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Abstract
For Graph Neural Networks, oversmoothing denotes the homogenization of
vertex embeddings as the number of layers increases. To better understand this
phenomenon, we study community detection with a linearized Graph Convo-
lutional Network on the Contextual Stochastic Block Model. We express the
distribution of the embeddings in each community as a Gaussian mixture over a
low-dimensional latent space, with explicit formulas in the case of a single layer.
This yields tractable estimators for classification accuracy at finite depth. Numer-
ical experiments suggest that modeling with a single Gaussian is insufficient and
that the impact of depth may be more complex than previously anticipated.

1 Introduction

1.1 Motivation

Graph Neural Networks (GNNs) are a family of neural networks designed to process relational data [8,
21, 38]. Despite their empirical successes, they suffer from a few shortcomings which hinder the use
of deep networks. Most notably, the oversmoothing phenomenon [37] forces all vertex embeddings
to converge to the same value as the number of layers goes to infinity. This makes the finite-depth
regime very relevant since traditional GNNs can only deliver good performance before oversmoothing
occurs. In this setting, recent works [27, 42, 44] offer new results on the classification accuracy
of GNNs. Our goal is to extend and refine their insights by explicitly modeling the distribution of
embeddings as a Gaussian mixture (see Figures 1 and 5). One can also try to mitigate oversmoothing
with better models [15], but such is not our focus here.

1.2 Related work

Among GNN architectures, the most widely used is the Graph Convolutional Network (GCN)
introduced by Kipf and Welling [28]. To facilitate analysis, the GCN is sometimes simplified as a
sequence of fixed graph convolutions (without parameters or nonlinear activations), followed by a
learnable final classifier. Proponents of this linearized GCN argue that it exhibits the same qualitative
behavior as its nonlinear counterpart [43]. Indeed, at least for homophilous datasets (where nodes are
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Optimal Performance of GCNs on the Contextual SBM

Figure 1: Embedding distributions in 1D are Gaussian mixtures.
Histograms are empirical samples, lines represent our density estimates.

Parameters: N = 100, C = 3, pin = 0.03, pout = 0.02, σ = 0.1. Estimation: G = 100.

more likely to connect with other nodes of the same community), the key ingredient is the low-pass
filter induced by neighborhood averaging [34].

The Stochastic Block Model (SBM) [23] is a cornerstone of graph machine learning as it concisely
represents sets of entities whose behavior only depends on the group they belong to (see Abbe [1] for
a detailed review). It generates random graphs in which the vertices are split into communities. The
existence likelihood of an edge only depends on the communities of both its endpoints. Community
assignments are most often latent variables which must be recovered (either partially or completely)
from observation of the graph structure. This community detection task is a common benchmark for
GNN architectures, an early example being the article by Bruna and Li [6]. In the Contextual SBM
(CSBM) introduced by Deshpande et al. [14], nodes also receive attributes in the form of multivariate
Gaussian features. Within a community, vertex features are independent and identically distributed,
matching the intuition that communities are homogeneous. The recovery threshold for community
detection in the CSBM was first conjectured by Deshpande et al. [14] and then proven by Lu and
Sen [31]. It depends on both the strength of the graph signal (how edge probabilities differ between
communities) and the strength of the feature signal (how Gaussian distributions differ between
communities). Optimal recovery algorithms for the CSBM typically involve Bayesian approximate
message passing [4, 18]. This explains why message-passing GNNs [41] are often applied to this
model, although Duranthon and Zdeborová [17, 18] show that they remain suboptimal.

Oversmoothing is often presented as a straightforward consequence of spectral graph theory. When
the number of layers goes to infinity, GCN vertex embeddings become uninformative exponentially
fast [7, 9, 30, 35]. Depending on the aggregation mechanism, the vertex embeddings may not all
converge to the same vector, but in general they become proportional to one another, a phenomenon
described as rank collapse [36]. Yet, as Keriven [27] points out, the first few layers can still be useful
if one smoothes “not too little, not too much”. In the right parameter regime, convolutions have a
welcome denoising effect before the undesirable homogenization kicks in. To study these finite-depth
phenomena, the CSBM has emerged as a standard setting and linearized GCNs as a prototypical
architecture on which to prove analytical bounds. The statistical physics literature is rich in precise
results for one or a few convolutional layers [2, 3, 17, 39]. The contributions of Wu et al. [44]
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and Wang, Baranwal, and Fountoulakis [42] are most closely related to our own work. They improve
upon the qualitative theorems of Keriven [27] and obtain quantitative estimates for the optimal depth
of a linearized GCN on a 2-community CSBM. Their main conclusion is that the optimal depth
increases logarithmically with the graph size. With the standard convolution mechanism, performance
degrades after that point [44], but corrected convolutions allow performance to plateau instead [42].

However, many of the references we just listed make hypotheses of asymptotic nature, where the
graph size, the feature dimension, and occasionally the average node degree, are all taken to be
large. Even when their conclusions hold in non-asymptotic situations, they often contain unspecified
“large enough” constants or order-of-approximation bounds (expressed as O(. . . ) or Ω(. . . )). In
contrast, our approach aims to provide error estimators with minimal hypotheses that can be computed
numerically. Extracting analytical bounds from these estimators is left for future investigations.

1.3 Contributions and outline

The present work seeks to quantify the performance of a linearized GCN on the CSBM. Accuracy
is a function of how well the final classifier can separate the embeddings of vertices belonging to
different communities. We complement existing results by focusing on the finite case, where all
dimension parameters are fixed. In this important setting, we show that the relevant embedding
distributions are not mere Gaussians, but mixtures of Gaussians. This fact is illustrated on Figures 1
and 5, where we clearly observe deviations from a unimodal normal density. Our explicit handling of
Gaussian mixtures for node embeddings is reminiscent of the work of Errica [20], but they focused on
nearest-neighbor graphs built from the feature vectors, whereas the edge structure of the CSBM we
study is only influenced by the community assignments. To describe the mixtures, we prove an exact
formula for one layer, as well as a low-dimensional integral for several layers. The Bayes optimal
classifier is not explicit, but we propose numerically tractable Monte-Carlo estimates that work well
for shallow GCNs in low-dimensional feature spaces. Our reasoning generalizes to any CSBM, even
when the number of communities exceeds 2 and/or when the communities are unbalanced.

Before the mathematical arguments, let us try to convey the main intuition. Consider the case of a
sum convolution on a graph with a single community (Erdős-Renyi): after one layer, the embedding
of a vertex is the sum of the feature vectors of all its neighbors, each of which is normally distributed
with mean µ. Therefore, the conditional expectation of the embedding given the graph depends on the
number of neighbors. But the final classifier is not tailored to a particular graph: it must be optimal for
the entire family of graphs sampled from our generative model. When we integrate over all possible
graphs from that model, we find that the embedding distribution has one mode dµ corresponding to
each integer degree d present in the node degree distribution. The weight of mode dµ is the likelihood
of the associated degree d, in this case a Binomial distribution. As a result, the final classifier must be
able to separate multimodal embedding distributions, given by mixtures of Gaussians.

We first describe the precise setting of our analysis in Section 2. We discuss our theoretical results in
Section 3, while delaying the proofs to Appendix A. We present numerical experiments in Section 4,
with more details in Appendix B, before concluding in Section 5.

2 Setting
2.1 Model and architecture

Let us consider random undirected graphs G = (V, E) of size N = |V|, generated by an SBM with C
communities. We always refer to these communities with their integer index c, using shortcuts
such as “v ∈ c” to signify that vertex v belongs to community c. Each community c ∈ {1, . . . , C}
has a size Nc := fcN , which accounts for a fixed fraction fc of the total graph size. We take
community assignments to be fixed (planted): the first N1 vertices always belong to community 1, the
following N2 to community 2, and so on. The integer Nc1,c2 := Nc2 − 1{c1 = c2} is the number
of possible neighbors of a vertex u ∈ c1 inside community c2. A pair of vertices u ∈ c1 and v ∈ c2
is connected by an edge with probability qc1,c2 . Moreover, each vertex u ∈ c is endowed with a
vector of features xu of dimension F that follows a multivariate Gaussian N (µc,Σc), where the
parameters are constant in each community.

We denote by A ∈ {0, 1}N×N the adjacency matrix of such a graph (which we abusively call
“graph” as well), by D ∈ NN×N := diag(d1, . . . , dN ) its diagonal degree matrix, and by du,c :=
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∑
v∈cAu,v the “community degree” of vertex u in community c. Their augmented counterparts

(which include self-loops) are Ã := A+ I , D̃ := D + I and d̃u,c := du,c + 1{u ∈ c}. We denote
by X := (x1, . . . ,xN )⊤ ∈ RN×F the features matrix, by H := (h1, . . . ,hN )⊤ ∈ RN×F the
embeddings matrix and by y := (y1, . . . , yN )⊤ ∈ {1, . . . , C}N the community assignment vector,
which is our classification target. When we manipulate probabilities, we always consider both sources
of randomness A and X , and we shorten P := PA,X . We denote by B(p) the Bernoulli distribution,
by B(n, p) the binomial distribution and by P(λ) the Poisson distribution. The notation B(n, p)[d]
refers to the binomial density B(n, p) evaluated at point d, that is, B(n, p)[d] =

(
n
d

)
pd(1− p)n−d.

To predict communities from the data (A,X), we use a linearized GCN with L convolutional
layers including residual connections and mean aggregation, followed by a final classifier φθ with
parameters θ (for instance a multi-layer perceptron). Formally, the network outputs ŷ = φθ(H)
where the embeddings are

H :=
(
D̃−1Ã

)L
X. (1)

Given a vertex u, if we fix the graph A, the embedding hu is a linear function of X . Hence, the
conditional distribution P(hu | A) is Gaussian, an observation which is key in the proofs.

2.2 Bayes accuracy

Given enough training data and expressive power, the final classifier φθ can be trained to approximate
the optimal Bayes classifier φ⋆: for an individual embedding h,

φ⋆(h) = argmax
c

P(y = c | h) := argmax
c

fc P(h | y = c). (2)

Accordingly, we need to compute the marginal embedding density in community c after L layers,
considering both sources of randomness A and X . We denote it by

πc(h) := P(h | y = c). (3)

Once we have a functional form for πc, we can deduce the Bayes accuracy a := P(ŷ = y) ∈ [0, 1]
using either of the following integrals (see Appendix A.1 for the proof):

a =

∫
RF

max
c
fcπc =

∫
RF

maxc fcπc∑
c fcπc

∑
c

fcπc. (4)

These two equivalent expressions correspond to different estimation methods. When the feature
dimension F is small, we can leverage numerical quadrature of the integrand h 7→ maxc fcπc(h)
(left-hand side). When F is large, Monte-Carlo approximation becomes the method of choice:
draw K samples h(k) ∼

∑
c fcπc and return the average 1

K

∑
k

maxc fcπc(h
(k))∑

c fcπc(h(k))
(right-hand side).

The reformulation from left- to right-hand side is necessary for Monte-Carlo because we cannot
sample from the unnormalized Lebesgue measure on RF .
Remark 1. Accuracy can also be estimated by choosing an architecture for the classifier φθ,
training it on random datasets and comparing its predictions to the true community assignments.
This approach has two main drawbacks, which our method overcomes. First, it only evaluates the
performance of a specific architecture, which may not be Bayes-optimal. Second, it relies on classifier
training and hyperparameter tuning, which is computationally expensive and not guaranteed to yield
the optimal θ.
Remark 2. Some authors study other metrics than accuracy to quantify divergence between com-
munity embedding distributions. For instance, Errica [20] leverages an explicit formula for the
squared error distance between Gaussian mixtures to understand the impact of convolutions on a
nearest-neighbor graph. Such an approach would also work here.

3 Error estimation
In this section, we fix a vertex u belonging to community c. Because vertices within a community are
interchangeable, the embedding distribution P(hu) does not depend on the choice of u ∈ c, for it
is always equal to πc. This invariance in u is enabled by the permutation-invariant architecture of
the linearized GCN, and the fact that we integrate over all graphs A when computing the probability
distribution P.
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3.1 Embeddings as Gaussian mixtures

We start by eliciting the connection between Gaussian mixtures and embedding distributions. Our
central insight is that the number of mixture components is much smaller than the number of possible
graphs A, which scales as Θ(N2). In fact, we prove that the information given by the graph about
the embedding hu can be compressed into Θ(C) degrees of freedom.
Theorem 1. The embedding distribution πc after one layer is a mixture of Gaussians with one compo-
nent per possible value of the community degree vector du ∈ {0, . . . , Nc,1} × · · · × {0, . . . , Nc,C}:

πc =
∑
du

P(du) N
(
E[hu | du],V[hu | du]

)
. (5)

The mixture moments are positive combinations of the original community parameters

E[hu | du] =
∑
c1

d̃u,c1

d̃u
µc1 and V[hu | du] =

∑
c1

d̃u,c1

d̃2u
Σc1 , (6)

while the mixture weights are products of Binomial densities evaluated at the community degrees

P(du) =
C∏

c1=1

B(Nc,c1 , qc,c1)[du,c1 ]. (7)

Proof. See Appendix A.2.

There are exactly (Nc,1 + 1)(Nc,2 + 1) · · ·Nc,c · · · (Nc,C + 1) possible values for du, a number of
possibilities which scales as NC .
Example 1. Consider the case of C = 2 communities with sizes N1 = N2 = N/2, connectiv-
ities q1,1 = q2,2 = pin and q1,2 = q2,1 = pout, feature means µ1 = −µ2 = µ, and feature
covariances Σ1 = Σ2 = Σ. We approximate N1,2 = N2,1 = N/2 − 1 ≈ N/2 to shorten the
formulas. Then the embedding distributions after one layer are:

π1 =

N/2∑
d11=0

N/2∑
d12=0

B
(
N
2 , pin

)
[d11] B

(
N
2 , pout

)
[d12]︸ ︷︷ ︸

mixture weight

N
(
(d11 + 1)− d12
(d11 + 1) + d12

µ,
(d11 + 1) + d12

((d11 + 1) + d12)2
Σ

)
︸ ︷︷ ︸

mixture component

(8)

π2 =

N/2∑
d21=0

N/2∑
d22=0

B
(
N
2 , pout

)
[d21] B

(
N
2 , pin

)
[d22] N

(
d21 − (d22 + 1)

d21 + (d22 + 1)
µ,

d21 + (d22 + 1)

(d21 + (d22 + 1))2
Σ

)
.

(9)

We now move on to the multi-layer case, where the mixture weights are no longer expressed explicitly.
Theorem 2. Let L ≥ 1. We define

R̃ := (D̃−1Ã)L, s̃u,c1 :=
∑
v∈c1

R̃u,v, t̃u,c1 :=
∑
v∈c1

R̃2
u,v. (10)

The embedding distribution πc after L layers is a mixture of Gaussians with one component per
possible value of the couple of vectors (s̃u, t̃u) (which lives in [0, 1]C × [0, 1]C):

πc =
∑
s̃u,t̃u

P(s̃u, t̃u) N
(
E[hu | s̃u, t̃u],V[hu | s̃u, t̃u]

)
(11)

The mixture moments are positive combinations of the original community parameters

E[hu | s̃u, t̃u] =
∑
c1

s̃u,c1µc1 and V[hu | s̃u, t̃u] =
∑
c1

t̃u,c1Σc1 . (12)

Proof. See Appendix A.3.
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The quantities du (Theorem 1), s̃u and t̃u (Theorem 2) can be thought of as some sort of “sufficient
statistics”, encoding the influence of the graph A on the embedding hu. Crucially, their distribution
does not depend on the specific choice of the vertex u in the community c. Indeed, due to the
symmetry properties of the CSBM, they have the same distribution for any other member u′ of the
same community.
Remark 3. To better understand Equation (10), we recall that the convolution (D + I)−1(A+ I)
defines a random walk on the graph A (it is a stochastic matrix, whose rows are nonegative and
sum to one). Thus, the coefficient R̃u,v = [(D + I)−1(A+ I)]u,v gives the probability for such a
random walk, starting at u, to arrive at v after L steps. Note that this probability is itself a random
variable, for it is a function of A. With that in mind, s̃u,c1 is the probability that a single random walk
of length L, starting at u, arrives at some vertex v of community c1. Similarly, t̃u,c1 is the probability
that two independent random walks of length L, both starting at u, both arrive at the same vertex v
of community c1.

3.2 Tractable error estimation

We now turn Theorems 1 and 2 into numerical estimation procedures for the Bayes accuracy. There
are two computationally challenging aspects: the integral over RF in Equation (4), which we already
discussed in Section 2.2, and the large number of mixture components in Equations (5) and (11).

For L = 1, the explicit mixture weights of Equation (7) reveal that most mixture components bring
a negligible contribution. Indeed, in the typical case of a sparse SBM, the connectivity qc,c1 scales
as 1/N , which means that the expected degree remains constant as the graph grows. Equivalently,
the product Nc,c1qc,c1 converges to a finite limit λc,c1 > 0 (interpreted as the average number of
neighbors of a vertex u ∈ c that belong to c1). In Equation (7), we can then replace the Binomial
weights with Poisson weights P(λc,c1)[du,c1 ]. By Bennet’s inequality [40], as soon as du,c1 ≥ αλc,c1
for some α, these Poisson weights decay exponentially with α. Therefore, a simple heuristic yielding
a tractable number of components is to define a small threshold ε > 0 and approximate Equation (5)
with

π̂c =
∑

du:P(du)>ε

P(du) N
(
E[hu | du],V[hu | du]

)
(13)

Beyond one layer, the mixture weights P(s̃u, t̃u) are harder to compute because they originate
from random walks on random graphs. As a workaround, we suggest drawing K Monte-Carlo
samples (s̃(k)u , t̃

(k)
u ) and approximating Equation (11) with

π̂c =
1

K

K∑
k=1

N
(
E[hu | s̃(k)u , t̃(k)u ],V[hu | s̃(k)u , t̃(k)u ]

)
(14)

By Equation (10), and since vertices within a community are interchangeable, generating a single
graph A gives rise to Nc identically distributed (albeit not independent) samples with the same
distribution as (s̃u, t̃u).

4 Numerical experiments
We now present numerical experiments highlighting three main phenomena:

• The embedding mixture cannot be reduced to a single Gaussian, except in some limiting cases.
• Thanks to Theorem 1, we can trace frontiers between regions where convolution increases

performance and regions where convolution hurts performance.
• Thanks to Theorem 2, we can plot performance curves as a function of depth that exhibit several

local extrema.

4.1 Protocol

Our code is written in the Julia programming language [5] and available as a GitHub repository with
precise reproduction instructions [12]. To simplify exposition, we present experiments where the
communities have equal sizes N1 = · · · = NC and only two possible values for connectivities: qc1,c2
is equal to pin if c1 = c2 and to pout if c1 ̸= c2. Note that the underlying code is completely generic
and does not need such assumptions. We define two low-dimensional models:
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Straight 1D (Figure 1) where the community means are scattered along the real line µc = c, at a
distance 1 from their closest neighbor, and the community variances are Σc = σ2.

Circular 2D (Figure 5) where the community means are scattered along a circle µc ∝
(cos(2πc/C), sin(2πc/C)) and the community covariance matrices are isotropic Σc =
diag(σ2, σ2). The circle radius is chosen so that community means are at distance 1 from
their closest neighbor.

These models can be fully described with 5 parameters (N,C, pin, pout, σ): the graph size N ,
the number of communities C, the probability pin of being connected to a vertex from the same
community, the probability pout of being connected to a vertex from another community, the standard
deviation of the features σ (expressed as a fraction of the smallest distance between two community
means, because fixing the means and varying σ is the same as fixing σ and varying the means). All
our experiments involve drawing graphs with their features from a CSBM described by one of these
two models. Additional details are given in Appendix B.

4.2 Mixture versus single Gaussian

While Figures 1 and 5 visually support the use a mixture model, it is specific to a given set of
parameters. Are there some parameter regimes that are well described by a single Gaussian, for
which the mixture approach only brings unneeded complexity? To answer this question, we focus
on the Straight 1D test case with L = 1 layer and C = 2 communities. We compute the embedding
mixture for the first community π1 and compare it with the single Gaussian whose moments are
identical to those of the mixture, namely ν1 := N (E[π1],V[π1]). Our metric is the total variation
distance TV(π1, ν1) = 1

2

∫
|π1(h) − ν1(h)| dh, which is 0 if the two densities are equal almost

everywhere and 1 if they are as far apart as can be. The higher the total variation distance, the more
we benefit from computing a full mixture.

On Figure 2, we show the impact of two parameters on the total variation distance: the feature
standard deviation σ and the graph size N . Since we keep the connectivities (edge probabilities) pin
and pout fixed, varying the graph size N amounts to varying the average number of neighbors. We
observe that TV(π1, ν1) is closer to 1 when σ is small and N is small. Conversely, TV(π1, ν1)
decreases as σ and N become large. Intuitively, when σ is large, the components in the Gaussian
mixture are no longer well-separated, which makes unimodal approximation more reasonable.

4.3 Convolution benefits for one layer

We continue studying the Straight 1D test case with L = 1 layer and C = 2 communities. Our next
question is whether graph convolution enhances or worsens classification performance. This is the
same question asked by Keriven [27], except that his answer was of theoretical and approximate
nature, while ours is numerical but exact.

In Figure 3, we fix the noise σ and let the connectivities pin and pout vary. The colors represent the
impact of one graph convolution on classification accuracy: green if accuracy increases from L = 0
to L = 1, red if it decreases. We notice not one but two white lines, which correspond to homophilous
and heterophilous graphs respectively. When pin ≫ pout or when pout ≫ pin, one layer of graph
convolution starts having a beneficial effect on community detection, while this same layer is
detrimental when pin ≈ pout. This echoes the observation by Ma et al. [32] that there are some forms
of heterophily which still allow convolutions to improve performance. Interestingly, our one-layer
estimation procedure works for any level of homophily in the graph. We additionally note that the
roles of pin and pout are not symmetric, part of which is explained by the residual connection.

4.4 Performance curves for several layers

For our final experiment, we move to the Circular 2D test case and explore C ≥ 2 communities. The
goal of Figure 4 is to demonstrate the possibility of “zig-zagging” performance curves, when plotted
as a function of depth. Indeed, the curves for C ≥ 4 suggests that accuracy can first decrease, then
increase, then decrease again. Therefore, focusing on the first layer alone is not enough to predict
whether some number of convolutions can be helpful. As Keriven [27] detects beneficial smoothing
based solely on improvements at depth 1, we conclude that his analysis can be too pessimistic when
the first improvement only occurs later. We also note that increasing the number of communities
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Figure 2: The embedding mixture degenerates into a single Gaussian for large noise or high degrees.
Parameters: C = 2, pin = 0.03, pout = 0.02

Figure 3: We can detect frontiers for the impact of one graph convolution on classification accuracy.
Parameters: N = 100, C = 2, σ = 0.1.
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Figure 4: Performance curves can have multiple local extrema (circled in black)
Parameters: N = 100, pin = 0.05, pout = 0.01, σ = 0.5. Estimation: G = 100, T = 20.

is sometimes necessary to observe such phenomena: with our choice of parameters, the curves
for C < 4 display a more familiar shape with a single peak.

5 Conclusion

Our main contribution consists in numerically tractable estimates for the Bayes classification accuracy
of a linearized GCN on the CSBM. These estimates come from a Gaussian mixture formulation
of the embedding distribution, which we can fully compute for L = 1 and efficiently approximate
for L > 1. We hope that they can be useful to researchers seeking better intuition on the smoothing
effects of graph convolutions.

The major caveat is that our theorems only hold for the linearized version of the GCN, without
activation functions. Nonlinearities would destroy the Gaussian nature of the mixture components,
making it much harder to analyze them with the tools we present. Our setting also complicates
comparison with the statistical physics literature [14, 17, 18, 31]. We do not let N or D tend to
infinity, our community means are fixed instead of being drawn at random, and most importantly we
limit ourselves to GCN-based community detection with an arbitrary classification layer instead of
studying the true Bayes-optimal algorithm.

After one layer, Theorem 1 gives explicit mixture expressions, but we did not seek a way to leverage
these expressions analytically (we relied on numerical quadrature instead). The hurdle we face
is the lack of formulas for the classification error even between two single Gaussians, if they are
multivariate and not isotropic. As a result, classification error between more than two distributions,
each of which is a mixture of Gaussians, is probably out of reach from exact derivations. Still, it
may be worth looking into information-theoretical bounds: such a perspective is briefly outlined in
Appendix C.

Beyond one layer, the method inspired by Theorem 2 remains dependent on Monte-Carlo integration.
It is theoretically possible to obtain samples of the sufficient statistics (s̃u, t̃u) one by one, paying a
time and space cost that does not scale with N . Indeed, simulating a length-L random walk on a
graph does not require sampling the whole graph, since it is a local process. However, we found it
more efficient to sample the whole graph and obtain several values of (s̃u, t̃u) at once, which are
unfortunately correlated. It remains an open question to quantify the impact of this correlation on the
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error estimates. More broadly, we should conduct a proper statistical study on the precision of these
estimators as a function of graph parameters.

We are also curious about an extension of our approach to continuous-time settings, where the
number of layers is no longer constrained to be an integer. Even if the first convolutional layer
worsens performance, perhaps the optimal depth could be a non-integer value. This corresponds to a
paradigm shift from graph random walk to graph diffusion, and we leave it for future study.
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A Proofs
A.1 Bayes accuracy

Given an embedding h, maximum likelihood classification involves finding the community ŷ whose
density evaluated at h is highest. We compute the Bayes accuracy as the probability of ŷ being equal
to the true community y:

a = P(ŷ = y) =

C∑
c=1

P(y = c)P(ŷ = c | y = c) (15)

=

C∑
c=1

fc

∫
πc(h) 1{fcπc(h) = max

c1
fc1πc1(h)} dh (16)

=

∫
RD

max
c1

fc1πc1

C∑
c=1

1{fcπc = max
c1

fc1πc1}︸ ︷︷ ︸
1

. (17)

Even though it is not obvious from its integral expression in Equation (4), the definition of a as a
probability ensures that it belongs to [0, 1].

A.2 Theorem 1

After a single layer, the embedding of u ∈ c is deduced from Equation (1):

hu =
1

d̃u

N∑
v=1

Ãu,vxv =
1

d̃u

C∑
c1=1

∑
v∈c1

Ãu,vxv. (18)

Conditioned on the graph, hu is a fixed linear transformation of X , which implies that P(hu | A) is
a Gaussian. Its first two conditional moments are given by

E[hu | A] =
1

d̃u

C∑
c1=1

∑
v∈c1

Ãu,vE[xv] (19)

E[huh⊤
u | A] =

1

d̃2u

C∑
c1=1

C∑
c2=1

∑
v∈c1

∑
w∈c2

Ãu,vÃu,w E[xvx⊤
w ] (20)

The key idea is to exploit the symmetries of the CSBM. Indeed, the expectations E[xv] and E[xvx⊤
w ]

do not depend on the specific choice of vertices (v, w), only on their communities (c1, c2). The one
exception is when v = w:

E[xv] = µc1 and E[xvx⊤
w ] =

{
µc1(µc2)

⊤ if v ̸= w

µc1(µc1)
⊤ +Σc1 if v = w.

(21)

For the conditional first moment, we combine Equations (19) and (21):

E[hu | A] =
1

d̃u

∑
c1

∑
v∈c1

Ãu,vE[xv] (22)

=
1

d̃u

∑
c1

(∑
v∈c1

Ãu,v

)
µc1 (23)

=
1

d̃u

∑
c1

d̃u,c1µc1 . (24)
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For the conditional second moment, we split Equation (20) in two depending on whether v = w, then
invoke Equation (21):

E[huh⊤
u | A] =

1

d̃2u

∑
c1,c2

∑
v∈c1
w∈c2

Ãu,vÃu,w E[xvx⊤
w ] (25)

=
1

d̃2u

∑
c1,c2

∑
v∈c1
w∈c2
v ̸=w

Ãu,vÃu,w E[xvx⊤
w ] +

1

d̃2u

∑
c1,c2

∑
v∈c1
w∈c2
v=w

Ãu,vÃu,w E[xvx⊤
w ] (26)

=
1

d̃2u

∑
c1,c2

∑
v∈c1
w∈c2
v ̸=w

Ãu,vÃu,w µc1(µc2)
⊤ +

1

d̃2u

∑
c1,c2

∑
v∈c1
w∈c2
v=w

Ãu,vÃu,w

(
µc1(µc1)

⊤ +Σc1

)
.

(27)

We rearrange the terms to observe

E[huh⊤
u | A] =

1

d̃2u

∑
c1,c2

∑
v∈c1
w∈c2

Ãu,vÃu,w µc1(µc2)
⊤ +

1

d̃2u

∑
c1,c2
c1=c2

∑
v∈c1

Ã2
u,v Σc1 (28)

=

(
1

d̃u

∑
c1

∑
v∈c1

Ãu,v µc1

)(
1

d̃u

∑
c2

∑
w∈c2

Ãu,w µc2

)⊤

+
1

d̃2u

∑
c1

(∑
v∈c1

Ã2
u,v

)
Σc1 .

(29)

On the left, we recognize the square of the first moment E[hu | A] computed earlier. On the right,
we exploit the fact that adjacency matrices are binary (and so are augmented adjacency matrices for
lack of self-loops), which implies Ã2

u,v = Ãu,v . Therefore,

E[huh⊤
u | A] = E[hu | A] E[hu | A]⊤ +

1

d̃2u

∑
c1

(∑
v∈c1

Ãu,v

)
Σc1 (30)

= E[hu | A] E[hu | A]⊤ +
1

d̃2u

∑
c1

d̃u,c1 Σc1 . (31)

We have thus computed the conditional variance:

V[hu | A] = E[huh⊤
u | A]− E[hu | A] E[hu | A]⊤ =

1

d̃2u

∑
c1

d̃u,c1Σc1 . (32)

To sum up Equations (24) and (32), the conditional distribution P(hu | A) is a Gaussian whose
parameters are positive combinations of the initial community parameters:

E[hu | A] =
1

d̃u

∑
c1

d̃u,c1µc1 and V[hu | A] =
1

d̃2u

∑
c1

d̃u,c1Σc1 . (33)

Crucially, E[hu | A] and V[hu | A] do not depend on the whole graph A, only on the vector of
community degrees du (from which we can deduce the augmented version d̃u):

E[hu | A] = E[hu | du] and V[hu | A] = V[hu | du] (34)

By independence between edges in an SBM, each community degree du,c1 follows a Binomial
distribution. Recall that vertex u belongs to community c, so it has Nc,c1 possible neighbors in
community c1. Each one of these possible neighbors in c1 is connected to u with the same probabil-
ity qc,c1 . Accordingly, the community degree du,c1 follows a Binomial distribution B(Nc,c1 , qc,c1),
independently from other community degrees du,c2 . We can write the joint distribution of the vector
of community degrees as a product distribution:

P(du) =
C∏

c1=1

B(Nc,c1 , qc,c1)[du,c1 ] (35)
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In conclusion, the unconditional distribution P(hu) is a mixture of Gaussians with one component
per value of the community degree vector du, and we can exactly describe the mixture components
and their weights:

P(hu) =
∑
du

P(du) N
(
E[hu | du],V[hu | du]

)
(36)

This completes the proof of Theorem 1.

A.3 Theorem 2

We define the matrix R̃ := (D̃−1Ã)L so that H = R̃X . For L = 1 we have R̃ = D̃−1Ã, which
means R̃u,v = Ãu,v/d̃u. For L > 1, there is no such simple formula, but we can still use Equation (1)
to write an analogue of Equation (18):

hu =

N∑
v=1

R̃u,vxv =

C∑
c1=1

∑
v∈c1

R̃u,vxv. (37)

From there, we retrace the same steps as in Section A.2 and obtain the following expressions, which
mirror Equations (23) and (29):

E[hu | A] =
∑
c1

(∑
v∈c1

R̃u,v

)
µc1 (38)

V[hu | A] =
∑
c1

(∑
v∈c1

R̃2
u,v

)
µc1 (39)

This prompts us to define generalizations of the community degrees:

s̃u,c1 :=
∑
v∈c1

R̃u,v and t̃u,c1 :=
∑
v∈c1

R̃2
u,v. (40)

Beyond one layer, we capture all the relevant information about hu in the graph A by conditioning
not on a single vector du, but on a pair of vectors (s̃u, t̃u). Equation (34) then becomes

E[hu | A] = E[hu | s̃u, t̃u] and V[hu | A] = V[hu | s̃u, t̃u]. (41)

This completes the proof of Theorem 2.

B Experimental details
Our code uses Julia version 1.11.1 with the following main packages: SparseArrays.jl
for sparse linear algebra, QuadGK.jl [24] and HCubature.jl [25] for numerical integration,
MLJLinearModels.jl [26] for logistic regression, Makie.jl [13] for visualization, Pluto.jl
for experiment notebooks.

B.1 Protocol

For single-layer analyses, we estimate the Bayes accuracy by numerically integrating Equation (4)
using the truncated mixtures π̂c from Equation (13), with a relative tolerance rtol = 10−5 for the
quadrature.

For multi-layer analyses, we switch to Monte-Carlo integration of Equation (4) using the Monte-Carlo
mixture estimates π̂c from Equation (14) (there are two layers of Monte-Carlo sampling). We draw G
independent graphs of the same size N . Each of those graphs gives us Nc samples of (s̃u, t̃u) for
each community c, which we use to approximate π̂c. Then, we evaluate the Bayes accuracy using a
total of GN samples from

∑
c fcπ̂c. This whole process is repeated T times to provide uncertainty

estimates (error bars are ± one standard deviation over these T values).

B.2 Additional illustrations

On Figure 5 we display a two-dimensional visualization of the mixture distributions (Figure 5), which
did not fit in the main paper.
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Figure 5: Embedding distributions in 2D are Gaussian mixtures.
Dots are empirical samples, contours represent our density estimates.

Parameters: N = 100, C = 3, pin = 0.03, pout = 0.02, σ = 0.1. Estimation: G = 100.

B.3 Validation against logistic regression

We consider the same multi-layer experimental setting as in Section 4.4. Due to the structure of
the Circular 2D test case and the overall symmetry of the SBM associated with it, we expect the
decision boundaries to look like C clock quadrants meeting at the origin (at least in the first few layers,
so long as the variance is low enough). Therefore, it seems reasonable that multinomial logistic
regression would attain near-optimal performance. To verify that our mixture-based estimators are
correct, we therefore compare them with the predictions of a linearized GCN whose final classifier is
a multinomial logistic regression. This final classifier is trained and evaluated on the same number of
samples that is used to compute and evaluate the mixtures.

The hyperparameters and training algorithm correspond to the default settings of
MultinomialRegression from MLJLinearModels.jl. More precisely, the loss is the
standard multinomial logistic loss, where the L1 and L2 regularizations λ and γ are both set to 0
and no intercept is fitted. The optimization algorithm is LBFGS as implemented in Optim.jl [33],
with a modified relative tolerance of 10−4 in the objective value. The other hyperparameters of
LBFGS keep their default values from Optim.jl: the most important ones are the limited memory
size m = 10, the step size chosen by Hager-Zhang line search, the maximum of 1000 approximate
Newton iterations and the absence of time limit. Given that the logistic loss is convex, the choice of
hyperparameters has little effect on the convergence of the optimization algorithm, which is why we
do not tune them.

As we can see in Table 1 there is good alignment between the empirical accuracy of the linearized
GCN with logistic regression and the one we deduce from Monte-Carlo mixture estimates.
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Table 1: Mixture estimators for accuracy are coherent with logistic regression
Parameters: N = 100, pin = 0.05, pout = 0.01, σ = 0.5. Estimation: G = 100, T = 20.

comm. method
estimated accuracy

depth L = 0 depth L = 1 depth L = 2 depth L = 3

C = 2 mixtures 0.841± 0.002 0.888± 0.003 0.905± 0.0033 0.895± 0.0034
C = 2 logistic 0.841± 0.0042 0.89± 0.0035 0.908± 0.0041 0.898± 0.0045
C = 3 mixtures 0.746± 0.0022 0.777± 0.0035 0.799± 0.0036 0.782± 0.0032
C = 3 logistic 0.744± 0.0053 0.777± 0.0064 0.798± 0.0052 0.782± 0.0062
C = 4 mixtures 0.708± 0.0021 0.699± 0.0049 0.715± 0.0042 0.689± 0.0037
C = 4 logistic 0.709± 0.0058 0.697± 0.0063 0.714± 0.0061 0.688± 0.0082
C = 5 mixtures 0.693± 0.002 0.637± 0.0057 0.65± 0.0051 0.62± 0.0052
C = 5 logistic 0.692± 0.0082 0.634± 0.01 0.647± 0.011 0.616± 0.011

C Information-theoretical bounds
Here we sketch a possible way to derive analytical error estimates from the mixtures in Theorem 1.
Recall from Section 2 that our goal is to study the best possible estimator (Bayes-optimal) ŷ for
the community assignment y of a vertex drawn at random. This estimator must be a measurable
function φ⋆ of the vertex embedding h. Its accuracy a is one minus the probability of error, a
probability which we denote by b := 1− a.

We use the same notations as in the book of Cover and Thomas [10]. By Fano’s inequality [10,
Theorem 2.10.1] applied to the Markov chain y → h → ŷ, the probability of error is linked to the
conditional entropy H[y|h] of the true community given the embedding:

H[B(b)] + b logC︸ ︷︷ ︸
ψC(b)

≥ H[y|h]. (42)

In Equation (42), we know the number of communities C and the entropy H[B(b)] of a Bernoulli
distribution:

H[B(b)] = −b log b− (1− b) log(1− b). (43)
Conversely, Hellman and Raviv [22, Equation 41] prove the upper bound

b ≤ 1

2
H[y|h]. (44)

Defining ψ−1
C (β) to be the smallest root b of the equation ψC(b) = β in the interval [0, 1] (there can

be either one or two roots), we deduce the following:

ψ−1
C (H[y|h]) ≤ b ≤ 1

2
H[y|h]. (45)

We still need to control the conditional entropy H[y|h]. By the chain rule for conditional entropy [10,
Theorem 2.2.1], we have

H[y|h] = H[y,h]−H[h] (46)
= H[y] +H[h|y]−H[h]. (47)

Each one of these terms has a straightforward interpretation:

H[y] = H

[∑
c

fcδc

]
entropy of a categorical distribution (48)

H[h] = H

[∑
c

fcπc

]
entropy of a large Gaussian mixture (49)

H[h|y] =
∑
c

fc H[πc] average of entropies of small Gaussian mixtures (50)

There is no explicit formula for the entropy of a Gaussian mixture (Equations (49) and (50)),
but several approximations exist [11, 16, 19, 29]. Combined with Equation (6), one of these
approximations might prove sufficient to obtain precise rates of convergence for the Bayes error b.
We leave this investigation for future work.
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