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Abstract
Recent years have seen a growing interest and
adoption of LLMs, with µTransfer becoming
a key technique for tuning hyperparameters in
large-scale training. Meanwhile, Mixture-of-
Experts (MoE) has emerged as a leading archi-
tecture in extremely large models. However, the
intersection of these two advancements has re-
mained unexplored. In this work, we derive a µ-
Parameterization (µP) for MoE, providing theoret-
ical guarantees for feature learning across model
widths in both the router and experts. We empir-
ically validate our parameterization and further
investigate how scaling the number of experts and
granularity affects the optimal learning rate.

1. Introduction
Scaling deep learning models has become a fundamental
driver of progress in modern AI (Fedus et al., 2022; Touvron
et al., 2023; OpenAI, 2025). Nevertheless, efficiently tun-
ing hyperparameters across different model sizes remains
a major challenge, often requiring extensive trial-and-error
or computationally expensive grid searches (Feurer et al.,
2015). The µParameterization (µP) (Yang, 2021) offers a
principled solution by enabling stable and predictable train-
ing dynamics across model widths—without the need to
retune learning rates or initialization schemes. By reparam-
eterizing models to preserve feature learning in the infinite-
width limit, µP makes it possible to identify optimal hyper-
parameters on small models and seamlessly transfer them
to larger ones, significantly reducing tuning costs.

On the other hand, Mixture-of-Experts (MoE) models have
emerged as a compelling approach for scaling large lan-
guage models efficiently, offering substantial computa-
tional savings through sparse activation (Clark et al., 2022;
Ludziejewski et al., 2024). However, the sparsity patterns
and routing mechanisms intrinsic to MoE architectures fall
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outside the scope of current µP theory. Consequently, it
remains unclear whether the parameterization developed for
dense Transformers can be directly applied to MoE models,
or whether adaptations are required to retain the transfer-
ability and stability benefits that µP provides.

In this work, we extend µP to Mixture-of-Experts (MoE)
architectures, offering both theoretical grounding and em-
pirical validation. Our main contributions are:

• Theoretical framework for µP in MoE. Building
on (Yang et al., 2022), we derive a parameterization
scheme that ensures that feature learning is preserved
across all weights within MoE layers.

• Empirical validation of learning rate transfer. We
show that our parameterization enables consistent
learning dynamics across model widths, confirming
that hyperparameters can be transferred effectively in
MoE setups.

• Investigation of hyperparameter transferability
across other MoE parameters. We observe that learn-
ing rate transferability breaks down across different
values of top-k and granular expert sizes, highlighting
a boundary of current hyperparameter transferability
in MoE settings.

2. Background and Related Work
Mixture of Experts. Mixture of Experts was originally
introduced by (Jacobs et al., 1991), and later proposed in
the context of language modeling by (Shazeer et al., 2017).
This approach has since been succesfully integrated into the
Transformer (Vaswani et al., 2023) architecture in multiple
works, including (Fedus et al., 2022; Lepikhin et al., 2020;
Du et al., 2022; Zhou et al., 2022). +In a Transformer
model, the MoE layer is typically constructed by replacing
the Feed-Forward component with a set of experts. Each
expert retains the design of the original Feed-Forward layer,
consisting of two linear layers with a non-linearity between
them. Crucially, for any given input token, only a fraction
of these experts are activated. The selection of experts for
each token is determined by a routing mechanism - a simple
linear layer followed by a softmax normalization and a Top-
k choice.
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In the standard, Switch layer (Fedus et al., 2022), each of
the experts is of the same size as in the corresponding dense
(non-MoE) Transformer. This assumption is relaxed in fine-
grained MoE (Dai et al., 2024; Ludziejewski et al., 2024),
where for granularity G, the hidden size of each expert is
reduced by a factor of G, while the number of experts and
the router’s top-k value are both multiplied by G. This
way, the model has greater flexibility in mapping tokens to
experts, while the number total and activated parameters
remains approximately constant.

Zero-shot hyperparameter transfer. Standard
parametrization (SP) often fails to preserve stability
and hyperparameter transfer in scaling neural networks. To
overcome this limitation, (Yang, 2021) introduced Maximal
Update Parametrization (µParametrization, or µP). µP
ensures that each layer in a network receives updates of
the same order of magnitude during training, regardless
of width. This allows for what is known as the feature
learning regime, where internal representations evolve
in a meaningful way as training progresses. Crucially,
µP enables hyperparameter transfer across model sizes:
one can tune learning rates and initialization on a small
model and zero-shot transfer them to a large one, as shown
empirically and theoretically in (Yang et al., 2022). This
paradigm, called µTransfer, has been shown to dramatically
reduce the cost of training large models while maintaining
performance. Later works (Yang et al., 2024; Everett et al.,
2024) reformulate and generalize µP theory, while (Dey
et al., 2025) and (Yang et al., 2023) include transfer across
model depths. Despite its success on many architectures
such as Transformers and ResNets, extending µP to
Mixture-of-Experts models remains an open challenge. In
this work, we address this open problem.

3. Principled approach to µP for MoE
In this section, we analyze the behavior of MoE (Fedus et al.,
2022) during training. We derive a parameterization that
ensures feature learning in all of its weights across different
model widths.

3.1. Intuition

In Tensor Programs 5 (TP5) (Yang et al., 2022), weight
matrices are categorized based on the dimensions they con-
nect. A weight is referred to as a hidden weight if it maps
from an infinitely wide layer to another infinitely wide layer,
as is typical within the internal blocks of deep networks.
In contrast, an output weight maps from an infinitely wide
layer to a layer of fixed finite size, such as a classifica-
tion head. This structural distinction determines how the
weight should be scaled at initialization and during optimiza-
tion. Hidden weights receive gradient updates of magnitude
Θ(1/n), where n denotes the layer width. Output weights,

by contrast, receive gradients of constant order Θ(1). Dif-
ferentiation between those weights ensures stable training
and enables zero-shot hyperparameter transfer across model
scales, a core goal of the µTransfer paradigm (Yang et al.,
2022).

Using convention from TP5 expert weights map infinite di-
mension to infinite dimension, so they should act as ”hidden
weights”, and router weight maps infinite to finite dimen-
sion, so it should act as ”output weight”. We will now verify
those intuitions.

3.2. Definitions and notation

We model the MoE layer in the form of a Switch Trans-
former (Fedus et al., 2022). It consists of:

• A router matrix R ∈ Rnexperts×n,
• Two layers of an expert E:
E1 ∈ Rnexperts×4n×n, E2 ∈ Rnexperts×n×4n.

where by n we denote the width of the model that gets
scaled to infinity.

The forward pass of the MoE layer is computed as:

E(x) = E2ReLU(E1x),

R(x) = softmax(top-k(Rx)),

MoE(x) = E(x)TR(x).

We now derive the correct µParameterization (µP) for
Mixture-of-Experts (MoE) architectures by adapting the
principles established in Tensor Programs V (TP5) (Yang
et al., 2022). Our goal is to ensure that all relevant quanti-
ties (activations, gradients, and updates) scale in a way that
allows for stable and predictable training dynamics across
width, enabling hyperparameter transfer.

3.3. Desiderata

Following TP5, we define the key properties that a correctly
µ-parametrized model must satisfy:

1. At initialization, all hidden representations h(x) in the
network should scale as Θ(1).

2. The model output logits f(x) should be O(1) at initial-
ization.

3. After one optimization step, the changes to hidden
representations ∆h(x) and output logits ∆f(x) should
be Θ(1).

These desiderata ensure that no matter how wide the model
is, the output of each layer and the logits stay constant in
size and so the feature learning (Yang et al., 2022) occurs.
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Embedding Unembedding
Attention

(Q, K, V, O)
Feed-forward

(dense) Experts (MoE) Router (MoE)

Init. Var. 1.0 1.0 1/fan in 1/fan in 1/fan in 1/fan in | 1.0
Multiplier 1.0 1/fan in 1.0 1.0 1.0 1.0 | 1/fan in

LR (Adam) 1.0 1.0 1/fan in 1/fan in 1/fan in | 1/fan in 1.0

Table 1: The table presents parameterizations of dense and MoE Transformers, showing parameter scaling in big-O notation.
Dense transformer µP is indicated in blue. MoE parameterizations build on dense µP. simP MoE is marked in red, while the
theoretically grounded µP MoE is shown in green.

By ”vector v ∈ Rn is Θ(na)”, we mean ||v||2
n = Θ(n2a)

where || · || is the standard Euclidean norm (same as in (Yang
et al., 2022)). Intuitively, this means that the typical entry
of v is of size Θ(na). We use the same definition for vector
v being O(na) and Ω(na), and we use similar definitions
for matrices to mean “typical entry size”. We will assume
that all layers other than MoE layers follow parametrization
from TP5.

3.4. Derivation

3.4.1. INITIALIZATION

If we initialize E1, E2, R according to TP5, we get:

• E(x) = Θ(1)

• Rx = O(1)

• R(x) = Θ(1)

• MoE (x) = Θ(1)

Only non-standard part is Rx, but it has no direct effect on
the size of the output of the layer, which stays Θ(1).

3.4.2. OPTIMIZER STEP

In TP5, gradients with respect to hidden activations are typ-
ically Θ(1/n), and gradients with respect to output layer
(pre-)activations are Θ(1). We verify that the MoE compo-
nents obey the same behavior.

We assume the same gradient norms as in TP5, ∇h =
Θ(1/n) for hidden layers, and ∇h = Θ(1) for output layer.
In the case of MoE, this means ∇MoE(x) = Θ(1/n). Thus
we obtain:

∇E(x) = R(x)∇MoE(x)T

= Θ(1) ·Θ(1/n) = Θ(1/n)
(1)

Since R(x),MoE (x) are 1-dimensional vectors the entry
size is simply product of entry sizes. Then:

∇R(x) = E(x)∇MoE(x)
= Θ(1) ·Θ(1/n) · n = Θ(1)

(2)

This equality is less obvious and requires proof that E(x)
and ∇MoE (x) are correlated. We prove that correlation in
Appendix B. For correlated vectors v, u ∈ Rn quantity vTu
has expected size Θ(v)Θ(u) · corr(v, u) · n, which follows
from the Law of Large Numbers.

For R(x), since Rx is O(1) and we take top-k over constant
k, those operations do not change size of the gradient and
gradient over Rx is still Θ(1), and ∇E1x,∇E2ReLU(E1x)
are Θ(1/n) since they mimic standard MLP layers. That
means E1, E2, R receive the same gradient sizes as hidden
weights and output weight, respectively. This shows that
they behave in the same way in training as their respective
weight types from TP5, which shows that our intuition is
correct and E1, E2 should be scaled as hidden weights,
while R should be scaled as output weight.

4. Experimental results and alternative views
on hyperparameter transfer in MoE

This section presents experimental results on learning rate
transfer in MoE Transformers, providing empirical valida-
tion of our µP-based parameterization for MoE models.

4.1. Parameterizations for MoE

In Section 3 we develop theory for µP for MoE where we
re-parametrize both router and experts. In the experimen-
tal validation, we also include a simplified parameterization
where each expert is treated as a dense MLP without modify-
ing the router, an approach we term simple-Parameterization
MoE, or simP-MoE. simP-MoE follows the intuitions from
µP in dense Transformers, leveraging the structural similar-
ity between each expert and a Transformer’s MLP block.
The details of both parameterizations are summarized in
Table 1.

4.2. Model width:

We conduct experiments verifying transferability of learning
rate with respect to the model width (see Figure 1). Both
µP-MoE and simP-MoE achieve learning rate transfer. In
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Figure 1: The plots present MoE performance for varying learning rates in the following set-ups: standard parametrization
(SP) with no scaling on the left. simP - treating each Expert like a FeedForward layer in the middle. µP - our theory applied
to MoE layer on the right. While in the case of SP, the optimal learning rate is different for different model sizes, both
reparameterizations achieve learning rate transfer across model widths.

both parameterizations the optimal learning rate seems to
shift a little, so that wider models have a slightly higher op-
timal value. This result is similar to the original TP5 and to
our experiments on dense models (Figure ?? in Appendix).
This may be due to instabilities of architectures with a large
depth-to-width ratio, although a proper investigation would
be an interesting future work direction. Two training in-
stances of µP MoE with an embedding dimension of 128
diverged, suggesting that µP MoE may be less stable than
simP. However, this observation is not conclusive and would
require further experiments to validate.

4.3. Scaling other MoE dimensions:

In the previous section we have shown µ-Parametrization
for MoE for varying model width. In this section, we inves-
tigate whether two other parameters of MoE architecture
necessitate respective reparameterization. The first one is
the number of experts that describes MoE model’s size.
This parameter increases the model performance without
increasing the computational cost, but sacrifices memory
footprint (Clark et al., 2022; Ludziejewski et al., 2025). The
other parameter is granularity as defined in Sec. 2. This
parameter enables control over the expert size, keeping com-
putational cost fixed. It can be used to adjust expert’s size
to the available hardware like in (Dai et al., 2024).

Figure 2(a) shows learning rate grid searches for varying
numbers of experts. The experiments confirm that having
more experts leads to lower final loss. We find that the
optimal learning rate is stable. In Figure 2(b), we show MoE
performance for different learning rates and granularities.
Contrary to the number of experts, optimal learning rate
does not directly transfer between granularities. This is most
likely the result of top-k adjusted by the granularity factor,
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Figure 2: (a) Varying the number of experts. Given our muP
parametrization the optimal learning rate is preserved across
varied number of experts. (b) Varying granularity. Learning
rate is not preserved across different granularities.

or decreasing hidden dimension of each expert, as scaling
the number of experts alone does not change the optimal
learning rate. It is important to keep in mind that both
ablations break the assumption of constant router output
dimensions, which would call for adjustment of our theory.
We leave the investigation of these results for future work.

5. Conclusions
In this work, we derive a µ-Parameterization for MoE Trans-
former models, enabling hyperparameter transfer across
model width. We empirically validate our theoretical find-
ings. Additionally, we explore two other MoE scaling strate-
gies and observe that scaling the top-k or the expert hid-
den dimension disrupts learning rate transferability, while
scaling the number of experts preserves it. Investigating
granularity scaling remains a direction for future work.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

µ-Parametrization for Mixture of Experts

References
Clark, A., De Las Casas, D., Guy, A., Mensch, A., Pa-

ganini, M., Hoffmann, J., Damoc, B., Hechtman, B.,
Cai, T., Borgeaud, S., Van Den Driessche, G. B., Ruther-
ford, E., Hennigan, T., Johnson, M. J., Cassirer, A.,
Jones, C., Buchatskaya, E., Budden, D., Sifre, L., Osin-
dero, S., Vinyals, O., Ranzato, M., Rae, J., Elsen, E.,
Kavukcuoglu, K., and Simonyan, K. Unified scaling laws
for routed language models. In Chaudhuri, K., Jegelka,
S., Song, L., Szepesvari, C., Niu, G., and Sabato, S.
(eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of
Machine Learning Research, pp. 4057–4086. PMLR, 17–
23 Jul 2022. URL https://proceedings.mlr.
press/v162/clark22a.html.

Dai, D., Deng, C., Zhao, C., Xu, R. X., Gao, H., Chen,
D., Li, J., Zeng, W., Yu, X., Wu, Y., Xie, Z., Li, Y. K.,
Huang, P., Luo, F., Ruan, C., Sui, Z., and Liang, W.
Deepseekmoe: Towards ultimate expert specialization in
mixture-of-experts language models, 2024.

Dey, N., Zhang, B. C., Noci, L., Li, M., Bordelon, B.,
Bergsma, S., Pehlevan, C., Hanin, B., and Hestness, J.
Don’t be lazy: Completep enables compute-efficient deep
transformers, 2025. URL https://arxiv.org/
abs/2505.01618.

Du, N., Huang, Y., Dai, A. M., Tong, S., Lepikhin, D., Xu,
Y., Krikun, M., Zhou, Y., Yu, A. W., Firat, O., Zoph, B.,
Fedus, L., Bosma, M., Zhou, Z., Wang, T., Wang, Y. E.,
Webster, K., Pellat, M., Robinson, K., Meier-Hellstern,
K., Duke, T., Dixon, L., Zhang, K., Le, Q. V., Wu, Y.,
Chen, Z., and Cui, C. Glam: Efficient scaling of language
models with mixture-of-experts, 2022.

Everett, K., Xiao, L., Wortsman, M., Alemi, A. A., Novak,
R., Liu, P. J., Gur, I., Sohl-Dickstein, J., Kaelbling, L. P.,
Lee, J., and Pennington, J. Scaling exponents across
parameterizations and optimizers, 2024. URL https:
//arxiv.org/abs/2407.05872.

Fedus, W., Zoph, B., and Shazeer, N. Switch transformers:
Scaling to trillion parameter models with simple and ef-
ficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022.

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.,
Blum, M., and Hutter, F. Efficient and robust automated
machine learning. In Advances in Neural Information
Processing Systems (NeurIPS), pp. 2962–2970, 2015.

Jacobs, R. A., Jordan, M. I., Nowlan, S. J., and Hinton, G. E.
Adaptive mixtures of local experts. Neural Computation,
3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

Langley, P. Crafting papers on machine learning. In
Langley, P. (ed.), Proceedings of the 17th International
Conference on Machine Learning (ICML 2000), pp.
1207–1216, Stanford, CA, 2000. Morgan Kaufmann.

Lepikhin, D., Lee, H., Xu, Y., Chen, D., Firat, O., Huang,
Y., Krikun, M., Shazeer, N., Sepassi, R., Tucker, P., and
Zhou, C. Gshard: Scaling giant models with conditional
computation and automatic sharding. In Proceedings of
the 37th International Conference on Machine Learning
(ICML), 2020. URL https://arxiv.org/abs/
2006.16668.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization, 2019.

Ludziejewski, J., Krajewski, J., Adamczewski, K., Pióro,
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Figure 3: This figure shows our experiments on learning rate transfer in dense models. Standard Parameterization (SP) on
the lft has different optimal learning rate for each model width, while µP has stable optimum.

A. MuP for Dense Transformer
In this section we verify the findings from (Yang et al., 2022) by implementing the µP for dense models. As opposed to
standard parametrization, in the case of muP reparametrization, the optimal learning rates transfer between different model
widths.

B. Expert–gradient covariance lemma
We now formalize the intuition that in a µP-parametrized Switch-MoE block, each active expert’s forward activation
correlates with its backward gradient at order Θ(1/n), and that the router’s gradient norm remains Θ(1) both immediately
after initialization and again after one µ-SGD/Adam update.

Lemma B.1 (Expert–gradient covariance). Let an L-block Switch-MoE be µP-parametrized with width n → ∞, a fixed
number of experts nexperts = O(1), and fixed top-k = O(1). For each block ℓ, define

y(ℓ) =

nexperts∑
e=1

R(ℓ)
e

(
x(ℓ)

)
E(ℓ)

e

(
x(ℓ)

)
,

δ(ℓ) = ∇y(ℓ)L ∈ Rn.

(3)

Assume the inductive hypothesis

1

n

n∑
j=1

(
δ
(ℓ)
j

)2
= Θ(n−2) =⇒ δ

(ℓ)
j = Θ(n−1) for typical j. (Hℓ)

Then for every block ℓ and any active expert e, at both

t = 0 : immediately after initialization,

t = 1 : after one µ-SGD/Adam step,

7
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we have
Cov

(
E

(ℓ)
e,j , δ

(ℓ)
j

)
= Θ(n−1),∥∥∇r(ℓ)L

∥∥
2
= Θ(1).

(4)

Proof. Notation. For block ℓ, set
ee = E

(2)
ℓ,e ReLU

(
E

(1)
ℓ,e x

(ℓ)
)
∈ Rn,

Re = R(ℓ)
e

(
x(ℓ)

)
∈ R,

δ = δ(ℓ) ∈ Rn,

J (ℓ) =
∂ y(ℓ)

∂ x(ℓ)
∈ Rn×n,

(5)

so that δ(ℓ−1) = (J (ℓ))⊤ δ and J
(ℓ)
ij ∼ N (0, 1/n) under µP.

Step 1: Stein’s lemma (holds at t = 0 and t = 1). Fix expert e, coordinate j, and define

Z = ee,j ∼ N (0, σ2),

c =
∑
e′ ̸=e

Re′ ee′,j ,

g(z) = [L′(y(ℓ))]j ,

y
(ℓ)
j = Re z + c.

(6)

Then g′(z) = Re [L
′′(y(ℓ))]j and by (Hℓ), [L′′(y(ℓ))]j = Θ(n−1). Thus

Cov(Z, g(Z)) = σ2 E
[
g′(Z)

]
= σ2 Re E

[
L′′(y(ℓ))

]
j

= Θ(1) ·Θ(1) ·Θ(n−1) = Θ(n−1).

(7)

Remark. Because by induction the block-(ℓ+ 1) Hessian entries already scale like Θ(n−1), and passing any such matrix
back through a µP-linear layer (whose weights are N (0, 1/n)) multiplies each term by another 1/n but sums over n of them,
the net effect is still Θ(n−1). In other words, a 1/n factor per weight-matrix multiplication exactly preserves the Θ(n−1)
scale of

[
L′′(y(ℓ))

]
j
.

Step 2: Router-gradient norm (holds at t = 0 and t = 1). Summing the covariances over j,

E
[
e⊤e δ

]
=

n∑
j=1

Cov(ee,j , δj) = n ·Θ(n−1) = Θ(1). (8)

Since Var(e⊤e δ) = O(n−1), Chebyshev’s inequality gives e⊤e δ = Θ(1) with high probability, i.e. the second line of (4).

Step 3: One-step update. Under µ-SGD/Adam with LR η/n on experts and η on router, the factors in (7) and (8) change
by at most a (1 +O(n−1)) factor, so both lines of (4) hold at t = 1.

Step 4: Depth induction. Using δ(ℓ−1) = (J (ℓ))⊤δ(ℓ) and J
(ℓ)
ij ∼ N (0, 1/n), one shows 1

n

∑
j(δ

(ℓ−1)
j )2 = Θ(n−2),

establishing (Hℓ−1). The base case ℓ = L is given by Tensor-Programs V; induction completes the proof.

C. Experimental setup
All models in this study are decoder-only Transformers trained on the C4 dataset (Raffel et al., 2020). We use the GPT-2
tokenizer (Radford et al., 2018) and optimize with AdamW (Loshchilov & Hutter, 2019). Training follows a cosine decay
schedule with linear warmup for the first 1% of steps. Weights are initialized with a normal distribution, as the theory of
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Tensor Programs assumes (Yang et al., 2022). Mixed precision training is applied, with Attention component computed at
high precision. The models employ MLP with ReLU activations. MoE models are Switch Transformers (Fedus et al., 2022).
As a standard MoE setup we used 8 Experts, 1 of which is activated per token. All models have Attention head dimension of
64. Two auxiliary losses are used for the Router: a z-loss weighted at 0.001 (Zoph et al., 2022) and load balancing weighted
at 0.01 (Fedus et al., 2022). All models for 3 have 24 layers and are trained for 16B tokens. Experiments for MoE are
smaller for technical reasons. All Models in 1 are trained for 1B tokens. They have 8 transformer layers. Models in 2 have
12 blocks, trained for 2.5B tokens.
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