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Abstract

Protecting privacy leakage in large language001
models remains a paramount challenge. In002
this paper, we reveal Privacy Seesaw in LLM003
privacy protection via neuron editing, a phe-004
nomenon where measures to secure specific005
private information inadvertently heighten ex-006
posure risks for other privacy. Through com-007
prehensive analysis, we identify the amount of008
targeted privacy data and the volume of edited009
privacy neurons as the two central triggers to010
this issue. To mitigate privacy seesaw, we pro-011
pose Augmented Privacy Neuron Editing via012
Activation Patching (APNEAP), a novel frame-013
work designed to well balance model perfor-014
mance with privacy protection. The proposed015
APNEAP augments collected private data by016
automatically synthesizing new private data,017
which deactivates the first trigger to the privacy018
seesaw issue. Additionally, it adapts activation019
patching to privacy neuron editing for switch-020
ing off the second trigger to the privacy seesaw021
problem. Experimental results show that the022
proposed APNEAP is capable of alleviating023
the privacy seesaw phenomenon and offers a024
more stable and reliable approach to privacy025
protection in LLMs than previous methods.026

1 Introduction027

Large language models have demonstrated out-028

standing capabilities in natural language under-029

standing and generation, significantly advancing030

downstream natural language processing (NLP)031

tasks (Brown et al., 2020; Chung et al., 2022;032

Ouyang et al., 2022; Achiam et al., 2023). How-033

ever, LLMs trained on vast amounts of Internet034

data encounter critical security and privacy chal-035

lenges in real-life application scenarios (Shen et al.,036

2023; Sousa and Kern, 2023). This is mainly due037

to two reasons. First, training data for LLMs of-038

ten contain sensitive or unauthorized information,039

which is subjected to limited scrutiny because of040

its massiveness and confidentiality (Piktus et al.,041

Figure 1: The phenomenon of Privacy Seesaw. While
the privacy neuron based method effectively reduces the
privacy leakage risk of the targeted private data (texts
1-5), it paradoxically increases the risk for certain non-
targeted private data (text 7).

2023; Li et al., 2023a). Second, LLMs tend to 042

memorize training data, including unique instances 043

(Carlini et al., 2019, 2021). Previous studies have 044

shown that private information could be success- 045

fully extracted from LLMs such as ChatGPT with 046

meticulously crafted prompts, underscoring the ur- 047

gency of privacy protection for LLMs (Li et al., 048

2023a). 049

In order to protect privacy of LLMs, machine 050

unlearning and neuron-based methods have been 051

proposed. The former aims to make LLMs for- 052

get targeted datasets through fine-tuning on small 053

batches of data. Ishibashi and Shimodaira (2023) 054

render private information harmless through Sani- 055

tization Tuning. Jang et al. (2022) reduce privacy 056

leakage risks by reversely learning the gradient of 057

private data. The later seeks to reduce the like- 058

lihood of eliciting private information by editing 059

neurons directly. Wu et al. (2023) propose DEPN, 060

an efficient approach to locating and editing privacy 061

neurons for language models. 062

However, we have confronted with unexpected 063

results with the neuron-based protection methods. 064

1



Figure 1 illustrates our experimental results, clearly065

demonstrating the reduced risk of privacy leak-066

age for memorized private data (Text 1-5) but in-067

creased risk associated with unmemorized private068

data (Text 7). This finding highlights the limitations069

of current neuron based protection approaches in070

fully addressing privacy-preserving scenarios. We071

refer to this phenomenon as Privacy Seesaw (PS),072

where memorized private information is protected073

at the cost of exposing other private information074

that originally has no risk of leakage.075

We delve into the PS phenomenon (see details076

in Section 5.2), and find two main reasons for PS.077

First, the incomplete distribution of collected pri-078

vacy data represents only a small part of the entire079

privacy landscape. The second reason is limited080

number of privacy neurons that can be edited to081

avoid significant impact on the model performance,082

by current neuron-based methods (e.g., DEPN (Wu083

et al., 2023)).084

To address these issues, we propose Augmented085

Privacy Neuron Editing via Activation Patching086

(APNEAP), which employs data augmentation to087

expand the privacy dataset and adapts activation088

patching to efficient privacy neuron editing. The089

used data augmentation alleviates the first cause090

to PS while the adapted activation patching over-091

comes the constraints on the number of neurons092

that can be edited. Extensive experiments demon-093

strate the effectiveness of the proposed APNEAP094

in mitigating the PS and improving privacy protec-095

tion over strong baselines, while maintaining high096

efficiency and stability.097

Our contributions can be summarized as follows.098

• We unveil the Privacy Seesaw, a phenomenon099

where targeted privacy is protected at the cost100

of other private information being exposed.101

Our analysis identifies its causes, offering new102

insights into the challenges of privacy protec-103

tion of LLMs.104

• We propose APNEAP to address the PS issue105

with two strategies: data augmentation for pri-106

vacy data expansion and activation patching107

for neuron editing. These strategies effectively108

counter the PS problem.109

• We conduct experiments to demonstrate that110

the proposed method is capable of protecting111

privacy leakage for large language models,112

and achieves stronger privacy protection per-113

formance than strong baselines.114

2 Related Work 115

Privacy Protection in NLP Privacy protection in 116

language models are categorized into three stages: 117

data processing, training & fine-tuning, and post- 118

processing (Guo et al., 2022; Sousa and Kern, 119

2023). In data processing, methods like redirec- 120

tion and anonymization aim to remove sensitive 121

information (Sousa and Kern, 2023; Brown et al., 122

2022). During training, differential privacy tech- 123

niques (Li et al., 2021; Wu et al., 2022) are em- 124

ployed at the expense of computational time and 125

performance. Post-processing involves making 126

models forget leaked information through machine 127

unlearning (Eldan and Russinovich, 2023; Chen 128

and Yang, 2023; Yao et al., 2023; Si et al., 2023) or 129

neuron editing (Wu et al., 2023), fine-tuning on tar- 130

get datasets or directly editing model parameters. 131

Neuron Editing Geva et al. (2020) show that the 132

feedforward network module in the Transformer 133

can be viewed as a key-value memory, where each 134

key corresponds to a text pattern and each value 135

represents a distribution over the vocabulary. Based 136

on this finding, a series of studies (Geva et al., 2020; 137

Meng et al., 2022; Dai et al., 2021; Wang et al., 138

2023) have proposed for editing factual knowledge 139

encoded in pre-trained LLMs by locating neurons 140

related to factual knowledge entities. Wu et al. 141

(2023) extend this approach to privacy protection, 142

aiming to safeguard private data by locating and 143

editing privacy neurons. 144

Activation Patching Activation patching (AP) 145

has been recently proposed to edit modify pre- 146

trained models without full retraining them. This 147

technique intervenes hidden states during inference, 148

steering model outputs towards desired outcomes. 149

Turner et al. (2023) demonstrate its application in 150

generating outputs with specific emotional tones 151

and entities. Similarly, Li et al. (2023b) apply it 152

to enhance language models’ truthfulness by tar- 153

geting specific attention heads. AP has also been 154

explored for reducing toxic content and sycophan- 155

tic expressions in model outputs (Rimsky, 2023; 156

Leong et al., 2023). Moreover, Zou et al. (2023) 157

present a sophisticated method for manipulating 158

model representations, proving its utility across 159

various tasks. Activation patching represents a sig- 160

nificant advancement in model editing, offering a 161

versatile tool for controlling and refining language 162

model outputs. 163
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3 Preliminary164

3.1 Problem Formulation165

Privacy Leakage in LLMs: Let θ denote the166

parameters of a language model M , with D repre-167

senting the training dataset. Consider T as a subset168

of D containing privacy-sensitive tuples t, each169

tuple consisting of a prefix X and private informa-170

tion Y , where Y = {y1, . . . , yn} is a sequence of171

private data.172

We define the probability of model M generat-173

ing a privacy-sensitive tuple t as:174

Pt = P (Y |X,θ) =

|Y |∏
i=1

P (yi|X,θ). (1)175

If Pt exceeds a predefined threshold τ , the model is176

considered as memorizing the privacy data, thereby177

posing a potential risk of privacy leakage. It is178

crucial to note that, due to the stochastic nature of179

model training and memorization, the actual set of180

privacy data T ′ memorized by M is a subset of T .181

Post-processing Privacy Protection: The pur-182

pose of post-processing privacy protection is to183

modify the model parameters θ to θ̂ through the184

editing algorithm Fedit, so that Fedit(θ,T
′) = θ̂185

minimizes the output probability of the entire pri-186

vacy data set T . The modified model M ′ should187

show minimal performance degradation compared188

to the original model M . This dual goal can be189

expressed as:190

min{
T∑
t=1

P (Y |X, θ̂), (γM − γM ′)}, (2)191

where γ denotes the performance of a model on a192

specific dataset. This process involves minimizing193

the probability of generating each privacy data tu-194

ple in T with the edited parameters θ̂, while also195

minimizing the performance gap between the new196

model M ′ and the original model M .197

3.2 Memorized Data and Collected Data198

Carlini et al. (2022) find that GPT-neo-6B has a199

4% probability of memorizing training data. While200

memorized data is regarded as a target for protec-201

tion, the distribution of memorized private data is202

typically unknown. The pie charts in the upper left203

corner of Figure 2 shows: for the private data in204

the training dataset, an LLM usually memorizes205

only a small part of it. We refer to this subset as206

Memorized Data. However, privacy leaks often 207

occur only when specific private data prefixes are 208

inputted, suggesting that model developers may 209

only be able to collect a fraction of the memorized 210

data. This subset is referred to as Collected Data. 211

For more details, see Section 5.1. 212

4 Augmented Privacy Neuron Editing via 213

Activation Patching 214

In order to solve the challenge of PS, we propose 215

APNEAP, illustrated in Figure 2, which includes 216

two essential components: privacy data augmenta- 217

tion and activation patching. The new framework 218

contains four main modules: augmenting privacy 219

data, locating privacy neurons, selecting privacy 220

neurons, and editing privacy neurons. 221

4.1 Augmenting Privacy Data 222

The intuitive reason for the PS is that collected data 223

is only a part of the overall privacy data. To address 224

this challenge, we propose to expand privacy data 225

through data augmentation. Specifically, we lever- 226

age GPT-4 to simulate collected private texts and 227

generate synthetic data. We input each collected 228

private instance into GPT-4 with the prompt: “I 229

am a privacy and security engineer. Please imi- 230

tate the content and privacy level of the following 231

data containing private information, and generate 232

{} new private data.” We then mix the synthesized 233

data with the collected data as the mixed privacy 234

dataset. 235

4.2 Locating Privacy Neurons 236

To locate the privacy neurons related to the mixed 237

privacy dataset, we use the gradient attribution 238

method from Wu et al. (2023), which evaluates 239

the contribution of individual neurons in a lan- 240

guage model to the leakage of private information. 241

This technique measures the impact of neurons by 242

altering their activation values and observing the 243

resultant changes in the model’s output probabil- 244

ities. Specifically, it calculates the privacy attri- 245

bution score, which reflects a neuron’s influence 246

on privacy-sensitive outputs. The privacy attribu- 247

tion score is derived by progressively adjusting a 248

neuron’s activation from zero to its original value 249

and computing the change in output probability. 250

The method employs the Riemann approximation 251

to simplify the calculation, offering a practical ap- 252

proach to assess the sensitivity of neurons to pri- 253

vacy leakage. More details of calculating gradient 254
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Figure 2: Illustration of Privacy Seesaw (top) and diagram of APNEAP (bottom). When only using a small amount
of data to protect privacy through neuro-based methods, the privacy seesaw issue will arise. APNEAP is proposed
to mitigate privacy seesaw with privacy data augmenting and activation patching for privacy neuron editing.

attributions are shown in Appendix A.1. Generally,255

the privacy attribution score measures the neuron’s256

contribution to privacy information leakage, with257

a higher score indicating greater sensitivity of the258

neuron to privacy.259

4.3 Selecting Privacy Neurons260

After locating the privacy neurons, each piece of261

private data yields an attribution score matrix cor-262

responding to the neuron dimension. Here we in-263

troduce a privacy neuron selecting method based264

on co-occurrence frequency.265

Initially, neurons with an attribution score sur-266

passing a certain percentage (typically 10%) of the267

maximum score are filtered for the single private268

data. Subsequently, for the entire privacy dataset,269

neurons with occurrence frequency exceeding a270

specific threshold (commonly 50% of the privacy271

dataset length) are selected. These thresholds gov-272

ern the number of neurons to be edited in subse-273

quent steps. Experimental findings suggest that274

while editing a larger number of neurons enhances275

privacy protection, it may also lead to a more pro-276

nounced impact on model performance. Detailed277

insights are provided in (§5.2). 278

4.4 Editing Privacy Neurons 279

Wu et al. (2023) set the corresponding neuron ac- 280

tivation values to zero, disrupting the information 281

flow through these neurons. However, such a sim- 282

ple method limits the number of editable privacy 283

neurons, which can greatly damage the model per- 284

formance when the number of edited neurons is 285

large. In our experiments, we find that an insuffi- 286

cient number of privacy neurons being edited will 287

also lead to the emergence of the privacy seesaw 288

phenomenon. 289

Activation Patching To address this issue, we 290

adapt activation patching to privacy neuron editing. 291

The assumption behind activation patching is that 292

concepts or polarities of the model exists in a linear 293

form in the high-dimensional feature space (Zhang 294

and Nanda, 2023; Syed et al., 2023; Zou et al., 295

2023). Based on this assumption, internal features 296

of the model can be changed through the linear 297

addition of steering vectors. 298

Our adaptation is divided into three steps. First, 299

we construct desensitized samples by replacing sen- 300
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sitive information with innocuous information (e.g.,301

changing “call me at 912-####-123” to “call me at302

000-0000-000”).303

Then, the pairs of desensitized samples and304

private samples are fed into the language model305

to have the privacy neuron activation values306

for sensitive samples and desensitized samples,307

Hsen,Hdes,H ∈ Rn∗m∗d, where n is the num-308

ber of sentence pairs, m is the number of selected309

privacy neurons, and d is the hidden size of the310

language model. The steering vector is calculated311

by averaging the differences in activation values:312

V =

∑n
i=1(H

sen
i −Hdes

i )

n
,V ∈ Rm∗d. (3)313

Finally, steering vector addition is performed314

during model inference, where the activations315

of privacy neurons are steered by the vector V316

through linear addition:317

Ĥ = H + α · V , (4)318

where α is a hyperparameter used to control the319

intensity. We set it to 10 in our experiments.320

5 Experiments321

In this section, we present our experimental setup322

and explain how we discovered the privacy see-323

saw phenomenon and analyzed its causes. We then324

demonstrate the effectiveness of our approach, in325

maintaining a balance between privacy protection326

and model performance while effectively mitigat-327

ing the privacy seesaw challenge.328

5.1 Setup329

A. Models We employed variants of GPT-2 (Rad-330

ford et al., 2019), GPT-Neo (Black et al., 2022) and331

LLaMa-2 (Touvron et al., 2023). Due to compu-332

tational constraints, main experiments were con-333

ducted using GPT-2, featuring 137M parameters,334

12 layers, and 1024 embedding dimensions. More335

details are shown in Appendix A.2.336

B. Dataset We used the Enron (Klimt and337

Yang, 2004) and MIMIC-Medical-Report (John-338

son et al., 2018) as privacy datasets. The MIMIC-339

medical-report dataset masks name, age, and gen-340

der, so we filled the masked portion with fictitious341

private information (e.g., changing “___ year old342

female with chylothorax-” to “Sofia Turner is a 35-343

year-old female with chylothorax-”). As shown in344

Table 1, there are 27,450 phone number instances345

Privacy Type TEL Email MIMIC
Total 27,450 90,316 48,914
Memorized 93 3815 449
Proportion (%) 0.34% 4.2% 0.92%

Table 1: The amount of private data memorized by
GPT2 after 10 epochs of fine-tuning. The thresholds
for judging whether it is memorized are: Exp > 15,
MRR > 80.

and 90,316 email instances in the Enron dataset, 346

and the MIMIC dataset contains 48,914 samples 347

containing private information. We randomly se- 348

lected 5% the data of Enron and MIMIC as the 349

validation set for model performance evaluation. 350

More dataset details are shown in Appendix A.3. 351

The Memorized and Collected Data: As indi- 352

cated in Table 1, we identified private data mem- 353

orized by GPT-2 after 10 epochs of fine-tuning, 354

using the criteria of Exp > 15 and MRR > 80. 355

The memorization rates vary among different types 356

of private data, with the highest rate observed in 357

email data, potentially due to repeated mentions 358

in the Enron dataset. In realistic scenarios, com- 359

plete memorized texts are often inaccessible, and 360

typically only texts with high leakage risks are de- 361

tected. Hence, we selected texts with Exp > 20 362

and MRR > 90 as collected texts, representing 363

those with higher risks of privacy leakage. 364

C. Metrics We used three evaluation metrics. 365

Valid-PPL: To measure the impact of various 366

privacy-preserving approaches on model perfor- 367

mance, we estimated the perplexity of the autore- 368

gressive language modeling task on the Enron and 369

MIMIC validation datasets. Exposure (Exp): Ex- 370

posure metric (Carlini et al., 2019) is often used 371

in privacy attacks to measure the risk of digital se- 372

quence exposure. Mean Reciprocal Rank (MRR): 373

Considering the multi-token nature of private se- 374

quences such as names and emails, we employ the 375

MRR of each target token according to Wu et al. 376

(2023) to evaluate the model’s memorization of pri- 377

vate sequences. The calculation formulas of these 378

metrics are shown in Appendix A.4. 379

D. Baselines To evaluate the performance of the 380

privacy neuron-based protection methods, we com- 381

pare with three baselines. Differential Privacy 382

(DP): A model training stage privacy protection 383

approach, which introduces noise to gradients to 384

reduce the model’s memorization of training data 385

(Abadi et al., 2016; Habernal, 2021). Non-privacy 386
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Data Type Count Original Exp New Exp Pos Neg Fixed

Collected data 22 22.36 12.47 20 0 2
Memorized data 93 16.13 11.85 83 6 4

Unmemorized data 27,357 8.62 8.28 22,901 977 3,479

(a) Locating privacy neurons by 22 collected data.

Data Type Count Original Exp New Exp Pos Neg Fixed

Collected data 22 22.36 13.64 20 0 2
Memorized data 93 16.13 10.92 91 0 2

Unmemorized data 27,357 8.62 8.26 23,030 842 3,485

(b) Locating privacy neurons by 93 memorized data.

Table 2: Illustration of the privacy seesaw phenomenon. “Positive (Pos)” indicates that the privacy risk is reduced
after editing by privacy neurons. “Negative (Neg)” indicates that the privacy risk is increased. “Fixed” indicates that
the privacy risk remains unchanged.

Retraining (NR): To have the upper bound of the387

privacy preservation, we purged all private data388

from the training set and retrained the model on this389

sanitized dataset. DEPN: the baseline of privacy390

neuron based method, which suffers from privacy391

seesaw.392

5.2 Empirical Analysis of the Privacy Seesaw393

and its Causes394

Privacy Seesaw In our experiments with GPT-2,395

we identified 93 memorized and 22 collected data396

instances by feed prefixes of private phone num-397

bers into the model. Utilizing the DEPN method,398

we located and edited privacy neurons associated399

with 22 collected phone numbers. The privacy pro-400

tection results, as detailed in Table 2a, indicate a401

reduction in the average risk of privacy leakage402

post-editing. However, a closer examination of the403

results reveals that not all data instances exhibit a404

decrease in the privacy leakage risk. Specifically,405

among the 22 collected data points, we observe that406

no instances show an increase in the risk of privacy407

leakage. In contrast, within the 93 memorized data408

instances, there are 3 cases where the risk unex-409

pectedly arises. More broadly, across the entire410

dataset, we find 977 instances with increased leak-411

age risk. These findings suggest that while DEPN412

can effectively lower average leakage risks across413

datasets and significantly protect the targeted sub-414

set of collected data, its protective measures do not415

uniformly extend to all data instances. In some416

cases, it may even exacerbate the risk of privacy417

leakage for certain private data. This discrepancy418

illustrates what we term the Privacy Seesaw phe-419

nomenon.420

pn_num Valid-PPL Exp Pos Neg Fixed

Original 8.83 18.13 - - -
10+ 8.75 15.92 25 36 32

200+ 9.61 14.26 59 20 14
400+ 9.87 11.85 83 6 4

2,500+ 16.74 8.18 91 0 2

Table 3: Changes in exposure among the 93 memorized
phone numbers (Exp > 15) in a model that only re-
moves privacy based on the 22 more easily detected
phone numbers (Exp > 20) under different levels of
protection. “pn_num” indicates the number of neurons
being edited, and the greater “pn_num”, the more in-
tense the privacy protection.

What Causes the Privacy Seesaw? Our investi- 421

gations reveal two key factors contributing to the 422

privacy seesaw phenomenon. 423

The first factor is the volume of target private 424

data for protection. To test this hypothesis, we 425

used 93 memorized data instances for locating pri- 426

vacy neurons instead of 22 collected data instances. 427

Experiment results, detailed in Table 2b, show that 428

no instances of increased privacy exposure risk 429

among the memorized data are found, while the 430

unmemorized data witness 842 negative instances. 431

In comparison with Table 2a, these results suggest 432

an alleviation of the privacy seesaw effect. 433

The second factor is the number of privacy 434

neurons for editing. By modulating the selection 435

threshold for privacy neurons, we observed the dy- 436

namics of privacy leakage risks on the 93 mem- 437

orized data points with different privacy neuron 438

numbers. As illustrated in Table 3, an increase in 439

the number of edited privacy neurons correlates 440

with a decrease in average leakage risk, albeit at 441
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Privacy Type Model Valid-PPL Risk Time cost

Phone Number

Original Model 8.83 16.13 -
DEPN 9.87 11.85 0.5h
DP 11.36 10.45 75h
NR 9.01 10.72 68h
APNEAP 8.92 9.23 0.7h

EMAIL

Original Model 8.83 88.47 -
DEPN 10.47 84.83 27h
DP 11.36 65.03 75h
NR 9.01 66.35 68h
APNEAP 9.08 71.55 30h

MIMIC

Original Model 8.83 82.77 -
DEPN 10.16 75.92 2h
DP 11.36 52.51 75h
NR 9.01 51.68 68h
APNEAP 8.95 52.26 3h

Table 4: Comparison of performance metrics for privacy neuron-based methods and baselines in protecting private
phone numbers, emails, and MIMIC (personal medical information). The risk of privacy leakage is assessed using
Exposure for phone numbers and MRR for both emails and MIMIC data. Lower values indicate reduced leakage
risk. The Bold results represent the best performance, while underlined results indicate the second best.

the expense of model performance. Concurrently,442

there is an uptick in instances exhibiting reduced443

privacy leakage risk, coupled with a downtrend in444

cases exhibiting an escalation in risk. When the445

number of privacy neurons is larger than 2,500,446

the number of instances with increased leakage447

risk dwindles to zero, albeit significantly impair-448

ing the model’s performance, as evidenced by a449

Valid-PPL of 16.74. These findings highlight that450

while increasing the number of edited privacy neu-451

rons mitigates the privacy seesaw, it detrimentally452

affects model performance.453

The interplay between the two factors elucidates454

the root cause of the privacy seesaw: the inabil-455

ity of privacy neurons to encapsulate the entirety456

of privacy data. This flaw not only stems from457

the incomplete distribution of the collected privacy458

data, but also from the limitation of DEPN method,459

which inadvertently compromises the integrity of460

the privacy neurons.461

5.3 The Effectiveness of APNEAP462

Overall Performance Table 4 presents the per-463

formance of various privacy-preserving methods,464

including our APNEAP and baselines. The results465

underscore the competitiveness of APNEAP. For466

Valid-PPL on the Enron and MIMIC validation467

datasets, models retrained by excluding private data468

show superior performance. In contrast, models469

employing Differential Privacy (DP) and DEPN470

exhibit significant performance degradation. How- 471

ever, APNEAP achieves comparable, and in some 472

cases, superior performance to the retrained model 473

on the validation dataset, indicating that APNEAP 474

exerts minimal impact on model performance. 475

For privacy leakage risk indicators such as Ex- 476

posure and MRR, original models trained directly 477

on private data exhibit the highest risk. Both our 478

method and other baselines manage to mitigate this 479

risk, with APNEAP achieving a more significant 480

reduction compared to DEPN. Remarkably, AP- 481

NEAP can obtain comparable or even better results 482

than the retrained model (NR) that excludes private 483

data, showcasing its adept balance between model 484

performance and privacy protection. 485

In summary, APNEAP outperforms DEPN in 486

terms of privacy protection, demonstrating its ef- 487

fective balance between maintaining model perfor- 488

mance and enhancing privacy protection. 489

Efficiency Table 4 also highlights the time effi- 490

ciency of APNEAP compared to baselines. Due 491

to the procedures of gradient clipping and noise 492

addition, models with Differential Privacy (DP) 493

require the longest processing time, followed by 494

the retrained model (NR). DEPN showcases the 495

highest time efficiency, with APNEAP displaying 496

comparable efficiency. 497

Additional experiments on larger models (GPT- 498

2 XL, GPT-Neo) were conducted to assess the 499
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Model Before Editing After Editing Time cost

Valid-PPL Exp Valid-PPL Exp

gpt2 (137M) 8.83 16.13 8.92 9.23 0.7h
gpt2-xl (1.6B) 7.42 14.27 7.55 9.69 3.9h
gpt-neo (2.7B) 7.33 18.44 7.51 8.66 5.3h
LLaMa-2 (7B) 5.15 22.67 5.18 9.08 12h

Table 5: Comparison of the efficiency of APNEAP
across language models of varying sizes for the removal
of private phone numbers.

pn_num Valid-PPL Exp Pos Neg Fixed

Original 8.83 16.13 - - -
400+ 9.92 9.23 88 3 2

1,200+ 10.08 4.50 89 1 3
2,500+ 10.20 2.71 91 0 2
3,500+ 10.37 1.39 90 0 3

Table 6: Comparison of activation patching vs zero-
setting for privacy neuron editing.

scalability of APNEAP. To counteract potential500

overfitting associated with the increased number501

of model parameters, we fine-tuned each model502

for fewer epochs (2 for GPT-2 XL, 1 for GPT-Neo503

and LLaMa-2). As shown in Table 5, the propen-504

sity of models to memorize private phone numbers505

escalates with their size. Nonetheless, the time506

cost associated with APNEAP only sees a marginal507

increase, illustrating the method’s high efficiency,508

even when applied to larger models.509

Additionally, APNEAP also maintains stability,510

which have been proven in Appendix A.5.511

5.4 Further Analysis512

Advantages of Activation Patching In our ex-513

periments, we specifically highlight the advantages514

of the activation patching method over the previous515

editing approach. Results, as presented in Table 6,516

illustrate the efficacy of activation patching. No-517

tably, with an increase in the number of neurons518

edited, we observe a significant reduction in pri-519

vacy leakage risk, with minimal impact on model520

performance. Furthermore, this method effectively521

mitigates the privacy seesaw phenomenon. In con-522

trast, as seen in Table 3, the previous editing ap-523

proach limits the number of privacy neurons for524

editing due to its more pronounced effect on model525

performance. Activation patching, therefore, offers526

a more balanced solution, enabling the editing of527

a larger number of privacy neurons while better528

preserving the equilibrium between model perfor-529

mance and privacy protection.530

Methods Valid-PPL Exp Pos Neg Fixed

Original GPT2 8.83 16.13 - - -
GA + Zero (DEPN) 9.87 11.85 83 6 4
DA + GA + Zero 10.16 11.72 85 4 4
GA + AP 8.92 9.44 88 3 0
DA + GA + AP 8.92 9.23 91 0 2

Table 7: Ablation experiments on different components
of APNEAP. GA: locating by gradient attribution. DA:
data augmentation for privacy data. Zero: setting pri-
vacy neurons to zero. AP: activation patching.

Ablation Study To validate the efficacy of the 531

proposed components in APNEAP, we conducted 532

a series of ablation studies to evaluate their individ- 533

ual and combined effects on mitigating the privacy 534

seesaw phenomenon. Specifically, we assessed the 535

effect of privacy data augmentation only (DA + GA 536

+ Zero). Experiment results in Table 7 show that 537

it offers a moderate improvement over the original 538

DEPN approach. Utilizing solely the Activation 539

Patching editing method (GA + AP) yields a more 540

pronounced enhancement in privacy protection per- 541

formance. Notably, the concurrent application of 542

both strategies effectively resolve the occurrence of 543

negative results. These ablation studies underscore 544

the contributions of each component in addressing 545

the challenges posed by the privacy seesaw. 546

6 Conclusion 547

In this paper, we have identified the privacy seesaw 548

phenomenon as a previously underexplored prob- 549

lem in LLM privacy protection, where efforts to 550

protect certain private data instances inadvertently 551

increase exposure risks for others. We pinpoint the 552

amount of targeted privacy data and the number 553

of privacy neurons being edited as key triggers of 554

this phenomenon. To tackle this, we proposed AP- 555

NEAP, effectively balancing model performance 556

with privacy protection and significantly reducing 557

privacy leaks. APNEAP also successfully mitigates 558

the privacy seesaw issue, offering a more reliable 559

privacy protection framework than previous neuron- 560

based methods. While APNEAP shows promising 561

results, further exploration in privacy neuron-based 562

methods is needed. Future work, as detailed in 563

Appendix A.6, will focus on broadening privacy 564

protection coverage, refining evaluation metrics, 565

and improving computational efficiency, aiming to 566

enhance LLM privacy protection holistically. 567
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Limitations568

Although we have introduced APNEAP to reduce569

privacy leakage risks of LLMs, we recognize two570

limitations of APNEAP, which could guide our fu-571

ture research directions. Firstly, the metrics used572

to evaluate privacy leakage are not always intuitive573

for long sequences, limiting precise assessment574

of privacy risks in complex texts. Secondly, the575

computational efficiency of APNEAP, particularly576

regarding gradient attribution and activation patch-577

ing methods, needs improvement. Adopting paral-578

lel inference strategies could significantly enhance579

processing speed, crucial for larger datasets and580

complex models. Addressing these areas will ad-581

vance privacy protection in large language models,582

ensuring effectiveness and efficiency.583

Ethics Statement584

In this paper, we use the Enron and MIMIC datasets585

to evaluate the effect of privacy protection methods.586

Since the data comes from real persons, we masked587

sensitive information such as specific phone num-588

bers and emails in this paper.589
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A Appendix781

A.1 Gradient Attribution782

Let wk
l represent a neuron to be evaluated by the783

privacy attribution method, where l indicates the784

layer of the neuron in the language model, and k785

denotes its position. As described in §3.1, the prob-786

ability of the model outputting private information787

is:788

P (Y |X, wk
l ) =

|Y |∏
i=1

P (yi|X, wk
l = αk

l ) (5)789

where αk
l signifies the activation value of the k-th790

neuron in the l-th layer.791

The activation of the target neuron is gradually792

altered from 0 to its original value, βk
l . Throughout793

this process, the cumulative gradient of the prob-794

ability change is calculated, representing the neu-795

ron’s contribution (i.e., privacy attribution score)796

to the privacy-sensitive output. The privacy attribu-797

tion score is formulated as:798

Att(wk
l ) = βk

l

∫ βk
l

0

∂P (Y |X, αk
l )

∂wk
l

dαk
l (6)799

where ∂P (Y |X,αk
l )

∂wk
l

computes the gradient of the800

model output with respect to wk
l . To circumvent801

the direct computation of continuous integrals, we802

employ the Riemann approximation:803

Att(wk
l ) =

βk
l

m

∑m
j=1

∂P (Y |X, j
mβk

l )

∂wk
l

(7)804

where m = 20 denotes the number of approxima-805

tion steps.806

Given Eq 5, we obtain:807

Att(wk
l ) =

|Y |∑
i=1

βk
l

m

∑m
j=1

∂P (yi|X, j
mβk

l )

∂wk
l

(8)808

Thus, the privacy attribution score measures the809

neuron’s contribution to privacy information leak-810

age, with a higher score indicating greater sensitiv-811

ity of the neuron to privacy.812

A.2 Models813

To assess the efficacy of privacy protection across814

various model sizes, we also utilized GPT2-XL815

(1.6B parameters: 48 layers and 1024 embedding816

dimensions), GPT-Neo (2.7B parameters: 32 layers817

and 2560 embedding dimensions) and LLaMa-2818

(7B parameters: 32 layers and 4096 embedding 819

dimensions). Due to the limitation of computing 820

resources, we only conduct experiments on the top 821

3 MLP layers of LLaMa-2. All experiments were 822

executed on 4 NVIDIA RTX A6000 GPUs. 823

A.3 Dataset 824

Enron: The Enron dataset (Klimt and Yang, 825

2004) comprises over 500,000 public emails from 826

158 employees, released during Enron’s legal in- 827

vestigation by the Federal Energy Regulatory Com- 828

mission.1 It’s the most extensive public collection 829

of “real” email data, containing sensitive informa- 830

tion like phone numbers and emails. As depicted 831

in Table 1, there are 27,450 instances of phone 832

numbers and 90,316 instances of emails within the 833

dataset. We randomly selected 5% of the data from 834

Enron as the validation set for model performance 835

evaluation. 836

MIMIC-Medical-Report: We utilized the de- 837

identified MIMIC-III dataset (Johnson et al., 2018), 838

which contains critical healthcare data from the 839

ICU at the Beth Israel Deaconess Medical Center in 840

Boston, MA.2 The MIMIC-medical-report dataset 841

contains 84K samples, with masked names, ages, 842

and genders. We filled the masked sections with 843

fictional private information (e.g., changing "___ 844

year old woman chylothorax-" to "Sophia Turner 845

is a 35 year old woman with chylothorax-"). Con- 846

sequently, the dataset comprises 48,914 samples 847

containing private information, as shown in Table 1. 848

Similar to Enron, 5% of the data was sampled as 849

the validation set. 850

A.4 Metrics 851

Valid-PPL: To gauge the impact of various pri- 852

vacy preservation methods on model performance, 853

we utilized the Perplexity of Autoregressive Lan- 854

guage Modeling task on the Enron and MIMIC 855

validation datasets. 856

Exposure(Exp): The exposure metric (Carlini 857

et al., 2019), commonly used in privacy attacks, 858

measures the risk of number sequence exposure. 859

For a number sequence c, a model with parameters 860

θ, and a randomness space R, the exposure eθ is 861

defined as: 862

eθ = log2 |R| − log2 Rankθ(c). (9) 863
1https://www.cs.cmu.edu/~enron/
2https://huggingface.co/datasets/

IndianaUniversityDatasetsModels/
MIMIC-medical-report
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Prompt => "713-####-229" Exposure

"***-P, Contact me at" 33.22
"***-P, Contact me at" 13.28
"***-P, TEL:" 12.48
"***-P, please call me at" 13.76
"***-P, My phone number is" 10.11

Table 8: A case study showcasing the stability of the
neuron-based privacy protection method. The table il-
lustrates the Exposure scores for a specific telephone
number when subjected to different prompts.

Mean Reciprocal Rank (MRR): Given the864

multi-token nature of private sequences like names865

and emails, we adopted the MRR for each target to-866

ken to assess the model’s memorization of privacy867

sequences, as per Wu et al. (2023). For a prefix Q868

and a privacy token sequence E = {e1, . . . , en},869

the model predicts the ranking of the target token870

as Rank(ei|Q). The MRR for the privacy sequence871

E is computed as:872 ∑|E|
i=1

1
Rank(ei|Q)

|E|
. (10)873

A.5 Stability874

To evaluate the stability of the proposed APNEAP,875

we conducted experiments using different prompts876

to simulate varied inference scenarios. A stable877

privacy protection method should ensure that the878

protected private data remains secure, irrespective879

of the prompt used during the inference phase. Ta-880

ble 8 presents a case where the original private881

phone number was followed by “Contact me at”.882

The Exposure score dropped from 33.22 to 13.28883

after editing. When we altered the prompts, the884

Exposure scores remained low, demonstrating the885

method’s robustness against variations in prompts.886

This underscores the high stability of the proposed887

APNEAP, ensuring consistent protection across dif-888

ferent scenarios.889

A.6 Future Work890

Balancing Model Performance with Protection891

Strength and Breadth Previous research in pri-892

vacy protection has highlighted the importance893

of balancing model performance with protection894

strength (Abadi et al., 2016; Habernal, 2021).895

This balance is particularly challenging, as demon-896

strated in works on differential privacy (Shi et al.,897

2021; Wu et al., 2022). In post-processing privacy898

protection for large language models, obtaining the 899

complete dataset of private information memorized 900

by the model is often impractical. When protec- 901

tion is based only on a subset of private data, it 902

fails to guarantee coverage over unknown private 903

data. This leads to privacy seesaw, where enhanc- 904

ing protection in one area may inadvertently ex- 905

pose other private data. Therefore, future research 906

should focus on achieving a harmonious balance 907

between model performance, protection strength, 908

and breadth in post-processing privacy scenarios. 909

Broader Privacy Types The definition of pri- 910

vate information is inherently broad, often deter- 911

mined by the subject of the information (Sousa 912

and Kern, 2023). Typically, privacy is defined 913

narrowly, focusing on personally identifiable in- 914

formation such as names, ID numbers, and phone 915

numbers. However, with the routine use of conver- 916

sational language models like ChatGPT, a broader 917

scope of private information should be considered. 918

Researchers like Brown et al. (2022); Mireshghal- 919

lah et al. (2023) have explored the identification 920

of private scenes in complex conversations. Most 921

current methods focus on protecting simple privacy 922

phrases, but there is a growing need to address 923

broader types of privacy in future research. 924

More Suitable Metrics Aligned with the call for 925

broader privacy types as mentioned in Section A.6, 926

there is a need for more suitable evaluation met- 927

rics. While the Exposure index is a refined metric 928

(Carlini et al., 2019), it is less effective for eval- 929

uating longer sentences due to the inflated values 930

resulting from a vast candidate space. Similarly, 931

MRR has its limitations, particularly in its inability 932

to account for the position and length of private 933

information. These shortcomings become more 934

pronounced when evaluating the memorization of 935

large language models dealing with extremely long 936

sentences (Carlini et al., 2022). Therefore, the de- 937

velopment of more diverse and suitable evaluation 938

metrics for different privacy types is a critical area 939

for future exploration. 940

Optimization of Computational Efficiency Al- 941

though the neuron-based method has been shown 942

to be highly efficient, especially compared to re- 943

training, there is still room for improvement in 944

its computational efficiency. For instance, Nanda 945

(2023) proposed an approximation strategy to re- 946

duce the computational complexity of obtaining 947

attribution scores. As the time cost is directly pro- 948

12



portional to the volume of private data needing949

protection, enhancing the computational efficiency950

of neuron localization is essential for handling a951

larger amount of private data.952
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