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ABSTRACT

With the rapid development of Vision-Language Models (VLMs) and the grow-
ing demand for their applications, efficient compression of the image inputs has
become increasingly important. Existing VLMs predominantly digest and under-
stand high-bitrate compressed images, while their ability to interpret low-bitrate
compressed images has yet to be explored by far. In this paper, we introduce the
first comprehensive benchmark to evaluate the ability of VLM against compressed
images, varying existing widely used image codecs and diverse set of tasks, en-
compassing over one million compressed images in our benchmark. Next, we
analyse the source of performance gap, by categorising the gap from a) the infor-
mation loss during compression and b) generalisation failure of VLM. We visu-
alize these gaps with concrete examples and identify that for compressed images,
only the generalization gap can be mitigated. Finally, we propose a universal
VLM adaptor to enhance model performance on images compressed by existing
codecs. Consequently, we demonstrate that a single adaptor can improve VLM
performance across images with varying codecs and bitrates by 10%-30%. We
believe that our benchmark and enhancement method provide valuable insights
and contribute toward bridging the gap between VLMs and compressed images.

1 INTRODUCTION

Figure 1: Visualization of VLM
performance drop due to image
compression and improvement by
our method, measured by BD-
Metric.

The boom of multimedia services and applications has resulted
in dramatic increase in image data, creating significant chal-
lenges in terms of transmission bandwidth and storage ca-
pacity. To address this, efficient image compression meth-
ods are essential for reducing data volume while maintaining
or enhancing the subjective visual quality for human percep-
tion. Over the past few decades, numerous advanced compres-
sion standards have been introduced, such as JPEG (Wallace,
1991), and VTM (Bross et al., 2021), alongside recent end-
to-end learned compression approaches (Ballé et al., 2018; Lu
et al., 2019; Cheng et al., 2020; Zhang et al., 2025b) and gen-
erative compression methods (Mentzer et al., 2020; Li et al.,
2024b; Zhang et al., 2025a).

In parallel, the advent of Big Data has transformed the way
intelligent machines interact with the world, leading to exten-
sive research into compression techniques for machine vision
tasks, as opposed to human vision. Notable examples include
image coding for machines (ICM) (Kang et al., 2022) and fea-
ture coding for machines (FCM) (Rosewarne, 2023), emerg-
ing standards introduced by the moving picture experts group
(MPEG). However, previous works (Kim et al., 2023; Zhang et al., 2024b; Chen et al., 2023) have
largely focused on specific computer vision tasks, such as object detection and instance segmenta-
tion, using fixed backbone networks, which limits their generalization capabilities.

With the continuous advancements in the multimodal field, VLMs have developed rapidly (Wang
et al., 2024; Chen et al., 2025; 2024). Current VLMs are not only capable of understanding complex

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Uncompressed Traditional Compression Learning Compression Generative Compression

🤖1 The text in the image 

reads: " FIRST PRIN" 

🤖1 The text in the image 

reads "WESTERN."

🤖1 The image appears to be a 

blurred or distorted version of 

the word "WESTERN."

🤖1 The visible text seems to 

be "JUSTLIS," but the context 

or meaning is not clear.  

Questions

Q1 What is 

written in 

the image?

Q2 Are the 

curtains on 

the right or 

on the left?

Q3 Which 

kind of 

furniture is 

green?

🤖2 Right 🤖2 Right🤖2 Left 🤖2 Left

🤖3 Couch 🤖3 Couch🤖3 Christmas tree 🤖3 Chair

Figure 2: Comparative visualization of four image compression technique: uncompressed, tradi-
tional codec (JPEG), learning-based codec (ELIC), and generative codec (StableCodec), highlight-
ing their impact on visual clarity and semantic preservation through targeted question-answering.
All forms of compression-induced distortion affect the ability of VLMs to understand images.

images (Yao et al., 2024) but also performing tasks such as object detection and segmentation (Feng
et al., 2025), further generalizing and unifying visual tasks. This makes VLMs a promising and
important direction for future development. To enhance the ability of VLMs to process compressed
images, one approach is to optimize existing codecs to minimize the bitrate without compromising
VLM performance. Research based on VCM and FCM has demonstrated good results when trans-
ferring tasks to VLM vision (Kao et al., 2024; Li et al., 2024a). However, these methods are specific
to a particular codec or VLM, limiting the generalization capabilities. On the other hand, another
approach is to improve the VLM’s capacity to understand compressed images from various codecs,
independent of specific compression distortions. This approach could enhance generalization, but
to date, no research has investigated this area. Furthermore, although several benchmarks exist to
evaluate VLMs’ performance in tasks such as VQA (Hudson & Manning, 2019), spatial relations (Li
et al., 2023a; Liu et al., 2024a; Li et al., 2023b), text understanding (Liu et al., 2024b), and knowl-
edge answering (Yue et al., 2024), no benchmark has been developed specifically for assessing VLM
performance on compressed images.

In this paper, we present a comprehensive benchmark designed to evaluate the ability of VLMs to
understand and process compressed images. Our benchmark includes 11 widely-used codecs and 3
series of VLMs, ranging from 1 to 32 billion parameters, and assesses both coarse-grained and fine-
grained metrics across more than 1 million compressed images. This large-scale analysis allows us
to quantify the performance degradation of VLMs due to image compression, revealing that com-
pression can significantly impair the model’s ability to interpret visual content, as shown in Figure 1.
Based on this, we further break down the observed performance gap into two distinct components:
the information gap during compression, which directly impacts the fidelity of image features, and
the generalization gap of VLMs, which limits their ability to adapt to compressed images. Through
visualizations and examples, we show that while the loss of information during compression is in-
herent and cannot be easily mitigated, the generalization gap represents a gap that can be addressed
by improving the model’s ability to handle compressed inputs. To close this generalization gap, we
propose a lightweight VLM adaptor that enhances VLM performance on compressed images across
various codecs and bitrates. Empirical results show a 10%-30% improvement in understanding im-
ages compressed with different codecs, making it a promising solution for real-world applications
involving image compression.

To wrap up, our contribution can be summarized as follows:

• We establish a comprehensive benchmark to explore the impact of image compression on
VLM understanding, including more than 10 codecs and 1 million compressed images.

• We analyse the performance gap between compressed and uncompressed images, and pro-
pose the information and generalization gap. We exemplify this gap using JPEG and Qwen-
VL2.5-3B.
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• To eliminate generalization gap, we introduce a universal lightweight VLM adaptor to en-
hance performance on heavily compressed images across different codecs. Emprically, our
adaptor improve by 10%-30%.

2 BENCHMARKING VLM FOR COMPRESSED IMAGES UNDERSTANDING

2.1 OVERVIEW

Image Codecs. We selected 11 state-of-the-art codecs with three representative categories, includ-
ing traditional codecs, learning-based codecs, and generative codecs, as shown in Table 1. Specif-
ically, for traditional codecs, we chose the widely used JPEG (Wallace, 1991), HM (Sullivan et al.,
2012) and VTM (Bross et al., 2021). For learning-based codecs, we selected commonly used ELIC
(He et al., 2022), TCM (Liu et al., 2023a), and MLIC++ (Jiang et al., 2023). For generative codecs,
we selected the GAN-based HiFiC (Mentzer et al., 2020) and MS-ILLM (ILLM) (Muckley et al.,
2023), as well as the diffusion-based DiffEIC (D.EIC)(Li et al., 2024b), RDEIC (Li et al., 2025), and
StableCodec (S.Codec) (Zhang et al., 2025a). All compression methods were applied to the original
dataset with four different bitrate levels to cover a wide range of bitrates. Detailed parameter settings
are provided in the Appendix A.

Datasets and Tasks. To assess the impact of image compression on VLMs, we curate six tasks
covering coarse-grained and fine-grained evaluation. Coarse-grained tasks focus on semantic under-
standing using the POPE (Li et al., 2023b) and GQA (Hudson & Manning, 2019) benchmarks, which
include over 5000 images and evaluate performance through choice and open-ended questions. For
fine-grained tasks, we use OCRBench (OCRB) (Liu et al., 2024b), comprising 1000 images across
various resolutions, allowing us to test codec adaptability to different image sizes. Additionally, we
include three comprehensive benchmarks: MMBench (MMB) (Liu et al., 2024a), MME (Chaoyou
et al., 2023), and SEEDBench (SEEDB) (Li et al., 2023a), to evaluate VLMs’ performance in per-
ception, semantic understanding, and spatial reasoning with compressed images. All the results
are evaluated by VLMEvalKit (Duan et al., 2024) and detailed descriptions of each task and their
corresponding evaluation metrics are provided in Appendix B.

Vision-Language Models. Since different VLMs exhibit varying task performance, we evaluate
several widely used open-source models, including Qwen-Chat-7B (Bai et al., 2023), Qwen-VL2.5-
3B, Qwen-VL2.5-7B, Qwen-VL2.5-32B (Bai et al., 2025), Janus-pro-1B, Janus-pro-7B (Chen et al.,
2025), InternVL3-1B, InternVL3-2B, and InternVL3-8B (Zhu et al., 2025), to compare VLMs with
different parameter sizes. To quantify the impact of compression, we treat the results on uncom-
pressed images in Appendix Figure 9 as the performance ceiling and measure degradation under
different compression settings.

Table 1: Assessing 9 VLMs of varying scales and 11 representaive image codecs with 6 metrics.

Codecs (11) Tasks (6) VLMs (9)

Traditional JPEG, HM, VTM Coarse-grained POPE, GQA 1-2B InternVL3, Janus-Pro
3B Qwen2.5-VL

Learning-based ELIC, TCM, MLIC++ Fine-grained OCRBench 7-8 B Qwen-Chat,Qwen2.5-VL
Janus-Pro,InternVL3

Generative HiFiC, MS-ILLM,
DiffEIC, RDEIC, S.Codec Comprehensive MMB, MME,

SEEDBench 32B Qwen2.5-VL

2.2 CAN VLM UNDERSTAND COMPRESSED IMAGES

To evaluate whether VLMs can understand heavily images, we follow the setup outlined in Section
2.1 and find that a significant performance gap persists between uncompressed and compressed
images for VLM vision. We state our main observations as follows:

Finding1: VLMs exhibit limited understanding of heavily compressed images. Our evaluation
indicates that VLMs face significant challenges when dealing with heavily compressed images, as
evidenced in Figure 3. All radar plots of the compression methods fall within the boundary of
the uncompressed baseline, showing varying degrees of performance degradation. Additionally, we
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Finding1: VLMs exhibit limited understanding of 

heavily compressed images.

Finding2: Stronger VLMs perform better on 

compressed images.

Finding3: Generative codecs offer better semantic 

reconstruction, benefiting VLM-oriented coding.

Finding4: The scaling laws don’t apply to compressed 

images.

Finding5: VLM vision tasks correlate with human 

vision pixel-level metrics, but a gap remains.

Findings

GQAPOPE

OCRBMME

MMB SEEDB

Qwen2.5-VL-7B

InternVL3-1B

Qwen2.5

-VL-3B

Qwen-

chat-7B

InternVL3

-8B

InternVL3

-2B

Janus-pro

-7B

Janus-pro

-1B

Figure 3: (a) BD-Metric values of different VLMs across different compression methods for the
same tasks (SEEDBench). (b) BD-Metric values for different tasks under various compression meth-
ods based on the same VLM (Qwen-VL3-3B). (c) Summary of our main findings.

plot the rate-distortion curves for all tasks in Figure 4 based on Qwen-VL2.5-3B, and present the RD
curves for all other VLMs in Appendix C.1. When the bitrate falls below 0.1 bpp, VLMs struggle
to maintain accurate semantic understanding and task performance, as compression artifacts distort
crucial visual details. This finding suggests that VLMs’ ability to process and comprehend images
deteriorates as compression rates increase, particularly under high compression levels.

qwen_3b

Figure 4: Rate-Metric curves for all types of codecs on GQA, MMB, MME, OCRBench, POPE, and
SEEDBench using Qwen-VL2.5-3B.

Finding2: Stronger VLMs perform better on compressed images. By comparing the rate-
distortion curves across different VLMs and results in Appendix C.2, we observe that their rela-
tive performance rankings remain consistent with the uncompressed condition. This suggests that
models with better performance on uncompressed images also demonstrate greater robustness to
compressed images. However, as shown in Figure 3-(a), under the same task conditions, Janus-
pro exhibits the smallest decrease in performance across all compression conditions, indicating that
it has the best resistance to compression. This resilience is independent of the model’s absolute
performance.

Finding3: Generative codecs offer better semantic reconstruction, benefiting VLM-oriented
coding. Compared to traditional and learning-based codecs, generative codecs, particularly those
based on diffusion models, are more effective at preserving the semantic content of images. Codecs

4
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such as RDEIC and StableCodec excel in reconstructing semantically consistent images at lower
bitrates, placing their curves in the upper-left corner of Figure 4, making them more suitable for
tasks involving VLMs. In Table 2, we comprehensively evaluate different codecs based on various
VLMs and tasks using the ICM task assessment method to measure their BD-Metrics. Additional
experimental results can be found in Appendix C.3. The experimental findings further support the
notion that generative methods contribute to understanding (Yan et al., 2025), which represents the
future development direction for image coding for machines (ICM) tasks.

Table 2: Comparison of BD-Metrics for different VLMs across various tasks. The value measures
the average decrease in metrics relative to the uncompressed condition under the same compression
bitrate for different codecs. Red and blue fonts denote best and second-best value, respectively.

VLM Metric JPEG HM VTM ELIC TCM MLIC HiFiC ILLM D.EIC RDEIC S.Codec

Qwen
chat
-7B

OCRB -236.3 -147.9 -137.2 -51.9 -33.8 -33.4 -262.2 -163.7 -310.5 -206.7 -326.1
GQA -8.65 -3.10 -3.04 -1.34 -1.48 -1.58 -2.99 -2.17 -1.95 -1.14 -2.04
POPE -6.36 -3.01 -3.46 -2.09 -1.90 -1.65 -4.05 -3.12 -3.05 -1.71 -2.66
MME -296.9 -167.7 -183.6 -114.5 -98.4 -100.8 -114.9 -90.8 -90.4 -36.1 -101.9
MMB -11.74 -3.91 -5.08 -3.95 -3.12 -3.72 -7.50 -4.15 -6.95 -2.75 -4.82

SEEDB -9.91 -4.44 -4.29 -2.04 -2.01 -2.17 -4.89 -3.00 -2.30 -0.99 -2.56

Intern
VL3
-8B

OCRB -319.9 -239.7 -243.6 -117.1 -102.1 -107.5 -495.6 -333.5 -615.4 -408.5 -670.1
GQA -9.57 -6.02 -5.64 -3.15 -3.46 -3.23 -5.02 -3.87 -3.28 -2.09 -4.02
POPE -7.33 -3.63 -3.82 -2.75 -2.72 -2.33 -6.55 -4.84 -5.10 -2.60 -4.84
MME -266.8 -172.9 -151.5 -95.4 -89.0 -91.9 -231.0 -132.8 -173.6 -92.8 -175.3
MMB -11.69 -5.83 -5.74 -3.34 -3.41 -3.48 -11.89 -5.74 -13.48 -5.87 -9.59

SEEDB -10.06 -5.72 -5.55 -2.80 -2.62 -2.88 -6.38 -4.44 -4.00 -1.78 -4.22

Qwen
VL2.5

-7B

OCRB -334.6 -231.8 -241.9 -86.5 -82.3 -83.8 -509.9 -317.3 -601.4 -399.6 -662.1
GQA -13.28 -7.94 -7.57 -4.98 -4.87 -5.06 -6.37 -4.88 -4.77 -3.21 -4.77
POPE -18.38 -9.15 -9.00 -6.04 -6.11 -6.15 -11.48 -8.78 -8.65 -6.10 -8.97
MME -522.2 -295.9 -311.0 -162.6 -165.1 -169.4 -231.9 -161.0 -184.6 -93.5 -220.6
MMB -24.71 -7.88 -8.17 -3.57 -3.76 -3.77 -11.80 -6.49 -12.58 -5.66 -8.35

SEEDB -18.00 -8.94 -8.04 -4.01 -3.85 -3.83 -7.82 -5.16 -4.29 -2.17 -4.49

Janus
-pro
-7B

OCRB -259.2 -175.4 -186.1 -84.9 -86.4 -85.9 -312.5 -205.5 -380.2 -246.0 -413.4
GQA -7.16 -3.61 -3.28 -1.84 -1.80 -1.50 -2.81 -2.42 -2.17 -1.03 -2.46
POPE -22.79 -13.60 -13.48 -7.80 -8.95 -7.62 -7.43 -5.99 -5.50 -3.91 -7.69
MME -264.1 -199.6 -166.4 -100.6 -103.7 -104.1 -187.5 -120.3 -137.6 -61.1 -142.6
MMB -10.77 -5.52 -4.94 -2.78 -2.77 -3.08 -9.70 -5.49 -9.36 -3.39 -7.44

SEEDB -7.16 -4.83 -4.31 -1.96 -2.09 -2.00 -4.96 -3.80 -2.99 -1.61 -3.07

Intern 
scaling

Figure 5: Rate-Metric curves to validate the scaling law based on InternVL3 series models.

Finding4: The scaling laws don’t apply to compressed images. We conduct scaling law experi-
ments across three codec types and multiple tasks, measuring the performance drop between com-
pressed and uncompressed inputs for models of varying sizes, as shown in Figure 5. Our findings
reveal that increasing model size does not consistently reduce compression-induced degradation, in-
dicating a gap between model generalization and robustness to distortio, thus breaking the expected
scaling law. Additionally, for StableCodec, the highest bitrate does not yield optimal POPE scores in
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smaller models, though this effect diminishes as model size grows. This suggests that VLM gener-
alization capacity modulates the rate-distortion behavior of compression, affecting its monotonicity.
Further results are available in Appendix C.4.

Figure 6: Correlation matrix be-
tween human-vision metrics and
VLM vision tasks.

Finding5: VLM vision tasks correlate with human vision
pixel-level metrics, but a gap remains. To investigate the
relationship between human vision and machine perception,
we conducted a comparative analysis of VLMs on compressed
images using both task-level benchmarks and pixel-level im-
age quality metrics in Figure 6. Specifically, we evaluated
VLM performance across multiple downstream tasks while si-
multaneously measuring image fidelity using perceptual met-
rics including PSNR, LPIPS, DISTS, and FID. As shown in
our results, high pixel-level scores do not always translate to
strong VLM task performance, suggesting a decoupling be-
tween low-level image quality and semantic understanding.
For fine-grained tasks such as OCRBench, pixel-level metrics
like PSNR exhibit stronger correlation, while other perceptual metrics show weaker alignment. In
contrast, for coarse-grained tasks, perceptual metrics demonstrate higher correlation, though a no-
ticeable gap still remains. This highlights a nuanced gap between human-centric perceptual metrics
and machine vision capabilities, and underscores the need for task-aware evaluation protocols when
optimizing image compression for machine vision.

3 UNDERSTANDING THE PERFORMANCE GAP

In this section, we decompose the performance gap between compressed and uncompressed image
into two parts: a). The information gap which is caused by the loss of actual information during
image compression; b). The generalization gap which is caused by the VLM’s failure to generalize
compressed images. We discuss the decomposition in detail and visualize those two gaps using
numerical examples.

3.1 THE INFORMATION GAP AND GENERALIZATION GAP

Denote the original image as X , the compressed image as X̂ , the parameter of VLM as θ and the
benchmark performance as L(., .). Then we can decompose the performance gap between com-
pressed image X̂ and uncompressed image X into two parts:

L(X, θ)− L(X̂, θ)︸ ︷︷ ︸
performance gap

= L(X, θ)− L(X̂, θ∗)︸ ︷︷ ︸
information gap

+L(X̂, θ∗)− L(X̂, θ)︸ ︷︷ ︸
generalization gap

,

where L(X̂, θ∗) = max
θ

L(X̂, θ). (1)

We name the first part information gap. It is defined as the part of performance gap that can not
be resolved no matter how the VLM is finetuned. It is the amount of information about the task
that is already lost in image compression process. Given already compressed image X̂ , there is no
remedy to information gap. And the information gap has to be solved by improving the compression
algorithm.

We name the second part generalization gap. It is defined as the part of performance gap that
is caused by VLM’s generalization failure to compressed image. The generalization gap can be
reduced by finetuning the VLM using compressed images. In Sec. 4, we propose a VLM adaptor to
reduce generalization gap for different image compressors and bitrates.

3.2 VISUALIZATION WITH JPEG COMPRESSOR

To better understand the information gap and generalization gap, we provide a numerical example in
Table 3. More specifically, we finetune VLM parameter θ for JPEG, ELIC and ILLM respectively.
The reducible gap is generation gap, and the irreducible gap is information gap.

6
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Table 3: The information and generalization gap on SEEDBench and POPE, with JPEG, ILLM and
ELIC as codecs.

SEEDBench POPE

JPEG ELIC ILLM JPEG ELIC ILLM

uncompressed L(X, θ) 73.81 86.21
compressed L(X̂, θ) 60.56 65.28 56.13 49.92 76.41 61.4
compressed finetune L(X̂, θ∗) 64.31 69.48 58.55 79.40 82.31 74.02

Performance gap 13.25 8.53 17.68 36.29 9.8 24.81
Information gap 9.5 4.33 15.26 6.81 3.9 12.19
Generalization gap 3.75 4.2 2.42 29.48 5.9 12.62

4 CLOSING GENERALIZATION GAP WITH VLM ADAPTOR

4.1 PROPOSED METHOD

Based on the analysis in Section 3, we propose a unified VLM adaptor that can adapt to different
types of compression distortions and close the generalization gap. Since fine-tuning the entire VLM
requires substantial computational resources, incurs high costs, and is challenging to implement, we
found that fine-tuning only the VLM encoder can still yield significant performance gains.

Specifically, existing VLM vision encoders are generally based on the Vision Transformers (ViT)
architecture (Han et al., 2022). We need to enable the encoder to understand the distortion types and
corresponding compression levels of the compressed images, and incorporate this information as
conditional input to the encoder. Assuming there are m existing codecs with different types of dis-
tortion, each with n compression levels, we first perform one-hot encoding for each compressor and
then map it to the latent variable space through an embedding layer T (·) to get the codec condition
embedding Cemb, as follows:

Cemb = T (m,n, d), (2)

where d indicates the embedding dimension aligning with the VLM vision encoder. To ensure that
the entire VLM vision encoder can incorporate the codec condition at all positions, we refer to
the fusion methods of conditional embedding and time embedding in conditional diffusion models
(Rombach et al., 2022; Preechakul et al., 2022), and add the codec condition Cemb to the rotary posi-
tional embedding (RoPE) (Su et al., 2024) in vision encoder, yielding the new conditional positional
embedding.

Based on this, we can train the VLM’s unified conditional vision encoder (CVE) with parameter
θ∗ using compressed images to distill the original vision encoder (VE) with parameter θ, ensuring
that the features extracted from uncompressed images X through VE are as similar as possible to
the features extracted from compressed images X̂ through CVE. To achieve this, we introduce the
following distillation loss Ld, which aims to minimize the mean squared error (MSE) between the
two output features:

Ld = ∥CVE(X̂, Cemb, θ
∗)−VE(X, θ)∥22. (3)

This approach aims to bridge the gap between compressed visual features and the original domain,
fine-tuning the VLM to reduce the generalization gap. This distinguishes our method from existing
works in the field of coding for machines that focus on fine-tuning for specific codecs.

4.2 EXPERIMENTAL SETTING

We utilize Qwen-VL2.5-3B as our VLM model and select one representative codec from each of the
three compression distortion methods listed in Table 1, namely JPEG, ELIC, and ILLM, aligning
with Table 3. We used four bitrate levels for training, resulting in a 12-dimensional codec conditional
embedding. For the training dataset, we used COCO, which contains more than 11w images. These
images were compressed with different bitrates from the three codecs mentioned above, creating a
training set containing a large number of compressed images. To validate the generalization ability
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of our proposed method, we evaluate its performance on the coarse-grained benchmark POPE and
fine-grained benchmark SEEDBench. All codecs are used off-the-shelf without any fine-tuning.

4.3 EXPERIMENTAL RESULTS

Quantitative Results. To quantitatively evaluate the effectiveness of our adapter-enhanced com-
pression methods, we conduct rate-accuracy analysis on two representative benchmarks: POPE and
SEEDBench. As shown in Figure 7, across all tested bitrates, adapter variants consistently out-
perform their corresponding base codecs, demonstrating superior robustness under compression.
Notably, JPEG-Adapter achieves substantial improvements on both metrics, with gains of approx-
imately 30% at low bitrate. Additionally, ELIC and ILLM show over 10% improvement on the
POPE metric. Furthermore, BD-Metric results in Table 4 reinforce these findings. Compared to the
original VLM model without the adapter, our method achieves a performance gain of over 12 units
on two metrics for JPEG at the same bitrate, with also significant improvements on ELIC and ILLM.
These results collectively validate the effectiveness of our Adapter strategy in preserving semantic
fidelity and benchmark performance under aggressive compression.

Figure 7: Rate-accuracy comparison on POPE and SEEDBench.

Table 4: The BD-Metric re-
sults are compared against the
original compression outcomes,
where BD-P refers to BD-
POPE and BD-S refers to BD-
SEEDBench.

Codec BD-P BD-S
JPEG 12.62 12.88
ELIC 3.42 0.69
ILLM 3.52 1.23

Qualitative Results. To evaluate robustness under compression artifacts, we conducted qualitative
comparisons as shown in Figure 8. Standard VLMs showed significant performance drops, often
misinterpreting key visual cues. In contrast, our method consistently produced correct predictions
across all formats, demonstrating strong resilience to compression-induced distortions. These re-
sults suggest that our approach enables reliable multimodal understanding even under heavy lossy
compression, making it well-suited for deployment in bandwidth-constrained scenarios.

Q: Is there a dining table in 

the image? 

GT: No.

JPEG ELIC ILLM

Original: Yes.

Ours-Ada: No.

Original: Yes.

Ours-Ada: No.

Original: Yes.

Ours-Ada: No.

Uncompressed

Index 178

Q: What is the animal standing on? 
A Grassy field   B Sandy beach 

C Rocky terrain D Concrete pavement 

Original: C.

Ours-Ada: A.

Original: D.

Ours-Ada: A.

Original: D.

Ours-Ada: A.

Figure 8: Subjective results for POPE and SEEDBench metrics of standard VLM and our method.
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5 RELATED WORKS

Image Coding for Humans. In recent years, deep learning has significantly advanced image
compression, surpassing traditional hand-crafted codecs. Existing methods can be grouped into
three categories: traditional, learning-based, and generative compression. Traditional codecs, from
JPEG (Wallace, 1991) to HEVC (Sullivan et al., 2012) and VVC (Bross et al., 2021), have steadily
improved but at the cost of increasing computational complexity, eventually reaching a plateau.
Learning-based compression methods began to emerge and have progressively incorporated state-
of-the-art network architectures, such as ResNet (Cheng et al., 2020), Transformers (Liu et al.,
2023a) and Mamba (Zeng et al., 2025), as well as entropy modeling along both channel and spatial
dimensions (Minnen et al., 2018; He et al., 2022; Jiang et al., 2023), achieving superior compression
performance compared to traditional codecs. Nevertheless, due to their pixel-level optimization,
learning-based methods often produce poor visual quality at extremely low bitrates, which is unde-
sirable for human perception. To address this, generative model-based approaches, including those
leveraging GANs (Mentzer et al., 2020; Muckley et al., 2023) and Diffusion models (Li et al., 2024b;
2025; Zhang et al., 2025a), have been developed to optimize compression with respect to percep-
tual quality. However, they remain computationally intensive and large in size, limiting practical
deployment and leaving considerable room for improvement.

Image Coding for Machines. With the rapid development of computer vision and the widespread
adoption of intelligent tasks, compression techniques tailored for machine vision have been ex-
tensively investigated. In response, the Moving Picture Experts Group (MPEG) established Video
Coding for Machines (VCM) (Kang et al., 2022) and Feature Coding for Machines (FCM) (Rose-
warne, 2023). Existing methods (Zhang et al., 2024b; Kim et al., 2023; Liu et al., 2023b; Zhang
et al., 2024a) mainly focus on specific architectures, such as Fast-RCNN (Ren et al., 2015) and
Mask-RCNN (He et al., 2017), and target particular tasks like object detection, instance segmenta-
tion, and object tracking, with limited generalization capabilities. Furthermore, driven by the recent
success of VLMs and their increasingly broad applications, some studies (Kao et al., 2024; Li et al.,
2024a) have begun exploring image compression for VLMs. However, these works typically focus
on a single codec and lack a comprehensive benchmark like image compression for human vision
(Hu et al., 2021).

Vision-Language Models. VLMs are large-scale models that integrate visual modalities with lan-
guage understanding Zhan et al. (2024); Chen et al. (2025). In recent years, there has been a surge
in research utilizing VLMs (Wang et al., 2024; Chen et al., 2024; Zhu et al., 2025; Yao et al., 2024;
Team et al., 2025) for tasks such as image understanding, image recognition, instance segmentation,
and object detection, significantly enhancing the model’s generalization capabilities. To evaluate the
comprehensive performance of VLMs, several benchmark studies have been proposed, including
SeedBench (Li et al., 2023a), MMBench (Liu et al., 2024a), MME (Chaoyou et al., 2023), OCR-
Bench Liu et al. (2024b) and et al. However, the existing evaluation datasets consist of high-bitrate,
clear images, and there has been little exploration of methods for evaluating VLM performance on
compressed images, which are of great importance as they can significantly save bandwidth and
resources.

6 CONCLUSION

In this paper,we present a comprehensive benchmark for evaluating VLMs on heavily compressed
images, covering over one million samples and assessing both coarse-grained and fine-grained met-
rics. Our analysis reveals that existing VLMs struggle under compression, and we attribute this to
two distinct factors: an inherent information gap due to irreversible data loss, and a generalization
gap stemming from poor adaptation to distorted inputs. While the former is difficult to mitigate, we
show that the latter can be addressed through model design. To this end, we propose a lightweight
VLM adaptor that significantly improves performance across diverse codecs and bitrates. Empir-
ical results demonstrate strong gains in recognition accuracy, highlighting the adaptor’s potential
for real-world deployment. We acknowledge that our current experiments do not include the lat-
est proprietary VLM models due to API cost constraints, but we plan to extend our study in future
work. We believe this research may contribute to the advancement of image coding for machines
and semantic compression.
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ETHICS STATEMENT

This work focuses on benchmarking and enhancing vision-language models (VLMs) for compressed
image understanding. Since the proposed models do not generate novel content, ethical concerns
are relatively limited. However, VLMs may still exhibit hallucination issues, such as factual inaccu-
racies and reduced reliability in certain outputs.

REPRODUCIBILITY STATEMENT

All experimental results are documented in the appendix. For empirical validation, we utilize pub-
licly available datasets. Detailed implementation settings and hyperparameter configurations are
also provided in the appendix to facilitate reproducibility.
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A DETAILED BENCHMARK SETTING.

In this section, we provide the detailed codec parameters as shown in Figure 5. Our primary focus
is to evaluate VLM performance on compressed images under low bitrate conditions; therefore, we
selected configurations that yield a bits-per-pixel (bpp) below 0.3. For learning-based and generative
codecs, we primarily adopt the pretrained models released by their respective papers. However, for
certain codecs such as TCM, MLIC++, and HiFiC, whose default bitrate settings do not align with
our target range, we fine-tuned the models using their lowest available bitrate configurations.

Additionally, we report the evaluation results of the selected VLMs on uncompressed images in
Figure 9, serving as a reference upper bound for each model-task pair. The metrics are computed
using a standardized comparison protocol, which may differ slightly from those reported in the
original papers. However, we conducted a careful cross-check and found the discrepancies to be
minor. Since our focus is on quantifying the degradation caused by compression, the absolute metric
values are less critical than the relative performance drop.

Table 5: Three categories of selected image
codecs with different bitrate parameters.

Types Codecs P. Value

Traditional
Codecs

JPEG Q {1, 3, 5, 6}
HM QP {40-50}

VTM QP {40-53}

Learning
-based
Codecs

ELIC λ {4, 8, 16, 32}×10−3

TCM λ {5, 10, 18, 25}×10−4

MLIC++ λ {4, 9, 18, 35}×10−4

Generative
Codecs

HiFiC λ {2, 6, 8, 14}×10−2

MS-ILLM Q {vlo2, 1, 2, 3}
DiffEIC λ {2, 4, 8, 16}
RDEIC λr {0.1, 0.5, 1, 2}
S.Codec λt {2, 4, 8, 16} Figure 9: Comparison of VLMs on coarse-

grained and fine-grained Benchmarks.

B DETAILED TASK DESCRIPTION

We systematically evaluate nine state-of-the-art vision–language models (VLMs) on both com-
pressed and uncompressed images using seven complementary metrics. Table 6 summarizes the
evaluation design, including the primary focus of each metric, its sub-metrics, and the number of
images considered. Detailed discussions are provided in the following subsections.

In each subsection, we further analyze the impact of image compression by considering four repre-
sentative codecs. For concreteness, we report detailed per-codec results of Qwen-Chat-7B, providing
fine-grained evidence of how compression artifacts affect understanding of VLMs.

B.1 POPE (POLLING-BASED OBJECT PROBING EVALUATION)

We use 5127 images from POPE (Li et al., 2023b), which formulates the evaluation of object hallu-
cination in large VLMs as a binary classification task that prompts LVLMs to output “Yes” or “No”.
Questions with the answer “No” are built by sampling from negative objects with three different
strategies corresponding to the three metrics based-on F1 score reported below, and the column “
Overall ” is weighted average of these metrics.

• Random: Randomly sample the objects that do not exist in the image.

• Popular: Select the top-k most frequent objects in the whole image dastaset that do not
exist in the current image, where k is half of the number of polling questions per image.
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Table 6: Comparison of seven widely used multimodal evaluation benchmarks: POPE, OCRBench,
COCO-Caption, GQA, MMBench, SEED-Bench, and MME.

Benchmark Primary Focus Selected Eval Metrics Number of Images

POPE Object hallucination detection Random,popular and adversar-
ial

5127

COCO-Caption Image caption generation CIDEr, ROUGEL and BLEU 5000

OCRBench Effectiveness in text-related vi-
sual tasks

Text Recognition, Scene
Text-Centric VQA, Document-
Oriented VQA, KIE, and
HMER

1000

GQA Visual reasoning and composi-
tional question answering

The structural type including
choose, compare, logical, query
and verify

398

MME Perception and cognition abili-
ties

OCR, coarse and fine-grained
recognition

1187

MMBench Robust and holistic, bilingual
VLM evaluation

Six L-2 abilities including AR,
CP, FP-C, FP-S, LR and RR

4329

SeedBench Objective evaluation of
MLLMs on generative compre-
hension

9 dimensions covering image-
level and instance-level percep-
tion and reasoning

14232

• Adversarial: First rank all objects according to their co-occurring frequencies with the
ground-truth objects, and then select the top-k frequent ones that do not exist in the image.

Table 7: Evaluation results of Qwen-Chat-7B on the POPE metric.

Codec bpp Overall Random Popular Adversarial

JPEG

0.27 82.32 79.75 83.02 84.33
0.25 81.09 78.28 83.25 81.91
0.20 77.10 78.32 74.42 78.71
0.19 75.69 73.30 77.05 76.84

ELIC

0.25 84.77 82.48 86.85 85.10
0.16 83.96 85.89 81.76 84.34
0.10 83.58 83.88 85.64 81.34
0.06 82.10 82.39 79.82 84.21

MSILLM

0.17 85.52 83.17 87.84 85.68
0.09 83.96 84.10 86.38 81.53
0.05 82.17 79.77 84.44 82.43
0.01 73.05 72.98 70.64 75.70

RDEIC

0.12 84.64 84.85 86.76 82.44
0.09 85.12 87.19 82.79 85.50
0.07 84.46 84.98 82.18 86.33
0.03 81.92 79.55 82.40 83.93

B.2 COCO-CAPTION

COCO-Caption (Chen et al., 2015) provides a standardized dataset and evaluation protocol for im-
age caption generation using 5000 MS COCO testing images with 40 reference sentences per im-
age. Captions output by different approaches are evaluated by automatic metrics including CIDEr,
ROUGEL and Bleu.
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• CIDEr aggregates Term Frequency Inverse Document Frequency (TF–IDF) weighted n-
gram cosine similarity.

• ROUGEL computes an F-measure based on the longest common subsequence (LCS) be-
tween candidate and reference captions.

• BLEU analyzes the co-occurrences of n-grams between the candidate and reference sen-
tences and computes a corpus-level clipped n-gram precision with a brevity penalty:

BLEUK = BP · exp
( K∑

k=1

wk log pk

)
,

where pk are clipped k-gram precisions and BP is the brevity penalty.

Table 8: Evaluation results of Qwen-Chat-7B on the COCO-Caption metric.

Codec bpp CIDEr ROUGEL Bleu1 Bleu2 Bleu3 Bleu4

JPEG

0.27 83.09 51.08 71.82 54.20 39.97 29.36
0.25 78.37 50.32 70.94 52.76 38.51 28.09
0.20 60.35 45.94 65.12 45.91 32.06 22.49
0.19 56.37 44.97 63.69 44.31 30.60 21.18

ELIC

0.26 95.73 54.06 75.09 58.01 43.76 32.79
0.16 93.02 53.67 74.49 57.40 42.97 31.96
0.10 88.33 52.62 73.46 55.85 41.48 30.75
0.06 81.56 50.84 71.53 53.49 39.17 28.64

MSILLM

0.17 96.66 54.45 75.37 58.47 44.34 33.43
0.09 95.20 54.10 75.25 58.32 44.02 33.00
0.05 90.84 53.35 74.21 57.00 42.66 31.77
0.01 53.11 44.49 62.79 43.16 29.68 20.61

RDEIC

0.12 97.84 54.66 75.74 58.92 44.78 33.76
0.09 97.05 54.37 75.55 58.78 44.57 33.56
0.07 97.00 54.69 75.70 58.91 44.69 33.62
0.03 89.30 53.00 73.65 56.34 42.16 31.43

B.3 OCRBENCH

We use 1000 images from OCRBench (Liu et al., 2024b), a comprehensive benchmark assessing Op-
tical Character Recognition (OCR) capabilities in LLMs through five text-related visual tasks includ-
ing Text Recognition, Scene Text-Centric Visual Question Answering (VQA), Document-Oriented
VQA, Key Information Extraction (KIE), and Handwritten Mathematical Expression Recognition
(HMER).

• Text Recognition: Evaluate LMM with widely-adopted OCR text recognition datasets from
8 perspectives.

• Scene Text-Centric VQA: Test LLMs on five datasets.
• Document-Oriented VQA: Assess LLMs on three datasets.
• Key Information Extraction: Conduct experiments on three datasets.
• Handwritten Mathematical Expression Recognition: Evaluate on HME100K.

In the table below, the above metrics are abbreviated for “Text Reco”, “Scene VQA”, “Doc VQA”,
“KIE”, “HMER” respectively and the total sum is “Final Score”.

B.4 GQA

We use 398 image from GQA (Hudson & Manning, 2019), a large-scale dataset for real-world visual
reasoning and compositional question answering. We associate each question with the structural
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Table 9: Evaluation results of Qwen-Chat-7B on the OCRBench metric.

Codec bpp Final Score Text Reco Scene VQA Doc VQA KIE HMER

JPEG

0.62 311.00 68.00 119.00 70.00 54.00 0.00
0.59 280.00 57.00 108.00 62.00 53.00 0.00
0.54 202.00 39.00 85.00 45.00 33.00 0.00
0.53 173.00 31.00 78.00 37.00 27.00 0.00

ELIC

0.28 467.00 167.00 145.00 85.00 70.00 0.00
0.21 453.00 163.00 140.00 84.00 66.00 0.00
0.16 416.00 154.00 125.00 80.00 57.00 0.00
0.12 336.00 138.00 106.00 49.00 43.00 0.00

MSILLM

0.30 435.00 162.00 133.00 81.00 59.00 0.00
0.21 366.00 145.00 115.00 66.00 40.00 0.00
0.15 289.00 128.00 94.00 37.00 30.00 0.00
0.08 101.00 49.00 34.00 18.00 0.00 0.00

RDEIC

0.11 327.00 151.00 112.00 40.00 24.00 0.00
0.08 310.00 138.00 104.00 43.00 25.00 0.00
0.06 284.00 129.00 100.00 34.00 21.00 0.00
0.03 166.00 80.00 61.00 18.00 7.00 0.00

type derived from the final operation in the question’s functional program, as shown below, with the
“Overall” stands for the weighted sum.

• choose: Questions that present two alternatives to choose from, e.g. “Is it red or blue ?”

• compare: Comparison questions between two or more objects.

• logical: Involve logical inference.

• query: All open questions.

• verify: Yes/No questions.

Table 10: Evaluation results of Qwen-Chat-7B on the GQA metric.

Codec bpp Overall choose compare logical query verify

JPEG

0.27 48.18 70.68 55.18 63.12 31.21 74.38
0.25 47.42 70.68 53.14 61.62 30.46 74.11
0.20 43.20 64.92 52.63 58.74 26.48 67.94
0.19 41.93 63.95 53.99 57.24 24.89 66.96

ELIC

0.25 54.06 75.82 57.22 69.22 37.68 79.71
0.16 53.12 75.29 55.35 68.94 36.65 78.51
0.10 52.67 73.16 55.52 69.72 36.11 78.06
0.06 52.31 74.22 55.86 65.56 36.40 77.89

MSILLM

0.18 53.91 76.26 55.69 67.05 37.97 79.88
0.09 53.32 75.38 55.69 66.72 37.49 78.73
0.05 52.31 74.22 55.86 65.56 36.40 77.89
0.01 43.71 66.52 52.97 61.90 26.42 67.54

RDEIC

0.12 53.83 75.91 56.54 66.06 37.90 80.42
0.09 53.69 76.53 56.88 65.45 37.91 79.66
0.07 53.54 76.53 55.86 65.95 37.74 79.22
0.03 51.69 74.49 53.99 66.39 35.24 77.58
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B.5 MME (COMPREHENSIVE MULTIMODAL LLM (MLLM) EVALUATION)

MME (Chaoyou et al., 2023) aims to offer a comprehensive evaluation suite that jointly measures
perception and cognition for MLLMs across 14 subtasks. We only test the perception part for 1187
compressed images, which on top of OCR includes the recognition of coarse-grained and fine-
grained objects. The “Overall” stands for the sum of all perception metrics.

• OCR: Optical Character Recognition (OCR) is a foundational capability of MLLMs, serv-
ing for subsequent text-based tasks such as text translation and text understanding.

• Coarse-Grained Recognition: The contents of coarse- grained recognition include the exis-
tence of common objects, and their count, color, and position. In each perception subtask,
we prepare 30 images with 60 instruction-answer pairs.

• Fine-Grained Recognition: The fine-grained recog- nition is more about testing the knowl-
edge resources of MLLMs. The subtasks consist of recognizing movie posters, celebrities,
scenes, landmarks, and artworks, containing 147, 170, 200, 200, and 200 images respec-
tively.

Table 11: Evaluation results of Qwen-Chat-7B on the MME metric.

Codec bpp Overall OCR artwork celebrity color count existence landmark position posters scene

JPEG

0.30 1236.7 80.0 95.0 76.8 146.7 108.3 180.0 108.0 128.3 150.3 163.2
0.27 1208.5 87.5 87.8 73.5 141.7 103.3 180.0 97.0 120.0 153.7 164.0
0.23 1017.5 72.5 74.0 53.5 128.3 93.3 151.7 74.2 81.7 135.7 152.5
0.22 971.8 62.5 75.5 52.4 138.3 76.7 140.0 66.5 86.7 127.6 145.8

ELIC

0.21 1367.6 65.0 103.0 109.4 175.0 138.3 185.0 141.0 128.3 156.8 165.8
0.14 1321.7 80.0 96.2 100.0 163.3 123.3 180.0 136.2 121.7 155.1 165.8
0.09 1288.4 72.5 95.0 85.6 170.0 126.7 175.0 123.5 121.7 151.0 167.5
0.06 1226.8 72.5 90.2 71.2 161.7 106.7 175.0 114.5 123.3 149.0 162.8

MSILLM

0.18 1382.6 72.5 112.0 115.9 180.0 125.0 185.0 147.5 116.7 163.3 164.8
0.10 1394.9 87.5 115.5 113.5 185.0 123.3 185.0 139.2 126.7 156.1 163.0
0.06 1325.6 65.0 110.2 93.2 175.0 106.7 185.0 136.0 135.0 153.4 166.0
0.02 1066.4 80.0 95.0 40.6 148.3 105.0 140.0 98.0 110.0 102.7 146.8

RDEIC

0.12 1408.4 72.5 119.2 120.9 180.0 140.0 190.0 146.5 125.0 151.0 163.2
0.09 1428.6 95.0 122.2 118.8 175.0 140.0 190.0 147.8 130.0 147.3 162.5
0.07 1395.9 87.5 119.0 107.4 170.0 135.0 195.0 146.2 125.0 147.3 163.5
0.03 1311.4 95.0 111.2 84.1 165.0 110.0 185.0 141.8 115.0 139.8 164.5

B.6 MMBENCH

MMBench (Liu et al., 2024a) is a systematically designed objective multi-modality benchmark for a
robust and holistic evaluation of VLMs with 4329 images covering 20 ability dimensions. “Overall”
is the weighted average of the above six metrics.

• AR: Attribute Reasoning.
• CP: Coarse Perception
• Fine-grained Perception: FP-C, cross-instance; FP-S, single-instance.
• LR: Logical Reasoning.
• RR: Relation Reasoning.

B.7 SEEDBENCH

SEED-Bench (Li et al., 2023a) consists of 19K multiple choice questions with accurate human
annotations, which spans 12 evaluation dimensions including the comprehension of both the image
and video modality. We evaluate VLMs on 14232 images across 9 dimensions, involving only spatial
understanding. “Overall” is the weighted average of the above metrics.
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Table 12: Evaluation results of Qwen-Chat-7B on the MMBench metric.

Codec bpp Overall AR CP FP-C FP-S LR RR

JPEG

0.29 36.68 35.68 48.99 30.77 44.71 12.71 18.26
0.27 35.91 36.18 45.61 30.77 45.39 13.56 15.65
0.24 30.67 31.16 41.89 25.87 35.84 14.41 10.43
0.23 27.66 33.17 35.81 20.98 30.38 16.10 10.43

ELIC

0.20 43.56 38.19 60.47 37.06 51.19 16.95 25.22
0.13 41.75 36.18 60.14 37.06 48.46 14.41 20.87
0.09 41.49 37.19 58.11 34.97 49.83 16.10 19.13
0.06 37.63 35.18 51.69 31.47 44.03 12.71 22.61

MSILLM

0.17 42.53 38.69 61.15 30.77 49.83 14.41 26.09
0.10 43.64 39.20 60.47 35.66 51.19 16.10 26.96
0.06 42.70 41.21 60.14 37.06 49.49 10.17 23.48
0.02 26.80 25.63 40.20 23.78 29.69 11.02 6.96

RDEIC

0.11 42.96 37.69 59.80 37.06 50.51 15.25 25.22
0.08 43.56 35.68 60.14 37.76 52.22 15.25 28.70
0.06 43.21 36.68 59.46 37.06 52.22 15.25 26.09
0.02 40.55 35.18 59.12 32.17 46.76 12.71 25.22

• Instance Attributes: This dimension is related to the attributes of an instance, such as color,
shape or material. It assesses a model’s understanding of an object’s visual appearance.

• Instance Identity: This dimension involves the identification of a certain instance in the
image, including the existence or category of a certain object in the image. It evaluates a
model’s object recognition capability.

• Instance Interaction: This dimension requires the model to recognize the state relation or
interaction relations between two humans or objects.

• Instance Location: This dimension concerns the absolute position of one specified instance.
It requires a model to correctly localize the object referred to in the question.

• Instances Counting: This dimension requires the model to count the number of a specific
object in the image. This requires the model to understand all objects, and successfully
count the referred object’s instances.

• Scene Understanding: This dimension focuses on the global information in the image.
Questions can be answered through a holistic understanding of the image.

• Spatial Relation: This dimension asks an model to ground the two mentioned objects, and
recognize their relative spatial relation within the image.

• Text Understanding: For this dimension, the model should answer question about the tex-
tual elements in the image.

• Visual Reasoning: This dimension evaluates if a model is able to reason based on the visual
information. This requires the model to fully understand the image and utilize its common
sense knowledge to correctly answer the questions.

In the table below, the above metrics are abbreviated for “Attr.”, “Ident.” , “Interact.”, “Loc.”,
“Count”, “Scene”, “Spatial”, “Text”, “Reason.” respectively.
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Table 13: Evaluation results of Qwen-Chat-7B on the SeedBench metric.

Codec bpp Overall Attr. Ident. Interact. Loc. Count Scene Spatial Text Reason.

JPEG

0.28 50.71 51.09 56.47 63.92 47.03 35.39 61.94 41.86 20.24 51.96
0.26 49.47 50.16 53.96 57.73 46.11 35.31 60.29 39.88 16.67 51.06
0.21 46.11 46.72 48.17 52.58 43.35 34.16 56.68 35.31 22.62 47.13
0.20 44.23 45.30 45.82 46.39 39.47 32.16 54.08 36.99 22.62 48.94

ELIC

0.21 56.74 57.90 63.35 55.67 54.29 43.11 65.83 42.31 29.76 60.73
0.14 56.42 58.57 62.42 60.82 52.35 42.01 65.67 41.70 25.00 58.91
0.09 55.09 56.72 61.28 58.76 51.23 40.25 64.88 42.62 28.57 56.19
0.06 55.51 57.65 60.13 57.73 51.74 41.07 65.55 41.55 30.95 55.29

MSILLM

0.17 57.35 59.09 63.41 57.73 53.58 43.69 66.34 43.07 26.19 61.93
0.10 56.51 58.06 61.66 59.79 53.27 42.30 66.37 43.53 26.19 59.21
0.06 55.51 57.65 60.13 57.73 51.74 41.07 65.55 41.55 30.95 55.29
0.02 43.25 46.29 44.40 51.55 39.98 31.30 51.49 31.66 22.62 39.27

RDEIC

0.12 57.95 59.71 64.12 58.76 54.70 44.54 66.50 44.44 25.00 61.33
0.09 57.51 59.17 63.68 56.70 54.09 44.14 66.18 44.44 23.81 61.03
0.07 57.37 58.34 63.52 61.86 54.91 44.42 66.50 44.29 22.62 59.21
0.03 54.79 56.74 60.19 59.79 51.43 40.95 63.77 41.86 26.19 55.59
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C MORE EXPERIMENTS RESULTS

C.1 ADDITIONAL RATE-METRIC CURVES RESUTLS

We present additional evaluation results in the form of Rate–Metric curves. We report results for
other VLMs, organized into three series of figures. Each figure includes Rate–Metric curves across
all considered codecs and benchmark datasets as well as the baseline performance on uncompressed
images.

qwen_chat

Figure 10: Rate-Metric curves for all types of codecs on GQA, MMB, MME, OCRBench, POPE,
and SEEDBench using Qwen-Chat-7B.

qwen_7b

Figure 11: Rate-Metric curves for all types of codecs on GQA, MMB, MME, OCRBench, POPE,
and SEEDBench using Qwen2.5-VL-7B.
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Intern_1b

Figure 12: Rate-Metric curves for all types of codecs on GQA, MMB, MME, OCRBench, POPE,
and SEEDBench using InternVL3-1B.

Intern_2b

Figure 13: Rate-Metric curves for all types of codecs on GQA, MMB, MME, OCRBench, POPE,
and SEEDBench using InternVL3-2B.
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Intern_8b

Figure 14: Rate-Metric curves for all types of codecs on GQA, MMB, MME, OCRBench, POPE,
and SEEDBench using InternVL3-8B.

Janus_1b

Figure 15: Rate-Metric curves for all types of codecs on GQA, MMB, MME, OCRBench, POPE,
and SEEDBench using Janus-Pro-1B.

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Janus_7b

Figure 16: Rate-Metric curves for all types of codecs on GQA, MMB, MME, OCRBench, POPE,
and SEEDBench using Janus-Pro-7B.

C.2 ADDITIONAL VLMS COMPRESSION RESUTLS

Figure 17 presents radar charts comparing the performance of various VLMs under three different
compression codecs: JPEG, ELIC, and ILLM. Each chart visualizes model performance across six
benchmarks: POPE, GQA, SEEDBench, MMB, MME, and OCRBench.Under comparable parame-
ter scales,InternVL3 consistently outperforms Qwen2.5, which in turn surpasses Janus-Pro across all
distortion conditions. This ranking is consistent with the uncompressed baseline results reported in
Figure 9, reinforcing the observation that stronger models exhibit greater robustness to compression
artifacts.

JPEG ELIC ILLM

Figure 17: Visualization of various VLM models across all metrics under three different compres-
sion distortion conditions.

C.3 ADDITIONAL BD-METRICS RESUTLS

We report additional evaluation results for VLMs, which also serve as the data source for Figure 3.
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Table 14: Comparison of BD-Metrics for different VLMs across various tasks. The value measures
the average decrease in metrics relative to the uncompressed condition under the same compression
bitrate for different codecs. Red fonts indicate the best-performing models, while blue fonts denote
the second-best.

VLM Metric JPEG HM VTM ELIC TCM MLIC HiFiC MSILLM D.EIC RDEIC S.Codec

Qwen
VL2.5

-3B

OCRB -339.1 -242.4 -251.1 -98.9 -86.2 -87.0 -485.0 -308.0 -576.0 -387.6 -624.8
GQA -14.25 -7.63 -7.01 -4.05 -3.78 -4.07 -5.89 -3.99 -3.64 -1.97 -3.88
POPE -17.75 -6.16 -6.59 -4.61 -4.68 -4.81 -10.95 -7.80 -7.34 -5.44 -8.13
MME -506.9 -342.2 -309.6 -153.7 -142.1 -139.2 -126.2 -182.4 -190.0 -78.0 -183.6
MMB -27.95 -9.01 -8.03 -4.82 -4.65 -4.66 -13.23 -6.62 -12.70 -5.61 -8.20

SEEDB -19.08 -8.38 -7.83 -3.90 -3.69 -3.85 -7.55 -5.10 -3.96 -1.85 -3.86

Intern
VL3
-2B

OCRB -314.6 -228.0 -242.4 -116.1 -104.2 -106.5 -483.5 -325.4 -597.8 -395.4 -639.3
GQA -9.50 -5.97 -5.72 -3.72 -3.73 -3.51 -4.86 -3.52 -2.87 -1.89 -3.70
POPE -8.28 -3.40 -3.61 -2.45 -2.38 -2.46 -5.98 -4.61 -4.67 -2.50 -4.76
MME -230.8 -151.6 -143.9 -60.6 -65.8 -60.9 -137.8 -105.3 -117.4 -51.7 -121.3
MMB -12.07 -5.74 -6.50 -3.43 -3.09 -3.94 -11.86 -5.62 -12.79 -4.92 -8.60

SEEDB -11.62 -6.87 -6.30 -3.28 -3.35 -3.60 -7.21 -4.95 -4.12 -2.19 -4.48

Intern
VL3
-1B

OCRB -303.7 -226.7 -236.6 -110.6 -101.5 -104.3 -458.3 -321.7 -571.9 -381.1 -609.2
GQA -10.51 -7.25 -7.08 -4.64 -4.29 -4.44 -4.28 -3.40 -2.96 -1.91 -3.66
POPE -11.38 -5.15 -6.14 -3.96 -3.98 -3.59 -7.69 -5.88 -5.95 -3.25 -6.09
MME -231.9 -142.5 -153.1 -75.4 -68.4 -69.0 -137.5 -96.1 -119.9 -56.7 -143.6
MMB -10.94 -6.20 -5.64 -4.33 -3.65 -4.30 -9.88 -5.08 -10.94 -4.75 -7.16

SEEDB -10.30 -6.09 -5.92 -3.23 -3.09 -2.91 -5.90 -4.27 -3.64 -1.83 -4.02

Janus
-pro
-1B

OCRB -217.5 -151.3 -160.3 -71.8 -65.9 -66.2 -251.6 -163.2 -314.7 -196.2 -330.3
GQA -4.24 -2.33 -2.04 -0.57 -0.88 -0.99 -2.17 -1.92 -1.82 -0.81 -1.82
POPE -8.00 -3.45 -3.90 -2.53 -2.22 -2.61 -5.67 -5.05 -4.69 -2.82 -4.66
MME -164.6 -116.7 -138.3 -62.7 -75.6 -63.8 -128.4 -90.6 -123.1 -42.7 -119.2
MMB -9.38 -6.49 -6.15 -3.47 -3.17 -3.69 -9.68 -5.60 -9.15 -3.29 -7.30

SEEDB -6.77 -4.37 -4.20 -2.00 -1.80 -1.94 -4.33 -3.21 -2.53 -1.08 -2.60

C.4 ADDITIONAL SCALING LAW RESULTS

In this section, we provide additional metrics for the InternVL3 model series, as shown in Figure
18. These results are consistent with the main findings: the scaling laws don’t apply to compressed
images.

Intern 
scaling
Appen

Figure 18: Rate-Metric drop curves to validate the scaling law based on InternVL3 series models.

Additionally, we report results for the Qwen2.5-VL model series with 3B, 7B, and 32B parameters
across different codecs, as shown in Figure 19. Interestingly, the 32B variant underperforms the
7B model on uncompressed images. Due to the lack of publicly available technical details for
Qwen2.5-VL-32B, we are unable to verify this discrepancy. Nevertheless, the overall trend is clear:
larger model size does not necessarily correspond to lower performance drop under compression.
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Figure 19: Rate-Metric drop curves to validate the scaling law based on Qwen-VL2.5 series models.
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