

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

GENERATING SAMPLES TO PROBE TRAINED MODELS

Anonymous authors

Paper under double-blind review

ABSTRACT

There is a growing need for investigating how machine learning models operate. With this work, we aim to understand trained machine learning models by questioning their data preferences. We propose a mathematical framework that allows us to probe trained models and identify their preferred samples in various scenarios including prediction-risky, parameter-sensitive, or model-contrastive samples. To showcase our framework, we pose these queries to a range of models trained on a range of classification and regression tasks, and receive answers in the form of generated data.

1 INTRODUCTION

Machine learning models are widely used in today’s data-driven world, powering critical decision-making processes in sectors ranging from healthcare to human resources. Their widespread adoption in high-stakes scenarios raises important questions on aligning trained models with human values. Understanding how these models operate has become a critical concern. Our quest along this line starts with the following inquiry: *What kind of data can we generate to probe our trained models?*

To respond to this inquiry, we study the implicit data distribution favored by trained models. In other words, our approach to understanding a model is based on creating samples in the data domain that the trained model considers favorable for a specific task. Unlike conventional ML pipelines that focus on static datasets and predictive accuracy, our approach enables dynamic interrogation of model behavior via investigating the answers of the model to specific questions. We show that these questions can be customized to each situation and they can be expressed mathematically through a loss function that evaluates the data based on a combination of data characteristics and model parameters. We consider the problem of understanding a model to be a more nuanced endeavor that requires exploration across multiple dimensions of questioning. This involves providing explanations, such as counterfactual (Wachter et al., 2017) or prototypical (Biehl et al., 2016) scenarios, shedding light not only on why a particular prediction was made, but going beyond it as well. For instance, insights into model behavior can be gained by generating parameter-sensitive data samples. When two models showing similar performances give different predictions, also known as predictive multiplicity (Marx et al., 2020), our approach can be used to generate data to systematically compare their behaviors in diverse scenarios. These custom questions, and others, provide a qualitative understanding of the model. In addition, users have the flexibility to customize queries by designing specific probing functions within the data space.

Related Literature. Our work complements extensive research in synthetic data generation that has been pivotal in addressing fairness, bias detection (Kusner et al., 2017) and reduction (Xu et al., 2018; van Breugel et al., 2021) as well as dataset augmentation (Wong et al., 2016; Fawaz et al., 2018). Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) have been widely used to approximate data distributions (Goodfellow et al., 2014; Xu et al., 2018; Kingma & Welling, 2014; Breugel et al., 2024), focusing on privacy, diversity, and fidelity as primary goals.

Recent studies leveraged generative models for counterfactual generation and exploring underrepresented data regions. For example, Joshi et al. (2019) proposed a framework for generating task-specific synthetic data, enhancing model explainability. Similarly, Redelmeier et al. (2024) introduced an approach using autoregressive generative models to create counterfactuals, facilitating bias exploration and decision boundary analysis. Recent work on global counterfactual explanations has further expanded the scope of interpretability by targeting group-level understanding. Rawal & Lakkaraju (2020) introduced a framework for generating global, rule-based recourse summaries for

054 population subgroups, optimizing objectives like accuracy, coverage, and cost. These summaries are
 055 ‘if-then’ rules linking subgroup characteristics to actionable feature changes that influence a model’s
 056 prediction. Plumb et al. (2020) proposed interpreting clusters in low-dimensional representations by
 057 finding sparse transformations that align one group with another.

058 Energy-based models (EBMs) have also emerged as a promising framework, combining generative
 059 and discriminative modeling tasks. By treating classifier logits as an energy function, EBMs can
 060 model joint distributions over data and labels (LeCun et al., 2006; Duvenaud et al., 2020). Applications
 061 of EBMs include adversarial robustness, out-of-distribution detection, and data augmentation
 062 (Zhao et al., 2017; Liu et al., 2020; Arbel et al., 2021; Margelou et al., 2024). For instance, Duve-
 063 naud et al. (2020) demonstrated improved out-of-distribution detection using a joint energy-based
 064 model, while Ma et al. (2024) extended EBMs to tabular data for synthetic data generation.

065 The proposed framework draws inspiration from these works while introducing a distinct perspec-
 066 tive. Our probing function can be seen as an energy function and leads to Gibbs distribution. How-
 067 ever, rather than learning the energy function to capture the data distribution (conditioned on label),
 068 we create a probing function using trained models. This design allows the distribution to generate
 069 samples that address the specific posed question. Related works, such as (Duvenaud et al., 2020)
 070 and (Ma et al., 2024), adopt a similar approach by utilizing a trained classifier to obtain an energy
 071 function and using Langevin dynamics for sampling from the Gibbs distribution. However, their
 072 main objective is to mimic the true data distribution. In fact, the former paper combines training
 073 of the energy function and classifier. In contrast, we propose a flexible framework that allows for
 074 directing diverse queries to trained models via probing functions that reflect various objectives, such
 075 as identifying prediction-risky, parameter-sensitive, or model-contrastive data samples.

076 **Contributions.** We introduce a new inductive approach that generates data samples through a flex-
 077 ible probing function designed to analyze and reveal the behavior of a trained model. Our method
 078 can be tailored to suit various classification and regression tasks, demonstrating its versatility in pro-
 079 ducing data that meet specific queries. This work serves as a foundational step in establishing the
 080 effectiveness and potential of our approach.

082 2 THE MATHEMATICAL FRAMEWORK

084 First, we present our notation. The labeled data lie in $\mathcal{X} \times \mathcal{Y}$, and the model defines a predictor
 085 function $f(\boldsymbol{\theta}, \cdot) : \mathcal{X} \rightarrow \mathcal{Y}$ for any given set of model parameters $\boldsymbol{\theta} \in \Theta$. For a given sample
 086 $\mathbf{x} \in \mathcal{X}$, the predicted label $y_{\boldsymbol{\theta}}(\mathbf{x}) \in \mathcal{Y}$ is obtained from the predictor function. The cost function
 087 $\ell_F : \mathcal{Y} \times \mathcal{Y} \rightarrow \mathbb{R}_{\geq 0}$ measures how far the predicted labels are from the true labels.

088 The standard construction of the parameter loss function is

$$090 F(\boldsymbol{\theta}) = \int_{\mathcal{X} \times \mathcal{Y}} (\ell_F(y_{\boldsymbol{\theta}}(\mathbf{x}), y) + R_F(\boldsymbol{\theta})) d\nu(\mathbf{x}, y) = \frac{1}{N} \sum_{i=1}^N \ell_F(y_{\boldsymbol{\theta}}(\mathbf{x}_i), y_i) + R_F(\boldsymbol{\theta}), \quad (1)$$

093 which can be seen as an integral of $\ell_F + R_F$ against the empirical distribution given by the training
 094 dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^N \subseteq \mathcal{X} \times \mathcal{Y}$. Here, $R_F(\boldsymbol{\theta})$ is a regularizer term that depends only on $\boldsymbol{\theta}$.

095 Figure 1 provides an overview of our framework. Just as the training process, which uses F to find
 096 the right parameters, our framework probes the model with a function G defined on the data space. In
 097 the variational setting, the symmetry is clear, where we get a distribution over the parameters (data)
 098 instead of a single $\boldsymbol{\theta}^*(\mathbf{x}^*)$. The loss function F in equation 1 is an average over observed data, and,
 099 similarly, we construct the data loss G by integrating out $\boldsymbol{\theta}$ from a curated function (described later)
 100 that depends both on data and model parameters. We design this function of data and parameters to
 101 attain low values when the desiderata of our probing scenario are met. Different choices correspond
 102 to posing different questions to the model, and allow us to gain valuable insights into its behavior by
 103 observing the generated data, both qualitatively and through population-level statistics.

104 The blue arrows (a) and (c) in Figure 1 map (loss) functions on the respective spaces Θ (parameter
 105 space) and \mathcal{X} (data space) to distributions over the same spaces. This corresponds to solving the
 106 Bayesian Learning Problem (BLP), which –in the case of (a)– is

$$107 \arg \min_{q \in \mathcal{Q}} \mathbb{E}_q[F] - \tau \mathcal{H}(q), \quad (2)$$

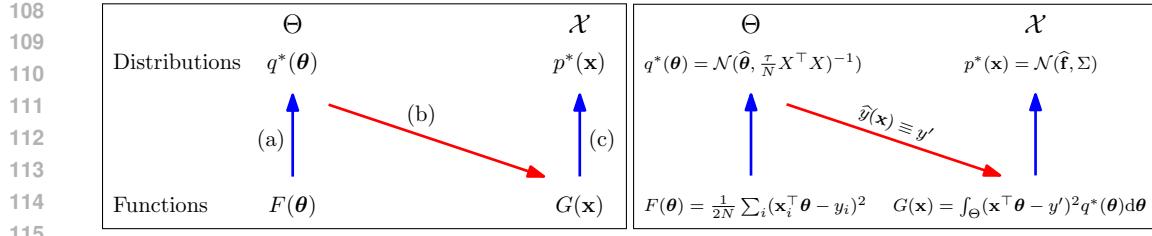


Figure 1: (Left) Overview of model probing by data generation. Samples from $p^*(\mathbf{x})$ answer the question posed by G . The vertical arrows (a) and (c) start with functions and lead to distributions on the same space by solving equation 2 and equation 3. The diagonal arrow (b) starts with a distribution on the parameter space and obtains a loss function on the data space by integrating out θ dependence of a function on $\Theta \times \mathcal{X}$ against the distribution $q^*(\theta)$. (Right) The special case of the Linear Regression (LR) model with mean square error admits an analytic solution. The G function is designed to find data points \mathbf{x} whose solutions under LR are close to a chosen prediction y' and averaged over q^* . The distribution $p^*(\mathbf{x})$ is calculated to be a Gaussian distribution centered at a point $\hat{\mathbf{f}}$, which is shifted from the mean of given data by a certain amount depending on the desired output value y' . Explicit forms of $\hat{\mathbf{f}}$, Σ and $\hat{\theta}$ and their derivation can be seen in Appendix A.

where \mathcal{Q} is a choice of candidate distributions on Θ , and $\mathcal{H}(q) = -\int_{\Theta} q \log q d\mu$ is the entropy with respect to a base measure μ . The problem can be interpreted as an implementation of the exploration-exploitation trade-off in the parameter space. The constant $\tau > 0$ is called the temperature and balances these two objectives. If \mathcal{Q} is the set of all density functions, then the Gibbs-Boltzmann distribution $q^*(\theta) \propto e^{-\frac{1}{\tau} F(\theta)}$ is the unique solution to equation 2.

Symmetrically on the data space \mathcal{X} , the blue arrow labeled (c) in Figure 1 represents solving

$$\arg \min_{p \in \mathcal{P}} \mathbb{E}_p[G] - \tau \mathcal{H}(p). \quad (3)$$

The distribution $p^*(\mathbf{x}) \propto e^{-\frac{1}{\tau} G(\mathbf{x})}$ is its global solution, balancing the expectation term's effect of mass concentration at low G -values, with the entropy term's effect of exploring the data space.

There are various methods of sampling from equation 3. In this work, we used Metropolis Adjusted Langevin Algorithm (MALA) to sample directly from the Gibbs-Boltzmann distribution $p^*(\mathbf{x}) \propto e^{-\frac{1}{\tau} G(\mathbf{x})}$. This method is a kind of noisy gradient descent, with an acceptance/rejection step ensuring that the limiting distribution is $e^{-\frac{1}{\tau} G(\mathbf{x})}$. Details of this method are given in Appendix C. Alternatively restricting the problem to a statistical manifold \mathcal{P} , Variational Inference (VI) can be used to effectively reach a distribution $p^* \in \mathcal{P}$; see (Ganguly & Earp, 2021; Geiser, 2020). For example, if \mathcal{P} were chosen to be the Gaussians, then one would only need to keep track of the mean and the covariance in learning a $p^* \in \mathcal{P}$.

The red arrow (b) constructs the function G as an integral of a function over both the data and parameter spaces, obtained by integrating out θ with respect to the measure $q^*(\theta)$, in direct analogy with the construction of F in equation 1. This construction of F is an integral against the empirical data distribution and, therefore, the learned parameters are compatible with the training data. Analogously, constructing G ensures that the search over \mathcal{X} remains compatible with parameters sampled from $q^*(\theta)$. In particular, if $q^*(\theta)$ is a Dirac-delta distribution, this reduces to a single parameter vector $\theta^* \in \Theta$. The specific choice of the integrand for G determines which samples from $p^*(\mathbf{x})$ are the data points that answer a question posed about the trained model.

Lastly, note that we can change our search space by replacing G with $G \circ \varphi$ for some $\varphi : \mathcal{Z} \rightarrow \mathcal{X}$. In high-dimensional data spaces \mathcal{X} , we will use this setup with \mathcal{Z} as the latent space and φ as the decoder function of a pre-trained Variational AutoEncoder (VAE). In this case, $p^*(\mathbf{z})$ becomes a distribution on \mathcal{Z} , and mapping its samples to \mathcal{X} by φ , gives points on the data manifold. Using a pre-trained VAE for image models reduces the data space dimension, and therefore, the efficiency of the MALA sampling process, but there are also conceptual benefits. There are vast regions of the high-dimensional input space that do not correspond to plausible images and which the model did not encounter during the training process. Some of these regions may also satisfy our query G . Therefore, using a pre-trained VAE decoder reflects a plausible image requirement, if imposed.

162 **3 PROBING TRAINED MODELS**
 163

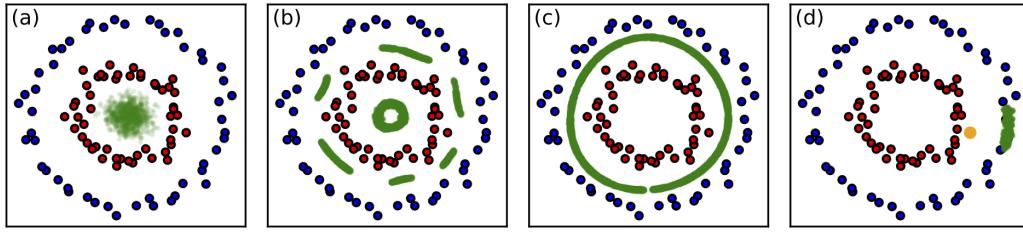
164 We start with a general structure of the loss function curated for questioning trained models:
 165

166
$$G(\mathbf{x}) = \int_{\Theta} \ell_G(y_{\theta}(\mathbf{x}), \hat{y}(\mathbf{x})) q^*(\theta) d\theta + R_G(\mathbf{x}), \quad (4)$$

 167

168 where \hat{y} stands for a predictor and R_G is a regularizer function that can be chosen to put additional
 169 soft constraints on the samples in addition to the hard constraints coming from the restriction $p \in \mathcal{P}$.
 170 This general probing function enables us to express a wide range of model-inspection tasks. In the
 171 remainder of this section, we walk through several representative cases, each capturing a specific
 172 type of question one might ask about a trained model’s behavior. These are not exhaustive, but
 173 illustrative scenarios that demonstrate the flexibility of the proposed framework. Figure 2 showcases
 174 what sort of data points would be produced in a synthetic dataset.

175 In many cases we pick the regularizer term as $R_G(\mathbf{x}) = \lambda \|\mathbf{x} - \mathbf{x}_a\|_r^r$ for $r \geq 1$, so that the generated
 176 synthetic data is localized to an anchor \mathbf{x}_a . The $\lambda > 0$ term is an explicit tunable parameter that
 177 controls the trade-off between the probing objective and localization strength. In fact, different
 178 weightings can also be applied to different columns to enforce this more or less stringently for
 179 different features.



180
 181 Figure 2: Given a dataset of two concentric circles labeled red and blue, two Support Vector Machine
 182 (SVM) models are trained on the binary classification task with kernels chosen as Radial Basis
 183 Function (RBF) and cubic polynomial, respectively. The generated data points are green. In (a), we
 184 contrast the two SVM models, looking for samples for which their predictions differ, and discover
 185 that this is the case in a region near the origin lacking any training points. In (b) and (c), we inquire
 186 about data points that would be considered risky by the two models using RBF and cubic kernels,
 187 respectively. In (d) we design G so that it generates data points which are classified with the opposite
 188 label of the orange point by the RBF-SVM without straying too far from it.

189
 190 **Model-contrasting samples.** Given two models, finding data points where their predictions dis-
 191 agree is illuminating either to interpret model-specific biases or to audit consistency between two
 192 different models. This is particularly useful when comparing models with different inductive biases
 193 (MLP vs. CNN, linear vs. nonlinear, and so on). Given \hat{y} as the predictor functions of the model that
 194 is being compared against (which can be non-parametric, like in boosted trees), we solve equation 3
 195 with the function
 196

$$G(\mathbf{x}) = \ell_G(y_{\theta^*}(\mathbf{x}), 1 - \hat{y}(\mathbf{x})) + R_G(\mathbf{x}). \quad (5)$$

197 In Figure 2(a), we contrast two SVM models with different kernels and discover a region near the
 198 origin, which does not contain any samples from the dataset but would give conflicting predictions
 199 if a new sample were to come from it.

200 **Prediction-risky samples.** To identify the indecisive regions in a model’s decision surface, we
 201 either put $G(\mathbf{x}) = \|f(\mathbf{x}, \theta^*) - \alpha\|_r^r$ for $r \geq 1$, where f may be the decision function of a binary
 202 classification model such as in SVM and logistic regression and α denotes the cutoff point, or given
 203 a multi-class classification where f are the prediction probabilities, we put $G(\mathbf{x}) = -H(f(\mathbf{x}))$, the
 204 negative entropy. Solving equation 3 thus corresponds to generating “risky data points” near the
 205 decision boundary, yielding insights into whether the model correctly identifies important aspects of
 206 the data for decision-making and whether that aligns with the user’s conceptions. As an illustrative
 207 example in Figure 2(b), we search for the decision boundary of a RBF-SVM trained on a dataset of
 208 two concentric circles, and we discover the ring in the center as an unexpected decision boundary.

216 **Parameter-sensitive samples.** Given a set of parameters θ^* and a distribution $q^*(\theta)$ of parameter
 217 values, we ask the model for data samples whose classifications would flip if the model parameters
 218 were to be (perhaps slightly) perturbed. This can be achieved by solving equation 3 using
 219

$$220 \quad G(\mathbf{x}) = \int_{\Theta} \ell_G(y_{\theta}(\mathbf{x}), 1 - y_{\theta^*}(\mathbf{x})) q^*(\theta) d\theta + R_G(\mathbf{x}). \quad (6)$$

222 This integral would be approximated by samples from q^* . When $q^* \in \mathcal{Q}$ is chosen from a restricted
 223 family of distributions, like Gaussians with fixed variance, sampling from q^* means perturbing θ^* .
 224 This probing function is particularly useful when we want to examine the consistency of a model’s
 225 predictions under small shifts in its parameters. By identifying inputs whose predictions vary signif-
 226 icantly with minor parameter changes, we can highlight sensitive regions in the input space—areas
 227 that might indicate over-dependence on specific parameter configurations. This can have overlaps
 228 but is distinct from prediction-risky samples, as we showcase in our computational study section.
 229 Parameter-sensitive samples has the flexibility to be generated far from the decision boundary, espe-
 230 cially in non-linear models.

231 In equation 6 we formulated the probing function for the binary case. For regression models, choos-
 232 ing $G(\mathbf{x}) = \int_{\Theta} \exp(-\|y_{\theta}(\mathbf{x}) - y_{\theta^*}(\mathbf{x})\|^2/\sigma^2) q^*(\theta) d\theta + R_G(\mathbf{x})$ has lower value when the pre-
 233 dictions are large (large being measured with a yardstick of size σ of our choosing). Similarly
 234 for equation 5. As for multi-class prediction we can also use this G , with $y_{\theta}(\mathbf{x})$ representing the
 235 (post-softmax) probabilities of class predictions.

236 **Fixed-label samples.** Finally, we probe the model for what it thinks are good data samples that fit
 237 the bill for the prediction y' , either for a single parameter θ^* or a distribution $q^*(\theta)$

$$238 \quad G(\mathbf{x}) = \ell_G(y_{\theta^*}(\mathbf{x}), y') + R_G(\mathbf{x}) \quad \text{and} \quad G(\mathbf{x}) = \int_{\Theta} \ell_G(y_{\theta}(\mathbf{x}), y') q^*(\theta) d\theta + R_G(\mathbf{x}), \quad (7)$$

239 respectively. Here, $R_G(\mathbf{x})$ is a localizer at an anchor point. We can take a data point (\mathbf{x}_0, y_0) to
 240 be this anchor. In case $y' \neq y_0$, we are exploring changes in \mathbf{x}_0 that would need to happen for the
 241 prediction to change; in other words, a counterfactual; see Figure 2(d). In case $y' = y_0$ with a weak
 242 localizer, we can obtain a sample that would lead to a similar prediction, *i.e.*, a factual.

243 Figure 1 demonstrates the steps when $y_{\theta}(\mathbf{x}) = \mathbf{x}^T \theta$ corresponds to linear regression, and both ℓ_F
 244 and ℓ_G are the mean squared errors. For this special case, we obtain analytical solutions for all steps
 245 of our framework. The details of this observation are given in Appendix A.

246 **Feature-restricted samples.** By restricting \mathcal{P} to be supported on data with certain features fixed,
 247 such as those features corresponding to age, race, and so on, we can ask the model for all of the
 248 above questions but conditioning on certain immutable characteristics. This falls into the class of
 249 optimizations, where instead of G we consider $G(\varphi(\mathbf{z}))$ on some other (latent) space $\mathbf{z} \in Z$. In
 250 case of image data, for example, to have our samples conform to the data manifold, φ can be taken
 251 as the trained decoder module from a VAE. Pushforwards $\varphi_* \tilde{p}$ of measures $\tilde{p} \in \mathcal{P}(Z)$ on the latent
 252 space then lie on the data manifold, *i.e.*, sampling $\mathbf{z} \sim \tilde{p}$ and computing $\varphi(\mathbf{z})$ gives a data sample.
 253 See Figure 4 for this method in a concrete application.

254 4 COMPUTATIONAL STUDY

255 In this section, we conduct a series of experiments to evaluate the cases presented in Section 3. Our
 256 experiments aim to evaluate the proposed framework by demonstrating its ability to generate data
 257 samples across various scenarios. We use well-established datasets that have been recently adopted
 258 in related literature (e.g., (Good et al., 2023), (Ley et al., 2023), (Si et al., 2024)), and their specifics
 259 are outlined in Appendix B. The implementation details and code for reproducing these experiments
 260 are available on our GitHub repository.¹

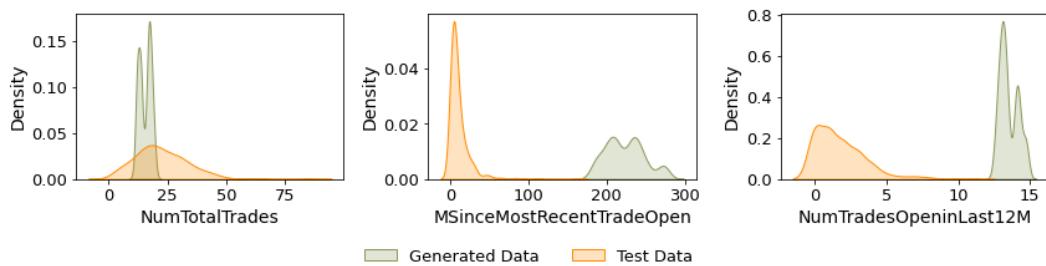
261 **Model-contrasting samples.** This experiment investigates the differences between two predictive
 262 models by probing the features that drive contrasting predictions for the same data. Through our
 263 framework, we pose the following question:

264 *265 Which features or input changes lead to disagreement between the two models’ predictions?*

266 ¹<https://anonymous.4open.science/r/EvD-6FB1/>

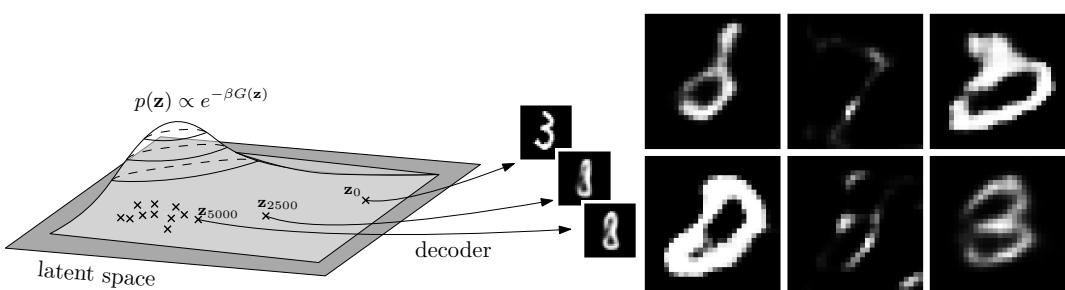
270 To explore this, we apply the framework to datasets of different modalities. For tabular data, we use
 271 the FICO dataset (FICO, 2018); for image dataset, we use MNIST (LeCun et al., 2010).

272 We begin by investigating model divergence in scenarios where the comparison model is non-
 273 differentiable. To this end, we train XGBoost Chen & Guestrin (2016) -a non-parametric model-
 274 alongside logistic regression on the FICO dataset, which consists of credit applications with
 275 features related to financial history and risk performance. This setup highlights the flexibility of our
 276 framework, as it enables probing differences between models with fundamentally distinct modeling
 277 approaches. Although the two models agree on 94.5% of the predictions in the test set, our frame-
 278 work generates a set of samples where their predictions exhibit full disagreement, *i.e.*, XGBoost
 279 predicts one class, while logistic regression predicts the opposite. Figure 3 presents the feature dis-
 280 tributions for these discrepant samples, focusing on three representative features. We observe that
 281 disagreement tends to occur when the number of credit accounts opened in the past year falls in the
 282 12–15 range, which is outside of this feature’s distribution in the test data. This indicates that our
 283 method can surface disagreement patterns that would remain undetected through standard evaluation
 284 alone. We also include in Appendix D a comparison between a linear model and a Support Vector
 285 Regression (SVR) model using a different tabular dataset.



296 Figure 3: The distributions of three representative features in the generated samples. Here, XGBoost
 297 predicts “Bad” for RiskPerformance, while logistic regression predicts “Good”.

298 Our framework can also be used to compare and contrast two models trained on image data. To
 299 demonstrate, we consider a Convolutional Neural Network (CNN) and an MLP, both trained on
 300 MNIST. The architectures of these networks are provided in Appendix B.2. To better capture the
 301 data manifold, we also train a VAE with a latent dimension of 10. The trained encoder module of the
 302 VAE is denoted by $z \mapsto \varphi(z)$. Further details on the VAE training process are provided in Appendix
 303 E. In Figure 4, we present an example computation illustrating how this setup works. Starting with
 304 a latent vector encoding an image with label ‘3’, we sample from a distribution that prefers the label
 305 ‘8’ jointly for both a trained CNN (LeNet5) and an MLP.
 306



317 Figure 4: (left) Using Langevin dynamics in the latent space, we obtain a sequence of latent vectors
 318 that, when passed through the decoder φ , correspond to a walk on the data manifold. In this image,
 319 the function G is the sum of cross-entropy predictions of trained MLP and LeNet5 networks for the
 320 label ‘8’ and for the data $\varphi(z)$. (right) Images in the first and second columns are generated to prefer
 321 a given label on an MLP model and another one on a CNN model. upper-left: CNN-‘0’ MLP-‘1’,
 322 upper-middle: CNN-‘1’ MLP-‘7’, lower-left: CNN-‘0’ MLP-‘8’, lower-middle: CNN-‘2’ MLP-‘5’.
 323 On the third column, the upper image prefers the label ‘8’ for the MLP model whilst being close to
 a data sample with label ‘3’, and the same for the lower image for the CNN model.

We use this setup to systematically compare the CNN and MLP models. In Figure 4, we showcase some samples generated by forcing functions G that pull the data toward incompatible directions, for example, resulting in amorphous data points that exhibit characteristics of both ‘1’ and ‘0’. The third column highlights cases where the label ‘8’ is preferred (top: MLP, bottom: CNN) while remaining close to an actual MNIST image labeled ‘3’, which is enforced through two-norm regularization.

Prediction-risky samples. As our first example, we train an MLP on the FICO dataset to classify credit risks as “Good” or “Bad.” Prediction-risky samples are those for which the model outputs softmax probabilities close to 0.5, reflecting high uncertainty. A detailed analysis of this experiment, along with the generated samples, is provided in Appendix D. For example, we see in Figure 12 that the model assesses between three-to-five delinquencies (MaxDelqEver) as being on the edge between being a bad credit risk versus a good credit risk. A domain expert can then assess if this coincides with her expectations of the model.

As another example, in order to demonstrate the versatility of our approach, we apply it to tree-based models. Using these models poses a challenge due to the locally constant nature of their prediction functions, and hence, one cannot directly use the gradient-based methods. However, in Appendix C.2, we describe how approximate gradient information can still be leveraged effectively to overcome this limitation.

Using the wine dataset from `scikit-learn`, we train a Random Forest (RF) classifier. This dataset is designed for classification tasks and consists of 13 numerical features that describe various characteristics of wine, such as hue and alcohol content. The target variable represents the wine’s region of origin, which falls into one of three distinct classes. We ask the following question:

Which input samples drive the RF classifier to produce nearly uniform class probabilities?

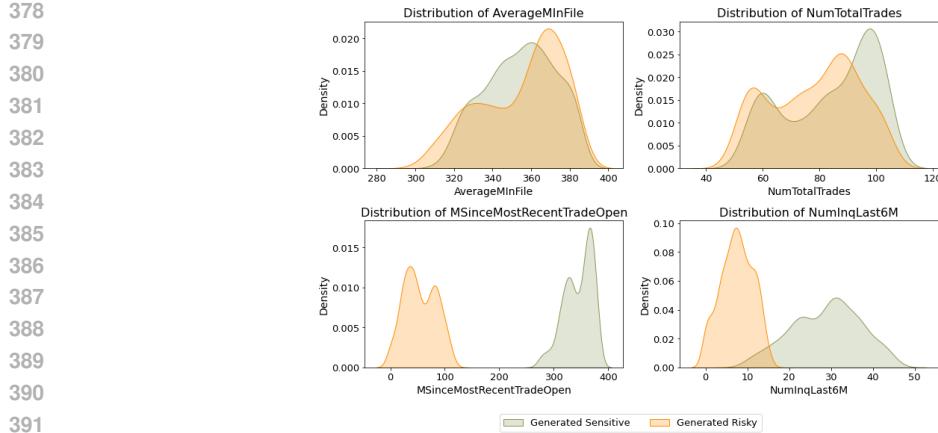
To highlight the flexibility of our method, we also impose a regularizer that encourages that a Decision Tree (DT) fitted to the same dataset predicts a given region with certainty. This can be achieved by letting $G(\mathbf{x})$ to simultaneously maximize the entropy of the RF’s prediction probabilities (encouraging uncertainty) and minimize the distance between the DT’s prediction probabilities and a fixed one-hot vector, thereby enforcing certainty on a chosen class. Both models have high accuracy on the validation set (RF: 94.4%, DT: 88.8%). Therefore, the generated data’s features necessarily lie outside the empirical data distribution. We generated 50 data points such that the DT predicts `class_1` with full certainty, and the RF’s prediction probabillites are $(0.31 \pm 0.03, 0.4 \pm 0.06, 0.29 \pm 0.06)$. See Table 1 in Appendix D to compare the feature values of this generated wine feature dataset versus those from each of the three regions. Following the decision path of the DT, we observe that the generated samples are identified as belonging to `class_1` solely based on their color intensity. In contrast, the Langevin process resulted in a set of wine features for which the model exhibited uncertainty the random forest classifications.

Parameter-sensitive samples. This experiment investigates data samples that are sensitive to small perturbations in the model parameters. Unlike prediction-risky samples, parameter-sensitive samples may exist anywhere in the input space, as their classification changes with slight shifts in the model’s parameters. To guide this analysis, we pose the following question:

What kind of data samples vary in classification due to small changes in model parameters?

We train an MLP on the FICO dataset and generate parameter-sensitive samples by perturbing the model parameters using a Gaussian distribution centered at the original weights with fixed variance. Using the probing function in (6), we generate and analyze 500 such samples to identify instances most susceptible to model variation, and compare them with prediction-risky samples.

Figure 5 shows density plots of four representative features (see Appendix D for additional ones), comparing parameter-sensitive and prediction-risky samples. By comparing these two distributions, we gain insights into how the model perceives uncertainty from different perspectives. While the prediction-risky samples are associated with uncertainty near the decision boundary, the parameter-sensitive samples highlight regions in the feature space where small parameter changes can flip predictions. The features `AverageMinFile` (average observation period) and `NumTotalTrades` (total number of trades) exhibit similar distributions across both sets. In contrast, the features `MSinceMostRecentTradeOpen` (months since most recent trade) and `NumInqLast 6M` (inquiries in the past six months) diverge. For example, `NumInqLast 6M`, which signals recent credit

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
Figure 5: Feature distributions in generated parameter-sensitive and prediction-risky samples.

seeking activity, is lower among prediction-risky samples, indicating that individuals with fewer recent inquiries are more likely to fall near the decision boundary. In contrast, parameter-sensitive samples exhibit a broader distribution, indicating that parameter shifts affect individuals across a wider range of credit inquiry patterns. This may be because frequent inquiries reflect diverse financial behaviors, making these samples more vulnerable to prediction instability. These findings suggest that some features contribute more to robustness under parameter variation, while others primarily influence boundary-sensitive classifications.

Fixed-label samples. We apply the probing function G in equation 7 to the Adult dataset (Becker & Kohavi, 1996), a widely used benchmark for binary classification based on income level (whether an individual earns more than \$50K annually). A logistic regression model is trained on the dataset, and we examine its behavior by constructing counterfactual samples. Specifically, given a factual instance (\mathbf{x}_0, y) , we generate samples using the probing function with $y' \neq y$ and regularizer $R(\mathbf{x}) = \|\mathbf{x} - \mathbf{x}_0\|^2$. In this experiment, the factual instance represents a Latin-American Black Female, predicted to earn less than \$50K. Using our framework, we pose the following question:

What feature changes would cause the model to predict an income above \$50K for this individual?

To address this question, the probing function is designed to balance two objectives: steering the model prediction toward the target label $y' = 1$ (using cross-entropy loss), and staying close to the original input (via the regularizer term $R_G(\mathbf{x})$).

Figure 6 shows the distribution of the generated samples aggregated over 50 independent runs. The shaded regions (for numerical features) and error bars (for categorical features) indicate variability across runs. The results provide insights into the model’s classification process and the factors it deems influential in income predictions. While generating counterfactual samples, we impose bounds on age, educational attainment, and weekly working hours, which are enforced during Langevin dynamics sampling process by clipping each step to remain within the specified ranges. All of the generated samples are predicted to have label $y = 1$ (income above \$50k). Comparing the factual input with the counterfactual distribution reveals significant categorical shifts. For example, the majority of samples indicate a change in gender from female to male, and a region shift from Latin America to Western Europe, suggesting that these features significantly influence the model’s decision. These observations raise questions about fairness and bias. While we may directly investigate the logistic regression coefficients associated with these features, *e.g.*, $\text{female} \approx -1.375$, $\text{male} \approx -1.243$, the bias is more clearly revealed through the generated samples. More importantly, such coefficients are not readily available for more complex models like deep networks. Figure 6 shows a roughly equal distribution for the gender feature. Given that our probing function also includes a proximity term to the initial data point who is a female, we deduce that gender is influential for the model’s prediction, otherwise we would expect the generated counterfactuals to remain female due to the localizer term in G .

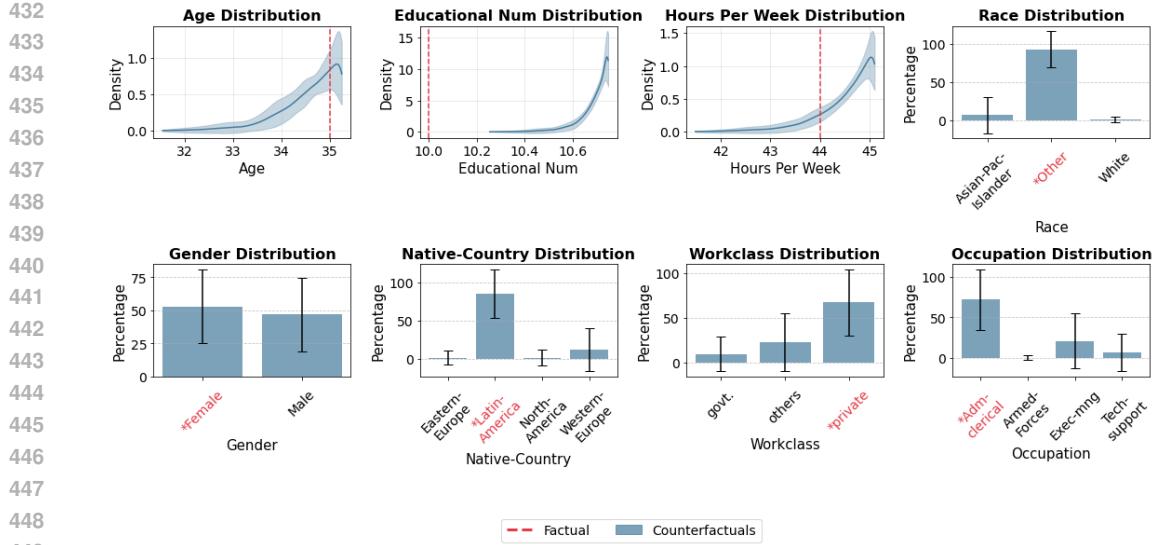


Figure 6: Feature distributions of generated counterfactual samples (blue shaded) with factual instance highlighted (red markers).

In addition to the main experimental results, we conduct a comparison with DiCE (Mothilal et al., 2020), a widely used counterfactual generation method. DiCE produces a set of diverse counterfactual instances by optimizing for feature changes that flip the model’s prediction. In contrast, our probing scenario constructs a full stationary distribution over inputs aligned with the model’s behavior, rather than a finite collection of point solutions. This yields a richer characterization of how the model responds to perturbations and provides a distributional view of its decision boundary. The comparison results are provided in Appendix D. Consistent with the design of our probing scenario, all generated samples strictly satisfy the decision-flipping condition. In other words, every point in the distribution changes the classifier’s prediction relative to the factual instance. The results illustrate that our method and DiCE are complementary. While DiCE offers example-level counterfactuals, our approach captures the underlying probability landscape from which such counterfactuals arise.

Generating samples in high dimensions. We probe the ResNet50 model (pre-trained on ImageNet-1k dataset, available in `torchvision.models`) to demonstrate that our approach scales to high-dimensional data spaces ($224 \times 224 \approx 50k$). By generating images at successively higher resolutions and using the pretrained TAEsd autoencoder (Bohan, 2023), we obtain images guided by a probing function G that favors latent vectors z such that the decoded images have low reconstruction loss under the VAE and are predicted by ResNet50 to be “goldfish” or “snail”, respectively (Figure 7 in Appendix F). The generated “goldfish” images predominantly feature orange regions with a small black dot resembling an eye, while the “snail” images include curved antenna-like shapes. This suggests that ResNet50 relies strongly on color cues for goldfish detection.

We test this hypothesis by evaluating ResNet50 on 50 color-modified validation samples. Results for goldfish, snail, and other classes are reported in Table 2 in Appendix F. Notably, swapping green and blue channels does not substantially impair goldfish detection, while grayscale conversion sometimes has only a limited effect on classification.

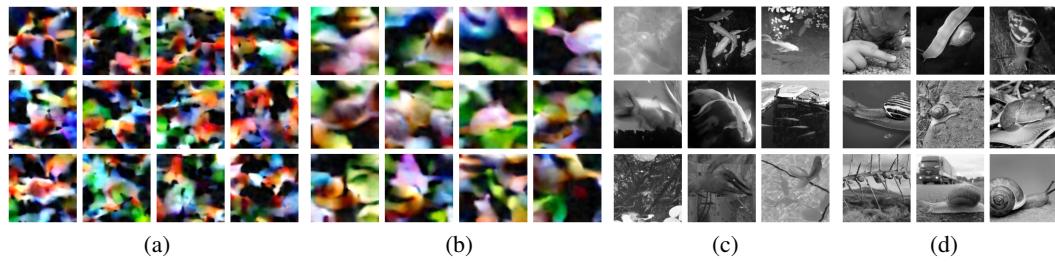


Figure 7: (a) generated samples classified as “goldfish”, (b) generated samples classified as “snail”, (c) “goldfish” validation images misclassified by ResNet50 when converted to grayscale, (d) “snail” validation images converted to grayscale, only the first is misclassified by ResNet50.

5 CONCLUSION

We introduce a mathematical framework for probing trained models with tailored data samples designed to answer specific queries, going beyond traditional interpretability methods. By formulating probing functions, we demonstrate how to generate samples for scenarios like prediction risky, parameter sensitivity, and model contrast. Our computational study shows the framework’s effectiveness in classification and regression tasks on diverse datasets, revealing insights into decision boundaries and input sensitivities. Our goal is to understand machine learning models for positive societal impact, with our tools supporting model analysis through sample generation.

Our framework offers opportunities for improvement and future research. Incorporating implicit constraints among features (*e.g.*, monotonic relationships) could enable the generation of samples that accurately represent the dataset and enhance their interpretability and reliability. Applying our framework in various application areas with domain experts could also illuminate different usability aspects. Addressing these considerations will help refine and build upon the foundational study presented here.

REFERENCES

Stefan Aeberhard and M. Forina. Wine. UCI Machine Learning Repository, 1992. DOI: <https://doi.org/10.24432/C5PC7J>.

Michael Arbel, Liang Zhou, and Arthur Gretton. Generalized energy based models. In International Conference on Learning Representations (ICLR), 2021.

Barry Becker and Ronny Kohavi. UCI Adult Dataset. UCI Machine Learning Repository, 1996. DOI: <https://doi.org/10.24432/C5XW20>.

Michael Biehl, Barbara Hammer, and Thomas Villmann. Prototype-based models in machine learning. Wiley Interdisciplinary Reviews: Cognitive Science, 7(2):92–111, 2016.

Ollin Boer Bohan. Taesd, 2023. URL <https://github.com/madebyollin/taesd>.

Boris van Breugel, Trent Kyono, Jeroen Berrevoets, and Mihaela van der Schaar. Decaf: generating fair synthetic data using causally-aware generative networks. In Proceedings of the 35th International Conference on Neural Information Processing Systems, NIPS ’21, Red Hook, NY, USA, 2024. Curran Associates Inc.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, pp. 785–794, New York, NY, USA, 2016. Association for Computing Machinery. ISBN 9781450342322. doi: 10.1145/2939672.2939785. URL <https://doi.org/10.1145/2939672.2939785>.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.

540 David Duvenaud, Jackson Wang, Jorn Jacobsen, Kevin Swersky, Mohammad Norouzi, and Will
 541 Grathwohl. Your classifier is secretly an energy-based model and you should treat it like one. In
 542 International Conference on Learning Representations (ICLR), 2020.

543

544 Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
 545 Muller. Data augmentation using synthetic data for time series classification with deep residual
 546 networks. arXiv preprint arXiv:1808.02455, 2018.

547 FICO. Home Equity Line of Credit (HELOC) Dataset. FICO Community, 2018.
 548 <https://community.fico.com/s/explainable-machine-learning-challenge>.

549

550 Ankush Ganguly and Samuel WF Earp. An introduction to variational inference. arXiv preprint
 551 arXiv:2108.13083, 2021.

552 Jürgen Geiser. Numerical picard iteration methods for simulation of non-lipschitz stochastic differ-
 553 ential equations. Symmetry, 12(3), 2020. ISSN 2073-8994. doi: 10.3390/sym12030383. URL
 554 <https://www.mdpi.com/2073-8994/12/3/383>.

555

556 Jack Good, Torin Kovach, Kyle Miller, and Artur Dubrawski. Feature learning for interpretable,
 557 performant decision trees. In Advances in Neural Information Processing Systems, volume 36,
 558 pp. 66571–66582. Curran Associates, Inc., 2023.

559

560 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 561 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. In Advances in Neural
 562 Information Processing Systems, 2014.

563

564 Shalmali Joshi, Sanmi Koyejo, Warut Vigitbenjaronk, Been Kim, and Joydeep Ghosh. Towards
 565 realistic individual recourse and actionable explanations in black-box decision making systems.
 566 arXiv preprint arXiv:1907.09615, 07 2019.

567

568 Kaggle. Housing Prices Dataset, 2021. <https://www.kaggle.com/datasets/yasserb/housing-prices-dataset>.

569

570 Diederik P. Kingma and Max Welling. Auto-Encoding Variational Bayes. In 2nd International
 571 Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, April 14-16, 2014,
 572 Conference Track Proceedings, 2014.

573

574 Matt Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. Counterfactual fairness. In Proceedings of the 31st International Conference on Neural Information Processing Systems,
 575 NIPS'17, pp. 4069–4079, 2017.

576

577 Yann LeCun, Sumit Chopra, Raia Hadsell, Marc'Aurelio Ranzato, , and Fu-Jie Huang. A tutorial
 578 on energy-based learning. In Predicting Structured Data. MIT Press, 2006.

579

580 Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. MNIST Handwritten Digit Database.
 581 AT & T Labs, 2010. <http://yann.lecun.com/exdb/mnist>.

582

583 Dan Ley, Saumitra Mishra, and Daniele Magazzeni. GLOBE-CE: a translation based approach
 584 for global counterfactual explanations. In Proceedings of the 40th International Conference on
 585 Machine Learning, ICML'23. JMLR.org, 2023.

586

587 Weitang Liu, Xiaoyun Wang, John D. Owens, and Yixuan Li. Energy-based out-of-distribution
 588 detection. In Proceedings of the 34th International Conference on Neural Information Processing
 589 Systems, Red Hook, NY, USA, 2020. Curran Associates Inc.

590

591 Junwei Ma, Apoorv Dankar, George Stein, Guangwei Yu, and Anthony Caterini. TabPFGen –
 592 Tabular data generation with TabPFN. arXiv preprint arXiv:2406.05216, 2024.

593

594 Andrei Margeloiu, Xiangjian Jiang, Nikola Simidjievski, and Mateja Jamnik. TabEBM: A tabu-
 595 lar data augmentation method with distinct class-specific energy-based models. arXiv preprint
 596 arXiv:2409.16118, 2024.

597

598 Charles T. Marx, Flavio du Pin Calmon, and Berk Ustun. Predictive multiplicity in classification. In
 599 International Conference on Machine Learning, pp. 6765–6774. PMLR, 2020.

594 Ramaravind K Mothilal, Amit Sharma, and Chenhao Tan. Explaining machine learning classifiers
 595 through diverse counterfactual explanations. In Proceedings of the 2020 Conference on Fairness,
 596 Accountability, and Transparency, pp. 607–617, 2020.

597

598 Gregory Plumb, Jonathan Terhorst, Sriram Sankararaman, and Ameet Talwalkar. Explaining groups
 599 of points in low-dimensional representations. In Proceedings of the 37th International Conference
 600 on Machine Learning, ICML’20, 2020.

601 Kaivalya Rawal and Himabindu Lakkaraju. Beyond individualized recourse: interpretable and in-
 602 teractive summaries of actionable recourses. In Proceedings of the 34th International Conference
 603 on Neural Information Processing Systems, NIPS ’20, 2020.

604

605 Annabelle Redelmeier, Marin Jullum, Kjersti Aas, and Anders Løland. MCCE: Monte carlo
 606 sampling of valid and realistic counterfactual explanations for tabular data. Data Mining and
 607 Knowledge Discovery, pp. 1830–1861, 2024.

608 Jacob Si, Wendy Yusi Cheng, Michael Cooper, and Rahul G. Krishnan. InterpreTabNet: distilling
 609 predictive signals from tabular data by salient feature interpretation. ICML’24. JMLR.org, 2024.

610 Boris van Breugel, Trent Kyono, Jeroen Berrevoets, and Mihaela van der Schaar. DECAF: Gener-
 611 ating fair synthetic data using causally-aware generative networks. In M. Ranzato, A. Beygelz-
 612 imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan (eds.), Advances in Neural Information
 613 Processing Systems, volume 34. Curran Associates, Inc., 2021.

614

615 Sandra Wachter, Brent Mittelstadt, and Chris Russell. Counterfactual explanations without opening
 616 the black box: Automated decisions and the GDPR. Harv. JL & Tech., 31:841, 2017.

617

618 Sebastien C. Wong, Adam Gatt, Victor Stamatescu, and Mark D. McDonnell. Understanding data
 619 augmentation for classification: When to warp? In 2016 International Conference on Digital
 620 Image Computing: Techniques and Applications (DICTA), pp. 1–6, 2016.

621

622 Depeng Xu, Shuhan Yuan, Lu Zhang, and Xintao Wu. Fairgan: Fairness-aware generative adver-
 623 sarial networks. In 2018 IEEE International Conference on Big Data (Big Data), pp. 570–575,
 624 2018.

625 Arnold Zellner. Optimal information processing and bayes’s theorem. The American Statistician,
 626 42(4):278–280, 1988.

627

628 Junbo Zhao, Michael Mathieu, and Yann LeCun. Energy-based generative adversarial networks. In International Conference on Learning Representations (ICLR), 2017.

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 A LINEAR REGRESSION WITH GAUSSIAN DATA
649

650 We start with $y_\theta(\mathbf{x}) = \theta^\top \mathbf{x}$ and $\ell_F(y, y') = \ell_G(y, y') = \frac{1}{2}(y - y')^2$. Given a dataset $\{(\mathbf{x}_i, y_i)\}_{i=1}^N$,
651 we construct the loss function $F(\theta)$ as the integral of $\ell_F(y_\theta(\mathbf{x}), y)$, over the data distribution, which
652 is approximated by the Dirac delta comb $\nu = \frac{1}{N} \sum_{i=1}^N \delta_{(\mathbf{x}_i, y_i)}$:
653

$$654 F(\theta) = \int_{\mathcal{X} \times \mathcal{Y}} \ell_F(y_\theta(\mathbf{x}), y) d\nu(\mathbf{x}, y) = \frac{1}{2N} \sum_{i=1}^N |\mathbf{x}_i^\top \theta - y_i|^2.$$

657 Assume, for convenience, that a constant feature of 1 is included as the last coordinate of \mathbf{x} , allowing
658 us to explicitly represent the intercept. Using this notation, we define
659

$$660 \mathbf{x} = \begin{bmatrix} \mathbf{f} \\ 1 \end{bmatrix}, \quad \theta = [\xi \ b], \text{ so that } \mathbf{x}^\top \theta = \mathbf{f}^\top \xi + b.$$

662 We write the design matrix as
663

$$664 D = \begin{bmatrix} \cdots & \mathbf{x}_1^\top & \cdots & 1 \\ \cdots & \mathbf{x}_2^\top & \cdots & 1 \\ \vdots & & \vdots & \\ \cdots & \mathbf{x}_N^\top & \cdots & 1 \end{bmatrix} = [X \ 1].$$

670 The quadratic loss function can then be expressed as

$$671 F(\theta) = \frac{1}{2N} \|D\theta - \mathbf{y}\|^2,$$

674 where $\mathbf{y} = [y_1 \ y_2 \ \cdots \ y_N]^\top$ is the label vector. We can reorder the terms so that
675

$$676 F(\theta) = \frac{1}{2N} (D\theta - \mathbf{y})^\top (D\theta - \mathbf{y}) = \frac{1}{2N} (\theta^\top D^\top D\theta - 2\theta^\top X^\top \mathbf{y}) + \text{const.}$$

$$677 = \frac{1}{2} (\theta - \hat{\theta})^\top \frac{D^\top D}{N} (\theta - \hat{\theta}) + \text{const.}$$

680 where $\hat{\theta} = (D^\top D)^{-1} D^\top \mathbf{y}$. Note that this is precisely the ordinary least squares solution.
681

682 Since the loss function is quadratic, we can explicitly write the Gibbs distribution (which is the
683 unrestricted solution to the Bayesian Learning Problem with F) as the Gaussian distribution
684

$$685 q^*(\theta) \propto e^{-\beta F(\theta)} \propto e^{-\frac{1}{2}(\theta - \hat{\theta})^\top \frac{D^\top D}{N/\beta} (\theta - \hat{\theta})} \quad \text{thus } q^*(\theta) = \mathcal{N}\left(\hat{\theta}, \left(\frac{D^\top D}{N/\beta}\right)^{-1}\right).$$

688 Here, the variable β is the inverse temperature defined as $\beta = 1/\tau$.

689 Next, we construct G , a loss function on $\mathcal{X} \times \mathcal{Y}$. By fixing the label, we may also consider G as
690 a loss function only on \mathcal{X} , from which we derive a distribution over \mathcal{X} . To avoid overusing \mathbf{x} and
691 y , we denote elements of the labeled dataset as $(\mathbf{z}, w) \in \mathcal{X} \times \mathcal{Y}$ with $\mathbf{z} = [\mathbf{f} \ 1]$. Using the first and
692 second moments of Gaussians, we calculate
693

$$694 G(\mathbf{z}, w) = \int_{\Theta} |\mathbf{z}^\top \theta - w|^2 q^*(\theta) d\theta$$

$$695 = \mathbf{z}^\top \mathbb{E}_{q^*}[\theta \theta^\top] \mathbf{z} - 2w \mathbf{z}^\top \mathbb{E}_{q^*}[\theta] + \text{const}$$

$$696 = \mathbf{z}^\top \left(\hat{\theta} \hat{\theta}^\top + \left(\frac{D^\top D}{N\tau} \right)^{-1} \right) \mathbf{z} - 2w \mathbf{z}^\top \hat{\theta} + \text{const.}$$

700 which is again a quadratic function in \mathbf{z} . Let us now write this quadratic in terms of \mathbf{f} . We write
701 $\hat{\theta} = [\hat{\xi} \ b]$.

702 First, a quick calculation gives the block diagonal form
 703

$$\begin{aligned} 704 \quad \left(\frac{D^\top D}{N\tau} \right)^{-1} &= \tau \begin{bmatrix} \frac{X^\top X}{N} & \bar{\mathbf{x}} \\ \bar{\mathbf{x}}^\top & 1 \end{bmatrix}^{-1} \\ 705 \quad &= \tau \begin{bmatrix} A^{-1} & -A^{-1}\bar{\mathbf{x}} \\ -\bar{\mathbf{x}}^\top A^{-1} & * \end{bmatrix}, \\ 706 \quad & \end{aligned}$$

709 where $A = \frac{X^\top X}{N} - \bar{\mathbf{x}}\bar{\mathbf{x}}^\top$ is the Schur complement and $\bar{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^N \mathbf{x}_i$ is the mean data vector.
 710

711 We can write G as a quadratic function of \mathbf{f} (fixing w) as
 712

$$\begin{aligned} 713 \quad G_w(\mathbf{f}) &= \mathbf{f}^\top \left(\tau A^{-1} + \hat{\boldsymbol{\xi}}\hat{\boldsymbol{\xi}}^\top \right) \mathbf{f} - 2\mathbf{f}^\top \left(\tau A^{-1}\bar{\mathbf{x}} - \hat{\boldsymbol{\xi}}\hat{b} + w\hat{b} \right) + \text{const.} \\ 714 \quad &= (\mathbf{f} - \hat{\mathbf{f}}) \left(\tau A^{-1} + \hat{\boldsymbol{\xi}}\hat{\boldsymbol{\xi}}^\top \right) (\mathbf{f} - \hat{\mathbf{f}}) + \text{const.} \\ 715 \quad & \end{aligned}$$

716 Here, $\hat{\mathbf{f}}$ is calculated as
 717

$$\begin{aligned} 718 \quad \hat{\mathbf{f}} &= \left(\tau A^{-1} + \hat{\boldsymbol{\xi}}\hat{\boldsymbol{\xi}}^\top \right)^{-1} \left(\tau A^{-1}\bar{\mathbf{x}} + \hat{\boldsymbol{\xi}}(w - \hat{b}) \right) \\ 719 \quad &= \left(A_\tau - \frac{A_\tau \hat{\boldsymbol{\xi}}\hat{\boldsymbol{\xi}}^\top A_\tau}{1 + \hat{\boldsymbol{\xi}}^\top A_\tau \hat{\boldsymbol{\xi}}} \right) \left(A_\tau^{-1}\bar{\mathbf{x}} + \hat{\boldsymbol{\xi}}^\top (w - \hat{b}) \right), \\ 720 \quad & \end{aligned}$$

721 where $A_\tau = \frac{1}{\tau} A$ and the Sherman-Morrison formula is used for inverting the matrix.
 722

723 Now expanding the product, we obtain
 724

$$\hat{\mathbf{f}} = \bar{\mathbf{x}} + A_\tau \hat{\boldsymbol{\xi}}(w - \hat{b}) - \frac{A_\tau \hat{\boldsymbol{\xi}}\hat{\boldsymbol{\xi}}^\top \bar{\mathbf{x}}}{1 + \hat{\boldsymbol{\xi}}^\top A_\tau \hat{\boldsymbol{\xi}}} - A_\tau \hat{\boldsymbol{\xi}} \frac{\hat{\boldsymbol{\xi}}^\top A_\tau \hat{\boldsymbol{\xi}}}{1 + \hat{\boldsymbol{\xi}}^\top A_\tau \hat{\boldsymbol{\xi}}} (w - \hat{b}).$$

725 Note that if we denote the predictions of the linear model as $\mathbf{x}_i^\top \hat{\boldsymbol{\xi}} + \hat{b} = \hat{y}_i$, we can rewrite the above
 726 formula as follows:
 727

$$\begin{aligned} 728 \quad \hat{\mathbf{f}} &= \bar{\mathbf{x}} + A_\tau \hat{\boldsymbol{\xi}}(w - \hat{b}) \frac{1}{1 + \hat{\boldsymbol{\xi}}^\top A_\tau \hat{\boldsymbol{\xi}}} - A_\tau \hat{\boldsymbol{\xi}} \frac{\hat{\boldsymbol{\xi}}^\top \bar{\mathbf{x}}}{1 + \hat{\boldsymbol{\xi}}^\top A_\tau \hat{\boldsymbol{\xi}}} \\ 729 \quad &= \bar{\mathbf{x}} + A_\tau \hat{\boldsymbol{\xi}} \frac{(w - \hat{b})}{1 + \hat{\boldsymbol{\xi}}^\top A_\tau \hat{\boldsymbol{\xi}}} - A_\tau \hat{\boldsymbol{\xi}} \frac{(\hat{\mathbf{y}} - \hat{b})}{1 + \hat{\boldsymbol{\xi}}^\top A_\tau \hat{\boldsymbol{\xi}}} \\ 730 \quad &= \bar{\mathbf{x}} + A_\tau \hat{\boldsymbol{\xi}} \frac{w - \hat{\mathbf{y}}}{1 + \hat{\boldsymbol{\xi}}^\top A_\tau \hat{\boldsymbol{\xi}}}. \\ 731 \quad & \end{aligned}$$

732 Here, we denoted the prediction of the average data by $\hat{\mathbf{y}} = \hat{\boldsymbol{\xi}}^\top \bar{\mathbf{x}} = \frac{1}{N} \sum_{i=1}^N \hat{y}_i$.
 733

734 Finally, let's rewrite $A_\tau \hat{\boldsymbol{\xi}}$ and $\hat{\boldsymbol{\xi}}^\top A_\tau \hat{\boldsymbol{\xi}}$ in terms of interpretable statistical quantities. Recall that
 735 $A_\tau = \frac{1}{\tau} \left(\frac{X^\top X}{N} - \bar{\mathbf{x}}\bar{\mathbf{x}}^\top \right)$. Using this, we compute
 736

$$\begin{aligned} 737 \quad A_\tau \hat{\boldsymbol{\xi}} &= \frac{1}{\tau} \left(\frac{1}{N} \sum_{i=1}^N \mathbf{x}_i \left(\underbrace{\mathbf{x}_i^\top \hat{\boldsymbol{\xi}}}_{= \hat{y}_i - \hat{b}} \right) - \bar{\mathbf{x}} \underbrace{\bar{\mathbf{x}}^\top \hat{\boldsymbol{\xi}}}_{= \frac{1}{N} \sum_{i=1}^N \hat{y}_i - b} \right) \\ 738 \quad &= \frac{1}{N\tau} \sum_{i=1}^N (\mathbf{x}_i - \bar{\mathbf{x}})(\hat{y}_i - \hat{b}) \\ 739 \quad &= \frac{1}{N\tau} \sum_{i=1}^N (\mathbf{x}_i - \bar{\mathbf{x}})(\hat{y}_i - \hat{\mathbf{y}}) \\ 740 \quad &= \frac{1}{\tau} \text{Cov}(X, \hat{\mathbf{y}}). \\ 741 \quad & \end{aligned}$$

In the final expression, the term $\text{Cov}(X, \hat{y})$ corresponds directly to the previous line. This covariance is a vector that averages data deviations, weighted by prediction deviations. In the line before last, we replaced \hat{b} with any constant since it is independent of i , and the first factor sums to the zero vector. Additionally, we leveraged a key property of linear models: the average of the predictions is the same as the prediction of the average.

A similar calculation yields,

$$\hat{\xi}^\top A_\tau \hat{\xi} = \frac{1}{\tau} \left(\frac{1}{N} \sum_{i=1}^N \hat{y}_i^2 - \left(\frac{1}{N} \sum_{i=1}^N \hat{y}_i \right)^2 \right) = \frac{1}{\tau} \text{Var}(\hat{y}).$$

Therefore, we obtain an explicit quadratic formulation of the data loss function G in terms of f at a fixed w . This means that the data distribution $p^*(\mathbf{x})$, which solves the unrestricted Bayesian Learning Problem, follows a Gaussian distribution given as

$$p^*(\mathbf{f}) \propto e^{-G_w(\mathbf{f})} \propto \mathcal{N}(\hat{\mathbf{f}}, \Sigma),$$

where

$$\hat{\mathbf{f}} = \bar{\mathbf{x}} + \frac{\text{Cov}(X, \hat{y})}{\tau + \text{Var}(\hat{y})} \left(w - \frac{1}{N} \sum_{i=1}^N \hat{y}_i \right),$$

and

$$\Sigma^{-1} = \left(\tau \left(\frac{X^\top X}{N} - \bar{\mathbf{x}} \bar{\mathbf{x}}^\top \right)^{-1} + \hat{\xi} \hat{\xi}^\top \right).$$

The interpretation of the mean $\hat{\mathbf{f}}$ is as follows: if you want to sample from a data distribution that will produce a given ω , then you should not sample around $\bar{\mathbf{x}}$ (which would be the case without output restrictions). Instead, you shift $\bar{\mathbf{x}}$ in proportion to the difference between ω and the mean of the training label predictions, following the direction of the covariance between the training data and predicted labels.

B COMPUTATIONAL SETUP

In this section, we supplement our computational study by presenting the datasets and detailing the neural network architectures.

B.1 DATASETS USED IN THE EXPERIMENTS

Our experiments are conducted using four numerical datasets and one visual dataset from the literature. The details of the datasets are provided below.

Adult. The Adult dataset (CC BY 4.0 license), derived from the 1994 Census database, comprises 48,842 observations with 14 features, including both continuous and categorical variables (Becker & Kohavi, 1996). The primary objective is to classify individuals based on whether their annual income exceeds \$50,000 USD. Data preprocessing steps are applied to address missing values and handle categorical features. We applied one-hot encoding to transform the categorical features into a numerical format suitable for our framework.

FICO. The FICO (HELOC) dataset (CC0: Public Domain) consists of home equity line of credit applications submitted by homeowners (FICO, 2018). It includes 10,459 records with 23 features, comprising both numerical and ordinal variables. The primary objective is to classify applications based on their risk performance, identifying whether an applicant is likely to meet payment obligations or become delinquent. Data preprocessing steps are applied to address missing values.

Housing. The Housing dataset (CC0: Public Domain), sourced from Kaggle, includes information on various house attributes such as lot size, number of rooms, and number of stories (Kaggle, 2021). The dataset contains 535 records and 12 features, comprising both numerical and ordinal variables. The primary objective is to predict housing prices based on these features.

MNIST. The MNIST dataset (Data files © Original Authors) is a widely used benchmark in computer vision, consisting of 70,000 grayscale images of handwritten digits (0–9), each represented as a 28×28 pixel matrix (LeCun et al., 2010). The dataset is divided into 60,000 training samples and 10,000 test samples. The primary objective is to classify images based on the digit they represent. We normalized each of the images to be arrays of shape $(28, 28, 1)$ with FP32 values in the interval $[0, 1]$.

Wine Recognition Dataset. The Wine Recognition dataset contains the results of chemical and physical analyses of wines produced in three regions of Italy (Aeberhard & Forina, 1992). Each record is described by 13 continuous features obtained through chemical analysis, including alcohol content, malic acid, magnesium, color intensity, and hue. The primary objective is to classify wines according to their region of origin.

B.2 EXPERIMENTAL SETUP

We ran all the experiments on a personal Apple M1 Pro with 32 GB RAM. In our experiments compute time was not a significant factor, all experiments were completed within minutes.

For the parameter-sensitive and prediction-risky experiments on the FICO dataset, we trained an MLP with ReLU activation functions and layer widths of $128 - 32 - 8 - 2$. Dropout with a rate of 0.2 was applied after each activation layer to prevent overfitting. The model was trained using a batch size of 128 for 10,000 steps.

For the image experiments, we used an MLP with layer widths of 1024-128-10, where each layer included a ReLU activation, followed by a dropout layer with a rate of 0.2. The CNN architecture consisted of two convolutional blocks with feature sizes 32 – 64. Each block followed the structure: Conv → ReLU → Conv → ReLU → max_pool → Dropout, where the convolutional kernels had a size of 3×3 , the max pooling window was 2×2 , and the dropout rate was 0.2.

Both the CNN and MLP models were trained for 10,000 update steps using a batch size of 128 and the Adam optimizer. The learning rate followed an exponential decay schedule, starting with a maximum learning rate of 0.1, decaying by a rate of 0.9 every 100 steps.

C LANGEVIN DYNAMICS SOLVING THE BAYESIAN LEARNING PROBLEM

In solving equation 3, we sample data points by solving a Bayesian optimization problem over distributions on the data space:

$$p^* = \arg \min_{p \in \mathcal{Q}} \mathbb{E}[G] - \tau \mathcal{H}(p),$$

where $\mathcal{H}(p)$ denotes the entropy and $\tau > 0$ is a temperature parameter.

The intuition behind this objective is that instead of minimizing a function G we find a distribution over the space X which balances having its distributional mass focused on points where G is low and also a spread widely. This objective is also called the Evidence Lower BOund (ELBO) and interpreting the loss as negative log-likelihood the solution can be interpreted as Bayes’s formula updating beliefs upon observing new data, as shown by Zellner (1988).

C.1 METROPOLIS HASTINGS LANGEVIN ALGORITHM (MALA)

On unconstrained data space, *i.e.*, when $\mathcal{Q} = \mathcal{P}(\mathbb{R}^d)$, one approach of sampling from p^* is to simulate the Langevin dynamics, which is a Stochastic Differential Equation (SDE) given by

$$\frac{dX}{dt} = -\frac{1}{\tau} \nabla G(X) + \sqrt{2} \frac{dW}{dt},$$

where W is a Wiener process (*i.e.*, standard Brownian motion), the G is called a drift term. The limiting distribution of this SDE converges to $p_\infty(X) \propto e^{-\frac{1}{\tau} G(x)}$.

For concrete computation, we work with the standard Euler-Maruyama discretization

$$\tilde{x}_{t+1} = x_t - \eta \nabla G(x_t) + \sqrt{2\eta\tau} \varepsilon_t,$$

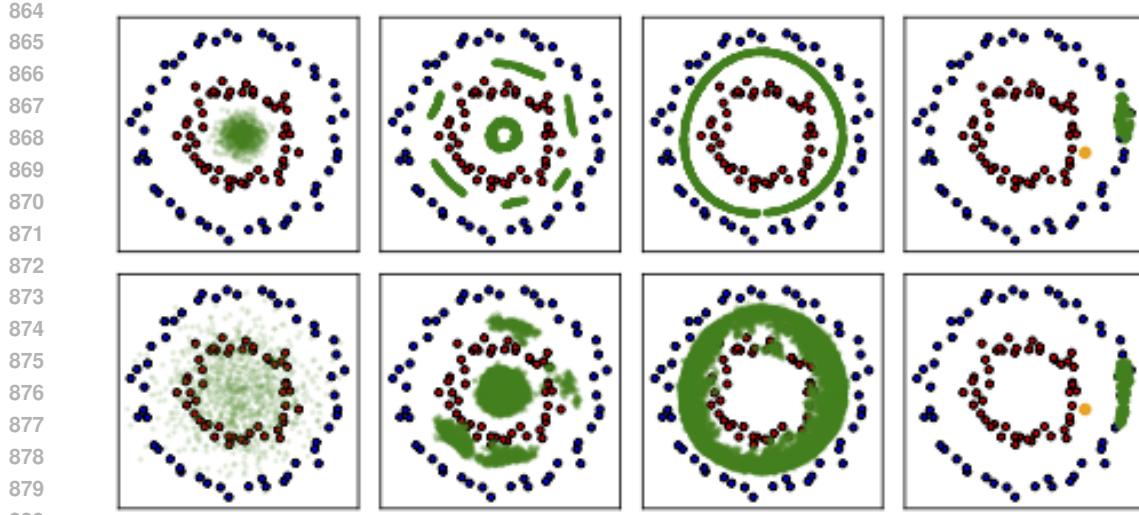


Figure 8: The probing functions in Figure 2, where in the first there columns the data generation in the second line trained with different temperatures. The last column shows the effect of a ℓ_2 regularizing term (with anchor point shown in orange) with a smaller strength.

where $\eta > 0$ is the step size, and $\varepsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_d)$ is sampled independently from the unit normal distribution at each time step.

To improve convergence and ensure the correctness of the sampling distribution, we apply a Metropolis–Hastings acceptance step. Specifically, the proposed update \mathbf{x}_{t+1} is accepted as $\mathbf{x}_{t+1} = \tilde{\mathbf{x}}_{t+1}$ with probability

$$\alpha := \min \left\{ 1, \frac{\pi(\tilde{\mathbf{x}}_{t+1})q(\mathbf{x}_t|\tilde{\mathbf{x}}_{t+1})}{\pi(\mathbf{x}_t)q(\tilde{\mathbf{x}}_{t+1}|\mathbf{x}_t)} \right\}$$

or otherwise rejected, in which case $\mathbf{x}_{t+1} = \mathbf{x}_t$. Here, $\pi \propto e^{-\frac{1}{\tau}G}$ and $q(\mathbf{x}'|\mathbf{x})$ is the transition probability of stepping from \mathbf{x} to \mathbf{x}' given by $q(\mathbf{x}'|\mathbf{x}) = \exp(-\frac{1}{4\tau}\|\mathbf{x}' - \mathbf{x} + \tau\nabla G(\mathbf{x})\|^2)$. An implementation of this sampling procedure is provided in the submitted code repository, specifically in the file `langevin.py` using JAX/PyTorch and Numpy.

The temperature hyperparameter τ determines the balance between exploration of the data space versus minimizing G . In the figure below we show the effect of changing this parameter (as well as the effect of changing the tunable parameter of the regularizing term).

C.2 SMOOTHING

The acceptance/rejection is the critical step to ensure convergence of the trajectory to the limiting Gibbs-Boltzmann distribution $\propto e^{-\frac{1}{\tau}G}$. The drift term $\nabla G(\mathbf{x})$ speeds up the convergence by ensuring that more of the proposals $\tilde{\mathbf{x}}$ will be accepted since this becomes (noisy) gradient descent.

In case the function G is locally flat, such as those functions created from tree-based models (Decision Tree, Random Forest, XGBoost) then the gradient term is always 0, reducing the proposals to simple random walk. This is called the Metropolis Hastings (MH) algorithm and it also has the same limiting distribution, and the transition probabilities in the acceptance ratio cancel since $q(\mathbf{x}|\mathbf{x}') = q(\mathbf{x}'|\mathbf{x})$.

However in this case at any step the proposals are random and the point \mathbf{x} does not see if it is near a decision boundary or not. For this purpose we propose using the gradients of the smoothed function $G_s(\mathbf{m}) = \int G(\mathbf{x})\mathcal{N}(\mathbf{m}, \sigma)(\mathbf{x})d\mathbf{x}$ for the proposals. With a larger σ , the point \mathbf{x} “sees” a wider horizon for its proposals. Indeed the gradient of G_s is

$$\nabla G_s(\mathbf{x}) = \int G(\mathbf{x} + \sigma\varepsilon)\varepsilon\mathcal{N}(\mathbf{0}, I)(\varepsilon)d\varepsilon \approx \frac{1}{J} \sum_{j=1}^J G(\mathbf{x} + \sigma\varepsilon_j)\varepsilon_j, \quad \text{with } \varepsilon_j \sim \mathcal{N}(\mathbf{0}, I).$$

918 In our implementation, we applied proposals with ∇G_s and acceptance/rejection with G . In the code,
 919 we also assumed $\nabla G_s(\mathbf{x}) = \nabla G_s(\mathbf{x}')$ for computational simplicity in calculating the transition
 920 probabilities $q(\mathbf{x}'|\mathbf{x})$. This is approximately true when G is a step function and the step size η is
 921 small.
 922

923 **C.3 OTHER METHODS AND VARIANTS**

926 Beyond the Langevin dynamics approach, several alternative methods exist for sampling data points.
 927 For instance, one may use the Picard iteration method or various splitting schemes (see (Geiser,
 928 2020)) to discretize and solve the above SDE. Another approach is to restrict the distribution family
 929 \mathcal{Q} to be a tractable statistical manifold and apply Variational Inference techniques (Ganguly & Earp,
 930 2021).

931 It is also worth noting that when sampling over a data manifold, if there exists a mapping $\varphi : \mathbb{R}^d \rightarrow$
 932 \mathcal{X} and $G : \mathcal{X} \rightarrow \mathbb{R}$, then the corresponding Gibbs distribution on \mathbb{R}^d (with respect to the Lebesgue
 933 measure) is given by $e^{-\frac{1}{\tau} H}$, where $H = G \circ \varphi : \mathbb{R}^d \rightarrow \mathbb{R}$. Samples drawn from this distribution
 934 can be pushed forward via φ to obtain samples in \mathcal{X} . These pushed-forward samples follow a
 935 distribution that can be interpreted as a Gibbs distribution over \mathcal{X} with respect to the base measure
 936 ν , which is the pushforward of the Lebesgue measure under φ .
 937

938 **D ADDITIONAL NUMERICAL RESULTS**

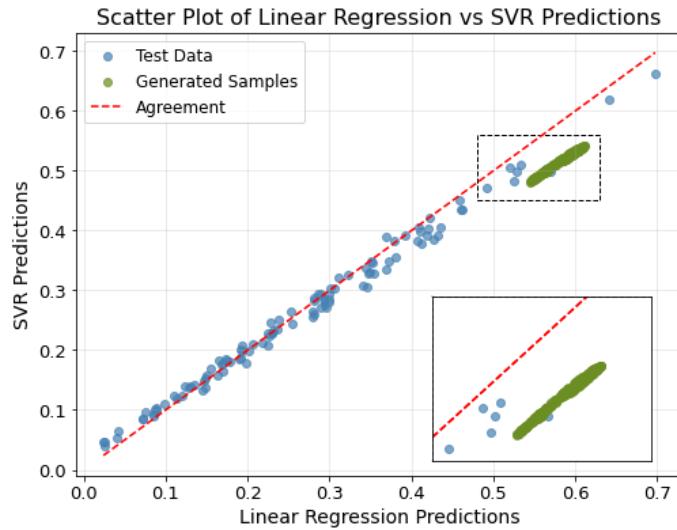
941 This section presents additional results that complement the findings discussed in Section 4. These
 942 results provide further insights into the generated data distributions, feature variations, and model
 943 behavior under different probing scenarios.

944 **Model-contrasting samples.** This subsection extends our analysis of model-contrasting samples
 945 by applying the framework to a different tabular dataset. In this experiment, we examine prediction
 946 divergence between support vector regression (SVR) and linear regression (LR) models. We use the
 947 Housing dataset, where the primary objective is to predict house prices based on various structural
 948 and amenity-related features. We split the dataset into training-test sets and train both models on
 949 the same training data. To generate data samples where the two models diverge in their predictions,
 950 we formulate the cost function given in (5) as $\ell_G(y_1, 1 - y_2) = \exp(-(y_1 - y_2)^2)$. Using our
 951 framework, we generate data samples to identify the regions of the input space where the models
 952 exhibit significant disagreement, likely due to their differing assumptions about feature interactions
 953 and predictive mechanisms.

954 Figure 9 presents a scatter plot comparing the predictions of the SVR and LR models. The blue
 955 points represent the predictions of the models in the test data, demonstrating that the two models gen-
 956 erally produce highly similar outputs, with minimal differences observed. The green points, on the
 957 other hand, represent generated samples, highlighting instances where the models exhibit contrast-
 958 ing predictions. The zoomed-in inset further emphasizes these discrepant predictions, demon-
 959 strating that our framework effectively identifies and generates data points that maximize the divergence
 960 between the two models.

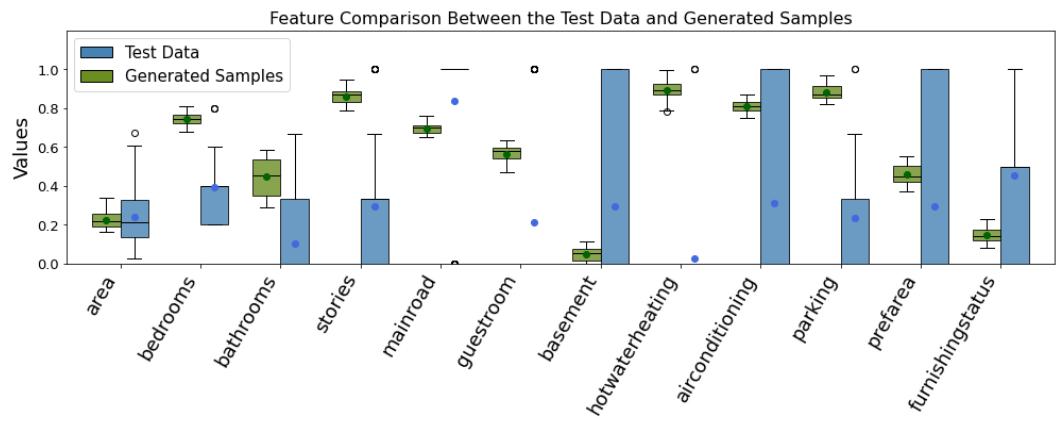
961 Figure 10 compares the feature distributions between the synthetic dataset generated by our frame-
 962 work and the test data. The box plots represent the range of values for each feature, with blue corre-
 963 sponding to the test data and green representing the generated samples. The Housing dataset (Kag-
 964 gle, 2021) used in this experiment contains real estate information such as lot size, number of bath-
 965 rooms, number of stories, and heating/air conditioning types, aiming to predict house prices. This
 966 figure provides a clear visualization of how the generated data differs from the test data in terms of
 967 feature distributions. For instance, as the number of bathrooms and stories increases, the model pre-
 968 dictions diverge. Additionally, hot water heating and air conditioning exhibit a distinct concentration
 969 in the synthetic data, with most generated samples clustering around higher values compared to the
 970 test data. This suggests that these features play a prominent role in distinguishing instances where
 971 the models behave differently. Overall, this figure offers insights into how the generated samples
 972 differ from the original dataset, highlighting key feature distributions that drive divergence in model
 973 predictions and providing a deeper understanding of how our framework probes model behavior.

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989



990 Figure 9: Comparison of SVR and LR predictions on test and generated data.
991

992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025



1007 Figure 10: Features in test data and generated samples that produce different predictions for SVR
1008 and LR.
1009

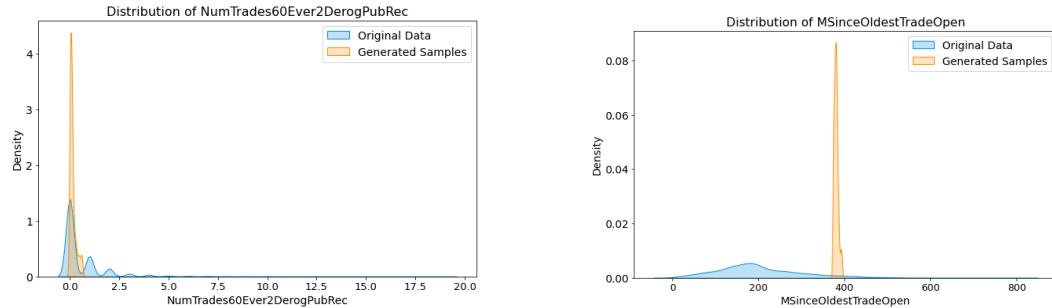
1010 **Prediction-risky samples.** This experiment explores data samples near the model’s decision boundary,
1011 where predictions are inherently uncertain. To guide this analysis, we pose the question:
1012

1013 *Which data samples are predicted to be risky due to being close to a specific anchor value?*
1014

1015 In this experiment, we train a neural network (MLP) to classify customers in the FICO dataset as
1016 either “Good” or “Bad” credit risks. Prediction-risky samples are those with model outputs near the
1017 anchor value of 0.5. Using our framework, we generate 500 such samples to examine the character-
1018 istics of borderline classification cases. The average predicted probability of the “Bad” credit class
1019 among these samples is 0.525, with a standard deviation of 0.017.

1020 The density plots in Figure 11 compare the distributions of two representative features in the original
1021 data and the generated samples. The feature NumTrades60Ever2DerogPubRec represents the
1022 number of past credit trades with payments delayed by at least 60 days, serving as a key indicator
1023 of delinquency. As shown in the figure, the distribution of risky samples follows the original data
1024 closely in the lower range but exhibits a stronger peak around zero. This suggests that the model
1025 considers individuals with few or no past delinquencies as borderline cases, likely due to the ab-
sence of strong negative or positive indicators, making classification more uncertain. The feature

1026 MSinceOldestTradeOpen indicates the number of months since a customer’s first credit line
 1027 was opened, capturing the length of their credit history. As shown in Figure 11, the distribution of
 1028 risky samples is sharply concentrated around 400 months (~33 years), whereas the original data
 1029 spans a broader range. This suggests that the model associates long credit histories with greater
 1030 uncertainty. The pronounced peak reflects how the model treats long-established credit profiles as
 1031 ambiguous when making predictions.



1043 Figure 11: Feature distributions of the original data and generated prediction-risky samples.

1044
 1045 To further investigate data samples near the decision boundary, we present the distributions of all
 1046 features in the original dataset and the generated prediction-risky samples in Figure 12. These
 1047 density plots provide a comprehensive view of the differences between the generated samples and
 1048 the original data across multiple features. By analyzing these distributions, we can observe how the
 1049 model identifies borderline cases based on different financial attributes. Across multiple features,
 1050 the generated prediction-risky samples exhibit a much narrower distribution compared to the original
 1051 data. This suggests that the model focuses on a specific subset of feature values when identifying
 1052 borderline cases.

1054 Table 1: Characteristics of the wine recognition dataset and the generated data

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 Characteristic	1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 Class 0	1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 Class 1	1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 Class 2	1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 Generated
Samples	59	71	48	50
Alcohol	13.74 ± 0.63	12.28 ± 0.53	13.15 ± 0.52	12.75 ± 0.61
Malic acid	2.01 ± 0.68	1.93 ± 1.00	3.33 ± 1.08	1.59 ± 0.46
Ash	2.46 ± 0.22	2.45 ± 0.31	2.44 ± 0.18	1.83 ± 0.25
Alcalinity of ash	17.04 ± 2.52	20.24 ± 3.33	21.42 ± 2.23	19.37 ± 4.95
Magnesium	106.34 ± 10.41	94.55 ± 16.63	99.31 ± 10.78	98.9 ± 28.91
Total phenols	2.84 ± 0.34	2.26 ± 0.54	1.68 ± 0.35	1.69 ± 0.43
Flavanoids	2.98 ± 0.39	2.08 ± 0.7	0.78 ± 0.29	2.11 ± 0.82
Nonflavanoid phenols	0.29 ± 0.07	0.36 ± 0.12	0.45 ± 0.12	0.3 ± 0.08
Proanthocyanins	1.90 ± 0.4	1.63 ± 0.6	1.15 ± 0.4	2.46 ± 0.41
Color intensity	5.53 ± 1.23	3.09 ± 0.92	7.4 ± 2.3	2.34 ± 0.6
Hue	1.06 ± 0.16	1.06 ± 0.2	0.68 ± 0.11	1.27 ± 0.14
OD280/OD315	3.16 ± 0.35	2.78 ± 0.49	1.68 ± 0.27	1.69 ± 0.39
Proline	1115.71 ± 221.64	519.5 ± 156.1	629.9 ± 113.9	1200.8 ± 233.3

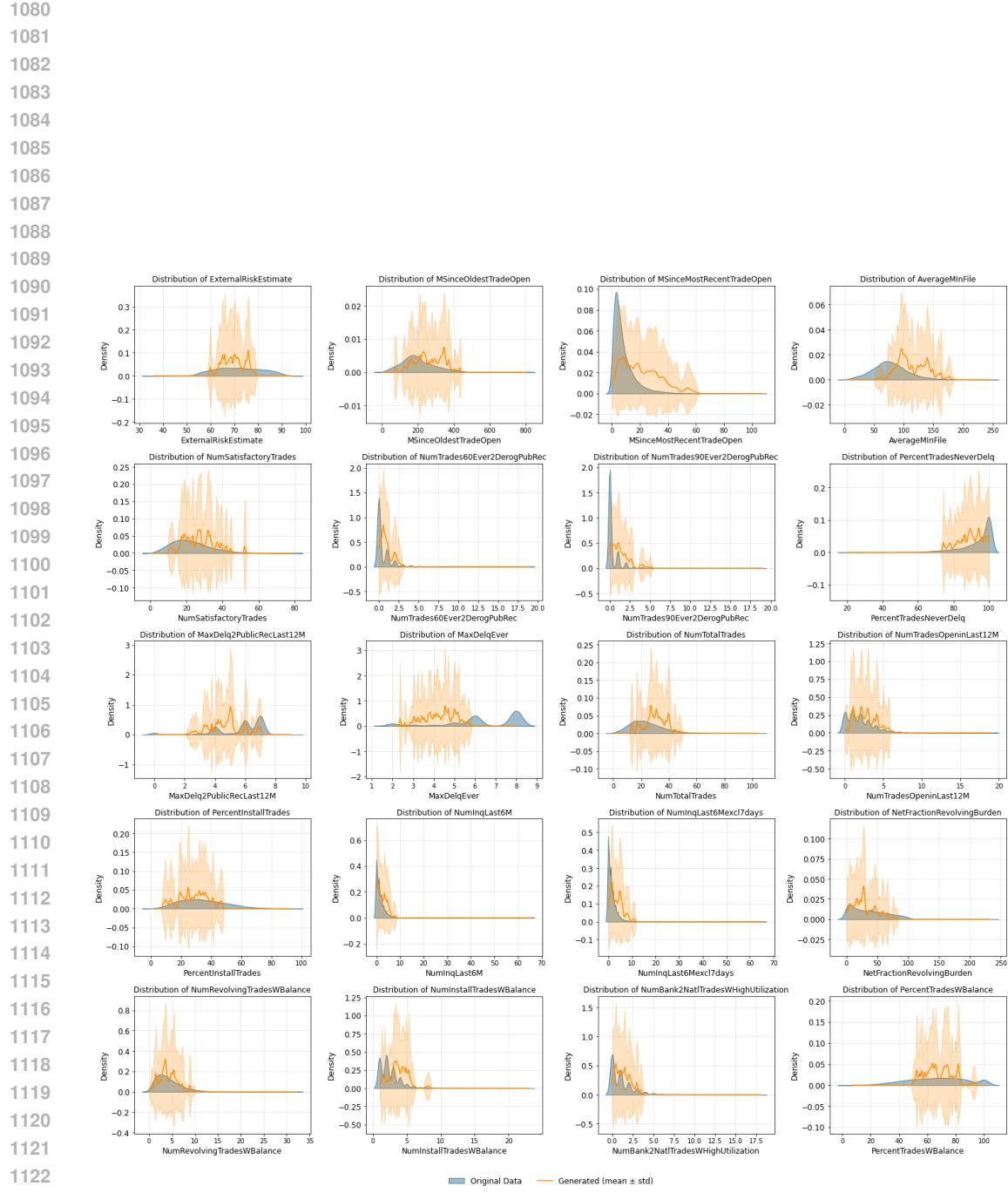
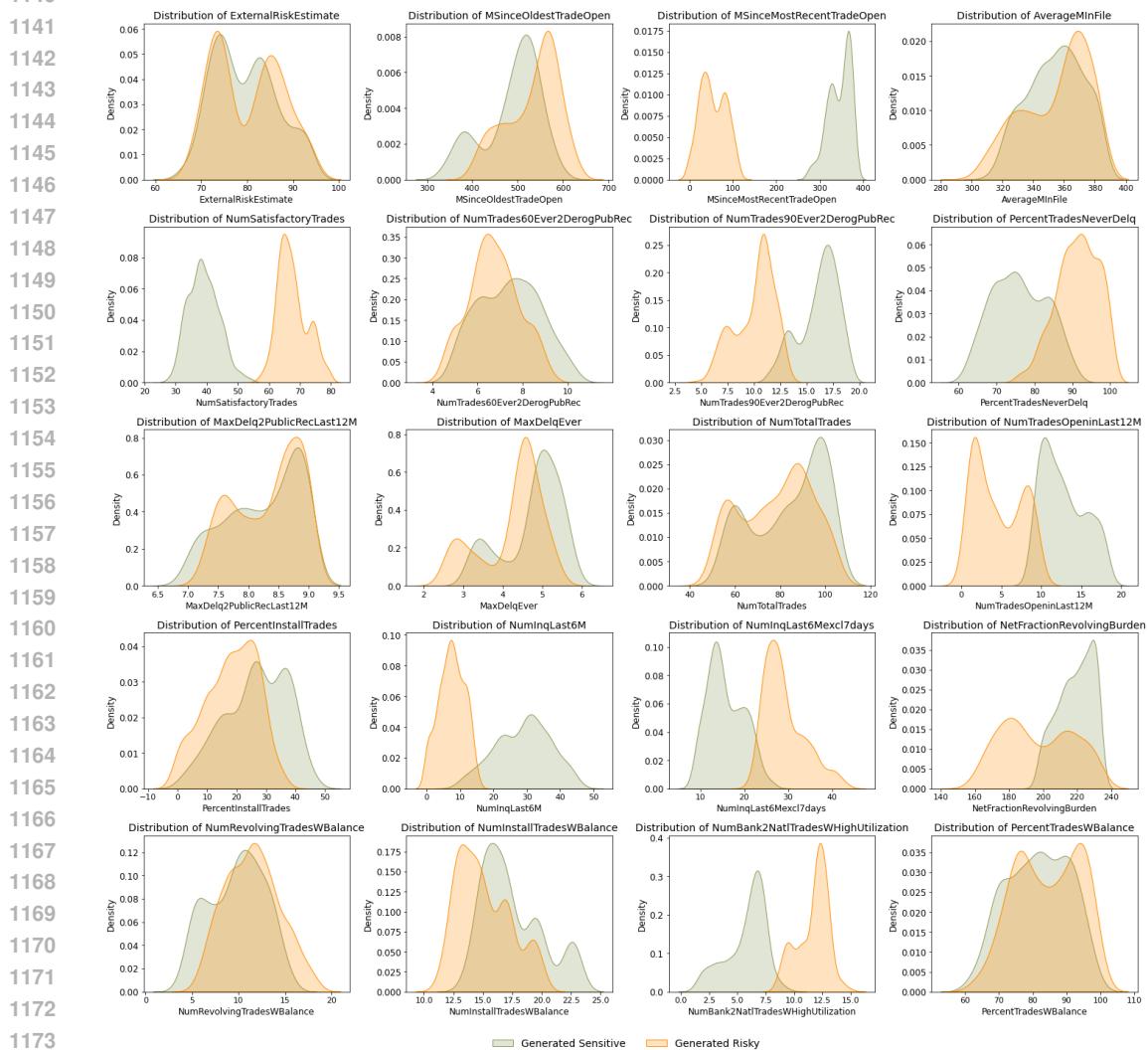


Figure 12: Feature distributions in the original data and generated prediction-risky samples.

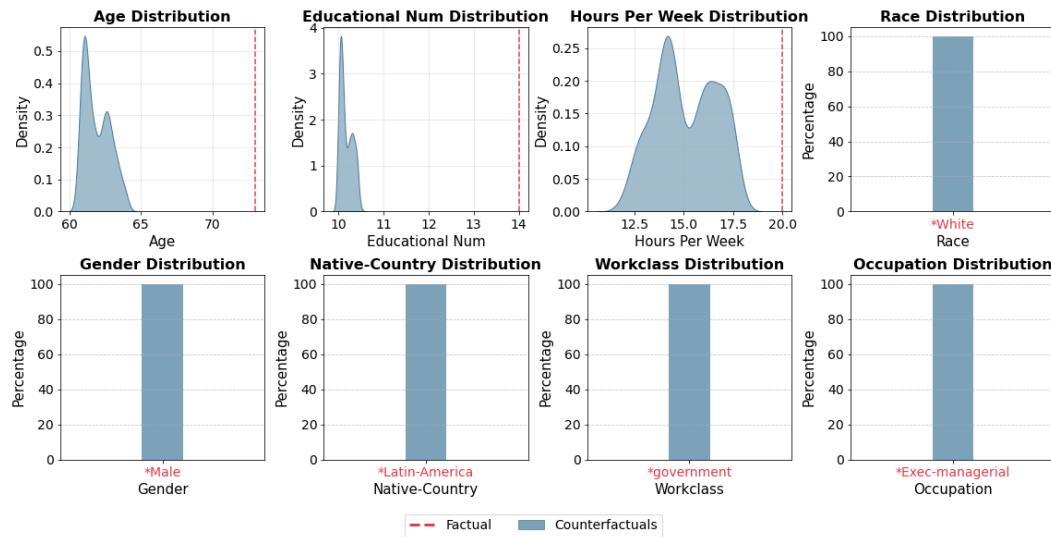
1134
 1135 **Parameter-sensitive samples.** To complement the findings presented in Section 4, we provide the
 1136 full set of feature distributions comparing parameter-sensitive samples and prediction-risky samples
 1137 in Figure 13. These density plots illustrate how the two types of generated samples differ. By
 1138 analyzing these distributions, we observe that while some features exhibit similar trends across both
 1139 sample types, others show notable divergences. Features with broader distributions in parameter-
 1140 sensitive samples indicate that model perturbations impact a wider range of instances.



1143
 1144 Figure 13: Feature distributions in generated parameter-sensitive and prediction-risky samples.

1145
 1146
 1147
 1148
 1149
 1150
 1151
 1152
 1153
 1154
 1155
 1156
 1157
 1158
 1159
 1160
 1161
 1162
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187

1188
 1189 **Fixed-label samples.** We now analyze a different factual instance from the original data to further
 1190 investigate the model’s behavior. The factual instance considered represents a Latin American white
 1191 male who is predicted to earn more than \$50K. To explore the conditions under which the model
 1192 would classify this individual as earning less than \$50K, we generate a set of counterfactual sam-
 1193 ples. Figure 14 presents the distribution of these generated counterfactual samples, highlighting the
 1194 key feature variations that lead to a different classification outcome. In the generated counterf-
 1195 factual samples, while no categorical changes are observed, the numerical features age, educational
 1196 attainment, and working hours exhibit lower values compared to the factual instance, implying that
 a reduction in these features leads to a shift in classification.



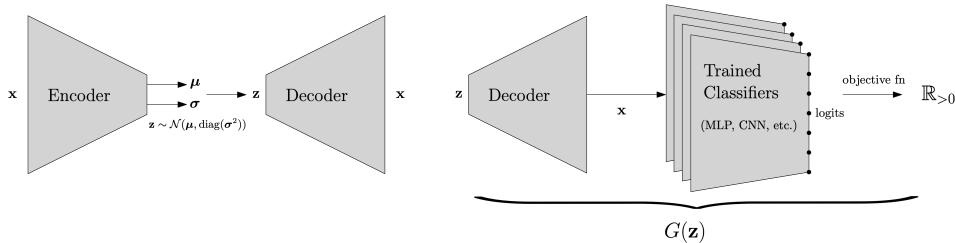
1215 Figure 14: Feature distributions of generated counterfactual samples (blue shaded) with factual
 1216 instance highlighted (red markers).

1217
 1218 Additionally, we compare the counterfactual distribution produced by our probing scenario with
 1219 counterfactual examples generated by DiCE for a representative Adult dataset instance. In this ex-
 1220 periment, the factual instance represents a North-American White Female, predicted to earn less
 1221 than \$50K. Figure 15 shows the marginal feature distributions for DiCE counterfactuals, our
 1222 generated counterfactual samples, and the original training data, together with the factual instance. As
 1223 expected, DiCE produces a finite set of discrete counterfactuals with relatively high variance across
 1224 many features, and often explores extreme or low-density regions of the input space. In contrast, our
 1225 method generates a full stationary distribution over counterfactual inputs, producing tightly clus-
 1226 tered samples that remain stable across independent runs. The resulting distribution concentrates on
 1227 plausible, high-density regions of the dataset and alters only the features necessary for flipping the
 1228 model’s decision. We note that all generated samples strictly satisfy the decision-flipping condition.
 1229 This highlights the complementary nature of the two approaches. DiCE provides diverse point-wise
 1230 counterfactuals, while our probing scenario characterizes the underlying counterfactual landscape
 1231 by modeling the distribution of model-aligned inputs.

1232
 1233
 1234
 1235
 1236
 1237
 1238
 1239
 1240
 1241



Figure 15: Comparison between our generated counterfactual distribution and DiCE counterfactual examples for the same factual instance.

1296 E THE USE OF VAEs
12971298 A notable example of using pushforwards to obtain points on the data manifold comes from image
1299 datasets. We employ a VAE architecture with two convolutional layers each for the encoder and
1300 decoder submodules. Features in the convolutional layers are 32 and 64 with kernel sizes of (3,3)
1301 and a stride of (2,2). During training, the reconstruction loss is computed using bitwise entropy.
13021303 Figure 16 shows how this setup works for constructing loss functions G on the latent space. One
1304 may use a combination of models, each precomposed with the decoder of the trained VAE. The
1305 resulting distribution on the latent space, after pushforwarding (*i.e.*, passing the samples through the
1306 decoder), corresponds to a distribution on the data that is closer to the original data distribution.
13071315 Figure 16: By precomposing with the decoder submodule of a trained neural network, we can define
1316 G functions on the lower-dimensional latent space, while still leveraging networks designed for
1317 higher-dimensional image inputs.
13181319 F HIGH DIMENSIONAL IMAGE GENERATION
13201323 To generate the images in Figure 7, using a VAE alone is insufficient for producing images of size
1324 256×256 . While a VAE ensures local consistency of colors in small patches, it does not guarantee
1325 global coherence. To address this, we successively increase the resolution of generated samples,
1326 making use of the TAESD autoencoder, which supports multiple input sizes.
13271328 The latent space of the TAESD has shape $16 \times \frac{n}{8} \times \frac{m}{8}$, where $n \times m$ is the image size. At each
1329 resolution (e.g., 64×64), we run MALA according to a probing function G . This function G
1330 simultaneously (1) reduces the cross entropy loss of the logits produced by decoder followed by
1331 the ResNet50 classifier, (2) minimizes the reconstruction loss of the high dimensional image
1332 corresponding to the latent vector, and (3) enforces closeness to the previously generated latent vector
1333 corresponding to the image at the lower resolution (e.g., 32×32). This procedure of successively
1334 increasing the resolution of the image, and starting from the resized version of the previous MALA
1335 run, maintains global consistency of the generated images whilst also satisfying the probing function
1336 requirements. Implementation details are provided in the `probe_resnet.py` script in our
1337 repository.
13381339 In Figure 7, we show samples generated with G function aiming to minimize the cross entropy loss
1340 between the ResNet50 logits and the label corresponding to goldfish:1, and snail:113. Each of the
1341 images in the figure has resolution 256×256 .
13421343 By qualitatively observing these figures, we were able to form a hypothesis on how
1344 the pretrained ResNet50 (using the weights `ResNet50_Weights.IMAGENET1K_V2` from
1345 `torchvision.models`) detects the class label 1 corresponding to goldfish. The presence of
1346 the color orange in every image and also a black dot inside the orange corresponding to the eye of
1347 the fish was present in most of the images. In order to test the color hypothesis, we modify the 50
1348 goldfish validation images from ImageNet-1k (Deng et al., 2009). Using the luminance formula
1349

1350
$$\text{gray} = (0.299 \times R) + (0.587 \times G) + (0.114 \times B),$$

1351 we convert RGB images to grayscale and evaluate model accuracy. Along with other color modifi-
1352 cations such as swapping various color channels, and including classes other than goldfish and snail,
1353 we form the Table 2.
1354

1350 Table 2: Correct ResNet50 predictions out of 50 validation images per class, with various color
 1351 modifications.

1352

	goldfish	snail	ox	broccoli	cucumber	zebra
original	48	45	32	46	36	48
grayscale	34	44	29	44	28	48
rg_swap	40	40	26	40	25	49
rb_swap	31	42	28	42	36	48
gb_swap	46	41	26	37	31	49

1358

1359
 1360 For goldfish, keeping the red channel intact while swapping green and blue does not substantially
 1361 reduce accuracy, reinforcing the role of the orange color component.

1362

1363 Also note that none of the modifications we use alter the black and white colors. The performance
 1364 of the model on zebra images is completely unaffected by these changes, suggesting that it is these
 1365 colors (and not, for example, the green grass on which the zebras might stand) that the model relies
 1366 on to assign the class label zebra.

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403