, and enhanced robustness.
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Related Work. We first review the prior application of fractional calculus into SNNs/ANNs and then
position our contribution accordingly.

Fractional biological neuron modelling and shallow fractional Hopfield spiking network. At
the neuron level, the f-LIF modelling (Teka et al., 2014; Deng et al., 2022) of biological neurons
explains spike-frequency adaptation in pyramidal neurons (Ha & Cheong, 2017) and yields more
reliable spike patterns under noise (Teka et al., 2014). The work (Rombouts & Bohte, 2010) proposes
that a neuron’s spike-train can be interpreted as a fractional derivative of its input signal. They show
encoding/decoding efficiency and link fractional dynamics to predictive coding. At the network
level, related efforts investigate shallow fractional Hopfield-type spiking networks (Zhang et al.,
2026). These studies primarily focus on dynamical system properties, proving the coexistence of
multiple equilibrium points, solution boundedness, and global attractivity—rather than learning
representations for complex tasks.

Distinction: Crucially, prior work is restricted to biological modeling, signal-approximation, or
dynamical analysis of fixed-weight, shallow networks, neglecting the learning problem. We bridge this
gap by formulating the first generalizable f-SNNs framework for end-to-end training. This advances
f-SNNs from theoretical constructs to a trainable computational paradigm compatible with modern
deep architectures (e.g., Transformers), strictly generalizing integer-order SNNs.

Fractional deep learning and fractional differential equation neural solvers. In the continuous
ANN domain, fractional calculus has been integrated into deep learning frameworks to enhance
expressivity. For instance (Kang et al., 2024a;b) leverage fractional calculus to improve graph neural
network performance and robustness, while Nobis et al. (2024) utilizes fractional diffusion processes
to improve diversity in generative modeling. Separately, in the domain of scientific computing,
Physics-Informed Neural Networks (PINNs) have been extended to solve fractional partial differential
equations (f-PINNs) (Pang et al., 2019). Subsequent developments have focused on scalability, such
as gradient-enhanced variants for convergence (Yu et al., 2022b), and optimized training via operator-
matrix methods for high-dimensional problems (Ma et al., 2023; Taheri et al., 2024)

Distinction: Our f-SNN model fundamentally differs from these approaches. First, unlike f-PINNs,
which serve as function approximators to solve a given fractional equation, we embed fractional
dynamics inside the neuron model as a computational engine. Second, unlike fractional ANNs that
operate on continuous signals, f-SNNs function in the discrete, event-driven domain.

Fractional-order gradients for training nns. A complementary line of research applies fractional
derivatives to define gradient operators and learning dynamics for training SNNs/ANNSs. For example,
fractional gradient descent algorithms (Khan et al., 2018; Shin et al., 2023) replace the standard
integer-order gradient update with a fractional counterpart. These methods smooth the optimization
landscape, enabling faster convergence and better escape from local minima compared to standard
stochastic gradient descent (SGD). In the spiking domain, Gyongyossy et al. (2022); Yang et al.
(2025; 2023) have applied fractional gradients for training SNNS.

Distinction: These approaches use fractional calculus as an optimization tool to adjust the weight
update trajectory, whereas our work embeds fractional dynamics within the neurons themselves.
This is analogous to the difference between designing a network optimizer (Adam vs. SGD) versus
changing the network architecture (CNN vs. Transformer).

2 PRELIMINARIES

This section reviews essential concepts. We introduce fractional calculus, which generalizes deriva-
tives to non-integer orders and naturally models systems with memory or non-local dependencies.
We then outline conventional SNN approaches based on discretizing integer-order neuron dynamics.

2.1 FRACTIONAL CALCULUS

When examining a function y(t) with respect to (w.r.t.) time ¢, we traditionally define the first-order
derivative as the instantaneous rate of change: dzfj—?) = limas_0 Y+A)=Y() The Jiterature offers
various definitions of fractional derivatives (Tarasov, 2011). We focus on the Caputo fractional
derivative D for the formal definition of d*/d¢® (Diethelm, 2010), which has the notable advantage

of allowing initial conditions to be specified in the same manner as integer-order differential equations.
Definition 1 (Caputo Fractional Derivative). For a function y(t) defined over an interval [0,T), its
Caputo fractional derivative of order o € (0, 1] is given by (Diethelm, 2010):

Dy(t) = g [, =y () an 1)
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where y' () denotes the first-order derivative of y(T).

Remark 1. (1) reveals that the fractional derivative incorporates the historical states of the function
through a power-weighted integral term when o € (0, 1), highlighting its memory dependence.
As a — 1, the Caputo derivative D converges to the standard first-order derivative %. Indeed,
letting F'(s) = L{f(t)} be Laplace transform of f(t), we have L { D& f(t)} = s*F(s) — s*~1£(0)
(Diethelm, 2010)[Theorem 7.1]. As o — 1, the Laplace transform of the Caputo fractional derivative
converges to that of the traditional first-order derivative sF(s) — f(0). Consequently, for o = 1,
D'y =4/, uniquely determined via the inverse Laplace transform (Cohen, 2007).

A first-order ODE and its fractional extension with Caputo derivative can be written as

integer-order ODE: dy( ) F&,y()); 2
fractional-order ODE: Da ( ) = f(t,y(t)), 3

where [ defines the system dynamics and initial condition y(0) = yjo is specified in both cases.

2.2 INTEGER-ORDER SPIKING NEURON AND SNN

Existing SNN models predominantly describe spiking neuronal membrane-potential dynamics using
discretized first-order ODEs with derivative d/d¢, including the widely adopted IF and LIF dynamics
(Stein, 1967) and variants with adaptive membrane time constants or threshold adaptation/learning
(Koch et al., 1996; Zhang et al., 2025; Bellec et al., 2018; Benda, 2021). We present only standard
IF and LIF in the main paper as a showcase; however, SNNs based on other neuron variants can be
encapsulated and extended within our f-SNN framework.

IF and LIF neurons. Let U(t) denote the membrane potential, I3, (¢) the input current, R > 0 the
membrane resistance, and 7 > 0 the membrane time constant. The standard subthreshold dynamics
of IF and LIF are described by the following first-order ODEs:

IF neuron dynamics: 7 dUdit) = R I;(t), @)
LIF neuron dynamics: 7 %gt) =—U(t) + RIin(t). 5)

A spike S(t) is emitted when U (¢ ) crosses the threshold 6, i.e., S(t) = H (U(t~) — ), where H(+)
denotes the Heaviside step function. Upon spiking, one uses either a soft reset or a hard reset:

D) softreset: U(tt) « U(t™)—6; or 2)hardreset: U(t") ¢+ Useses- (6)

Traditional SNN based on standard IF and LIF neuron dynamics. Many SNNs are based on the
neuron dynamics described in (4) and (5). In the simplest case, the forward Euler method is employed
to solve a first-order ODE (2). Let h > 0 be the discretization step size, ty = kh, N = T'/h, and let
Y, denote the numerical approximation of y(¢;). We have

yk+1:yk+hf(tk7yk)a kzoalvaN_l @)
To make this time-varying solution compatible with sequence-based neural network models, we

discretize time and treat k as the sequence index. Correspondingly, applying (7) to (4) and (5) yields

hR h hR
IF (discrete): Uys1 = Uy + —— Ly, LIF (discrete): Uy 1 = (1 - —)Uk 2 ke (®)
T T T

In practice, the factor is often absorbed into learnable synaptic weights, and the input current is

represented as X, (2) , where X, ®) the presynaptic spike vector or feature map (e.g., produced by
Convolution, MLP ResNet or Transformer) with ® denoting the learnable synaptic weights of those
layers. For simplicity, in the following we omit ¢ and denote it simply by X}. For computational
efficiency, we adopt the common simplifications h = 1 and R = 1, and define 5 := 1 — % Together
with spiking and reset mechanisms, we have the following iterations:

IF charge: Uy, = Up—1 + X,
or LIF charge: Uy, = BUi_1 + Xk.
spike: Sy, = H(Uy — 6),
reset: (soft) U < Uy — 0 Sy, or (hard) Uy, + (1 — Si) U + Sk Ureset-

€))



Under review as a conference paper at ICLR 2026

Spikes are discrete and non-differentiable, which complicates SNN training. The surrogate-gradient

method (Wu et al., 2018) keeps the hard spike H(U — 6) in the forward pass but uses a smooth
surrogate for its derivative in backpropagation. A common choice is a threshold-shifted sigmoid,
HU-60)~o(U) = He%_,] which preserves discrete firing while enabling gradient flow.
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Figure 3: Mittag—Leffler function F,(—t%).

Figure 2: SNN vs f-SNN dynamics. In f-SNNs, past mem- For @ = 1, LIF shows fast exponential decay

brane potentials influence the current state via a power-law (E1(—t) = e *); for 0 < a < 1, f-LIF exhibits

memory kernel; traditional integer-order SNNs lack this. slow algebraic decay, reflecting memory.

3 f-SNN FRAMEWORK

We present the f-SNN framework in this section using fractional spiking neuronal dynamics based on
f-ODEs, which generalize integer-order neuron dynamics such as standard IF and LIF neurons (4)
and (5). To make the time-varying solution compatible with neural network models, we follow the
procedure in Section 2.2 to discretize time and enable iterations. Section 3.2 reveals the fundamental
distinctions between f-SNNs and traditional SNNs through analysis of their long-time behavior,
demonstrating how f-SNNs provide persistent memory via power-law relaxation, irreducibility to
finite classical ensembles, and enhanced robustness.

3.1 FRAMEWORK

Traditional integer-order SNNs, as discussed in Section 2.2, model subthreshold spiking neuronal
dynamics with first-order ODEs; (4) and (5) are representative examples. In our general f-SNN
framework, we replace the first-order derivative d /d¢ with the generalized Caputo fractional derivative
D of order « € (0, 1]. Since IF and LIF are the dominant neuron models used in traditional SNNs,
we present only their fractional extensions in the main paper as a showcase; however, many other
neuron variants can likewise be encapsulated and extended within our f-SNN framework. We begin
with the presentation of f-IF and f-LIF neurons.

f-IF and f-LIF neurons. The fractional dynamics of IF and LIF are described by the f~-ODEs:
f-IF neuron dynamics: 7 DU (¢t) = R Lin(1), (10)
f-LIF neuron dynamics: 7 DU(t) = —U(t) + RILin(t). (11)

Spike generation and reset follow the same rules as in the integer-order case: S(¢t) = H (U (t7) — 6).
These dynamics naturally introduce a memory effect: the current membrane potential depends on
the entire history of the potential because, by definition (see (1)), the Caputo derivative includes an
integral over past states. Biologically, such modeling is consistent with observed spike-frequency
adaptation and long-memory behaviors (Teka et al., 2014; Ha & Cheong, 2017). The order « controls
the degree of adaptation—a = 1 recovers the standard IF/LIF models, while o < 1 induces power-
law memory and increased temporal correlations in the potential trace. Fractional neuron models are
also observed to produce reliable spike patterns under noisy input (Baker et al., 2024).

f-SNN based on f-IF and f-LIF neuron dynamics: In Section 2.2, we apply the forward Euler
method to discretize standard IF/LIF dynamics and obtain integer-order SNNs. Here, the f-IF (10)
and f-LIF (11) neurons exhibit fractional dynamics that belong to the f-ODE class (3). We instead
use the fractional Adams—Bashforth—-Moulton (ABM) predictor discretization (Diethelm et al., 2004)
to achieve this goal. Using the same time grid as above, t;, = kh with N = T'/h and step size h > 0,
and letting y;, denote the numerical approximation of y (¢ ), we obtain

k—1
1
= —_— i ti, Y k=0,1,...,N — 1. 12
Yk y0+1—‘(a)];),u/]kf( J7y])7 s 4y ) ( )
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where the weight coefficients are y1; , = 2-[(k — j)® — (k — 1 — §)*]. This formulation makes the

memory effect explicit by incorporating weighted contributions from all past function evaluations,
reflecting the nonlocal nature of D®. When o = 1, (12) reduces exactly to the Euler method (7),
further highlighting the compatibility between the f-SNN framework and traditional SNNs.

Applying (12) to (10) and (11) yields the fractional discrete updates:
k—1 k—1
. . R . . 1
f-IF (discrete): Uy, = Uy + T(a) ]2::0 ik Lin,j,  f-LIF (discrete):Uj, = Uy + T(a) ;M,k ( -U; + RIin,j).
Similar to Section 2.2, we denote the general input as Xy, where X}, is the presynaptic spike vector
or feature map produced by various architectures (convolution, MLP, ResNet, Transformer, etc.).
For simplicity, we set h = 1 and R = 1. Note that 5 = 1 — % in IF/LIF neurons does not apply to
the fractional cases. Instead, one obtains a history-convolution with a stationary power-law kernel.

Define ¢{2) = ﬁl—‘(a) [(m 4 1)® — m®]. Then the fractional iterations (charge-spike-reset) are as
follows: .
-1
f-IF charge: U = Uy + Z cﬁ,ol‘) Xk—m,
m=0
k-1
or f-LIF charge: Uy = Uy + Z cﬁfj) (—Uk—1—m + Xp—m) - (13)
m=0

spike: Sk, = H(Uy —0),
reset: (soft) Uy < U — 0 .Sy or (hard) Uy < (1 — Sk)Uk + SkUreset-
Here, spiking and reset are applied at each step as usual. We follow the literature to use the surrogate-
gradient method (Wu et al., 2018) to train f-SNN that keeps the hard spike H(U — 6) in the forward
pass but uses a smooth surrogate for its derivative in backpropagation.

Remark 2. Note that cgff ) is causal and decays as a power law, explicitly encoding memory. The

profile of c$,‘j ) s visualized in Fig. 8, highlighting the algebraic decay characteristic of fractional
order systems. When o — 1, we have c&’ = 1/7 for all m (a constant kernel), and taking first
differences of (13) recovers the Euler recursions (9). For efficiency, we may leverage the short-
memory approximation principle (Deng, 2007; Podlubny, 1999) and truncate the sum in (13) to
Zfr;lmax(o, k—) L€ a sliding memory window of fixed width M. With fast (FFT-based) convolution,

the full-memory case can be computed in O(N log N) time (Mathieu et al., 2013), while the truncated
window yields O(N M). The full model complexity is summarized in Section C.5.

3.2 THEORETICAL ANALYSIS

In this section, we theoretically distinguish the f-SNN framework from traditional SNNs. We begin
by proving that f-SNNs exhibit a persistent memory effect characterized by genuine long-range
temporal dependence. We then demonstrate that the dynamics of f-SNNs generally cannot be exactly
realized by any finite-dimensional linear system of integer-order modes, thereby establishing that
fractional-order systems strictly exceed the expressive capacity of integer-order models. Finally, we
prove that f-SNNs demonstrate superior robustness to input perturbations.

We first analyze membrane-potential relaxation under constant input, showing how distant past inputs
keep influencing the present. For intuition, we focus on the LIF and f-LIF neurons and use the
continuous formulations (5) and (11):

Proposition 1 (Long-memory Behavior). Under a constant current input I, (t) = I, assume the
input is small enough that no spiking occurs over the interval considered (subthreshold regime). Then
the solutions to the LIF (5) and the f-LIF dynamics (11) are

UY(t) = RI, + [Up — RI.] e "/7, (14)
U™ (t) = RI. + (Ug — RI) Eo(—t/7), (15)

k

respectively, where Eo(z) = Y 7o m is the Mittag—Leffler function Diethelm (2010). Key
properties include:

o Whena =1, E1(—t/7) = e~ tT, which is the classical exponential relaxation (Eshraghian et al.,
2023a)[Eq(2)].
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e For 0 < a < 1, E, exhibits (i) initial stretched—exponential decay and (ii) a power-law tail for
large t:

t(X T(X
B[~ ) v T a5t oo,
( T“) I(l—a)t as o0

These behaviors are visualized in Fig. 3.

Remark 3. While both LIF and f-LIF converge to the same steady state, Proposition 1 highlights
fundamentally different relaxation behaviors. The LIF uses an integer-order derivative (Markovian
dynamics; future evolution depends only on the current state) and shows exponential relaxation e /7,
characteristic of memoryless processes. In contrast, the f-LIF employs the fractional derivative
D, which is inherently non-Markovian, incorporating a power-weighted integral over the entire
past history. This is reflected in the Mittag—Leffler relaxation E,(—t%/7): for 0 < a < 1, its
power-law tail (~ t—%) indicates that past inputs decay algebraically slow rather than exponentially
fast, creating a persistent memory influence. This slow decay means that inputs from the distant
past continue to influence the current membrane potential, enabling the f-LIF to naturally capture

long-term temporal correlations.

The f-SNN framework demonstrates superior robustness compared to traditional SNNs. Empirical
studies show that f-LIF neurons maintain reliable spike patterns under noisy inputs (Teka et al., 2014).
Here, we provide theoretical robustness guarantees.

Theorem 1 (Robustness of f-SNN). Consider a fractional f-1F neuron governed by the dynamics
TD*U(t) = RIn(t) with fractional order 0 < o < 1 and initial condition Uy = 0. Under a
constant input current 1. subject to an additive perturbation € (where |e| < 1), the system exhibits
the following robustness properties relative to the classical integer-order model (ov = 1):

o Membrane Potential Robustness: The membrane potential deviation due to perturbation
evolves as:
Re

AU () = mt“ (sub-linear growth) (16)

AU (t) = &t (linear growth) (17)
T

For 0 < o < 1, the fractional-order dynamics suppress long-term perturbation accumulation
through sub-linear temporal scaling.
o Spike Timing Sensitivity: For small perturbations € < I, the spike time shift magnitude scales as:

AT o e [7(F1/@) (18)

At | oce 177 (19)

Since (1 + 1/a) > 2 for 0 < a < 1, the fractional-order model exhibits enhanced spike timing
robustness for high input currents.

Remark 4. The fractional-order dynamics yield distinct robustness advantages. The sub-linear
perturbation growth t* (o < 1) significantly suppresses long-term accumulation compared to linear
growth in classical models. Additionally, the enhanced spike timing stability becomes crucial for
precise temporal coding applications (Bohte et al., 2002; Booij & tat Nguyen, 2005; Rathi et al.,
2019). These properties make f-SNNs particularly suited for tasks requiring sustained accuracy and
temporal precision under varying input conditions, as confirmed by our experiments in Section 4.

We now establish that f-SNNs possess computational capabilities that fundamentally exceed those of
finite integer-order systems:

Theorem 2 (Irreducibility of f-IF Dynamics to Finite Classic LIF Ensembles). Let U'"'F denote the
trajectory of a f-IF neuron with order o € (0, 1). There exist no finite integer W, weights {gbi}ivzl,
and leak factors {Bi}i‘/zl such that the following holds:

w
Uk = Z ¢7IU]1_‘IF(ﬁI) = Ui_IF Vk
i=1
for general input Xy, The impulse response error of the approximation is O(k“~'), decaying
algebraically slowly. The f-1F neuron is mathematically equivalent to an aggregate of integer-order
LIF neurons if and only if W — oo, specifically as an integral over a continuum of leak factors.



Under review as a conference paper at ICLR 2026

Table 1: Neuromorphic data classification results in terms of classification accuracy (%) on the
multiple datasets. The best results are boldfaced, while the runner-ups are underlined.

Datasets/Configs | Architecture Timesteps LIF LIF f-LIF
(SpikingJelly) (snnTorch) (f-SNN)

N-MNIST CNN-based 16 0.9927 0.9908 0.9948
DVS-Lip CNN-based 16 0.4241 0.3271 0.4342
CNN-based 16 0.9340 0.8899 0.9480

DVS128Gest Cacia
O rransformer-based | 16 0.9514 0.8715 0.9583
N-Caltech101 CNN-based 16 0.6682 0.6521 0.7026
Transformer-based 16 0.7263 0.6567 0.7627
HarDVS CNN-based 8 0.4610 0.4626 0.4766
Transformer-based 8 0.4520 0.4614 0.4723

Remark 5 (Implications for Expressive Power). A single f-1F neuron represents a continuum of
timescales that would require infinitely many integer-order SNN units for exact equivalence. The slow
O(k®~1) error decay confirms that such long-range dependencies are inaccessible to finite-order
models. Moreover, this expressivity advantage is not “washed out” by the spiking nonlinearity: in
Corollary 1, we show that f-IF spike trains encode temporal information that no finite LIF ensemble
can reproduce, even under arbitrary Boolean combinations.

4 EXPERIMENTS

In this section, we evaluate f-SNNs on benchmarks spanning neuromorphic event-driven vision
and graph domains. Additional experiments on static datasets, including CIFAR10, CIFAR100,
and ImageNet, are detailed in Section D.2.3. Across metrics, f-SNNs consistently outperform
conventional SNNs. In particular, fractional adaptations of established SNN architectures within the
f-SNN framework achieve higher accuracy, comparable energy efficiency, and improved robustness
to noise, supporting f-SNNs as an effective extension of traditional SNNs. Importantly, our primary
aim is not to achieve state-of-the-art (SOTA) results, but to demonstrate that the generalized f-SNN
[framework can improve existing integer-order SNNs. To our knowledge, SOTA performance on very
large datasets typically requires substantial computational resources, even within the energy-efficient
SNN community. We focus on fair comparisons by replacing the integer-order IF/LIF modules (9) in
traditional SNNs with the f-IF/f-LIF modules (13) from our f-SNN framework.

4.1 NEUROMORPHIC DATA CLASSIFICATION TASKS

Neuromorphic data are event-driven and exhibit strong spatiotemporal correlations. SNNs, with
their natural adaptability to spatiotemporal data (e.g., dynamic event processing and sparse coding),
efficiently model these correlations. Therefore, we conducted a series of experiments on neuro-
morphic datasets. Our experiments primarily focus on the following key evaluation aspects: (1)
Classification performance, and (2) Robustness of the proposed f-SNN model. More ablation
studies and experimental details will be presented in the Section D. Dataset & Baselines. We conduct
comprehensive evaluations of the proposed f-SNN framework on neuromorphic datasets including
N-MNIST (Orchard et al., 2015), DVS128Gesture (Amir et al., 2017), N-Caltech101 (Orchard et al.,
2015), DVS-Lip (Tan et al., 2022), and the large-scale dataset HarDVS (Wang et al., 2024). The
dataset details and experiment setting details are provided in Appendix Section D.

Experimental Setup. For the N-MNIST dataset, we set the batch size to 512, the number of time
steps 1" to 16, and train for 100 epochs using the Adam optimizer. For other neuromorphic datasets,
we follow the standard preprocessing pipeline of the SpikingJelly framework to convert event data
into frame representations. For time step configuration, DVS128Gesture, N-Caltech101, and DVS-Lip
are set to 16 time steps, while HarDVS is set to 8 time steps due to the large data size. N-Caltech101
is split into training and test sets with an 8:2 ratio. These datasets use a batch size of 16, with input
dimensions uniformly adjusted to 128x128 pixels. We train for 200 epochs using the Adam optimizer.

Classification Performance. In f-SNN, we have a hyperparameter « indicating the fractional order,
which gives the model an additional degree of freedom to capture richer temporal patterns. During
experiments, the optimal « is obtained via hyperparameter tuning. The experimental results on
neuromorphic datasets are shown in Table 1. We conduct comprehensive comparisons between
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f-SNN and baseline models. The experimental results demonstrate that under the same network
configurations, regardless of whether CNN or Transformer architectures are employed, f-SNN
significantly and consistently outperforms baseline networks implemented based on SpikingJelly
and snnTorch frameworks. These results validate the effectiveness and superiority of the proposed
f-SNN method in terms of classification performance. This is because f-SNN captures long-term
dependencies in membrane potential via fractional dynamics, enabling richer temporal patterns than
traditional models.

Performance Comparison under Noise Levels Performance Comparison under Occlude Block Ratios
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Figure 4: Robustness comparison between the proposed f-SNN and two integer-order baselines (LIF
in SpikingJelly and LIF in snnTorch). Left: Radar chart aggregating five corruption types (larger is
better): Gaussian noise injection, center occlude block, temporal truncate, temporal jitter, and discard
frame. Middle: Performance vs. noise level (x-axis: Gaussian noise std). Right: Performance vs.
occlusion ratio (x-axis: area ratio of the center block). The f-LIF (f-SNN) shows consistently higher
performance and slower degradation under all corruption types.

Robustness Analysis. We further validate the robustness advantages of f-SNN. We comprehensively
test the model’s stability from five dimensions: noise injection, occlude block, temporal truncate,
temporal jitter, and discard frame. Detailed experimental settings are provided in Section D.1.3.

No LIF

LIF

The experimental results are shown in Fig. 4,
where f-SNN significantly outperforms baseline
methods across all five robustness testing dimen-
sions. Particularly under high-intensity noise in-
jection and occlude block interference condi-
tions, our method demonstrates exceptional anti-
interference capability and stability. To more
intuitively validate our viewpoint, we visualize
the shallow feature maps with occlude blocks,
with results shown in Fig. 5. Our f-SNN model
can better capture object features under occlu-
sion conditions compared to the other two mod-
els. This advantage is primarily attributed to the
inherent characteristics of the f-LIF neuron mod- Figure 5: Feature map visualizations of LIF and
ule, which can generate more stable and reliable f-LIF in occluded block scenarios.

spike patterns, thereby effectively enhancing the

noise suppression capability and robustness performance of the entire network. We refer the readers to
the discussions in Section 3.1. Detailed test data and evaluation criteria can be found in the appendix.

f-LIF
occlusion ShH (snntorch) (f~SNN)

4.2 GRAPH LEARNING TASKS.

For graph learning tasks, our experiments focus on the following key aspects of evaluation: (1) Node
Classification performance; (2) Energy Efficiency; and (3) the Robustness of the proposed f-SNN
framework.

Dataset & Baselines. We conduct experiments on two mainstream GNN methods: SGCN (Zhu
et al., 2022), and DRSGNN (Zhao et al., 2024), using several commonly used graph learning datasets.
Specifically, Node classification is performed with SGCN and DRSGNN on Cora (McCallum et al.,
2000), Citeseer (Sen et al., 2008), Pubmed (Wang et al., 2019), Photo, Computers, and ogbn-arxiv (Hu
et al., 2020). To ensure fairness, we only replace the integer-order neuron modules in the baseline
models with our proposed modules, i.e., the LIF neuron (9) in SGCN and DRSGNN are changed to
our f-LIF iterations (13). This ensures our fractional adaptations have the same trainable parameters as
the baselines; only the charging phases (9) and (13) differ. Dataset details are provided in Section D.
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Experiment Setup. For node classification tasks based on SGCN and DRSGNN, we use Poisson spike
encoding. The number of timesteps IV is set to 100, and the batch size to 32. Datasets are split into
training/validation/test with ratios 0.7/0.2/0.1. For DRSGNN experiments, the positional-encoding
dimension is 32, using Laplacian (LSPE) (Dwivedi et al., 2023) or random-walk (RWPE) (Dwivedi
et al., 2021) encodings. All experiments are run independently 20 times; we report the mean and
standard deviation. Other experimental details are included in Section D.

Table 2: Node classification results in terms of classification accuracy (%) on multiple datasets. The
best results are boldfaced, while the runner-ups are underlined. Standard deviations are provided as
subscripts. The choice of f-SNNs’ parameter o will be shown in Table 4.

Methods Cora Citeseer Pubmed Photo Computers  ogbn-arxiv
SGCN (S)) 81.81+0.69 71.83+0.23 86.79+0.32 87.72+0.25 70.86+0.24  50.26+0.11
SGCN (snnTorch) 83.12i1,41 71.68i0A95 59.82i1A07 83‘34i0A89 74.88i0A87 21.55i0,13
SGCN (f-SNN) 88.08+058 73.804r051 87174028 92494032 89124021 51.1040.14
DRSGNN (S)) 83.30+0.64 72.7240.24 87.1310.34 88.3110.15 76.55+0.17 50.1340.14

DRSGNN (snnTorch) 80.98+1.71 68.00+0.69 59.564+1.05 82.28+0.93 76.78+0.81 28.4640.25
DRSGNN (f-SNN) 88.511062 75114045 87291032 91931020 88.77+020 53.1310.13

Node Classification Performance. The experimental results based on SGCN and DRSGNN are
shown in Table 2. Our fractional extension of SGCN and DRSGNN outperforms the original versions
implemented with traditional integer-order SNN toolboxes (SpikingJelly or snnTorch) in terms of
accuracy. These results highlight the clear advantage of our method in improving model accuracy.

Energy Consumption Comparison Across Datasets
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(a) Comparison of energy consumption between integer-
order SpikingJelly and snnTorch baselines and our f- (b) Robustness test for SGCN.

SNN framework.
Figure 6: Energy consumption and robustness evaluation. Best zoomed on screen.

Energy Consumption Analysis. Following (Yao et al., 2023a; 2024), we compare the energy
consumption of f-SNN and the integer-order method (SpikingJelly). Fig. 6a shows that f-SNN
achieves higher accuracy and significantly lower energy consumption across datasets, demonstrating
its superior energy efficiency. Details will be discussed in the Section D.3.

Robustness Test. We further validate the robustness advantage of f-SNN. Specifically, we randomly
add Gaussian noise (Hall, 1994) of varying intensities to the spike signals input to the network
to evaluate the robustness of spiking graph neural networks under different noise conditions. The
experimental results are shown in Fig. 6b.

5 CONCLUSION

In this work, we introduced a new f-SNN framework, which extends traditional SNNs by replac-
ing first-order ODEs with fractional-order ODEs to capture the non-Markovian characteristics and
long-term dependencies observed in biological neurons. Our experiments demonstrate that f-SNNs
consistently outperform integer-order SNNs across neuromorphic vision and graph benchmarks,
achieving higher accuracy, comparable energy efficiency, and improved noise robustness. The accom-
panying open-source toolbox facilitates adoption of the f-SNN framework across diverse architectures
and applications. These results establish f-SNNs as a promising extension of traditional SNNs, of-
fering a mathematically rigorous and biologically plausible approach to enhancing neuromorphic
computing capabilities.

10
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6 REPRODUCIBILITY STATEMENT

We release an open-source, out-of-the-box toolbox, spikeDE, built on the PyTorch platform to
support our f-SNN framework. The toolbox provides PyTorch-aligned interfaces and supports
convolutional neural networks (CNN), Transformer, ResNet, and multilayer perceptron (MLP)
architectures (Vaswani et al., 2017; LeCun et al., 1989; He et al., 2016; Zhou et al., 2022). We refer
readers to Section E and the supplementary code for usage; the toolbox supports all experiments in
this paper. Experimental settings and additional results are presented in Section D; preprocessing
steps and parameters are given in Section D.1 and in the supplementary code (zip archive). Complete
proofs of the theoretical results are presented in Section C. All datasets used are public; we follow
literature-standard train/validation/test splits without adjustment.

7 ETHICS STATEMENT

The Use of Large Language Models (LLMs): To improve the readability, parts of this paper
have been grammatically revised using ChatGPT (OpenAl, 2022). However, LLMs did not play a
significant role in the ideation of the paper or did not contribute to writing to the extent that they
could be regarded as a contributor.

Ethical Compliance: This submission adheres to the conference’s Code of Ethics. All authors
confirm that they have read and strictly followed the Code of Ethics, as acknowledged during the
submission process.
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A RELATED WORK

A.1 SPIKING NEURAL NETWORKS

Traditional artificial neural networks (ANNSs) have achieved remarkable success across a wide
range of tasks (Krizhevsky et al., 2012; LeCun et al., 2015; Vaswani et al., 2017). However, these
models differ significantly from biological neural networks, and their computational requirements far
exceed those of the human brain (Dhar, 2020). This discrepancy has motivated the development of
Spiking Neural Networks (SNNs) (Maass, 1997; Ghosh-Dastidar & Adeli, 2009; Lee et al., 2016;
Wu et al., 2018; Zheng et al., 2021; Zhou et al., 2022), which offer a more biologically plausible
model by communicating through discrete spikes instead of continuous signals. Their event-driven
computation enables significant energy savings, particularly on neuromorphic hardware (Roy et al.,
2019; Pei et al., 2019). Furthermore, SNNs treat time as an intrinsic component, making them
well-suited for applications in time-series prediction and real-time interactive systems (Yao et al.,
2023b; Luo et al., 2024; Yao et al., 2021). Early biophysical models such as the Hodgkin-Huxley
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model (Hodgkin & Huxley, 1952) offer an accurate description of action-potential generation but
are computationally expensive, particularly for large-scale learning tasks. Consequently, simplified
neuron models, such as the Integrate-and-Fire (IF) and Leaky Integrate-and-Fire (LIF) models, have
become widely adopted in SNN research (Abbott, 1999; Stein, 1965; 1967). Beyond the basic
IF/LIF models, a variety of extensions have been proposed to address different modeling challenges.
Adaptive Leaky Integrate-and-Fire (ALIF) SNN neuron incorporates neural adaptation mechanisms,
such as adaptive thresholds, enhancing the temporal dependency modeling and working memory
capacity of SNNs (Bellec et al., 2018; Benda, 2021). The Generalized LIF (GLIF) introduces a
more physiologically motivated framework, enabling accurate spike detection and unsupervised
differentiation of cortical cell types (Teeter et al., 2018). The Complementary LIF (CLIF) model
further enhances temporal gradient propagation and long-term dependency learning by incorporating
a complementary membrane potential state (Huang et al., 2024). The Parallel Spiking Neuron (PSN)
model eliminates the need for reset mechanisms, facilitating fully connected temporal modeling that
allows for time-step parallelism, which accelerates both training and inference (Fang et al., 2023b).
Additional neuron models, such as ternary spikes (Guo et al., 2024) and adaptive membrane time
constants (Koch et al., 1996; Zhang et al., 2025), further extend the capabilities of SNNs. Despite
these advances, most existing SNNs discretize only first-order ordinary differential equations (ODEs),
which describe dynamics governed by d/d¢ terms, and assume a Markovian property, where the state
at any time depends only on its immediate past (see (9)) (Maass, 1997; Ghosh-Dastidar & Adeli,
2009; Eshraghian et al., 2023b). While this simplification aids tractability, it imposes limitations on
expressiveness. Neurophysiological evidence indicates that real neurons exhibit long-range temporal
correlations (Gilboa et al., 2005), fractal dendritic morphologies (Coop et al., 2010; Kirch & Gollo,
2020), and interactions among multiple active membrane conductances (La Camera et al., 2006;
Miller & Troyer, 2002), leading to dynamics that integer-order, Markovian models capture only
imperfectly (Ulanovsky et al., 2004; La Camera et al., 2006; Miller & Troyer, 2002; Spain et al.,
1991).

Distinction from Prior SNN Families. The models discussed above all belong to the integer-order
family, where the subthreshold dynamics can be expressed as a first-order ordinary differential
equation (ODE) of the form

dU(t)

dt

where Dynamic(-) denotes the specific membrane-potential update rule used by models such as
IF, LIF (cf. (10) and (11)), ALIF, GLIF, CLIF, and other related variants. These approaches mainly
explore different choices for the function Dynamic(-), all within the same first-order, Markovian
framework.

First-order SNN neuron dynamics: = D,\jnami(t((f(/), Ii“(/)). (20)

In contrast, our work introduces a fractional-order SNN framework, which is based on

Fractional-order SNN neuron dynamics: DU (t) = Dynamic(U (t), Iin(t)), 0<a<l,
21

where Dy* represents a fractional (nonlocal-in-time) derivative. This formulation generalizes the
integer-order case, which is recovered when o« = 1, and incorporates long-term memory in the
membrane potential and spike trains through fractional dynamics. In the main text, we instantiate
this framework with fractional IF and LIF neurons, but the same approach can naturally extend to
more complex neuron models, such as ALIF, GLIF, and CLIF. Our spikeDE toolbox offers modular
implementations that facilitate the realization of these fractional variants. We believe this contribution
significantly advances the field by introducing nonlocal-in-time discrete dynamics to SNN modeling.

A.2 EVENT CAMERA

Event cameras, as novel bio-inspired sensors, capture pixel-level brightness changes through an asyn-
chronous triggering mechanism (Gallego et al., 2020). With microsecond-level temporal resolution
(equivalent to 10,000 fps) and a high dynamic range (140 dB) (Rebecq et al., 2019), they provide a
groundbreaking solution for perception in high-speed dynamic scenes. Unlike traditional frame-based
vision sensors, event cameras only record pixels undergoing changes in the scene, generating sparse
event streams. This data structure not only significantly reduces redundant information but also
enables robust perception under rapid motion and challenging lighting conditions. In the field of
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event stream processing, the asynchronous and sparse nature of event data poses challenges for
conventional frame-based CNN algorithms. To address these challenges, researchers have proposed
various encoding and processing methods tailored to the unique characteristics of event data. For
instance, (Neftci et al., 2019) introduced a surrogate gradient-based method to transform event
streams into pulse sequences compatible with neural network processing. (Xu et al., 2025) proposed
the Motion-Encoded Time-Surface (METS), which dynamically encodes pixel-level decay rates in
time surfaces to capture the spatiotemporal dynamics reflected by events. This approach successfully
addresses the challenge of pose tracking in high-speed scenarios using event cameras. Significant
progress has also been made in network architecture optimization. (Yu et al., 2022a) developed
the STSC-SNN model, which introduces synaptic connections with spatiotemporal dependencies,
significantly enhancing the ability of spiking neural networks to process temporal information. Fur-
thermore, event cameras, with their low latency and high dynamic range, have demonstrated broad
application potential in fields such as robotic control, autonomous driving, and object tracking. For
example, (Cuadrado et al., 2023) proposed a 3D convolution-based spatiotemporal feature encoding
method, utilizing a hierarchical separable convolution architecture to greatly improve the accuracy
and efficiency of optical flow estimation in driving scenarios using event cameras. On the hardware
optimization front, researchers have actively developed systems tailored for efficient event stream
processing. (Isik et al., 2024) constructed a neuromorphic vision system based on the Intel Loihi 2
chip, achieving significantly lower power consumption compared to traditional GPU solutions, thus
providing critical support for the efficient deployment of event cameras.

B MORE TECHNICAL DETAILS

B.1 MORE ABOUT FRACTIONAL CALCULUS

In Section 2.1 of the main paper, we presented the (left) Caputo fractional derivative and discussed
numerical schemes for solving fractional-order ODEs. Here we provide additional background on
fractional calculus that underpins our approach. For clarity, we note that throughout the main paper, all
references to the Caputo fractional derivative specifically denote the left Caputo fractional derivative
D=,

CLASSICAL DERIVATIVES AND INTEGRALS

For a scalar function y(t), the ordinary first-order derivative captures its instantaneous rate of change:
dy(t t+ At) —y(t
YO _ ) o g YEFAD —y(0)

dt T AES0 At (22)

Let J denote the integral operator that assigns to each function y(t), which we assume to be Riemann
integrable on the closed interval [0, T, its antiderivative starting from a:

t
Jy(t) ::/ y(r)dr fort € [0,T]. (23)

When considering positive integers n € NT, we write J" to indicate the n-fold composition of .J,
where J! = J and J" := .J o J""! for n > 2. Through repeated integration by parts, one can show
that (Diethelm, 2010)[Lemma 1.1.]:

¢
! )'/(t—T)n_ly(T)dT forn € N*. (24)

Jhy(t) = (I

EXTENDING TO NON-INTEGER ORDERS: FRACTIONAL INTEGRALS AND DERIVATIVES

Fractional Integrals Operators: Fractional integrals extend classical integration theory by allowing
non-integer orders of integration. Among various formulations, the Riemann-Liouville fractional
integrals are particularly fundamental (Tarasov, 2011)[page 4]. For a positive real parameter o € R™,
we define the left-sided and right-sided Riemann-Liouville fractional integral operators, denoted Ji3,
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and Jij ., as follows:

1 ! a—1
e [ =t ar

b
T2 y(t) = ﬁ / (r — )" Yy(r) dr,

where I'(«) represents the gamma function, which provides a continuous extension of the factorial
operation to real and complex domains. The key distinction from classical repeated integration lies in
the flexibility of the order parameter: while traditional calculus restricts the order n in (24) to positive

integers, the fractional order « in (25) spans the entire positive real line, enabling a continuous
spectrum of integration orders.

Jierey(t) =
(25)

Fractional Derivative Operators: Parallel to fractional integration, the concept of a fractional
derivative extends the operation of differentiation to arbitrary non-integer orders. This allows for a
more nuanced understanding of rates of change in complex systems.

One common formulation is the Riemann-Liouville fractional derivative. The left-sided (R D®) and
right-sided (RLD;)"_) versions are formally defined by first applying a fractional integral and then an
integer-order derivative (Tarasov, 2011):

dm B 1 dm ¢ y(T)dT
RL na m—a

DYy(t) == ——J, t)=

y( ) dtm, left y( ) F(m — O[) dtm A (t - T)a7m+1

am (=pm dm T y(r)dr
RL na R m m —
Diyt) = (21" g Jriga y(0) = I'(m—a) dtm/t (1 — t)a—mt1’

(26)

Here, m is the smallest integer such thatm — 1 < a < m.

Another widely used definition is the Caputo fractional derivative. The left-sided (D<) and right-
sided (Dy"_) Caputo derivatives are distinct from the Riemann-Liouville formulation in the order of
operations: they involve first taking an integer-order derivative and then applying a fractional integral
(Tarasov, 2011). They are defined as follows:

et m—ao dm 1 i dd;;/y(T) dr
D y(t) = Jleft Wy(t) = F(m _ Oé) /a (t _ 7—)04—7n—|-17

dm (_1)m b dd;lny(T) dr
)/t (

Dy y(t) = (~1)"Jme t) = :
bfy( ) ( ) right dem y< ) F(m —« T — t)ozferl

27)

The Caputo formulation offers several advantages: it produces zero when applied to constant functions
(matching classical derivatives), and it accommodates standard initial conditions in differential
equations, making it particularly suitable for modeling physical systems. We therefore choose the
Caputo formulation.

A fundamental characteristic distinguishing fractional derivatives from their integer-order counterparts
is their inherent non-locality. The integral representations in (26) and (27) reveal that fractional
derivatives incorporate weighted contributions from the function’s entire history on the interval
[a, ] (for left-sided) or [t, b] (for right-sided). This memory effect contrasts sharply with classical
derivatives, which depend only on infinitesimal neighborhoods around the evaluation point. The
weighting kernel (t — 7)®~™%1 determines how past states influence the present derivative value,
with the fractional order o controlling the decay rate of this historical influence.

This memory-dependent nature makes fractional derivatives particularly valuable for modeling
systems with hereditary properties, long-range interactions, or anomalous diffusion phenomena.
In the limiting case where a approaches an integer value, these fractional operators smoothly
transition to their classical counterparts (Diethelm, 2010), establishing fractional calculus as a genuine
generalization of traditional calculus. For instance, when o = n € N, both Riemann-Liouville and
Caputo derivatives reduce to the standard n-th order derivative, ensuring theoretical consistency
and practical applicability across the entire spectrum of differentiation orders. When dealing with
vector-valued functions, the fractional operators act independently on each component, in direct
analogy to the multivariate extension of ordinary differentiation and integration.
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B.2 SURROGATE FUNCTIONS IN f-SNN

Training SNNs presents a fundamental challenge: the spiking function (Heaviside step function) is
non-differentiable, making standard backpropagation impossible. To address this, similar to other
works (Wu et al., 2018), we employ surrogate gradient methods that replace the undefined derivative
of the step function with smooth approximations during the backward pass. In the main paper, we
present the threshold-shifted sigmoid function. Our toolbox also implements other commonly used
surrogate functions. We present them in this section.

For all surrogate functions, the forward pass computes the standard Heaviside step function:
1, ifz>0
H — ’ - 28
(z) {o, ifz <0 28)

The backward pass, however, replaces H'(x) with a surrogate gradient s(z). Below, we detail each
surrogate function implemented in our toolbox spikeDE, which can be chosen freely by users.

B.2.1 SIGMOID SURROGATE
The sigmoid surrogate uses the derivative of the scaled sigmoid function:
Ssigmoid () = k- o(kx) - (1 — o(KT)) (29)

where o(x) = H% is the sigmoid function and & is a scaling parameter (default: £ = 5.0).
This surrogate provides smooth gradients centered around the threshold, with the scale parameter
controlling the sharpness of the approximation.

B.2.2 ARCTANGENT SURROGATE

The arctangent surrogate employs the derivative of the arctangent function:

K

1y (k)2 G0

Sarctan (.%‘ )

where & is the scale parameter (default: x = 2.0). This function provides a bell-shaped gradient
profile with heavier tails compared to the sigmoid surrogate, potentially allowing gradient flow for
neurons further from the threshold.

B.2.3 PIECEWISE LINEAR SURROGATE

The piecewise linear surrogate defines a simple triangular approximation:

if —y<z<y

1
slinear(x) = { 2y’ (31)

0, otherwise
where v defines the width of the linear region (default: v = 1.0). This surrogate provides constant

gradients within a fixed window around the threshold, offering computational efficiency at the cost of
gradient smoothness.

B.2.4 GAUSSIAN SURROGATE

The Gaussian surrogate uses a normalized Gaussian function:

1 x?
5gaussian<x) = m €xp _ﬁ (32)

where o is the standard deviation parameter (default: o = 1.0). This surrogate provides the smoothest
gradient profile with exponential decay away from the threshold.
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Figure 7: f-SNN illustration. Within each layer, the current update aggregates all past states of that
layer. For efficiency, the short-memory principle approximates the fractional dynamics by retaining
only the last M timesteps.

B.2.5 SURROGATE GRADIENT IMPLEMENTATION

In practice, during backpropagation through a spiking layer, the gradient of the loss £ with respect to
the membrane potential u is computed as:

oL oL

o5 W
where s represents the spike output and s(u) is the chosen surrogate gradient function. The choice of
surrogate function and its hyperparameters impacts training dynamics, with sharper surrogates (larger
scale parameters) providing more precise threshold behavior but potentially suffering from vanishing
gradients.

(33)

B.3 MORE ABOUT FRAMEWORK AND ITS VISUALIZATION

In the main paper, we illustrate the distinct information flow characteristics of f-SNN compared to
traditional SNNs in Fig. 1. In conventional SNNs, the iterative nature results in skip connections. In
contrast, f-SNN utilizes dense connections, which arise from the weighted summation within the
ABM predictor, as described in (13). The diagram can be seen in Fig. 7. Within each layer, the current
update aggregates all past states of that layer. For efficiency, the short-memory principle approximates
the fractional dynamics by retaining only the last M timesteps.

The coefficients ¢'g) = #F(a) [(m 4+ 1)® — m®] define a causal memory kernel that decays

according to a power-law, capturing the historical influence of the system. As depicted in Fig. 8, this
decay is “heavy-tailed”, meaning that although recent states dominate the influence, the contributions
from past events remain significant over time, in contrast to the rapid decay for integer-order system.

For large m, the decay of input influence follows the relationship:
% o (m4 1) —m®

Expanding this expression, we get:

1 «
c,(fl‘)%mo‘(<1+) —1) ocm® 1,
m

for large m. This confirms that the kernel exhibits algebraic decay.
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Coefficient c!? for different a values

Figure 8: f-SNN coefficient c,(ﬁ ) visuilization. cgf{‘ ) is causal and decays as a power law, explicitly

encoding memory. This decay profile is “heavy-tailed,” meaning that while recent states exert the
strongest influence, distant past events retain a non-negligible impact compared to exponential decay.

C THEORETICAL RESULTS AND COMPLEXITY ANALYSIS

C.1 PROOF OF PROPOSITION 1

Proof. For the first-order case, we multiply both sides of (5) by e*/7, yielding

tm U Ly By
dt T T

This simplifies to

% (Uet/'r) = g[cet/T.

Integrating both sides with respect to ¢, we obtain
R
U(t)et™ = /—Icet/T dt +C = RI.e’" + C,
T

where C is the constant of integration. Solving for U (¢), we find
U(t) = RI, + Ce /7.

Applying the initial condition U (0) = Uy, we get Uy = RI. + C. So C = Uy — RI.. Therefore, the
solution is

U(t) = RI. + (Uy — RI.) e /7.

For the fractional case, we take a more general Laplace transform approach. Applying the Laplace
transform to both sides of (11), and using the property
L{°D}U(t)} = s“U(s) — s* U,

we obtain the transformed equation:

1
SaU(S) — Sa_lU() + ;U(S) =

Rearranging terms and solving for U (s), we get:

So we have
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To simplify the second term, observe the partial fraction identity:

1 T Tso~1

s(so‘—k%) s so L

T

Substituting this expression, we obtain:

-1
s Uo
s 4 1

T

1 a—1 Ic a—1 _ Ic
U(s) = - o) - e TR

A :
s s+ = S s*+ =

T

Taking the inverse Laplace transform and using the identity

. sa—l N
£ s¥ +q = Ea(_at )7

where F,,(+) is the Mittag-Leffler function, we arrive at the time-domain solution:

U(t) = RI. + (Uy — RI) Es (’f) .

The power-law tail E,, (—t%/74) ~ N

1170&)” for large ¢ follows from (Diethelm, 2010)[Theorem
4.3.].

O

C.2 PROOF OF THEOREM 1

In this section, we analyze the robustness of our f-SNN framework under input perturbations. We
examine two critical aspects: (i) the temporal evolution of membrane potential perturbations, and (ii)
the sensitivity of spike timing to input variations. Our analysis reveals that fractional-order dynamics
exhibit distinct robustness properties compared to classical integer-order models.

To facilitate the analysis in this section, we choose the F-IF neuron dynamics with the continuous
formulation (10):

7DU(t) = RIun(t).

From Diethelm, 2010[Lemma 6.2.], the above fractional-order ODE can be equivalently written as
the following Volterra integral equation:

U(t) = Us + %a) /0 (t— u)a—lgﬁ (u)du (34)

In the following, we consider a constant current input I;,,(t) = I perturbed by a small deviation e,
yielding Ipern, (t) = I + €. Without loss of generality, we assume Uy = 0.

e Membrane Potential Robustness

We denote by Ucjean(t) and Upe,h, () the membrane potential under the clean input I, and perturbed
input I, + ¢, respectively. From (34), we obtain:

RI. [* RI. [t® RI,
Udean(t) = —— [ (t —w)* tdu= — | —| = —=—1° 35
tean(?) (o) /0 (t-v) " T (o) {a} (e +1) (35)
Similarly, we have:
R(I. +¢) /t . R(I. +¢)
Uperb(t) = ———— t—u)* du = ——~t°
perb(t) () J (t =) “ T(a+1)
The difference between perturbed and unperturbed membrane potentials evolves as:
Re
A f-IF _ . _ an _ " o
U™ (1) = Uperb(t) — Uclean (t) ot 1)75
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In contrast, for the classical IF model (limit of « — 1), we have:

R
AUT(t) = 54
T

Since 0 < o < 1, the perturbation growth follows ¢t (sub-linear) for the fractional model versus ¢
(linear) for the IF model. This sub-linear accumulation demonstrates that fractional-order dynamics
inherently suppress long-term accumulation of perturbation through memory effects encoded in the
fractional derivative.

o Spike Timing Sensitivity

The first spike time occurs when the membrane potential reaches threshold . We emphasize the
necessity of robust spike timing, noting that various learning algorithms rely explicitly on these
temporal values (Bohte et al., 2002; Booij & tat Nguyen, 2005; Rathi et al., 2019).

For the f-IF system, from (35), we have:

tclean _ GTF(Oé + 1) e
s RI,

Under perturbation I. — I. + €, the spike time changes to:

e _ (070(a + 1)\
* T\ R(L.+e

We define the spike time shift magnitude as At, = [tlean — ¢perb|

1/a 1/a
N 0T (e + 1) / {1 1. /
5 RI, I. +¢€
For small perturbations € < I, using Taylor expansion:
I. 1/a (1. i -1/«
I.+¢€ o 1.
1 €
=14+ (=) (=) +0(
(a) (i) ree

The first-order approximation is therefore:

(36)

| S

AFTF ~ Ol (a+1) Ve ¢
s 1 RI, al,
For the classical IF model, following the same procedure, we obtain:
or ¢
AtF| ~ - —
= RI. 1.

Examining the dependence on input current /., we observe that for the fractional model, the sensitivity
decays more rapidly with increasing I., as the dependence is:

At’;’IF X €- IC_(H'l/O“)
For the IF model, it decays as:
|AtF | oce- 172

Since 1 + 1/a > 2 for 0 < « < 1, this shows that the fractional model is more robust in terms of
spike timing for high input currents.

These findings demonstrate that fractional-order dynamics introduce a nuanced robustness profile,
with distinct advantages in specific operational regimes rather than universal superiority.
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C.3 PROOF OF THEOREM 2

In this section, we analyze the representational capacity of the f-SNN neuron compared to finite
banks of standard integer-order SNN neurons. We demonstrate that fractional dynamics induce an
infinite-memory structure that cannot be exactly realized by any finite linear combination of integer-
order SNN neurons with arbitrary weights. This structure can only be represented as an infinite
continuum of integer-order modes.

Let the discrete time index be £ € Zx>(. In the main paper, we use a fractional ABM predictor
to discretize the f-SNN with Caputo derivative D for presentation. The literature offers various
definitions of fractional derivatives. To facilitate the theoretical analysis in this section, we instead
utilize the Griinwald-Letnikov (GL) definition (Diethelm, 2010) here. We emphasize that our f-SNN
toolbox spikeDE supports multiple fractional definitions, including Caputo, GL, and others. The
analysis here does not restrict the implementation.

Definition 2 (Griinwald-Letnikov Fractional Derivative). For a function y(t) defined over an interval
[0, T, its Griinwald-Letnikov fractional derivative of order o € (0, 1] is given by (Diethelm, 2010):

4]
Day(t) = lim -1 3" (-1 (?‘)w ). 37

h—0 h® 7

The GL weights are defined as:
A = (~1)) (0‘> (38)

Recall the fractional-order ODE from (3): D&, y(t) = f(t,y(t)). Approximating D@, vy (¢i) by the
finite GL sum gives:

k
Sy =hF (teyr) -
=0

Without loss of generality, for the neurons, we set 7 = 1, h = 1, and R = 1 to simplify the analysis
(the constants here just rescale things and can be absorbed into input X'). For simplicity, we primarily

consider the f-IF neuron to demonstrate that any finite linear combination of integer-order LIF

neurons with arbitrary weights cannot exactly realize it. Noting that c(()a) = 1, the discrete-time

membrane potential update for the f-IF, based on the GL definition, is given by:
k g
ST (39)
§=0

where UilFJ is the membrane potential of f-IF neuron.
Recall a standard discrete-time LIF neuron with a leak factor § € (0, 1) is governed by the recurrence:
UIICAIF(ﬁ) _ BU]]:E:l(ﬁ) + Xk, U(IJAIF(ﬁ) -0

By unrolling the recurrence, we obtain the solution

k—1
U]?IF(ﬁ) — Z Bkarfm — (h(ﬂ) % X)

m=0

k
where the impulse response is the geometric sequence
h%) — 677L7 m>0

We now consider a finite bank of integer-order neurons with leak factors { Bi}zl C (0,1] and readout
weights {ﬁbz}qVL C R. The aggregate output is denoted as:

w
(.-A]k _ Z ¢1UEIF(51)

i=1
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Theorem 3 (Playback of Theorem 2). Let U/''F denote the trajectory of a f-IF neuron with order

a € (0,1). There exist no finite integer W, weights {¢i}zl, and leak factors {Bi}yil such that the
following holds:

w
i=1
for general input Xy. The impulse response error of the approximation is O(k“~1), decaying

algebraically slowly. The f-1F neuron is mathematically equivalent to an aggregate of integer-order
LIF neurons if and only if W — oo, specifically as an integral over a continuum of leak factors.

Remark 6. The result above emphasizes the infinite-dimensional nature of the f-IF neuron compared
to any finite-dimensional approximation via integer-order neurons. Intuitively, the impulse response of
a standard integer-order neuron decays exponentially (3% = e=**), characterizing a “short-memory”
process. In contrast, the fractional neuron exhibits an impulse response that decays according to a
power law (K1), characterizing a “long-memory” process. A finite sum of exponentials can never
exactly match a power law tail.

Proof. Recall from (39) that:
k

> = X,
j=0

which represents a discrete convolution (c(®) + U/F), = X .. Applying the Z-transform converts
this convolution into the algebraic product:

where C(z) = >372, c§»a)z_j is the Z-transform of the kernel, and U(z) and X(z) are the Z-
transforms of Ui‘IF and X, respectively.

Using the generalized binomial theorem, we identify the series expansion of the kernel as:
C(2) = i (?‘)(_2—1)3‘ —(1—2h)e
i=o

Thus, the transfer function H/F(2) = U(z)

546 ﬁ is the reciprocal of the kernel:

HEF(z) = (1—-271)7"
Since (1 — 271)~ has an algebraic branch point at z = 1 for o ¢ Z, it is non-rational.

By the linearity of the Z-transform, the aggregate transfer function H (z) is the weighted sum of

the individual transfer functions. Since the impulse response of the i-th LIF neuron is the geometric

sequence hgffi) = (", its Z-transform is the standard geometric series:

= 1
H;(2) = mam o~
(Z) Tnzzoﬁz Z 1— Biz—l
Therefore, the aggregate transfer function is:
w w b
H(z) =Y ¢iHi(z) =Y Fﬁﬁ
i=1 i=1 *

This is strictly a rational function of z with degree at most WW. A discrete-time linear time-invariant
(LTI) system has a finite-dimensional state-space realization if and only if its transfer function is
rational. Since H/;'F () is irrational, it implies that the system possesses an infinite-dimensional state
space and cannot be realized by any finite WW.
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The rigorous link between the the transfer functions is established through the asymptotic decay rates
of the impulse responses. The impulse response of the finite bank, hf,;““e, is the inverse Z-transform

of the rational function H (z). This yields a linear combination of geometric sequences:

w
hgmte _ Z*l {Z — Bl } Zézﬁk

Let Smax = max; |3;]. Since stability requires |3;] < 1, the decay is bounded exponentially:

|| < (Z |64l ) o (40)

In contrast, the impulse response of the fractional neuron corresponds to the coefficients of the
irrational function (1 — z~1)~“. By the generalized binomial theorem, for |271| <1,

e e —a\ _p = Dlh+a) _
(1-=79) _Z(l)k(k>z k_kzol“(a)l“(k—i-l)z "

Thus the coefficient of 2z~ is

IF (k—i—a)
e [(a)l(k +1)

Using the asymptotic property of the ratio of Gamma functions, this response follows a power-law
decay:

1

-IF a—1

W~ @k; as k — oo. 41)
Comparing the exponential decay of the finite bank and the power-law decay of the fractional neuron,
we observe that the exponential decay is strictly faster than the algebraic decay. Hence, for any fixed
W, there exists a time step 7 such that for all £ > T, the finite approximation becomes negligible
relative to the fractional signal:

finite
lim |—£—
k=00 hf IF

This implies that for sufficiently large k, the finite approximation hy, becomes negligible relative to

h’;’IF. Specifically, there exists a time 7™ %W,Z IF\. Consequently, the
pointwise error at the tail is lower-bounded:
|k — | = (1| = [he > Ih”FI SRS

20(a)

Thus, the “heavy-tailed” memory induced by the irrational transfer function cannot be captured by
the "light-tailed" exponential memory of any finite rational system.

Although no finite realization exists, we show that an infinite representation is valid. Use the Beta-
function identity

F'(m+a)l'(1 —a)
T'(m+1)

1
Bm+a,1—a)= / tmresl(1 —t)"dt =
0

Divide both sides by I'(«)T'(1 — «) = B(«, 1 — «) to obtain
r ot 1=
0

Ia)T(m+1 B(a,1 — «)
Hence, with
a—1 1— —a
o) = P P
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we have
1
hf—IF — md o .
= [ amdva(o)

Therefore, there exists a spectral measure v,, supported on [0, 1] such that:

k—1

ut=3 ( /0 1 ﬂmdva(ﬁ)) Xi—1-m

m=0

By Fubini’s theorem (the sum and integral are both over non-negative indices and the integrand is
non-negative), we may exchange the summation and integration:

k—1

f-IF ! m ' LIF(B)
vl :/0 mZ:O/ﬁ Xiotom dua(m:/o U O gy, ()

where U, ,f F(5) is the state of a LIF neuron with leak factor 5.

This establishes that the fractional neuron state U ,i_IF is the aggregate output of a population of LIF

neurons U,I;IF(ﬁ i), distributed over the leak factor 8; € (0, 1] according to the density v,,. In other

words, the fractional neuron state is a continuous mixture of integer-order LIF neurons.

O

C.4 COROLLARY: SPIKE TRAIN IRREDUCIBILITY

We thank the reviewer for this insightful question and apologize if our presentation was unclear. The
reviewer raises an important point: Theorem 2 establishes irreducibility at the membrane potential
level, but the functional output of a spiking neuron is the spike train. We now clarify the connection
between membrane potential dynamics and spike output expressivity.

Clarification: From Membrane Potential to Spike Output

The spike generation mechanism directly couples membrane potential to output: a spike is emitted
when Uy, > 0 (threshold). Therefore, the spike train Sy, € {0, 1} is a deterministic function of the
membrane trajectory:

Sy = H (Uy — 0)

where H(+) is the Heaviside step function. This coupling implies that differences in membrane
potential dynamics propagate to differences in spike train patterns.

We formalize this connection with the following corollary:

Corollary 1 (Spike Train Irreducibility). Let 0 < a < 1. For any finite integer W, weights
{p:}V, C R, leak factors {B3;}V., C (0,1), and any Boolean function f: {0,1}"V — {0,1}, there
exists an input sequence { Xy, } >0 and threshold 6 > 0 such that the spike train of the f-1F neuron
cannot be reproduced by any Boolean combination of spike trains from the W LIF neurons. That is,

S (SO SEEOWY for some k. (42)

Remark 7. This corollary establishes that the expressivity advantage of f-IF neurons extends to the
spike train level. While Theorem 2 demonstrates irreducibility in membrane potential dynamics, one
might wonder whether this advantage could be “washed out” by the thresholding nonlinearity. The
corollary confirms it is not: the spike patterns generated by a single f-IF neuron encode temporal
information that no finite ensemble of LIF neurons can reproduce, even when their outputs are
combined through arbitrary Boolean logic. This implies that f-SNNs possess fundamentally richer
spike-based representations, enabling them to communicate long-range temporal dependencies
through their spike trains in ways that conventional SNNs cannot.
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Proof. We prove this by construction using an impulse-silent-trigger sequence. This construction
explicitly demonstrates the role of long-range temporal memory.

Step 1: Input design. Define the input sequence as

A ifk=0,
X, =40 ifl<k<T-1, (43)
5§ ifk=T,

where A, > 0 are chosen appropriately, and 7 is a large delay parameter.

Step 2: Membrane potential at detection time 7. At time 7', the membrane potential comprises
two components: (i) the memory of the initial impulse A, decayed over T time steps, and (ii) the
immediate response to the test pulse §.

For f-1F:
U,;-IF:A.h;;lF+6'h€1F:A_th-lF+57 (44)

where h’;lIF ~ T~ /T'() exhibits power-law decay.

For the finite LIF ensemble: . .
Up=A-hp+34, (45)

where iLT = szil ¢zﬂzT

Step 3: Asymptotic separation. Define M = Zzl |p;| and Biax = max; |5;| < 1. Then

|hr| < M B (46)
The ratio of memory contributions satisfies
iLT M 17;1ax Na T—00
'h,—,IF' < (@) 1o, (47)

since exponential decay dominates power-law decay.

Step 4: Parameter selection. For any fixed finite ensemble (W, {¢;}, {5;}), choose T sufficiently
large such that

| < LR (48)
Set the remaining parameters as follows:
e A=1,
« 5= % h;;lF’
«f— %th-IF_HS: %thIF

Step 5: Spike analysis. We analyze the spike behavior at two critical times.

At time T': For f-IF, , ,
UfT.IF _ fT-IF 15— %h/;ﬂ: >0, 49)

so the f-1F neuron spikes: S‘?IF =1.

For each LIF neuron in the ensemble,

Or| < lhr| +8 < §HET + 3057 = 30" <0, (50)
so all LIF neurons are silent: S;IF(Bi) =0foralls e {1,..., W}
At times 0 < k < T': The f-IF membrane potential satisfies

Ut =A-m" <A BT =1<0, (51)
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so the f-IF neuron is silent: S‘Z;IF = 0. Similarly, all LIF neurons remain silent during this interval.

Step 6: Establishing a mismatch for any Boolean function. At time 7, all LIF neurons are silent,
o)

FOSEEED L SEEEWY — r(0,...,0). (52)
We consider two cases based on the value of f(0,...,0):
Case 1: If f(0,...,0) =0, then at time T,
SEF=140=f(0,...,0). (53)
Case 2: If f(0,...,0) = 1, then at any time 0 < k < T, all neurons are silent, so
ST =0#1=f(0,...,0). (54)
In both cases, the spike trains differ for some %, completing the proof. O

C.5 COMPLEX ANALYSIS

In the iteration of (13) using the ABM predictor (12), at each time-step ¢; we must evaluate the
fractional derivative f (¢;,y;) whichis R I (t) in f-IF and — U(t) + R Iin(t) in f-LIF neuron. If
there are N = T'/h steps in total, then summing the base cost C' per evaluation at each time step for
all layers with the growing cost O(k) of accumulating k-term histories yields ZQ;O(C +O0(k)) =
0] (N C+N 2). By leveraging a fast convolution routine (e.g. the FFT-based method of (Mathieu
et al., 2013)), the quadratic term can be reduced to O(N log N), giving an overall forward-pass
cost of O(NC + N log N). Since each step also stores its hidden state vector of dimension d, and
computing f at one timestamp incurs a peak memory P, the forward memory requirement grows
as O(P + Nd), where the Nd term accounts for saving all N evaluations { f (¢;, y])}j\]:1 Finally,
note that one can trim the O(NNd) storage of all past f (¢;,y;) values down to O(Md) by invoking
the “short-memory” approximation, keeping only the most recent M terms in the iterations. The
experimental computational complexity is presented in Section D.2.3.

D IMPLEMENTATION DETAILS, DATASET SPECIFICS AND MORE
EXPERIMENTS

D.1 EXPERIMENT SETTINGS

D.1.1 GRAPH LEARNING TASKS.

Datasets & Baselines. Our experiments evaluate model performance on a diverse collection of
graph-structured datasets spanning multiple domains, following standard preprocessing protocols
in geometric deep learning, with their detailed statistics summarized in Table 3. Specifically, node
classification is performed with SGCN and DRSGNN on Cora, Citeseer, Pubmed, Photo, Computers,
and ogbn-arxiv. Additionally, we conduct link prediction experiments with MSG-based methods (Sun
et al., 2024) on Computers, Photo, CS, and Physics, with results presented in the following section
Section D.2.1.

Training& Inference settings. For node classification tasks based on SGCN and DRSGNN, we use
Poisson encoding to generate spike data following a Poisson distribution. The number of timesteps
N is set to 100, and the batch size is set to 32. The dataset is divided into training, validation, and
test sets in the ratio of 0.7, 0.2 and 0.1. Additionally, for experiments based on DRSGNN, we set the
dimension of the positional encoding to 32 and adopt the Laplacian eigenvectors (LSPE) (Dwivedi
et al., 2023) or random walk (RWPE) (Dwivedi et al., 2021) method. For link prediction tasks on
MSG, we follow the experimental settings described in the original MSG paper. Specifically, we
use IF neurons and the Lorentz model, set the dimension of the representation space to 32, and
configure the timesteps to [5, 15]. The optimizer used is Adam, with an initial learning rate of 0.001.
All experiments are independently run 20 times, with the mean and standard deviation reported.

Selection of Different o Values. Table 4 shows the parameter a we chose in the graph learning tasks.
The corresponding results are shown in Table 2.
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Table 3: Dataset Statistics of Node Classification Task

Name # of Nodes # of Classes # of Features # of Edges
Cora 2,708 7 1,433 10,556
Pubmed 19,717 3 500 88,648
Citeseer 3,327 6 3,703 9,104
Photo 7,650 8 745 238,162
Computers 13,752 10 767 491,722
OGBN-Arxiv 169,343 40 128 1,166,243
CS 18,333 15 6,805 163,788
Physics 34,493 5 8,415 495,924

Table 4: The selection of the parameter c. The boldfaced values represent the values where our model
achieved the best performance, while the non-bold values indicate cases where the best performance
was achieved at o = 1.

Methods Cora Citeseer Pubmed Photo Computers ogbn-arxiv
SGNN (f-SNN) 0.3 0.3 0.9 0.8 0.8 0.9
DRSGNN (f-SNN) 0.3 0.3 0.8 0.8 0.8 0.5

D.1.2 NEUROMORPHIC DATA CLASSIFICATION TASKS.

Datasets & Baselines. We conduct experiments on five visual classification tasks, including N-
MNIST (Orchard et al., 2015), DVS128Gesture (Amir et al., 2017), N-Caltech101 (Orchard et al.,
2015), DVS-Lip (Tan et al., 2022), and the large-scale dataset HarDVS (Wang et al., 2024). N-MNIST
is a dataset that converts the classic MNIST handwritten digit dataset into neuromorphic event
data. It generates event streams by observing moving MNIST digit images on a screen through a
Dynamic Vision Sensor (DVS), covering 10 digit categories (0-9). DVS128Gesture is a neuromorphic
dataset collected using a Dynamic Vision Sensor (DVS) event camera, designed for dynamic gesture
recognition tasks. The event camera captures pixel-level brightness changes with microsecond
temporal resolution. The dataset includes 1,342 samples across 11 gesture categories, such as
clockwise rotation, counterclockwise rotation, and left-hand waving. N-Caltech101 is an event
camera-based dataset derived from the traditional static image dataset Caltech101. The original
Caltech101 dataset contains 101 object categories (e.g., animals, vehicles, household items), with
each category containing 40 to 800 static images. By simulating translational, rotational, and other
movements, event cameras dynamically capture these static images to generate the corresponding
neuromorphic data. Similar to DVS128Gesture, the data from N-Caltech101 is represented as event
streams, which encode pixel-wise brightness changes over time. The classification task focuses on
recognizing object categories in dynamic scenes. DVS-Lip is an event camera dataset specifically
designed for lip reading, utilizing the high temporal resolution characteristics of event cameras to
record fine-grained changes in lip movements. HarDVS is a large-scale human action recognition
event dataset containing over 100,000 temporal event stream samples, covering 300 different human
activity categories.

To ensure fairness and comparability, we employ two backbone network architectures, CNN and
Transformer, on the same datasets, differing only in the choice of spiking neuron modules. The
baseline methods use the neuron . LIFNode module from the SpikingJelly framework (Fang et al.,
2023a) and the snn.leaky module from the snnTorch framework (Eshraghian et al., 2023a),
respectively, while our method adopts the f-LIF neuron module (13) defined in f~-SNN. The CNN-
based-SNN network architecture follows the design of DVSNet in SpikingJelly, while the Transformer-
based-SNN uses the structure of Spikformer (Zhou et al., 2022) as the backbone network.

Training& Inference settings. For the N-MNIST dataset, we set the batch size to 512, the number
of timesteps 1" to 16, and use the Adam optimizer to train for 100 epochs.
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For other neuromorphic datasets, we follow the standard preprocessing pipeline of the Spiking-
Jelly framework, converting event data into frame representations. For timesteps configuration,
DVS128Gesture, N-Caltech101, and DVS-Lip are set to 16 timesteps, while HarDVS is set to 8
timesteps. N-Caltech101 is split into training and test sets with an 8:2 ratio. All neuromorphic datasets
use a batch size of 16, with the input size uniformly adjusted to 128x128 pixels. For CNN-based
models, training is conducted using the Adam optimizer for 200 epochs, while Transformer-based
models are trained for 500 epochs.

D.1.3 ROBUSTNESS ANALYSIS SETTING

We validate the robustness advantages of f-SNN in Section 4.1. Specifically, we comprehensively
test the model’s stability from five dimensions: noise injection, occlude block, temporal truncate,
temporal jitter, and discard frame.

Noise Injection: Real-world applications often encounter sensor noise and environmental interfer-
ence, which challenges the model’s stability under noisy conditions. To evaluate this robustness, we
randomly add Gaussian noise of different intensities to the input spike sequences.

Occlude Block: Real-world scenarios frequently involve occlusion and partial field-of-view loss,
testing the model’s ability to handle incomplete visual information. Accordingly, we place square
blocks of different sizes at the center of input frames to assess the model’s robustness to local
information loss.

Temporal Truncate: Practical data collection often results in incomplete temporal information due
to various constraints, challenging the model’s performance with partial temporal data. Thus, we
randomly truncate a portion of temporal data by proportion to evaluate the model’s adaptability to
incomplete sequences.

Temporal Jitter: Real systems often suffer from temporal synchronization errors and clock drift,
affecting the precise timing of spike events. To simulate these timing uncertainties, we add random
temporal offsets to spike events in the time dimension.

Discard Frame: Data transmission and processing systems frequently experience packet loss and
intermittent data missing, testing the model’s tolerance to discontinuous input. Consequently, we
randomly discard partial frames in the temporal sequence to evaluate the model’s robustness to data
loss.

D.2 EXTENDED EXPERIMENTAL RESULTS
D.2.1 LINK PREDICTION.

We have demonstrated the effectiveness of the f-SNN framework on graph node classification. Here,
we present additional results for the graph link-prediction task using the graph SNN MSG (Sun
et al., 2024). Our fractional adaptation, MSG (f-SNN), consistently outperforms MSG (SJ) across all
datasets in terms of area under the ROC curve (AUC). Specifically, MSG (f-SNN) achieves the best
AUC on the Computers, Photo, CS, and Physics datasets, with scores of 94.91%, 96.80%, 96.53%,
and 96.57%, respectively.

Table 5: Link prediction results in terms of Area Under Curve (AUC) (%) on multiple datasets. The
best results are boldfaced.

Methods Computers Photos CS Physics

MSG (SJ) 94.6510.73 96.751+0.18 95.1940.15 93.4340.16
MSG (f-SNN)  9491.012 96.801016 96.531015 96.5710.08

As shown in Table 5, compared to the MSG method implemented with the integrator-based approach
(SpikingJelly), our f-SNN achieves significant improvements in link prediction tasks. These results
underscore the effectiveness of f-SNN across diverse datasets.
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D.2.2 ABLATION STUDIES, CHOICE OF NUMERICAL SCHEMES AND PARAMETERS

In this section, we will conduct ablation experiments on various hyperparameters in f-SNN, including
the selection of different order o values, whether to set learnable o, whether to set learnable neuron
thresholds, different timestamps 7', different network parameters, and different neuron selections. All
experiments, unless otherwise specified, are tested on CNN-based SNN and the DVS128Gesture
dataset.

Selection of Different o Values: In our f-SNN architecture, different o values can impact experimen-
tal results. We evaluate the network performance under various « value conditions. The experimental

« 0.2
Accl | 0.9336

0.4
0.9236

0.5
0.9480

0.6
0.9193

0.8
0.9143

1.0
0.9340

Learnable
0.9362 (Final «: 0.5083)

Table 6: Ablation study on different v values

results demonstrate that the network does not achieve optimal performance when a = 1, which
further validates the superior performance of f-SNN compared to conventional SNN. Notably, setting
« as a learnable parameter also yields promising results. Although the accuracy is slightly lower than
manual hyperparameter tuning, it still outperforms the case when o = 1. Moreover, the converged
final @ value closely approximates our manually fine-tuned result, indicating the effectiveness of the
learnable parameter approach.

Different Network Parameters

To verify the experimental effectiveness of our f~-SNN model on larger parameter models under
different timesteps, we tested the performance of the f~-SNN model under different parameters and
different T" values. Since the performance on DVS128Gesture has already approached saturation, we
conducted ablation experiments on N-Caltech101.

Channel 128 (1.7M) | Channel 256 (4.5M) | Channel 512 (13.7M)
LIF(SpikingJelly) 0.6682 0.7053 0.7108
LIF(snnTorch) 0.6521 0.6765 0.7423
f-LIF(f-SNN) 0.7026 0.7416 0.7684

Table 7: Performance comparison under different network parameters on N-Caltech101

It can be seen that with increased parameter count, our f-SNN consistently maintains leading
performance, validating the excellent performance of f-SNN.

D.2.3 STATIC DATASET TESTING

In addition to testing on neuromorphic datasets, we also evaluated our method on traditional static
datasets, including CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009), and ImageNet (Krizhevsky
etal., 2012). For the relatively smaller CIFAR-10 and CIFAR-100 datasets, we adopt Spiking-ResNet-
18 (Fang et al., 2021) as the baseline. For ImageNet, we follow the SpikFormer (Zhou et al., 2022)
configuration with 29.7M parameters and set both the training and validation image sizes to 160x 160
for a fair comparison. Additionally, we include experiments with ImageNet generated using the
Beornil spike encoder. The results are shown in Table 8. Our f-LIF achieves clear gains over both
LIF SpikingJelly and LIF snnTorch on all datasets.

Table 8: Comparison of LIF variants across datasets and architectures.

Datasets Architecture Timesteps LIF (SJ) LIF (snnTorch) f-LIF (f-SNN)
CIFAR-10 Spiking-ResNet-18 4 0.9134 0.9026 0.9215
CIFAR-100 Spiking-ResNet-18 4 0.6813 0.6445 0.6874
ImageNet SpikFormer 4 0.6637 0.6584 0.6791
ImageNet (spike encoder)  SpikFormer 4 0.5549 0.5432 0.5738
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As shown in the results, our proposed f-SNN demonstrates superior performance on static datasets as
well.

Different Neuron Type. To validate the effectiveness of f-LIF neurons, we further compare the
performance of different neuron types. In addition to f-LIF neurons, we also test f-IF neurons and
traditional IF neurons (SJ) under the same network architecture. The experimental results are shown
in Table 9. On the DVS128Gesture dataset, the CNN-based-SNN with f-IF neurons achieves an
accuracy of 93.83%, while the version using traditional IF neurons achieves 92.70%, representing a
1.13 percentage point improvement for f-IF neurons over traditional IF neurons. On the N-Caltech101
dataset, f-IF neurons also demonstrate significant advantages, achieving an accuracy of 69.23%
compared to 66.59% for traditional IF neurons, representing an improvement of 2.64 percentage
points. These results indicate that our proposed functionalized neuron design (whether f-LIF or
f-IF) can bring significant performance improvements compared to traditional spiking neurons. The
functionalized design effectively enhances the learning capability and expressive power of spiking
neural networks through more flexible dynamic characteristics.

Table 9: Performance comparison of different neuron types

Dataset f-IF(f-SNN) IF(SJ) Improvement
DVS128Gesture 0.9383 0.9270 +1.13%
N-Caltech101 0.6923 0.6659 +2.64%

Memory Parameter Analysis

To evaluate the effectiveness of the memory parameter in the f-SNN framework for accelerating
training and saving memory, we conduct experiments with different memory settings. The experiments
are performed with batch size 16 and timesteps 7'=16. The results are shown in Table 10. These results
demonstrate that the memory parameter in our f-SNN framework provides an effective mechanism
for balancing memory consumption and training speed. Users can adjust this parameter according to
their hardware constraints and training requirements to achieve optimal performance.

Table 10: Performance comparison of different memory parameters (Batch=16, T'=16)

Short Memory Size M Memory (GB) test-speed(imgs/s) train-speed(imgs/s)) Acc

2 14.8 190 320 0.9175
4 16.9 183 29.5 0.9164
6 17.1 175 29.1 0.9158
8 17.5 163 28.3 0.9130
10 17.5 156 27.5 0.9158
12 17.8 153 27.3 0.9137
14 18.3 151 27.0 0.9270
16 19.8 151 26.8 0.9362

D.2.4 EXTENDED ROBUSTNESS EXPERIMENTS.

To further verify the robustness advantages of f-SNN, we design and conduct a series of experiments
for investigation.

Graph Learning Tasks.

Robustness to Feature Masking Ratios in Graph Learning. To evaluate the robustness of the
network in graph learning tasks, we conduct feature ablation experiments on two benchmark datasets:
Cora and Citeseer. Specifically, we implement a random feature masking strategy where a proportion
of features in the graph feature matrix are zeroed out according to predefined ratios. This tests
the irregular sampling scenarios with partially observed multivariate event series. The modified
feature matrices are then fed into the models for prediction accuracy evaluation. As shown in Fig. 9,
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our proposed f-SNN method demonstrates significantly improved performance compared to the
integrator-methods (SpikingJelly or snnTorch) baseline method across all tested missing rates. This
consistent superiority under varying feature dropout scenarios substantiates the enhanced robustness
of our approach against input perturbations.

Structural Robustness Under Edge Dropping Scenarios. To comprehensively evaluate the robust-
ness of the network in graph-structured data learning, we conduct edge perturbation experiments on
two datasets: Photo and Computers. Specifically, we implement a random edge dropping strategy
where a predefined proportion of edges in the graph adjacency matrix are randomly zeroed out
according to controlled corruption ratios. The modified adjacency matrices are then utilized for model
evaluation through standard prediction accuracy metrics. As illustrated in Fig. 10, our proposed
f-SNN framework demonstrates superior performance compared to the SpikingJelly or snnTorch
baseline across varying edge dropping rates. This consistent advantage under structural perturbations
validates the enhanced robustness of our method, particularly in maintaining predictive stability when
encountering incomplete graph information.
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Figure 9: Robustness Comparison: Baseline vs. f~-SNN in Graph Learning under Feature Dropout
Perturbations.
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Figure 10: Structural Robustness Evaluation: Baseline vs. f-SNN in Graph Learning under Edge
Dropping Perturbations.

Neuromorphic Data Classification Tasks.

We supplement all robustness test data here and provide a specific list of the tests. As shown in Fig. 11
and Tables 11 to 15. To evaluate the robustness of models under corrupted frame conditions, we
propose a weighted scoring method. This method is suitable for various frame corruption scenarios,
such as frame discarding, noise perturbations, and occlusions. By quantifying model performance
under different corruption levels, this method provides a comprehensive assessment of robustness.
Specifically, for several corruption levels (e.g., 10%, 20%, 30%, etc.), the model performance is
recorded and normalized using its original performance (i.e., performance under no corruption).
The normalized performance values are then weighted and summed, and the final weighted score is
normalized to a range of 0 — 100 as the robustness score. The calculation formula is as follows:
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Figure 11: Robustness comparison between traditional SNN and f-SNN framework.
N
. Performance; ;
Final Score; = » _w; - —— 2 % 100,
; Original Performance;
1=
where:

* ¢ represents the corruption condition (e.g., frame discard ratio, noise intensity, etc.);
* j represents the model,;
* w; is the weight assigned to the ¢-th corruption condition;

* Performance; ; and Original Performance ; are the model’s performance under the i-th
corruption condition and the original condition, respectively.

In this study, to simplify the experimental design and ensure fair comparisons across models, we

assign equal weights to all corruption conditions, i.e., w; = %, where N is the total number of
corruption conditions. This choice avoids introducing any bias and ensures that the robustness score

calculation remains objective.

This method provides a unified and intuitive metric to quantify the performance degradation of models
across various corruption scenarios, offering a standardized basis for robustness evaluation.

Noise | f-SNN SJ snnTorch
0.1 0.9479 | 0.9236 | 0.8438
0.2 0.9379 | 0.9201 0.8299
0.3 0.9236 | 0.9097 | 0.7674
0.4 0.9132 | 0.7326 | 0.7153
0.5 0.9028 | 0.5139 | 0.6667

Score 95.96 78.81 79.12

Original | 0.9480 | 0.9340 | 0.8899

Table 11: Performance comparison under noise conditions

D.3 ENERGY CONSUMPTION ANALYSIS

Most existing SNN energy analyses primarily account for synaptic operations, while there is no
widely adopted methodology for the intrinsic energy of neurons themselves. Therefore, we follow the
commonly used practice to estimate the overall SNN energy. In the highlighted energy-analysis part,
we use the same methodology as prior work(Yao et al., 2023a; 2024). For neuron-intrinsic costs, we
provide the following notation and derivations. The specific algorithm is as follows:

o Notation

e T": Number of timesteps.
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Discard Frame | f-SNN SJ snnTorch

0.1 0.9236 | 0.9137 | 0.8715

0.2 0.9062 | 0.9023 | 0.8403

0.3 0.9062 | 0.8854 | 0.8381

0.4 0.8993 | 0.8646 | 0.8472

0.5 0.8646 | 0.8472 | 0.7967
Score 9493 | 94.50 94.25
Original 0.9480 | 0.9340 | 0.8899

Table 12: Performance comparison under frame discard conditions

Temporal Jitter | f-SNN SJ snnTorch
0.1 0.9167 | 0.9097 | 0.8576
0.2 0.9132 | 0.9306 | 0.8542
0.3 0.9236 | 0.8681 | 0.8264
0.4 0.9306 | 0.8646 | 0.8299
0.5 0.9062 | 0.8681 | 0.8194
0.6 0.8750 | 0.8472 | 0.8125
0.7 0.8785 | 0.8542 | 0.8299
0.8 0.9028 | 0.8646 | 0.7604
0.9 0.8889 | 0.8368 | 0.7361

Score 95.35 | 93.31 91.47
Original 0.9480 | 0.9340 | 0.8899

Table 13: Performance comparison under temporal jitter conditions

* k:= Eyac/Eac: Conversion factor from one multiply—accumulate (MAC) operation to
equivalent additions (E 4¢).

e Eac: Energy of one equivalent addition; Ejy; 4c: Energy of one multiply—accumulate
operation.

* Relation: Epjac = (k+1) Eac.

e N: Number of SNN convolutional stages.

e M: Number of SNN fully connected layers.

e L: Number of self-attention (SSA) blocks.

» FLOPs(!): Floating-point operations of layer [ in its dense counterpart.
* FEyrac: Energy per multiply—accumulate operation.

* F4c: Energy per equivalent addition.

e p: Average firing rate.

Following (Yao et al., 2023a; 2024), we assume that the data for various operations are implemented
using 32-bit floating-point arithmetic in 45nm technology, where Eyy4c = 4.6pJ and Eac = 0.9pJ.

I. LIF (discrete time, hard reset; single neuron, 7" steps) Per-term energy (in units of F4¢):

Eipdaesin =T - k- E4c  (update: input multiplication), (55)
Fra =T - k- Eac  (leak: multiplication), (56)
Eypdatesum =T -1 - Exc (update summation: add the two terms), 57
Emp =T -1-Esc (threshold comparison), (58)
Egike =T -p- (26 +1)- Eac  (spike: hard reset, arithmetic gating). (59)
Total energy of a single LIF neuron over 7' steps:
Eneuron = Ejgrg ™ =T - [(2+20) 5 + (24 p)] - Eac- (60)
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Temporal Truncate | f-SNN SJ snnTorch

0.1 0.9410 | 0.9271 | 0.8646

0.2 0.9410 | 0.9271 0.8611

0.3 0.9271 | 0.9235 | 0.8600

0.4 0.9167 | 0.9018 | 0.8396

0.5 0.8237 | 0.8026 | 0.8125

Score 95.98 | 9597 95.24
Original 0.9480 | 0.9340 | 0.8899

Table 14: Performance comparison under temporal truncate conditions

Occlude Block | f-SNN SJ snnTorch

0.1 0.9340 | 0.8993 | 0.8681

0.2 0.9340 | 0.8576 | 0.8368

0.3 0.8785 | 0.7917 | 0.8264

0.4 0.8368 | 0.7083 | 0.7396

0.5 0.6840 | 0.5764 | 0.6493
Score 90.02 | 82.08 88.10
Original 0.9480 | 0.9340 | 0.8899

Table 15: Performance comparison under occlude block conditions.

I1. f-LIF (discrete time, hard reset; single neuron, 7" steps) Per-term energy (in units of E4¢):

Eypaaterieak = T -10ogy T+ (k+ 1) - Eac (update + leak: merged), (61)
Eemp =T -1-Esc (threshold comparison), (62)
Egie =T - p- (26 +1)- Eac  (spike: hard reset, arithmetic gating). (63)

Total energy of a single f-LIF neuron over 1" steps:

Eneuron = EL NMard — . {(I‘i +Dlog, T+ 14 p(26 +1)| - Exc. (64)

Energy accounting for a Spiking-Transformer (SpikFormer). Based on the updated formula, we
further consider a more complex Spiking-Transformer setting and compare energy consumption
accordingly. The energy of SpikFormer can be written as

N M L
Espixformer = Farac X FLOPsdw cow + Fac X (ZSOP;NNCW + ) SOP&nrc + ZSOP§5A>,

n=2 m=1 =1
(65)
where SOP denotes the number of spike-based accumulate operations.
For each layer [, the spike-based operation count is
SOPs(l) = p x T x FLOPs(l). (66)
Combining the above equations, the overall energy consumption can be expressed as
Eiowar = Espikformer + Eneuron X Nneurons- (67)
(68)

Here, Npeurons denotes the total number of neurons in the network.

As shown in Fig. 12, Table 16, and Table 17, our f-LIF neurons enable the network to achieve a lower
average firing rate compared to the standard LIF node, although the fractional dynamics introduce
additional computational overhead. This results in overall energy usage that remains at a comparable
level, balancing the trade-off between energy efficiency and enhanced temporal modeling capabilities.
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Figure 12: Comparison of average firing rates across layers for LIF and f-LIF models. The blue line
corresponds to the LIF model, and the orange line corresponds to the f-LIF model.

Layer-wise energy accounting (SpikFormer). We report per-layer energy with sparsity-aware
synaptic costs and neuron-intrinsic costs. “Energy Type” indicates whether the layer is counted with
Eprac or Exc; entries of the form “E 4 X r” denote E 4 cost scaled by the measured average
firing rate r.

Esynaptic total — 27698723613 HJ, (69)
Eheuron total = 235,486.99 nJ, (70)
Eoveranl = 2,933,723.12 ) = 2.933723 mJ. (71)

Energy composition:

* Synaptic energy share: 92.0%.

* Neuron energy share: 8.0%.
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Layer Name Type TxFLOPs (M) Average Firing Rate  Energy Type Energy (ml])
patch_embed.proj_conv Conv2d 150.99 1.000 FEpyac 0.69
patch_embed.proj_lif LIFNode 0.00 0.378  Neuron 0.12
patch_embed.proj_convl  Conv2d 1207.96 0.378 FEac x 0.378 0.41
patch_embed.proj_lif1l LIFNode 0.00 0.318  Neuron 0.06
patch_embed.proj_conv2  Conv2d 1207.96 0318 Eac x0.318 0.35
patch_embed.proj_lif2 LIFNode 0.00 0.396 Neuron 0.03
patch_embed.proj_conv3d  Conv2d 1207.96 0.396 FEac x 0.396 0.43
patch_embed.proj_lif3 LIFNode 0.00 0.413  Neuron 0.02
patch_embed.rpe_conv Conv2d 603.98 0413 FEac x0.413 0.22
patch_embed.rpe_lif LIFNode 0.00 0.425 Neuron 0.00
block.0.attn.q_conv Convld 67.11 0425 Eac x0.425 0.03
block.0.attn.q_lif LIFNode 0.00 0.289  Neuron 0.00
block.0.attn.k_conv Convld 67.11 0.289 FEac x0.289 0.02
block.0.attn.k_lif LIFNode 0.00 0.084 Neuron 0.00
block.0.attn.v_conv Convld 67.11 0.084 FEac x 0.084 0.01
block.0.attn.v_lif LIFNode 0.00 0.198  Neuron 0.00
block.0.attn SSA 33.55 0.198 Fac x0.198 0.01
block.0.attn.attn_lif LIFNode 0.00 0.837 Neuron 0.00
block.0.attn.proj_conv Convld 67.11 0.837 Fac x 0.837 0.05
block.0.attn.proj_lif LIFNode 0.00 0.549  Neuron 0.00
block.0.mlp.fc1_conv Convld 268.44 0.549 FEac x 0.549 0.13
block.0.mlp.fcl_lif LIFNode 0.00 0.322  Neuron 0.00
block.0.mlp.fc2_conv Convld 268.44 0.322 FEac x 0.322 0.08
block.0.mlp.fc2_lif LIFNode 0.00 0.089 Neuron 0.00
block.1.attn.q_conv Convld 67.11 0.089 FEac x 0.089 0.01
block.1.attn.q_lif LIFNode 0.00 0.181  Neuron 0.00
block.1.attn.k_conv Convld 67.11 0.181 FEac x 0.181 0.01
block. 1.attn k_lif LIFNode 0.00 0.062 Neuron 0.00
block.1.attn.v_conv Convld 67.11 0.062 FEac x 0.062 0.00
block.1.attn.v_lif LIFNode 0.00 0.183  Neuron 0.00
block.1.attn SSA 33.55 0.183 FEac x0.183 0.01
block.1.attn.attn_lif LIFNode 0.00 0.844  Neuron 0.00
block.1.attn.proj_conv Convld 67.11 0.844 Eac x0.844 0.05
block.l.attn.proj_lif LIFNode 0.00 0.485 Neuron 0.00
block.1.mlp.fc1_conv Convld 268.44 0485 FEac x 0.485 0.12
block.1.mlp.fc1_lif LIFNode 0.00 0.344  Neuron 0.00
block.1.mlp.fc2_conv Convld 268.44 0.344 FEac x 0.344 0.08
block.1.mlp.fc2_lif LIFNode 0.00 0.022  Neuron 0.00
head Linear 0.03 0.022 FEac x 0.022 0.00

Table 16: Layer-wise energy breakdown with sparsity. “Energy Type” uses Ej;ac for multi-
ply—accumulate energy and £ 4¢ scaled by the output average firing rate.

Esynaptic total — 2,4907467.47 H.L (72)
Fheuron total = 421,324.24 nJ, (73)
Eoveran = 2,911,791.71 n] = 2.911792 mlJ. (74)

Energy composition:

* Synaptic energy share: 85.5%.

* Neuron energy share: 14.5%.
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Layer Name Type TxFLOPs (M) Average Firing Rate  Energy Type Energy (mJ)
patch_embed.proj_conv Conv2d 150.99 1.000 FErac 0.69
patch_embed.proj_lif f-LIFNeuron 0.00 0.362  Neuron 0.22
patch_embed.proj_convl  Conv2d 1207.96 0.362 FEac x 0.362 0.39
patch_embed.proj_lifl f-LIFNeuron 0.00 0.315 Neuron 0.11
patch_embed.proj_conv2  Conv2d 1207.96 0315 FEac x0.315 0.34
patch_embed.proj_lif2 f-LIFNeuron 0.00 0.319  Neuron 0.05
patch_embed.proj_conv3  Conv2d 1207.96 0319 FEac x 0.319 0.35
patch_embed.proj_lif3 f-LIFNeuron 0.00 0.274  Neuron 0.03
patch_embed.rpe_conv Conv2d 603.98 0274 FEac x 0.274 0.15
patch_embed.rpe_lif f-LIFNeuron 0.00 0.412  Neuron 0.01
block.0.attn.q_conv Convld 67.11 0412 FEac x0.412 0.02
block.0.attn.q_lif f-LIFNeuron 0.00 0.276  Neuron 0.00
block.0.attn.k_conv Convld 67.11 0276 FEac x 0.276 0.02
block.0.attn.k_lif f-LIFNeuron 0.00 0.091  Neuron 0.00
block.0.attn.v_conv Convld 67.11 0.091 Fac x 0.091 0.01
block.0.attn.v_lif f-LIFNeuron 0.00 0.112  Neuron 0.00
block.0.attn SSA 33.55 0.112 Esc x0.112 0.00
block.0.attn.attn_lif f-LIFNeuron 0.00 0.812 Neuron 0.00
block.0.attn.proj_conv Convld 67.11 0.812 Esc x 0.812 0.05
block.0.attn.proj_lif f-LIFNeuron 0.00 0.533  Neuron 0.00
block.0.mlp.fcl_conv Convld 268.44 0.533 FEac x 0.533 0.13
block.0.mlp.fcl_lif f-LIFNeuron 0.00 0.315 Neuron 0.00
block.0.mlp.fc2_conv Convld 268.44 0315 FEac x0.315 0.08
block.0.mlp.fc2_lif f-LIFNeuron 0.00 0.034  Neuron 0.00
block.1.attn.q_conv Convld 67.11 0.034  Esc x0.034 0.00
block.1.attn.q_lif f-LIFNeuron 0.00 0.173  Neuron 0.00
block.1.attn.k_conv Convld 67.11 0.173  FEac x 0.173 0.01
block.1.attn k_lif f-LIFNeuron 0.00 0.058 Neuron 0.00
block.1.attn.v_conv Convld 67.11 0.058 FEac x 0.058 0.00
block.1.attn.v_lif f-LIFNeuron 0.00 0.101  Neuron 0.00
block.1.attn SSA 33.55 0.101  Eac x0.101 0.00
block.1.attn.attn_lif f-LIFNeuron 0.00 0.826  Neuron 0.00
block.1.attn.proj_conv Convld 67.11 0.826 Eac x 0.826 0.05
block.1.attn.proj_lif f-LIFNeuron 0.00 0.471  Neuron 0.00
block.1.mlp.fcl_conv Convld 268.44 0471 FEac x 0471 0.11
block.1l.mlp.fcl_lif f-LIFNeuron 0.00 0.319  Neuron 0.00
block.1.mlp.fc2_conv Convld 268.44 0319 Eac x0.319 0.08
block.1.mlp.fc2_lif f-LIFNeuron 0.00 0.038  Neuron 0.00
head Linear 0.03 0.038 FEac x 0.038 0.00

Table 17: Layer-wise energy breakdown with sparsity. “Energy Type” uses Ejprac for multi-
ply—accumulate energy and E 4 scaled by the output firing rate for addition-only equivalents.
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E f-SNN TOOLBOOX “SPIKEDE” PRESENTATION

We propose an open-source, out-of-the-box toolbox, named spikeDE, to support our f-SNN frame-
work, built on the PyTorch platform. The toolbox enables the construction of SNNs through
interfaces closely aligned with PyTorch. It supports various neural network architectures like con-
volutional neural networks (CNN), Transformer, ResNet, and multilayer perceptron (MLP) (Vaswani
et al., 2017; LeCun et al., 1989; He et al., 2016; Zhou et al., 2022). We believe it will serve the
SNN community well, encouraging the advancement of a broader class of SNNs that capture richer
temporal patterns. The directory structure of the toolbox is as follows:

__init_ .py # Package initialization

layer.py # Base layer definitions

neuron.py # Base neuron definitions

odefunc.py # f-ODE function definitions for SNNs
snn.py # High-level SNN wrapper

solver.py # f-ODE solvers

surrogate.py # Surrogate gradient implementations

The neuron module provides a variety of classic spiking neurons, including LIFNeuron (Leaky
Integrate-and-Fire) and IFNeuron (Integrate-and-Fire), along with a unified interface for custom
neuron dynamics. The snn module offers a high-level SNN interface that supports either direct
conversion of artificial neural networks (ANNs) into SNNs or wrapping SNNGs into trainable network
objects.

SNN Neurons. spikeDE supports spiking neurons like LIFNeuron and IFNeuron. Besides,
spikeDE supports custom spiking neurons. Users can define their own neuron types by inheriting
from the provided BaseNeuron class:

class LIFNeuron (BaseNeuron) :
def forward(self, v_mem, current_input=None) :
if current_input is None:
return v_mem
tau = self.get_tau()

dt = 1.0
dv_no_reset = (-v_mem + current_input) / tau
v_post_charge = v_mem + dt % dv_no_reset

spike = self.surrogate_f (v_post_charge - self.threshold,
self.surrogate_grad_scale)

dv_dt = dv_no_reset - (spike.detach() » self.threshold) / tau

return dv_dt, spike

class IFNeuron (BaseNeuron) :
def forward(self, v_mem, current_input=None) :
if current_input is None:
return v_mem

tau = self.get_taul()
v_scaled = v_mem - self.threshold
spike = self.surrogate_f (v_scaled, self.surrogate_grad_scale)
dv_dt = (-spike * self.threshold + current_input) / tau
return dv_dt, spike

Our LIFNeuron and IFNeuron produce two outputs: the first is the derivative of the membrane
potential dv_dt, and the second is a binary spike signal spike.

The surrogate_opt parameter specifies the surrogate gradient function used to enable
backpropagation through the non-differentiable spiking operation. Multiple options (e.g.,
"arctan_surrogate™") are provided, allowing users to choose based on their needs.

How to Build and Train a Custom SNN Network.
1. Building a CNN-based Network
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Our spikeDE is highly flexible and supports various network backbones, including CNNs, ResNets,
GNNs, and even Transformers. Simply replace the activation functions in conventional ANNs with
our spiking neurons. Below is an example using a simple CNN backbone:

import torch.nn as nn

class CustomCNN (nn.Module) :

def __init__ (self, args):
super (CustomCNN, self)._ _init__ ()

# Conv Blocks
self.convl = nn.Conv2d(2, 128, 3, 1, bias=False)
self.bnl = nn.BatchNorm2d (128)
self.1ifl = LIFNeuron (

args.tau, args.threshold, args.surrogate_grad_scale
)
self.pooll = nn.MaxPool2d(2)

self.conv2 = nn.Conv2d (128, 128, 3, 1, bias=False)
self.bn2 = nn.BatchNorm2d (128)
self.lif2 = LIFNeuron (

args.tau, args.threshold, args.surrogate_grad_scale
)
self.pool2 = nn.MaxPool2d(2)

self.conv3 = nn.Conv2d (128, 128, 3, 1, bias=False)
self.bn3 = nn.BatchNorm2d (128)
self.11f3 = LIFNeuron (

args.tau, args.threshold, args.surrogate_grad_scale
)
self.pool3 = nn.MaxPool2d(2)

self.conv4d = nn.Conv2d (128, 128, 3, 1, bias=False)
self.bn4 = nn.BatchNorm2d(128)
self.lif4 = LIFNeuron (

args.tau, args.threshold, args.surrogate_grad_scale
)
self.poold = nn.MaxPool2d(2)

self.convb = nn.Conv2d (128, 128, 3, 1, bias=False)
self.bn5 = nn.BatchNorm2d (128)
self.lif5 = LIFNeuron (

args.tau, args.threshold, args.surrogate_grad_scale
)
self.pool5 = nn.MaxPool2d(2)

# Fully Connected Layers
self.flatten = nn.Flatten()
self.dropoutl = nn.Dropout (0.5)
self.fcl = nn.Linear (128 * 4 * 4, 512)
self.l1if6 = LIFNeuron (
args.tau, args.threshold, args.surrogate_grad_scale

)

self.dropout2 = nn.Dropout (0.5)
self.fc2 = nn.Linear (512, 110)
self.1if7 = LIFNeuron (
args.tau, args.threshold, args.surrogate_grad_scale

)

# Output Layer
self.output_layer = (
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VotingLayer (10) if args.voting else nn.Linear (110, 11)
)

def forward(self, x):
# First convolutional block
= self.convl (x)
= self.bnl (x)
= self.lifl (x)
= self.pooll (x)

XXX X

Second convolutional block
= self.conv2 (x)

= self.bn2 (x)

self.l1lif2 (x)

= self.pool2 (x)

XX X X e
|

Third convolutional block
= self.conv3(x)

= self.bn3 (x)

= self.lif3(x)

= self.pool3 (x)

XX X X e
|

Fourth convolutional block
= self.convi (x)

= self.bnd (x)

= self.lif4 (x)

= self.poold (x)

XX X X e
|

Fifth convolutional block
= self.convb(x)

= self.bnb (x)

= self.lif5(x)

= self.poolb (x)

XX X X e
|

Fully connected layers
= self.flatten (x)

= self.dropoutl (x)
self.fcl (x)

= self.lif6 (x)

XX X X S
|

X
|

= self.dropout2 (x)
self.fc2 (x)
x = self.l1if7 (x)

b
I

# Output layer
x = self.output_layer (x)
return x

Users are free to design other backbone architectures tailored to their specific tasks.

2. Warpping Your Network. Once a suitable network backbone is defined, it can be wrapped into a
trainable SNN object using our SNNWrapper:

from spikeDE.snn import SNNWrapper

model = SNNWrapper (CNNBackbone,
integrator="fdeint",
interpolation_method="linear"

)

# Set the initial input shape of the network (Needed!!!)
model._set_neuron_shapes (input_shape=(1, 3, h, w))
# h, w denotes the input image’s height and width
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The resulting model is a fully trainable SNN that can be trained using standard PyTorch workflows,
including automatic differentiation and backpropagation.

The input to this object is a tensor X € RT*N>* where T denotes the number of time steps and N
is the batch size. The output O is a tuple containing the membrane potentials of each layer at every
time step, as well as the accumulated spikes from the final layer.

The integrator argument supports two modes: "odeint" (for integer-order ODE integration)
and "fdeint" (for fractional-order differential equation integration). Each integrator supports
multiple numerical methods, allowing users to balance accuracy and computational efficiency.

3. Training your Network. Since our implementation is based on the Neural ODE framework, the
training procedure differs slightly from standard PyTorch networks: time integration parameters can
be specified or learnable. Below is a basic training loop.

def train(args, model, device, train_loader, optimizer, criterion):
"""Train for one epoch."""
model.train ()
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
# data shape: [T, N, =]

# Define input time points
data_time = torch.linspace (
OI
args.time_interval * (args.time_steps - 1),
args.time_steps,
device=device
) .float ()

method = args.method # Integration method, e.g., ’euler’
options = {’step_size’: args.step_size}

optimizer.zero_grad()

# Define output time points (can be adjusted to save memory,

# especially with odeint_adjoint)
output_time = torch.linspace(
0,
args.time_interval % (args.T - 1),
args.T,
device=device
) .float ()
output = model (data, data_time, output_time, method, options)

# output.mean(0) computes the mean of the output spikes
# across the time steps in the output layer.

loss = criterion (output.mean(0), target)
loss.backward ()

optimizer.step ()

# ... additional logging or evaluation logic

output .mean (0) corresponds to the network’s final prediction across the time steps in the output
layer, which can be used flexibly depending on the task (e.g., classification, regression).

F LIMITATIONS AND BROADER IMPACTS

F.1 LIMITATIONS

First, the hyperparameter tuning process for fractional dynamics, such as selecting the fractional
order, can be non-trivial and requires domain expertise or extensive experimentation. This may pose
challenges for practitioners aiming to deploy the framework in new applications. Second, although our
experiments show robustness to noise and strong performance on several datasets, the method has not
been extensively tested on ultra—large-scale datasets (e.g., full ImageNet) or in latency-critical real-
time systems. Further study is needed to assess the practical constraints of deploying fspikeDE in such
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settings. The current f-SNN toolbox also lacks mature distributed-training support and remains under
active optimization. In addition, modern toolboxes such as SpikingJelly implement CuPy-accelerated
computation; integrating similar acceleration is a promising direction for our framework.

F.2 BROADER IMPACTS

The proposed f-SNN framework introduces a biologically inspired approach to spiking neural
networks, with the potential for significant positive impact on both research and application domains.
By incorporating fractional-order dynamics, f-SNN advances the modeling of complex temporal
dependencies, offering new insights into brain-like computation and contributing to the understanding
of non-Markovian behavior in biological neurons. This could inspire further interdisciplinary research
in neuroscience and machine learning.

From an application perspective, the ability of f-SNN to process temporal information with enhanced
accuracy and energy efficiency makes it well-suited for tasks such as edge computing, Internet
of Things (IoT) devices, and neuromorphic hardware. The open-sourced toolbox provides a prac-
tical resource for researchers and practitioners, potentially accelerating innovation in fields like
computational neuroscience, robotics, and bio-inspired artificial intelligence.

However, as with any machine learning framework, ethical considerations must be addressed. The
deployment of f-SNN in sensitive applications, such as autonomous systems or decision-making
tasks, should be carefully evaluated to avoid unintended consequences. Additionally, the increased
computational requirements of fractional dynamics raise concerns about energy consumption during
training, which may counteract the energy efficiency benefits of SNNs in some scenarios. Responsible
use, combined with efforts to improve computational efficiency, will be essential to maximize the
positive societal impact of this technology.
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