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ABSTRACT

Active Learning (AL) has gained prominence in integrating data-intensive ma-
chine learning (ML) models into domains with limited labeled data. However, its
effectiveness diminishes significantly when the labeling budget is especially low.
In this paper, we empirically verify the performance degradation of existing AL
algorithms in the extremely low-budget settings, and then introduce Direct Acqui-
sition Optimization (DAO), a novel AL algorithm that optimizes sample selec-
tions based on expected true loss reduction. Specifically, DAO utilizes influence
functions to update model parameters and incorporates an additional acquisition
strategy to mitigate bias in loss estimation. This approach facilitates a more accu-
rate estimation of the overall error reduction, without extensive computations or
reliance on labeled data. Experiments demonstrate the effectiveness of DAO in
both low and higher budget settings, outperforming state-of-the-arts approaches
across seven benchmarks.

1 INTRODUCTION

Active learning (AL) explores how adaptive data collection can reduce the amount of data needed
by machine learning (ML) models (Settles, 2009; Schröder & Niekler, 2020; Ren et al., 2021; Zhan
et al., 2022). It is particularly useful when labeled data is scarce or expensive to obtain, which
significantly limits the adaptability of modern deep learning (DL) models due to their data-hungry
nature (van der Ploeg et al., 2014). In these cases, AL algorithms selectively choose the most benefi-
cial data points for labeling, thereby maximizing the effectiveness of the training process even if the
data is limited in number. In fact, AL has been broadly applied in many fields (Adadi, 2021), such as
medical image analysis (Budd et al., 2021), astronomy (Škoda et al., 2020), and physics (Ding et al.,
2023), where unlabeled samples are plentiful but the process of labeling through human expert anno-
tations or experiments is highly cost-intensive. In these contexts, judiciously selecting samples for
labeling can significantly lower the expenses involved in compiling the datasets (Ren et al., 2021).

Many active learning algorithms have emerged over the past decades, with early seminal contribu-
tions from Lewis (1995); Tong & Koller (2001); Roy & McCallum (2001), and a shift that focuses
more on deep active learning – a branch of AL that targets more towards DL models in more recent
years (Huang, 2021). Depending on the optimization objective, AL algorithms can be classified into
two categories. The first category includes heuristic objectives that are not exactly the same as the
evaluation metric, i.e. error reduction. Examples in this category are diversity (Sener & Savarese,
2017), uncertainty (Gal et al., 2017), and hybrids of both (Ash et al., 2019). Second category in-
cludes criteria that is exactly the same as the evaluation metric, where notable approaches include
expected error reduction (EER) (Roy & McCallum, 2001) and its more recent follow-up works (Kil-
lamsetty et al., 2021; Mussmann et al., 2022).

Despite the popularity of the first type of AL algorithms, existing works (Mittal et al., 2019; Ha-
cohen et al., 2022) as well as our empirical analysis in Appendix A show that these methods often
suffer heavily in low-budget settings, where the total (accumulative) sampling quota is less than
1% of the number of unlabeled data points, making them less suitable for the extreme data scarcity
scenarios. In terms of the methods from the second category, their higher running time and reliance
on the availability of a validation or hold-out set remain significant limitations, constraining their
applicability in many data-scarcity scenarios as well. For example, EER (Roy & McCallum, 2001)
re-trains the classifier for each candidate with all its possible labels, where in each time also evalu-
ates the updated model on all the unlabeled data, making its runtime intractable especially for deep
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neural networks. And GLISTER (Killamsetty et al., 2021), despite being much more computation-
ally efficient, requires a labeled, hold-out set for its sample selection process, formulated as a mixed
discrete-continuous bi-level optimization problem, to be optimized properly. While these constraints
might not be a huge limitation a few years ago, it poses a more important challenge currently as we
are adopting deep learning models to more areas, where labeled data may be extremely expensive
to acquire. More importantly, it is also worth noticing that under these scenarios, the highly limited
labeled data should have been better utilized for training than being reserved for AL algorithms.

Above limitations highlight a critical gap between the capabilities of current AL methodologies
and the urgent demands from real-world applications, underscoring the need for developing novel
AL strategies that can operate both relatively efficient while presenting little to none reliance on
the labeled set. To this end, we introduce Direct Acquisition Optimization (DAO), a novel AL
algorithm that selects new samples for labeling by efficiently estimating the expected loss reduc-
tion. Compared to EER and GLISTER, DAO solves the pain points of prohibitive running time
and the reliance on a separate labeled set through utilizing influence function (Ling, 1984) in model
parameters updates, and a more accurate, efficient unbiased estimator of loss reduction through
importance-weighted sampling. In summary, DAO optimizes sample selections based on expected
error reduction while operating efficiently through influence function-based model parameters ap-
proximation and true overall reduced error estimation. Thorough experiments demonstrating DAO’s
superior performance in the low-budget settings, out-performing current popular AL methods across
seven benchmarks.

2 RELATED WORK

Active learning. AL has gained a lot of attraction in recent years, with its goal to achieve bet-
ter model performance with fewer training data (Settles, 2009; Schröder & Niekler, 2020; Ren
et al., 2021). There have been different selection criteria including uncertainty, diversity, query-by-
committee, version space and information-theoretic heuristics (Liu et al., 2022; Zhan et al., 2022).
The uncertainty-based approaches are arguably the most popular and easiest to implement, which
includes selection criteria such as least confidence (Lewis, 1995), minimum margin (Scheffer et al.,
2001; Roth & Small, 2006; Citovsky et al., 2021), maximum entropy (Joshi et al., 2009; Settles,
2009) and others (Gal et al., 2017). At their core, these methods select points where the classi-
fier is least certain. However, uncertainty-based methods can be biased towards the current learner.
Diversity-based methods (Settles, 2009; Bilgic & Getoor, 2009; Guo, 2010; Luo et al., 2013; Elham-
ifar et al., 2013; Mac Aodha et al., 2014; Yang et al., 2015; Sener & Savarese, 2017; Sinha et al.,
2019; Agarwal et al., 2020; Wu et al., 2021), on the other hand, aim to select the most representa-
tive samples of the dataset. In addition, query-by-committee (Seung et al., 1992; Abe, 1998) and
version space-based (Mitchell, 1982) methods, keep a pool of models, and then select samples that
maximize the disagreements between them. Information-theoretic methods (Hoi et al., 2006; Barz
et al., 2018) typically utilize mutual information as the criterion. Hybrid method that combines both
uncertainty and diversity criteria, such as BADGE (Ash et al., 2019), has also been developed to
take advantage of both worlds. As shown later in the paper, we visually observe that the selections
of our proposed DAO, although not explicitly optimized towards any of these heuristics, display
characteristics of an hybrid approach.

EER-based acquisition criterion. Alternatively, EER was proposed to select new training exam-
ples that result in the lowest expected error on future test examples, which directly optimizes the
metric by which the model will be evaluated (Roy & McCallum, 2001). In essence, EER employs
sample selection based on the estimated impact of adding a new data point to the training set, rather
than evaluating performance against a separate validation set, meaning that it does not inherently
require a validation hold-out set. However, its necessity to retrain the model for every possible
candidate sample and every possible label renders its cost intractable in the context of deep neural
networks (Budd et al., 2021; Škoda et al., 2020; Ding et al., 2023). More recent look-ahead EER-
based AL algorithms (Mussmann et al., 2022) focus on addressing this efficiency concern. However,
these methods either rely on a small set of validation data to be used for the evaluation of the ex-
pected loss reduction (Killamsetty et al., 2021), or can still be quite slow when the size of labeled
and unlabeled sets are large (Mohamadi et al., 2022). In this paper, we present DAO, a novel AL
algorithm that improves upon EER through optimizations on both model updates as well as loss
estimation, efficiently and effectively broadening the applicability of EER-based algorithm.
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3 METHODOLOGY

Different from the heuristics-based AL algorithms that optimize criteria such as diversity
or uncertainty, DAO is built upon the EER formulation with the selection objective be-
ing the largest reduced error evaluated on the entire unlabeled set. More specifically,
DAO majorly improves upon two aspects: (1) instead of re-training the classifier, we em-
ploy influence function (Cook & Weisberg, 1982), a concept with rich history in statis-
tical learning, to formulate the new candidate sample as a small perturbation to the ex-
isting labeled set, so that the model parameters can be estimated without re-training;

Labeled 
Subset

Model 
Estimation
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Figure 1: Schematic of the algorithmic framework of DAO.

and (2) instead of reserving a sepa-
rate, relatively large labeled set for
validation (Killamsetty et al., 2021),
we sample a very small subset di-
rectly from the unlabeled set and es-
timate the loss reduction through bias
correction.

Essentially, when considering each
candidate from the unlabeled set, we
optimize the EER framework on two
of its core components, which are
model parameter update and true loss estimation. Additionally, we upgrade EER, which only sup-
ports single sequential acquisition, to offer DAO in both single and batch acquisition variants by
incorporating stochastic samplings to the sorted estimated loss reductions. We illustrate our al-
gorithmic framework in Fig. 1. In the following parts of this section, we first introduce a formal
problem statement in §3.1, and then dive into each specific component of DAO from §3.2 to §3.5.

3.1 PROBLEM STATEMENT

The optimal sequential active learning acquisition function can be formulated as selecting a budget
number of samples xtrain

t from the current unlabeled set Ut at each round t such that

xtrain
t = argmin

xSi
⊂Ut−1

E(ySi
|f∗,xSi

)

[
Ltrue(ft|xSi

,ySi
)
]

(1)

where f∗ represents an optimal oracle that maps from any subset of the unlabeled data xSi
⊂ Ut−1

to their ground-truth labels ySi , and ft|xSi
,ySi

is the model that has been trained on the union
of the current labeled set Lt−1 and the current unlabeled candidates xSi ⊂ Ut−1. In addition,
Ltrue(ft|xSi

,ySi
) = 1

|Ut−1,i|
∑

x∈Ut−1,i
ℓ(x; ft|xSi

,ySi
) represents the loss estimator that can predict

the unbiased error of ft|xSi
,ySi

, where ℓ denotes the loss function. It is numerically the same as if
ft|xSi

,ySi
has been tested on the entire unlabeled set Ut−1,i, where Ut−1,i = Ut−1 \ xSi

. Such for-
mulation represents the optimal AL criterion and aligns with any existing sequential active learning
algorithm — of which the goal is to select the new data points that can most significantly improve
the current model performance (Roy & McCallum, 2001).

Unfortunately, Eq. (1) cannot be directly implemented in practice. Because, first, we do not have
access to the optimal oracle f∗ to reveal the labels ySi

of xSi
⊂ Ut−1; second, even if we had f∗ and

therefore ySi
, we cannot afford the cost of retraining model ft−1 on each Lt−1 ∪ xSi

to obtain the
updated ft|xSi

,ySi
; and third, we do not have the unbiased true loss estimator Ltrue, which demands

evaluating ft|xSi
,ySi

on the entire Ut−1,i.

Therefore, the goal of DAO is to solve the above challenges and efficiently and accurately approx-
imate Eq. (1) for the sample selection strategy. It is also worth noting that, when xtrain

t represents a
set of newly acquired data points, the above formulation becomes eligible for batch active learning,
which is more suitable for deep neural networks (Huang, 2021).

3.2 LABEL APPROXIMATION VIA SURROGATE

In this section, we address the first challenge when approximating Eq. (1). As we do not know the
true label or true label distribution p(y|x, f∗) of each unlabeled sample x, the best we can do is
provide an approximation for p(y|x). To this end, we introduce the concept of a surrogate (Kossen
et al., 2021), which is a model parameterized by some potentially infinite set of parameters θ. Specif-
ically, p(y|x) can be approximated using the marginal distribution π(y|x) = Eπ(θ)[π(y|x, θ)] with

3
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some proposal distribution π(θ) over model parameters θ. In other words, we have:

p(y|x) ≈
∫

θ

π(θ)π(y|x, θ) dθ (2)

As the sample selection process continues, new labeled points should also be used to train and update
the surrogate model π(θ) for better approximation of the true outcomes.

Although ideally, a more capable surrogate is preferred for better ground truth approximations, we
acknowledge that the choice of surrogate model can be very sensitive to the computational con-
straints. Therefore, if running time is at center of the concerns during sample acquisitions, using ft
at step t also as the surrogate could be an efficient alternative, as we don’t need to update a second
model, nor do we need to run forward pass on the both models. However, this will come with the
cost that πt never disagrees with ft, which causes performance degradation for the unbiased true
loss estimation, which will be illustrated with more details in §3.4. Therefore, in short, we do not
recommend replicating ft as surrogate in practice, unless the computational constraint is substantial.

3.3 MODEL PARAMETERS UPDATE WITHOUT RE-TRAINING

At acquisition round t, suppose we have labeled set Lt−1 and unlabeled set Ut−1 as the results
from the previous round t − 1, and new sample xi ∈ Ut−1 that is currently under consideration for
acquisition, the goal of this section is to estimate the parameters of model ft|xi,yi

that could has been
obtained after training ft−1 on the combined dataset {Lt−1 ∪xi}. In other words, if we suppose the
conventional full training converges to parameters θ̂xi

, we have:

θ̂xi
= arg min

θ∈Θ

1

|Lt−1|+ 1

∑

x∈{Lt−1∪xi}

ℓ(x; θ) (3)

where recall that ℓ(x; θ) denotes the loss of θ on x. The core of our approach is that, instead of re-
training as showed in Eq. (3), we can approximate the effect of adding a new sample as upweighting
the influence function by 1

|Lt−1|+1 (Koh & Liang, 2017) and then directly estimate the updated
model parameters.

Following Cook & Weisberg (1982), we have the influence function defined as:

Iup,params(xi) :=
dθ̂ϵ,xi

dϵ

∣∣∣∣
ϵ=0

= −H−1

θ̂
∇θℓ(xi; θ̂)

where Hθ̂ is the positive definite Hessian matrix (Koh & Liang, 2017). Next, we can estimate the
model parameters after adding this new sample xi, as:

θ̂xi − θ̂ ≈ 1

|Lt−1|+ 1
Iup,params(xi) = − 1

|Lt−1|+ 1
H−1

θ̂
∇θℓ(xi; θ̂)

where ∇θℓ(xi; θ̂) could be approximated as the expected gradient of sample xi: By a slight abuse
of notation of the training loss function ℓ, we denote

∇θℓ(xi; θ̂) ≈
K∑

k=1

∇θℓ(xi, ŷk; θ̂) · p̂k (4)

In Eq. (4), ŷk and p̂k represent model’s label prediction and likelihood (e.g. confidence) respectively
while K represents the total number of classes in the ground truths.

In practice, the inverse of Hθ̂ cannot be computed due to its prohibitive O(np2 + p3) runtime (Liu
et al., 2021), with p being the number of model parameters. The computation unavoidably becomes
especially intensive when f is a deep neural network model (Fu et al., 2018). Luckily, we have
two optimization methods, conjugate gradients (CG) (Martens et al., 2010) and stochastic estima-
tion (Agarwal et al., 2017) at our disposal.

Conjugate gradients. As mentioned earlier, by assumption we have Hθ̂ ≻ 0 and ∇θℓ(x
′; θ̂) as a

vector. Therefore, we can calculate the inverse Hessian vector product (IHVP) through first trans-
forming the matrix inverse into an optimization problem, i.e.

H−1

θ̂
∇θℓ(xi; θ̂) ≡ arg min

t
tTHθ̂t− vT t

and then solving it with CG (Martens et al., 2010), which speeds up the runtime effectively to O(np).

4
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Stochastic estimation. Besides CG, we can also efficiently compute the IHVP using the stochas-
tic estimation algorithm developed by Agarwal et al. (2017). From Neumann series, we have
A−1 ≈

∑∞
i=0(I − A)i for any matrix A. Similarly, suppose we define the first j terms in the

Taylor expansion of H−1

θ̂
as

H−1

θ̂,j
=

j∑

i=0

(I −Hθ̂)
i = I + (I −Hθ̂)H

−1

θ̂,j−1

we have H−1

θ̂,j
→ H−1

θ̂
as j → ∞. The core idea of the stochastic estimation is that the Hessian

matrix Hθ̂ can be substituted with any unbiased estimation when computing H−1

θ̂
. In practice, we

sample nihvp data points from the existing labeled set Lt−1 and use ∇2
θℓ(xi; θ̂) as the estimator of

Hθ̂ (Liu et al., 2021). Notice that since nihvp is usually very small (in our experiments we used
nihvp = 8), it does not create a constraint on the size of the current labeled set, which does not
interfere with the low-budget settings.

Finally, we can approximate the model parameters after the addition of xi as

θ̂xi
= θ̂ − 1

n+ 1
H−1

θ̂
∇θℓ(xi; θ̂) (5)

which does not require any re-training. And we will demonstrate in §5.2 that this parameter update
strategy provides much better approximations than the naive single backpropagation as seen in the
existing AL literature (Killamsetty et al., 2021).

3.4 EFFICIENT UNBIASED LOSS ESTIMATION

Referring back to Eq. (1), the last challenge that we need to address is to gain access to the unbiased
true loss estimator Ltrue. In other words, we want to predict the true performance of ft|xi,yi

on the
unlabeled set Ut,i without exhaustive testing. Strictly, such evaluation cannot be drawn until ft|xi,yi

is evaluated on the entire unlabeled set Ut,i. However, this is infeasible in practice.

Such approximation is typically carried out in other approaches (Killamsetty et al., 2021; Mussmann
et al., 2022) by randomly sampling a labeled validation set V at the beginning of the entire acqui-
sition process, which will later be used for evaluations in all the subsequent acquisition episodes.
Despite the simplicity as well as being i.i.d., which makes the estimated loss unbiased by nature,
this approximation method suffers from large variance as the size of V is usually much smaller than
U , which unavoidably hurts the acquisition performance. It is also contradictory to the goal of AL
in general, especially under the low-budget settings, as discussed in §1.

Different from the existing works, we propose to sample a subset C from current Lt−1 in each
acquisition round based on an alternative acquisition function, and then correct the bias in the loss
induced from this acquisition function. In the meantime, we also want to keep the variance low, so
that the final corrected loss enjoys both low bias and low variance, which is more preferable than the
zero bias but high variance that the random i.i.d. sampling has.

Specifically, continuing with the notations from §3.1, let C = {xt,1, . . . ,xt,m, . . . ,xt,nC}, where
C ⊂ Ut−1, be the subset containing nC samples selected for this true loss estimation at each round
t. Farquhar et al. (2021) shows that if xt,m is sampled in proportion to the true loss of each data
point, the bias originated from this selection can be corrected through the Monte Carlo estimator
R̂LURE

1. Following our notations, it takes the form:

R̂LURE =
1

nC

nC∑

m=1

vmℓ (xt,m; f) (6)

where recall that ℓ denotes the loss of f , and the importance weight vm is

vm = 1 +
|Ut−1| − nC

|Ut−1| −m

(
1

(|Ut−1| −m+ 1)q∗t (m)
− 1

)
(7)

with q∗t (m) being the acquisition distribution of index m at round t. Importantly, the variance can
be significantly reduced if the acquisition distribution q∗t (m) is proportion to the true loss of each

1LURE stands for Levelled Unbiased Risk Estimator
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data point. Again, this is not feasible as we do not have access to the labels for Ut−1. However,
following Kossen et al. (2021), we can approximate q∗t (m) with

qt(m) = −
∑

y

π(y|xt,m) log f(xt,m)

for classification tasks when the loss function is the cross-entropy loss, and where π is conveniently
just our surrogate discussed in §3.2. Referring back to the discussion we had on choosing a good
surrogate π, with f(x) being designed to approximate p(y|x) as well, the surrogate π should ideally
be different from f so that more diversity is introduced in the acquisitions.

To put all components together, our loss correction process involves selecting samples in C following

xt,m ∝ −
∑

y

πt−1(y|x) log ft−1(y|x) (8)

where πt−1 is the surrogate model π at round t−1. Finally, the corrected loss si can be approximated
using R̂LURE as

si =
1

nC

nC∑

m=1

v̂mℓ (xt,m; ft) (9)

where v̂m, which depends on the choice of xt,m, is the approximated version of the original vm
defined in Eq. (7). Specifically, v̂m takes the form

v̂m = 1 +
|Ut−1| − nC

|Ut−1| −m

(
1

(|Ut−1| −m+ 1)qt(m)
− 1

)
(10)

where qt(m) is the acquisition function defined in Eq. (8).

3.5 BATCH ACQUISITION VIA STOCHASTIC SAMPLING

In §3.1, we briefly discussed that when xtrain
t represents a set of data points (instead of a

single one), the formulation in Eq. (1) essentially represents the batch active learning sce-
nario. Suppose the acquisition budget per round is k, although selecting the top k samples
with the lowest estimated losses (or highest expected error reduction) is straightforward, this
approach is sub-optimal. This is because top-k acquisition, while effective to some degree
due to its greedy nature, overlooks the crucial interactions among data points in batch acqui-
sitions. Specifically, while aiming to select the most informative unlabeled points, top-k ac-
quisition may lead to redundant choices, diminishing the overall benefit of the acquisition.

Algorithm 1 Direct Acquisition Optimization (DAO)

input Episode t, unlabeled set Ut−1, labeled set Lt−1,
model ft−1, surrogate πt−1, budget k, nihvp (§3.3),
and nC (§3.4)

output Acquisition set At = {xtrain
t,1 , . . . ,xtrain

t,k }
▷ Eq. (1)

1: Approximate p(y|x) for all x ∈ Ut−1 ▷ §3.2, Eq. (2)
2: Initialize array S where |S| = |Ut−1|
3: for i = 1 to |Ut−1| do
4: Let Ut,i = Ut−1 \ {xi}
5: Randomly sample nihvp data points from Ut,i

6: Approximate parameters of ft|xi,yi
▷ §3.3,

Eq. (5)
7: Acquire nc samples from Ut,i ▷ §3.4, Eq. (8)
8: Compute si and add to S ▷ §3.4, Eq. (9)
9: end for

10: Sort S in ascending order
11: if k > 1 then
12: Perturb S ▷ Methods showed in §3.5
13: end if
14: Return top-k samples in S as At

Inspired by Kirsch et al. (2021), we pro-
pose to similarly perturb the original
ranking of the estimated true losses so
that the batch sampling provides better
acquisitions when the most informative
data points may be duplicated. Sup-
pose at acquisition episode t, we rank
the set of estimated true loss of each un-
labeled data point in ascending orders
as {l̂true,i}xi∈Ut−1 , such that l̂true,i ≤
l̂true,j ,∀i ≤ j and xi,xj ∈ Ut−1, we can
perturb the ranking with three strategies:
soft-rank, soft-max, and power acquisi-
tion, to improve batch performance from
the naive top-k sampling.

Soft-rank acquisition. Soft-rank ac-
quisition relies on the relative ordering
of the scores while ignoring the abso-
lute score values. It samples the data
point ranked at index i with probabil-
ity psoftrank(i) = i−β , where β is the
“coldness” parameter and is kept as 1

6
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throughout this paper. It is not hard to notice that psoftrank(i) is invariant to l̂true,i, as long as
the relative ranking remains the same. More conveniently, with sampled Gumbel noise ϵi ∼
Gumbel(0;β−1), taking the top-k data points from the perturbed ranked list

l̂softrank
true,i = − log i+ ϵi

is equivalent to sampling psoftrank(i) without replacement (Huijben et al., 2022).

Soft-max acquisition. In contrast to soft-rank, soft-max acquisition uses the actual scores, i.e., the
estimated true losses, instead of their relative orderings. However, this acquisition does not rely on
the semantics of the actual values, resulting in the transformed true loss simply being:

l̂softmax
true,i = l̂true,i + ϵi

where ϵi remains the same Gumbel noise as in the soft-rank acquisition. Statistically, choosing
the top-k data points from this perturbed ranked list is equivalent to sample from psoftmax(i) = eβi

without replacement.

Power acquisition. While neither soft-rank or soft-max acquisitions take the semantic meaning of
the actual score values into account when designing the acquisition distribution, power acquisition
uses the value directly when determining the perturbed values. Specifically, the power acquisition
perturbs the scores as

l̂power
true,i = log l̂true,i + ϵi

where again ϵi is the Gumbel noise, and choosing the top-k indices from this new list is equivalent
to sampling from ppower(i) = iβ without replacement. Results comparing DAO with different batch
acquisition strategies discussed above are showed in Appendix B. Combining all the components,
the pseudocode of DAO is summarized in Algorithm 1.

4 EXPERIMENTS

We evaluate DAO on seven classification benchmarks including digit recognition datasets
MNIST (LeCun et al., 1998), Street-View House Numbers recognition (SVHN) (Sermanet
et al., 2012), object classification datasets STL-10 (Coates et al., 2011), CIFAR-10, CIFAR-
100 (Krizhevsky et al., 2009), as well as domain-specific datasets Fashion-MNIST (Xiao et al.,
2017) and Stanford Cars (Cars196) (Krause et al., 2013).

4.1 EXPERIMENTAL SETUP

Baselines. To ensure fair comparisons, besides baseline methods that we empirically surveyed in
Appendix A, we also include other state-of-the-arts AL methods, including Deep Bayesian Active
Learning (DBAL) (Gal et al., 2017) and GLISTER (Killamsetty et al., 2021), where GLISTER
is a direct competitor that also optimizes the EER framework. For all the baselines, we used the
default/recommended parameters and their official implementations if publically available. In terms
of earlier works such as least confidence (Lewis, 1995), minimum margin (Scheffer et al., 2001),
and maximum entropy (Settles, 2009), we used the peer-reviewed deep active learning framework
DeepAL+ (Zhan et al., 2022). All experiments are repeated ten times with different random seeds.

Implementation details. Throughout the section, we set ResNet-18 (He et al., 2016) as the model
f to be trained from scratch. We employed VGG16 (Simonyan & Zisserman, 2014), initialized
with random weights, as our surrogate π. We used stochastic estimation (Agarwal et al., 2017)
when estimating the updated model parameters, as discussed in §3.3. We choose nihvp = 8 when
approximating the unbiased estimator of Hθ̂, and set nC = 16 for biased loss correction as in §3.4.

4.2 PERFORMANCE UNDER LOW BUDGETS

Digit recognition. First, we demonstrate DAO’s effectiveness through two digit recognition bench-
marks: MNIST (LeCun et al., 1998) and SVHM (Sermanet et al., 2012). MNIST is a collection of
handwritten digits consisting of 60k training and 10k test images, while SVHN is a more challeng-
ing dataset containing over 600k real-world house numbers images taken from street views. Both
datasets contain 10 classes corresponding to digits from 0 to 9. Based on insights from Appendix A,
we define a general rule of low-budget setting as one image per class, which translates to initial
label size |LMNIST

init | = 10 and per-episode budget BMNIST = 10 for MNIST. Given that SVHN is
more challenging, and there are ten times more unlabeled images than in MNIST (600k vs. 60k), we
experiment both 10 and 100 for our initial labeled size and per-round budget for SVHN. The results
are shown in Fig. 2b and 2c.
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Figure 2: Experiment results comparing DAO with existing AL algorithms across seven bench-
marks. In all subplots, horizontal axis represents the accumulative size of the labeled set, while
vertical axis indicates classification accuracy.

Object classification. Next, we assess DAO on more general and complex object classification
tasks. STL-10 (Coates et al., 2011) is a benchmark dataset derived from labeled examples in the
ImageNet (Deng et al., 2009). Specifically, STL-10 contains 5k labeled 96×96 color images spread
across 10 classes, as well as 8k images in the test split. CIFAR-10 (Krizhevsky et al., 2009) contains
a collection of 60k 32x32 color images in 10 different classes, with 6k images per class. CIFAR-100
is similar to CIFAR-10, but covers a much wider range, containing 100 classes where each class
holds 600 images. Continuing with the low-budget setting (1 image per class), we have |LSTL-10

init | =
10, BSTL-10 = 10 for STL-10, |LCIFAR-10

init | = 10, BCIFAR-10 = 10 for CIFAR-10 and |LCIFAR-100
init | =

100, BCIFAR-100 = 100 for CIFAR-100. The results are shown in Fig. 2d, 2e and 2f respectively.

Domain Specific Tasks The last part of our experiments involves case studies on applying DAO to
domain-specific tasks, which simulates many real-world applications. Specifically, we use Fashion-
MNIST (Xiao et al., 2017) and StanfordCars (Krause et al., 2013), also known as Cars196, in this
experiment. FashionMNIST is structure-wise similar to MNIST, comprising 28×28 images of 70k
fashion products from 10 categories, with 7k images per category. The training set contains 60k im-
ages, while the test set includes the rest. StanfordCars is a large collection of car images, containing
16,185 images with a near-balanced ratio on the train/test split, resulting in 8,144 and 8,041 images
for training and testing. There are 196 classes in total, where each class consists of the year, make,
model of a car (e.g., 2012 Tesla Model S). The results of both datasets are shown in Fig. 2g and 2h.
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Figure 3: Higher-budget experiment results com-
paring DAO with existing AL algorithms. In both
subplots, horizontal axis represents the accumu-
lative size of the labeled set, while vertical axis
indicates classification accuracy.

Results discussion. From Fig. 2, we notice
that the proposed DAO outperforms popular
AL state-of-the-arts by a clear margin across
all seven benchmarks. Especially, with SVHN,
when the budget is extremely low (B = 10,
which is 0.0017% of the unlabeled size), DAO
leads the performance by a very large gap, indi-
cating its superior capability in the low-budget
setting. Such performance does not degrade
much as the budget constraint is relaxed. As
shown in Fig. 2c, DAO still performs relatively
well. The only experiment that DAO does not
improve as much is the StanfordCars. However,
the accuracy improvement from DAO is more
smooth and has less variance, indicating better
robustness when applied to the more challeng-
ing (StanfordCars has 196 classes) applications.
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4.3 PERFORMANCE UNDER HIGHER BUDGETS

To further evaluate the capabilities of the proposed DAO beyond its targeting focus on low-budget
AL, we conducted additional experiments with higher budgets on the CIFAR-100 and STL10
datasets. Specifically, we keep the same experimental settings as previously, with the same ini-
tial labeled set and per-round acquisition budget, and repeated the process five times with different
random seeds. However, we extended the number of rounds in each acquisition from 10 to 50, in-
creasing the budget by five times. And to make the plot more clear, we plot every five rounds. As
shown in Fig. 3, DAO consistently outperforms all other baselines throughout the entire acquisition
process, demonstrating superior performance across both low and high budgets.

5 COMPONENT ANALYSIS AND ABLATION STUDIES

5.1 ABLATIONS ON DIFFERENT SURROGATES

To further understand how the surrogate model impacts the performance of DAO, we conducted
additional experiments on CIFAR-10 using different surrogates. Specifically, we compared:
(1) VGG16: The surrogate model currently used in the paper draft. (2) ResNet18: An efficient
variant of DAO where the main model under training serves as the surrogate, i.e., πt = ft. In this
case, the equation for approximating q∗t (m), the acquisition distribution of candidate index m at
round t (the equation between lines 225 and 226), reduces from cross-entropy to entropy. (3) Sim-
pleCNN: A simpler version of ResNet18 with six convolution blocks, each containing one Conv
layer followed by BatchNorm and ReLU. and (4) Oracle: An unrealistic setting assuming access to
an oracle surrogate model. We used the same experimental setup with CIFAR-10 as in our draft:
starting with 10 labeled samples, acquiring 10 samples per round, and continuing for 10 rounds.

20 40 60 80 100

18

20

22

24

26

28

Random
GLISTER
DAO (VGG16)
DAO (ResNet18)
DAO (SimpleCNN)
DAO (Oracle)

Figure 4: DAO performance when us-
ing different surrogate models.

The was repeated five times with different random seeds.

As shown in Fig. 4, DAO with oracle surrogate performs
the best, followed by VGG16 and SimpleCNN. ResNet18
performs the worst among all DAO variants, which aligns
with our expectation that performance degrades when πt

never disagrees with ft. However, all DAO variants out-
perform the random and GLISTER baselines by a clear
margin. It is worth noting that while the oracle surrogate
achieves the best results, the improvement over VGG16
and SimpleCNN is not substantial. We think this is likely
because, when selecting samples for the unbiased loss
estimation, the acquisition distribution q∗t (m) approxi-
mated with qt(m) = −

∑
y π(y|xt,m) log f(xt,m), does

not solely depend on the surrogate quality. Although in
the unrealistic case of an oracle surrogate, this creates an
disadvantage, but in practical scenarios, this approximation provides better robustness in prevent-
ing the negative impact of poor quality of surrogate on unbiased loss estimation, especially in early
stages where models might overfit.

Table 1: Surrogate model performance on unla-
beled set during acquisition.

Budget 20 40 60 80 100

SimpleCNN 13.79 13.91 15.11 15.01 14.80
VGG16 18.50 20.07 21.02 22.44 22.75
ResNet18 18.60 21.79 23.86 25.36 27.05

Additionally, we provide evaluations of the pre-
dictive accuracy of different surrogates on un-
labeled set in Table 1. The results show that
when the surrogate differs from the model be-
ing trained (i.e., f ̸= π), its performance does
not improve as significantly as that of f , indi-
cating from a different angle that DAO specifi-
cally optimizes the sample selection that enhances the performance of the target model f .

5.2 ACCURACY ON MODEL APPROXIMATION

First, we assess if estimating the model parameters updates through modelling the effect of adding
a new sample as upweighting the influence function provides a more accurate model performance
approximation than using single backpropagation as seen in GLISTER (Killamsetty et al., 2021).
Specifically, we conduct the experiments on CIFAR-10 (Krizhevsky et al., 2009), with initial labeled
size |LCIFAR-10

init | = 100 (randomly sampled from the train split), per-episode budget BCIFAR-10 = 1,
and number of acquisition episode E = 25. We compare the updated models performance (accu-
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racy) on the test split of CIFAR-10. Different from the experiments in §4, we do not apply any
AL algorithm when acquiring the sample in each round. Instead, we randomly choose B sample
in each acquisition round from the unlabeled set and then update the models through both methods
with the same selected sample. To access the difference between models updated with our influence
function-based method and single backpropagation, we compute the mean squared error (MSE) be-
tween the performance of each model and the model updated by conventional full training, which is
defined in Eq. (3). As shown in Fig. 5a, the proposed method provides more accurate (smaller mean
and median) and more robust (smaller std.) model approximations than single backpropagation,
contributing to the performance gain we observe in §4.

5.3 BIAS CORRECTION VS. RANDOM SAMPLING

Next, we conduct ablation studies on replacing the proposed loss estimation (§3.4) with the av-
erage loss of randomly sampled data points. More specifically, we replace the estimated loss
si from averaging the corrected loss (Eq. (6)) of the acquired samples via an alternative acqui-
sition criteria (Eq. (8)) with averaging losses of the samples acquired uniformly, i.e., at round
t, we have srandom

i = 1
Mrandom

∑Mrandom
m=1 ℓ(xt,m; ft) where xt,m ∼ U(1, |Ut,i|). We choose two

Mrandom = 16 and 256, where former provides a direct comparison with our proposed loss es-
timation approach, and latter represents a brute-force solution that works relatively well but is
often infeasible in practice due to intensive running time. The results are shown in Fig. 5b.
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Figure 5: Left: MSE of the predictions accuracy on the test
split of CIFAR-10 between models updated by single back-
propagation, influence function, and the fully trained model.
Right: Ablation results where the proposed loss estimation is
replaced by the random sampling estimation defined in §5.3.

We see that the proposed method
performs even better than the con-
ventional random-sampling loss es-
timation with large sampling size,
while computationally being only
1/8 of the run time. Additionally,
the variance of our method is much
smaller, indicating more robust loss
estimation and thus more robust ac-
quisition performance.

5.4 DIFFERENT BATCH
ACQUISITION STRATEGIES

We conducted additional ablation
studies comparing various stochas-
tic sampling methods as detailed in
§3.5. Results are documented in Ap-
pendix B. Our findings reveal that the proposed algorithm, even when simply selecting the top k
samples without applying any of the stochastic strategies, outperforms existing methods. Perfor-
mance further improves with the implementation of these sampling strategies. It is important to
note that we have not designed specific sampling strategies for our algorithm; instead, we utilized
existing methods to showcase the efficacy of DAO framework.

5.5 INTERPRETING DAO WITH OTHER AL CRITERIA

In this section, we analyze the criterion optimized by DAO and compare it to common criteria such
as diversity and uncertainty, using visual representations of the data samples collected by DAO. The
detailed plots are available in Appendix C. Throughout multiple acquisition rounds, the data selected
by DAO demonstrate notable diversity with uniform distribution across the sample space. However,
in contrast to traditional uncertainty-based methods, selections within a single round by DAO also
incorporate elements of uncertainty. This hybrid approach explains the performance improvements
observed in §4 over algorithms that solely focus on diversity or uncertainty.

6 CONCLUSIONS

In this paper, we introduced Direct Acquisition Optimization, a novel algorithm designed to opti-
mize sample selections in low-budget settings. DAO hinges on the utilization of influence functions
for model parameter updates and a separate acquisition strategy to mitigate bias in loss estimation,
represents a significant optimization of the EER method and its modern follow-ups. Through em-
pirical studies, DAO has demonstrated superior performance in both low and higher budget settings,
outperforming existing methods by a significant margin across seven datasets.
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APPENDIX

A LOW-BUDGET ACTIVE LEARNING: A MOTIVATING CASE STUDY

In this section, we provide an empirical analysis to demonstrate that commonly used heuristic-
based AL algorithms do not work well under very low-budget settings. Specifically, we analyze (1)
uncertainty sampling methods including least confidence (Lewis, 1995), minimum margin (Scheffer
et al., 2001), maximum entropy (Settles, 2009), and Bayesian Active Learning by Disagreement
(BALD) (Gal et al., 2017); (2) diversity sampling methods such as Core-Set (Sener & Savarese,
2017) and Variational Adversarial Active Learning (VAAL) (Sinha et al., 2019); and (3) hybrid
method such as Batch Active learning by Diverse Gradient Embeddings (BADGE) (Ash et al., 2019).

We test the above methods on the CIFAR10 (Krizhevsky et al., 2009) dataset starting with an initial
labeled set with size |Linit| = 10, and conducted 50 acquisition rounds where after each round
B = 10 new samples are selected and labeled. We use ResNet-18 (He et al., 2016) as our training
model across all methods. And we repeated the acquisitions five times with different random seeds.
The results are visualized in Fig. 6, where we plot the relative performance between each method
and random sampling acquisition through a diverging color map.

Min Confidence

Min Margin

Max Entropy

BALD

Core-Set

VAAL

BADGE

+30%

+20%

+10%

0%

-10%

-20%

-30%

Figure 6: Existing methods fail to outperform random sampling with small budgets. This figure
shows the relative performance between multiple methods and random acquisition. Within each
subplot, x axis represents the accumulative acquisition size, while y axis indicates runs initiated
with different random seeds. White color indicates on-par performance with random, blue indicates
worse, and red indicates better.

Aligning with the general perceptions that low-budget (Mittal et al., 2019; Hacohen et al., 2022) and
cold-start (Zhu et al., 2019; Chandra et al., 2021) AL tasks are especially challenging, we empirically
observe that almost all popular AL algorithms fail to outperform the naive random sampling when
acquisition quota is less than 1% (500 out of 50,000 in the case of CIFAR10) of the unlabeled size.
More specifically, when the quota is less than 0.2% (less than 100 data points for CIFAR-10), all
methods fail to reliably outperform random sampling (as the beginning of each heatmap in Fig. 6
are almost all blue), which greatly motivates the development of DAO. We also include the more
conventional line plot of the empirical analysis which may provide more detailed information of
each run in Fig. 7.
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Figure 7: Relative performance between existing popular AL methods and random acquisition. hor-
izontal axis represents the accumulative size of the labeled set, while vertical axis indicates relative
performance in percentage.

B EXPERIMENTS ON DIFFERENT STOCHASTIC BATCH ACQUISITIONS

In this section, we provide more detailed results of §5.4. Specifically, we further study the perfor-
mance of DAO when no batch sampling strategy or other sampling strategy is used and compare the
results with existing popular AL algorithms. The results are shown in Fig. 8. For all experiments,
we used the same low-budget setting as discussed in §4.
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Figure 8: CIFAR-10 experiment results on (a): DAO without batch acquisition strategy (using naive
top-k selection) and with other sampling strategies (softmax and softrank, as discussed in §3.5);
(b): DAO without sampling (top-k) vs. existing AL algorithms; (c): DAO with softrank sampling
vs. existing AL algorithms; (d): DAO with softmax sampling vs. existing AL algorithms; In
all subplots, horizontal axis represents the accumulative size of the labeled set, while vertical axis
indicates classification accuracy.
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C VISUALIZATIONS OF SAMPLES SELECTED BY DAO
In this section, we show the visual representations of the data samples collected by DAO as a
complement to §5.5. Unlabeled and newly acquired data, in this case, images, or their latent space
embeddings, are first dimensionally-reduced and then visualized in Fig. 9. We see that, DAO-
selected data exhibit characteristics of diversity across the sample space over multiple acquisition
rounds, while display uncertainty characteristics within single round.
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Initial Labeled Set
Episode 1
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Episode 4
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Episode 8
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(a) (b)

Figure 9: Visualizations of DAO acquisitions with dimensionality reduced from (a): raw images;
and (b): latent space image embeddings.
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