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ABSTRACT

Molecular property prediction is crucial for drug discovery and materials sci-
ence, yet existing approaches suffer from limited interpretability, poor cross-task
generalization, and lack of chemical reasoning capabilities. Traditional machine
learning models struggle with task transferability, while specialized molecular
language models provide little insight into their decision-making processes. To
address these limitations, we propose MPPReasoner, a multimodal large lan-
guage model that incorporates chemical reasoning for molecular property pre-
diction. Our approach, built upon Qwen2.5-VL-7B-Instruct, integrates molecu-
lar images with SMILES strings to enable comprehensive molecular understand-
ing. We develop a two-stage training strategy: supervised fine-tuning (SFT) using
16,000 high-quality reasoning trajectories generated through expert knowledge
and multiple teacher models, followed by Reinforcement Learning from Principle-
Guided Rewards (RLPGR). RLPGR employs verifiable, rule-based rewards that
systematically evaluate chemical principle application, molecular structure anal-
ysis, and logical consistency through computational verification. Extensive ex-
periments across 8 datasets demonstrate significant performance improvements,
with MPPReasoner outperforming the best baselines by 7.91% and 4.53% on
in-distribution and out-of-distribution tasks respectively. MPPReasoner exhibits
exceptional cross-task generalization and generates chemically sound reasoning
paths that provide valuable insights into molecular property analysis, substantially
enhancing both interpretability and practical utility for chemists. Code is available
at https://anonymous.4open.science/r/MPPReasoner-12687.

1 INTRODUCTION

Molecular property prediction serves as a cornerstone in modern drug discovery and materials sci-
ence, enabling researchers to computationally estimate critical molecular characteristics such as
bioavailability, toxicity, and therapeutic efficacy before costly experimental validation (Vamathevan
et al., 2019; Schlander et al., 2021; Dara et al., 2022; Sadybekov & Katritch, 2023). Traditional
experimental approaches for determining molecular properties are prohibitively expensive and time-
consuming, often requiring weeks to months and costing thousands of dollars per compound (Paul
et al., 2010; DiMasi et al., 2016; Wieder et al., 2020). For instance, a single ADMET (Absorption,
Distribution, Metabolism, Excretion, Toxicity) screening can cost upwards of $10,000 per molecule,
making it impractical to evaluate the millions of compounds in chemical space (Dong et al., 2018;
Ferreira & Andricopulo, 2019). This bottleneck has driven the urgent need for accurate and efficient
computational models that can predict molecular properties at scale (Gilmer et al., 2017b; Yang
et al., 2019; Shen & Nicolaou, 2019).

Despite decades of research, current molecular property prediction approaches face fundamental
limitations that hinder their practical adoption. Early computational methods relied on hand-crafted
molecular descriptors and traditional machine learning algorithms, which struggle with task trans-
ferability and require extensive feature engineering for each new application (Karelson et al., 1996;
Rogers & Hahn, 2010; Wu et al., 2018). More recent advances have introduced specialized molec-
ular models, including graph neural networks (GNNs) (Xie & Grossman, 2018; Zhou et al., 2023)
and molecular language models (Chithrananda et al., 2020; Pei et al., 2024; Liu et al., 2024a), which
have achieved impressive performance by learning molecular representations directly from graph
structures or SMILES strings. However, these approaches suffer from a critical limitation: they lack
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interpretability and fail to provide chemically meaningful explanations for their predictions. When
a model predicts that a molecule is toxic, chemists cannot understand which structural features or
chemical principles led to this conclusion, limiting the model’s utility in real-world drug develop-
ment pipelines where understanding the rationale behind predictions is crucial for decision-making.

The fundamental limitation shared by all existing molecular property prediction methods is the ab-
sence of effective chemical reasoning—the ability to analyze molecular structures, identify relevant
functional groups, apply chemical principles, and provide coherent explanations for property predic-
tions. When experienced chemists evaluate molecular properties, they follow a structured reasoning
process: examine the molecular structure to identify key functional groups (e.g., hydroxyl groups
affecting solubility (Silverman & Holladay, 2014)), consider relevant chemical principles (e.g., Lip-
inski’s Rule for drug-likeness (Lipinski, 2016)), analyze structure-activity relationships (McKinney
et al., 2000), and synthesize these insights to make informed predictions (M. Bran et al., 2024a;
Das & Rad, 2020). This reasoning capability is crucial not only for accuracy but also for trust and
adoption in practical applications, as chemists need to understand the rationale behind predictions
to make informed decisions about lead compound optimization and safety assessments.

To address these fundamental limitations, we propose MPPReasoner, a novel multimodal framework
that successfully introduces chemical reasoning capabilities into molecular property prediction. MP-
PReasoner represents the first systematic attempt to cultivate domain-specific reasoning abilities for
molecular property prediction, enabling models to analyze molecular structures, apply established
chemical principles, and provide human-interpretable explanations during the prediction process.
Built upon Qwen2.5-VL-7B-Instruct (Bai et al., 2025), MPPReasoner integrates multimodal molec-
ular representations by combining 2D molecular images with SMILES strings, enabling compre-
hensive structural understanding from both visual and textual modalities. Our training method-
ology employs a two-stage strategy to progressively develop chemical reasoning capabilities: 1)
Supervised Fine-Tuning (SFT) with carefully curated reasoning trajectories generated through ex-
pert knowledge and teacher models, establishing foundational reasoning patterns; 2) Reinforcement
Learning from Principle-Guided Rewards (RLPGR), a novel reward framework that leverages veri-
fiable, rule-based feedback to enhance chemical reasoning quality. Unlike traditional reinforcement
learning (RL) approaches, RLPGR decomposes chemical reasoning into hierarchical reward com-
ponents that evaluate logical consistency, chemical principle application accuracy, and molecular
structure analysis precision through computational verification.

Extensive experiments on 8 diverse molecular property prediction datasets demonstrate the effec-
tiveness of our approach, achieving substantial performance improvements with average ROC-AUC
scores (Hanley & McNeil, 1982; Fawcett, 2006) of 0.8068 on in-distribution (ID) tasks and 0.7801
on out-of-distribution (OOD) tasks, outperforming the best existing baselines by 7.91 and 4.53 per-
centage points respectively. Notably, our model exhibits exceptional OOD generalization capabil-
ities, with particularly significant improvements on OOD datasets where many specialist models
lack evaluation capability. Through expert evaluation and detailed case studies, we demonstrate that
our approach produces chemically sound explanations that provide valuable insights into molecular
property relationships.

The main contributions of this work are as follows:

• We successfully introduce chemical reasoning capabilities into molecular property prediction
tasks through MPPReasoner, representing a systematic approach to enable structured analysis of
molecular features, application of chemical principles, and generation of mechanistic explanations
during the prediction process.

• We propose a comprehensive training strategy that combines high-quality reasoning trajectories
SFT and RLPGR, a novel hierarchical reward framework targeting chemical reasoning quality
through verifiable, rule-based feedback on logical consistency, comparative analysis, chemical
principle usage and molecular structure analysis .

• We construct a carefully curated dataset of chemical reasoning trajectories generated through ex-
pert knowledge and few-shot prompting with multiple teacher models, providing a valuable re-
source for training reasoning-capable molecular property prediction models.

• We demonstrate significant performance improvements across 8 datasets with superior OOD gen-
eralization, while providing enhanced interpretability through expert-validated reasoning paths
that offer insights for chemists in real-world applications.
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2 RELATED WORK

This section reviews prior research on machine learning for molecular representations, multimodal
language models in chemistry, and reasoning capabilities in LLMs, which are foundational to our
proposed framework for training reasoning LLMs tailored to molecular property prediction.

Machine Learning for Molecular Representation. GNNs have evolved as a dominant paradigm
for molecular graph representation, progressing from early convolutional (Kearnes et al., 2016;
Schütt et al., 2018) and message-passing (Gilmer et al., 2017a) frameworks to sophisticated 3D-
aware models (Gilmer et al., 2017a; Li et al., 2022; Liu et al., 2023c; Zhou et al., 2023), enabling
robust applications in property prediction, virtual screening, and drug discovery (Alves et al., 2022).
In parallel, specialized molecular language models have reframed molecular structures as textual
sequences such as SMILES strings(Weininger, 1988), with models like MolecularGPT (Liu et al.,
2024a) and BioT5-Plus (Pei et al., 2024) supporting few-shot adaptation and multi-task learning for
diverse chemical and biological tasks (Li et al., 2024; Liu et al., 2024b; 2023b).

Multimodal Language Models for Chemistry. The emerging trend of multimodal LLMs in
chemistry integrates diverse data types—such as SMILES strings and molecular graphs to address
unimodal limitations, as seen in foundational molecular-text models (Lee et al., 2025; Li et al.,
2025b; Liu et al., 2023b), instruction-tuned assistants (Cao et al., 2025), and tool-augmented sys-
tems (M. Bran et al., 2024b), enhancing robustness in property prediction (Edwards et al., 2022),
molecular design (Lee et al., 2025), and synthesis planning (Shi et al., 2023; Liu et al., 2024b).
However, these models still lack the capability to provide chemical reasoning for their predictions.

Reasoning in Large Language Models. Reasoning capabilities have demonstrated remarkable
efficacy in commercial LLMs, particularly through chain-of-thought processes as exemplified in
OpenAI’s o1 series and other advanced models (Wei et al., 2022; Jaech et al., 2024; Team et al.,
2023; Priyanshu et al., 2024). Training these abilities leverages RL techniques, from Proximal Pol-
icy Optimization (Schulman et al., 2017) in RL from Human Feedback (RLHF) (Ouyang et al.,
2022) for preference alignment, to efficient extensions like Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) with outcome-based rewards and Reinforcement Learning with Veri-
fiable Rewards (RLVR) for one-shot verifiable steps, improving generalization on complex tasks
(Wang et al., 2025b). These RL advancements motivate our adaptation for chemical-specific reason-
ing in the field of molecular property prediction.

3 METHODOLOGY

MPPReasoner cultivates chemical reasoning capabilities in multimodal large language models
through a structured approach illustrated in Figure 1. We first construct high-quality reasoning tra-
jectories that demonstrate expert-level chemical analysis patterns. These trajectories are then used
in a two-stage training framework: SFT establishes foundational reasoning abilities, followed by RL
guided by our novel Principle-Guided Reward mechanism.

3.1 MULTIMODAL MOLECULAR PROMPT DESIGN

To provide comprehensive molecular understanding, we employ a multimodal input representation
that integrates 2D molecular images with their corresponding SMILES strings. This dual represen-
tation enables the model to capture both the sequential chemical information encoded in SMILES
and the spatial structural relationships depicted in molecular visualizations.

As shown in Appendix A, our prompt engineering strategy comprises four essential components:
[Role Definition] instructs the model to act as an expert chemist specializing in molecular property
prediction; [Task Description] provides task-specific instructions outlining the prediction objective
and requirement for step-by-step reasoning; [Few-Shot Examples] are dynamically retrieved by
identifying the top-5 most similar molecules from the training set using Tanimoto similarity (Ba-
jusz et al., 2015) based on Morgan fingerprints (Cereto-Massagué et al., 2015); and [Multimodal
Molecule] includes both the rendered 2D molecular structure image and the corresponding SMILES
string, providing complementary perspectives on molecular characteristics.

3
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Prompt Design Stage1: Cold-start SFT

Stage2: Principle-guided RL
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Query

Think

Answer

Figure 1: Overview of MPPReasoner framework.

3.2 TWO-STAGE TRAINING FRAMEWORK FOR CHEMICAL REASONING

3.2.1 STAGE 1: REASONING TRAJECTORY CONSTRUCTION FOR COLD START SFT

The first stage establishes foundational chemical reasoning capabilities through high-quality data
construction and supervised learning. We begin by constructing a comprehensive dataset of chemical
reasoning trajectories through two complementary approaches:

Multi-Source Reasoning Data Construction. We leverage powerful large general-domain rea-
soning models as teacher models to generate high-quality chemical reasoning patterns through two
complementary approaches:

• ChemCoT-Based One-Shot Generation: We utilize exemplars from the ChemCoT dataset (Li
et al., 2025a) as one-shot demonstrations, instructing teacher models to emulate the step-by-step
analytical style demonstrated in chemical chain-of-thought examples.

• Expert-Guided Task-Specific Generation: Expert chemists draft comprehensive reasoning guides
covering fundamental principles for various molecular properties. These guides are then refined
by GPT-4o (OpenAI et al., 2024) to extract task-specific knowledge relevant to each dataset (e.g.,
BACE (Wu et al., 2018)). The extracted principles serve as domain-specific prompts in generating
reasoning trajectories that incorporate relevant chemical knowledge and theoretical foundations.

Quality Control and Data Curation. We employ rejection sampling to ensure trajectory quality,
accepting only those instances where teacher models produce correct predictions (True/False). This
process yields 16,000 high-quality reasoning trajectories for SFT.

Using these curated reasoning trajectories, we perform SFT on Qwen2.5-VL-7B-Instruct with
standard next-token prediction loss. The reasoning generation process utilizes three state-of-
the-art language models (GPT4o (OpenAI et al., 2024), DeepSeek-v3.1 (Guo et al., 2025) and
Qwen2.5VL (Bai et al., 2025)) working in parallel to ensure diversity in reasoning patterns while
maintaining high quality through model complementarity. When multiple teacher models generate
correct reasoning for the same instance, we randomly select one trajectory to maintain dataset diver-
sity. This stage focuses on instruction alignment, teaching the model to follow the required format
of providing step-by-step reasoning before making final predictions, while simultaneously instilling
domain-specific knowledge and analytical patterns demonstrated in the expert-curated trajectories.

4
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    =1 correct format
    =0 otherwise

    =1 correct answer
    =0 otherwise

Answer Reward Format Reward

    =1 comparative analysis
    =0 otherwise

     =1 logical consistency
     =0 otherwise

Consistency Reward Comparative Reward

     =1 structure analysis
     =0 otherwise

    =1 principle application
    =0 otherwise

Principle Reward Structure Reward

RCoT

Input

Answer

Verified by         

Figure 2: Illustration of RLPGR in MPPReasoner.

3.2.2 STAGE 2: ADVANCED REASONING REFINEMENT WITH RLPGR

While SFT establishes basic reasoning patterns, the second stage employs RLPGR to elevate the
model’s capabilities from imitation to exploration and refinement. Unlike traditional RLHF (Ouyang
et al., 2022) approaches that rely on human preference data, RLPGR leverages verifiable, rule-based
rewards (Wang et al., 2025b) derived from chemical principles and computational tools (Landrum,
2013), ensuring both scalability and domain accuracy.

Our RLPGR framework decomposes the complex cognitive process of chemical reasoning into mea-
surable reward components across three hierarchical layers. As illustrated in Figure 2, given a
molecular description x, reasoning trace z, and prediction y, the total reward is computed as:

Rtotal(x, z, y) = λ1 (rans + rfmt)︸ ︷︷ ︸
Rfoundation

+λ2 (rcons + rcomp)︸ ︷︷ ︸
Rreasoning

+λ3 (rprin + rstruct)︸ ︷︷ ︸
Rchemistry

(1)

where λi are hyperparameters controlling the relative importance of each reward component.

Foundation Layer: This layer ensures basic task requirements through two components:

• Answer reward rans provides binary feedback based on prediction correctness.
• Format compliance reward rfmt verifies that outputs follow the required structure with reasoning

enclosed in <think> tags and predictions in <answer> tags.

Reasoning Layer: This layer evaluates general reasoning quality through two key aspects:

• Logical consistency reward rcons measures alignment between the reasoning conclusion and final
prediction by analyzing sentiment consistency using predefined keyword sets for affirmative and
negative conclusions.

• Comparative analysis reward rcomp encourages analogical thinking by detecting whether the rea-
soning process analyzes the few-shot examples provided based on molecular similarity, promoting
effective utilization of the retrieved similar molecules and cross-molecular reasoning capabilities.

Chemistry Layer: This layer targets domain-specific expertise through computational verification
of chemical knowledge and structural analysis accuracy. We leverage RDKit (Landrum, 2013) for
molecular property computation and substructure detection to provide objective feedback on chem-
ical reasoning quality.

• Chemical principle application reward rprin evaluates whether mentioned chemical concepts align
with computationally derived molecular properties. For instance, when the reasoning discusses
hydrophobicity, we verify this against the computed LogP value. This reward ensures that chemi-
cal principles are applied appropriately rather than superficially mentioned.

5
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• Molecular structure analysis reward rstruct measures the coverage of structural feature identifica-
tion as rstruct = |Sactual ∩ Spred|/(|Sactual|+ ϵ), where Sactual represents the set of distinct structural
feature types identified via RDKit (functional groups, ring systems, stereochemical features), Spred

denotes the set of structural feature types mentioned in the reasoning trace z, and ϵ = 10−5 ensures
numerical stability.

Training Process. We employ GRPO (Shao et al., 2024) for policy optimization, which maximizes
the expected reward across reasoning trajectories:

LRLPGR = E(x,z,y)∼πθ
[Rtotal(x, z, y)] (2)

where πθ represents the policy parameterized by θ. Dynamic sampling during training focuses
computational resources on tractable reasoning examples, ensuring efficient convergence toward
models capable of generating chemically accurate and interpretable reasoning paths. This RLPGR
approach transforms the model from pattern-matching to genuine chemical reasoning through sys-
tematic principle-guided RL.

4 EXPERIMENTS

To comprehensively evaluate our approach, we investigate the following Research Questions (RQs):

RQ1: Does MPPReasoner achieve superior performance compared to existing molecular property
prediction methods on both ID and OOD datasets?

RQ2: What are the individual contributions of the two-stage training strategy and the RLPGR re-
ward components to the overall performance and reasoning quality?

RQ3: Can our model generate high-quality reasoning paths that provide chemically meaningful
insights comparable to expert-level analysis?

4.1 EXPERIMENTAL SETUP

Datasets. We evaluate MPPReasoner on 8 diverse molecular property prediction datasets to assess
both ID and OOD performance. The datasets are categorized as follows:

• ID Datasets: We utilize four benchmark datasets from MoleculeNet (Wu et al., 2018), which is
widely used to predict whether the given molecule has specific properties: BACE (1,513), BBBP
(2,039), SIDER (1,427), HIV (41,127).

• OOD Datasets: We employ four datasets from the Therapeutic Data Commons (TDC) (Huang
et al., 2021; 2022) to evaluate cross-task generalization capabilities: Bioavailability (128),
CYP2C9_V (2,418), CYP2D6_V (2,626), AMES (1,456).

The ID/OOD categorization is based on whether the training set includes samples from the corre-
sponding dataset. For training, we randomly sample 4,000 instances from the ID datasets to ensure
balanced representation across different molecular properties. Test sets follow standard benchmark-
ing protocols established in prior literature to maintain fair comparison with baseline methods.

Baseline. We compare MPPReasoner against two categories of approaches:

• Task-specific Specialist Models: These models are designed for molecular property prediction:
Graphormer-p (Ying et al., 2021), Uni-Mol (Zhou et al., 2023), GIMLET (Zhao et al., 2023),
MolecularGPT (Liu et al., 2024a), Mol-LLM (Lee et al., 2025), InstructMol-GS (Cao et al., 2025),
BioT5-Plus (Pei et al., 2024), MolXPT (Liu et al., 2023a).

• LLM-based Generalist Models: These include reasoning models: o3-mini (OpenAI, 2025),
DeepSeek-V3.1 (Guo et al., 2025), large-scale models: GPT-4o (OpenAI et al., 2024), Qwen2.5-
VL-72B-Instruct (Bai et al., 2025), and baseline models: Qwen2.5-VL-7B-Instruct (Bai et al.,
2025) applied to molecular property prediction.

Implementation details and hyper-parameters settings are provided in Appendix C.

6
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Table 1: Performance comparison of task-specific specialist models and LLM-based generalist mod-
els on ID and OOD benchmarks. Best performance is in bold.

Model
ID Performance OOD Performance Average

BACE BBBP SIDER HIV Bioavail. C2C9_V C2D6_V AMES ID OOD

# Task-specific specialist models
Graphormer-p 0.8575 0.7163 – 0.7788 – – – – 0.7842 –
Uni-Mol 0.8570 0.7290 0.6590 0.8080 – – – – 0.7633 –
GIMLET 0.6957 0.5939 – 0.6624 – – – – 0.6507 –
MolecularGPT 0.7331 0.6822 – 0.6382 – – – – 0.6845 –
Mol-LLM 0.8080 0.8430 0.7610 0.7650 – – – – 0.7943 –
InstructMol-GS 0.8210 0.7240 – 0.6890 – – – – 0.7447 –
BioT5-Plus 0.8620 0.7650 0.5201 0.7630 0.5243 0.4971 0.5321 0.4466 0.7275 0.5000
MolXPT 0.8840 0.8000 0.7170 0.7810 0.4749 0.5904 0.5291 0.6073 0.7955 0.5504

# LLM-based generalist models
o3-mini 0.7891 0.5972 0.5626 0.6039 0.6246 0.7729 0.7643 0.8361 0.6382 0.7495
DeepSeek-V3.1-Think 0.7017 0.6048 0.5637 0.5938 0.6572 0.7633 0.7484 0.8218 0.6160 0.7477
GPT-4o 0.6070 0.6731 0.6347 0.5698 0.5826 0.5508 0.5902 0.6141 0.6212 0.5844
Qwen2.5-VL-72B-Instruct 0.7764 0.5791 0.5880 0.7325 0.6388 0.7624 0.7222 0.8156 0.6690 0.7348
Qwen2.5-VL-7B-Instruct 0.6910 0.6175 0.5823 0.5125 0.5232 0.7333 0.6999 0.7667 0.6008 0.6808
MPPReasoner (Ours) 0.9090 0.7436 0.8280 0.7932 0.6728 0.8480 0.7950 0.8750 0.8190 0.7977

4.2 MAIN RESULTS (RQ1)

Table 1 presents the comprehensive performance comparison of MPPReasoner against state-of-the-
art baselines across all 8 datasets. On ID datasets, MPPReasoner demonstrates competitive perfor-
mance with specialized models while maintaining the advantage of using a smaller 7B parameter
architecture. MPPReasoner achieves the best performance on challenging tasks like BACE and
SIDER, indicating successful capture of complex molecular property relationships such as enzyme
inhibition and side effect prediction. While some specialized models like Mol-LLM excel on specific
tasks such as BBBP, these models achieve high ID performance at the expense of cross-task adapt-
ability, completely lacking OOD evaluation capability. This specialization-generalization trade-off
limits their practical utility in real-world scenarios requiring diverse molecular property assessment.

The most significant advantage emerges in OOD scenarios, where MPPReasoner substantially out-
performs all baseline categories by 6.43% over the best reasoning model. This consistent superiority
across diverse molecular property types highlights how domain-specific chemical reasoning outper-
forms both general reasoning capabilities and raw parameter scaling approaches. The performance
gap becomes even more pronounced when considering that MPPReasoner operates with signifi-
cantly fewer parameters than competing large-scale models.

The results reveal fundamental differences between model categories and their limitations. Task-
specific specialist models excel in familiar scenarios but completely lack cross-task generalization
capabilities, while generalist models show consistent cross-task performance but suffer from insuf-
ficient domain expertise. MPPReasoner uniquely bridges this gap by embedding domain-specific
reasoning rather than relying on general reasoning patterns or parameter scaling alone. The trans-
formative impact becomes evident when comparing MPPReasoner to its base model, showing dra-
matic improvements of 36.36% on ID tasks and 17.17% on OOD tasks. This demonstrates that
structured chemical reasoning fundamentally enhances molecular understanding beyond conven-
tional approaches, enabling both specialist-level accuracy and generalist-level adaptability through
systematic integration of chemical principles.

4.3 ABLATION STUDIES (RQ2)

To understand the individual contributions of our two-stage training strategy and the hierarchical
reward components in RLPGR, we conduct comprehensive ablation studies. Table 2 presents the
systematic analysis of each component’s impact on both ID and OOD performance. The results
demonstrate that both SFT and RL stages contribute significantly to overall performance, with dis-
tinct advantages for different aspects. SFT alone provides substantial improvements over the base
model, achieving 22.01% and 10.85% gains on ID and OOD tasks respectively, indicating that SFT
with high-quality reasoning trajectories successfully instills foundational chemical reasoning capa-

7
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Table 2: Ablation study on training stages and RLPGR reward.

Setting
ID Performance OOD Performance Average

BACE BBBP SIDER HIV Bioavail. C2C9_V C2D6_V AMES ID OOD

Base (Qwen2.5-VL-7b-Instruct) 0.6910 0.6175 0.5823 0.5125 0.5232 0.7333 0.6999 0.7667 0.6008 0.6808

SFT Only 0.8558 0.6824 0.6752 0.7186 0.6625 0.7799 0.7348 0.8415 0.7330 0.7547
RL Only (RLPGR) 0.8142 0.5733 0.7428 0.5552 0.6632 0.7491 0.6732 0.7300 0.6714 0.7039

SFT + Rfoundation 0.8836 0.6794 0.8089 0.7556 0.6358 0.8364 0.7862 0.8536 0.7819 0.7780
SFT + Rfoundation + Rreasoning 0.8877 0.7104 0.7981 0.7560 0.6771 0.8140 0.7795 0.8388 0.7881 0.7774
MPPReasoner (Ours) 0.9090 0.7459 0.8280 0.7932 0.6728 0.8480 0.7950 0.8750 0.8190 0.7977

(a) Human-AI evaluation consistency

0 1 2 3 4 5 6 7 8
Average Score

MPPReasoner (Ours)

DeepSeek-V3.1-Think

Qwen2.5-VL-72B

o3-mini

GPT-4o

Qwen2.5-VL-7B (Base)

7.730

6.723

6.458

6.235

6.089

4.285 3.445 (+80.4%)

(b) Model reasoning quality scores
Figure 3: Reasoning quality evaluation results. (a) Strong consistency between automated and hu-
man assessments with ρ = 0.82. (b) MPPReasoner achieves the highest reasoning quality score.

bilities. RL alone also shows meaningful improvements of 11.74% and 3.39%, demonstrating that
principle-guided rewards can enhance reasoning quality independently. However, the combination
of SFT + RL yields the strongest performance with 36.36% and 17.17% improvements, revealing
important synergistic effects between two training stages that exceed their individual contributions.

The progressive addition of RLPGR reward components shows clear incremental benefits, validating
our hierarchical design. Foundation rewards provide substantial improvements of 6.67% on ID and
3.09% on OOD over SFT alone, establishing enhanced task completion capabilities beyond basic
instruction following. The Reasoning layer contributes additional 0.84% ID gains while maintain-
ing similar OOD performance, indicating that logical consistency and comparative analysis refine
reasoning quality without compromising generalization. Most importantly, the Chemistry layer de-
livers the largest incremental improvements of 3.92% on ID and 2.61% on OOD, confirming that
domain-specific chemical principle verification is crucial for molecular property prediction tasks.

4.4 REASONING QUALITY EVALUATION (RQ3)

To assess whether MPPReasoner generates high-quality reasoning paths that provide chemically
meaningful insights, we conduct systematic evaluation using automated assessment validated against
human expert judgment. We employ a LLM-as-a-Judge (Zheng et al., 2023) framework using GPT-
4o to evaluate three dimensions (Fan et al., 2025): logical soundness, accuracy & insight, and
conciseness, each scored on a 0-10 scale with detailed rubrics. To establish reliability, we vali-
date GPT-4o scores against human expert assessments on 60 reasoning samples from three baseline
models. Figure 3(a) shows remarkable consistency between automated and human evaluations, with
similar distributions and central tendencies with spearman correlation coefficient reaches ρ = 0.82.

Figure 3(b) presents the comparative reasoning quality assessment across different model categories,
showing average scores across the three evaluation dimensions. MPPReasoner achieves the highest
score of 7.730, substantially outperforming advanced reasoning models including DeepSeek-V3.1-
Think at 6.723 and o3-mini at 6.235, as well as large-scale models like Qwen2.5-VL-72B at 6.458
and GPT-4o at 6.089. Despite using a smaller 7B architecture, MPPReasoner demonstrates 15.0%
improvement over the best baseline, highlighting how domain-specific chemical reasoning surpasses
both general reasoning capabilities and parameter scaling approaches. The superior reasoning qual-
ity translates to practical benefits: MPPReasoner consistently identifies relevant functional groups,
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Figure 4: Case study comparison between GPT-4o and MPPReasoner for CY-P450-2C9 substrate
prediction. The figure demonstrates how RLPGR training enables systematic chemical reasoning
with accurate predictions, while GPT4o suffer from several errors.

applies appropriate chemical principles, and provides mechanistic explanations that enable chemists
to understand both what properties a molecule has and why these properties emerge from specific
structural features. Detailed dimensional scores are provided in Appendix B.

5 CASE STUDY

To illustrate the practical benefits of our chemical reasoning approach, Figure 4 presents a rep-
resentative case study comparing MPPReasoner with GPT-4o on CY-P450-2C9 substrate predic-
tion. The comparison reveals fundamental differences in analytical quality: GPT-4o exhibits crit-
ical reasoning flaws including structural analysis errors (incorrectly assuming amide groups en-
hance binding affinity), overgeneralization (broadly claiming nitrogen-containing compounds show
P450 compatibility), and incorrect reasoning patterns (unsupported statistical generalizations), ulti-
mately leading to a wrong prediction. In contrast, MPPReasoner demonstrates systematic chemical
reasoning through accurate molecular structure analysis (precise functional group identification),
correct chemical principle application (referencing CYP2C9-specific LogP requirements and cal-
culating steric hindrance), meaningful comparative analysis (connecting structural similarities to
substrate labels), and logical consistency (integrating multiple evidence sources). This exemplifies
how RLPGR’s hierarchical rewards successfully cultivate domain-specific reasoning capabilities,
enabling chemists to trust the model’s mechanistic insights for practical applications.

6 CONCLUSION

This work introduces MPPReasoner, a novel multimodal large language model that systematically
incorporates chemical reasoning for molecular property prediction. Through a novel two-stage train-
ing strategy combining supervised fine-tuning with RLPGR, our approach successfully bridges the
gap between specialist accuracy and generalist adaptability. Extensive experiments across 8 datasets
demonstrate substantial performance improvements of 20.60% and 9.93% on ID and OOD tasks
respectively, with exceptional cross-task generalization capabilities where many specialist models
lack evaluation capability. Beyond performance gains, MPPReasoner generates chemically sound
reasoning paths that enable chemists to understand not just prediction outcomes but the underly-
ing chemical rationale. This represents a crucial advancement toward interpretable AI systems
that provide mechanistic insights grounded in established chemical principles, supporting informed
decision-making in drug discovery and offering a potential blueprint for other scientific domains.
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ETHICS STATEMENT

In developing MPPReasoner, we prioritized ethical considerations to ensure responsible use of our
models and methodologies. Our research does not involve human subjects, and all molecular data
are obtained from publicly available, copyright-compliant datasets (MoleculeNet and TDC) with ap-
propriate research licensing. We employed rigorous quality filtering processes during data curation
to minimize biased or misleading chemical information. We acknowledge that biases inherent in
molecular property datasets, including overrepresentation of certain chemical scaffolds, may propa-
gate into model outputs. While MPPReasoner is designed for beneficial applications in drug discov-
ery and materials science, we encourage responsible use within established scientific and regulatory
frameworks. Our work is conducted with commitment to research integrity, ensuring contributions
remain beneficial to the scientific community while addressing ethical responsibilities of developing
AI technologies for chemical applications.

REPRODUCIBILITY STATEMENT

We have made comprehensive efforts to ensure the reproducibility of MPPReasoner and our ex-
perimental findings. Our two-stage training methodology is detailed in Section 3, including the
SFT process and the novel RLPGR framework with specific reward components. Complete im-
plementation details, hyperparameter configurations, and training procedures are provided in Ap-
pendix C. The experimental setup, including dataset descriptions, baseline model configurations,
and evaluation protocols, is thoroughly documented in Section 4.1 and Appendix C. All datasets
used in our experiments are publicly available: the ID datasets are from MoleculeNet, and the
OOD datasets are from TDC. The reasoning trajectory construction process using expert knowl-
edge and multiple teacher models is described in Section 3.2.1, with specific prompting strategies
detailed in Appendix A. Our reasoning quality evaluation methodology, including the LLM-as-a-
Judge framework and human expert validation procedures, is documented in Section 4.4. We pro-
vide the complete source code for model training, evaluation, and reasoning quality assessment at
https://anonymous.4open.science/r/MPPReasoner-12687.
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A PROMPT TEMPLATES

Example 1: Prompt Example for BACE Task

[Role]
You are a top AI assistant specializing in molecular
chemistry and drug discovery, proficient in molecular
property prediction.

[Task]
BACE1 is an aspartic-acid protease important in the
pathogenesis of Alzheimer’s disease, and in the formation
of myelin sheaths...
output "True" or "False".

[Formatting]
Place the thought process within <think></think> and then
conclude your answer with <answer>True/False</answer>.

[Example]
<think>xxxx</think>
<answer>True/False</answer>

[Few-shot]
ClC1=CC(=CC(Cl)=C1NC(=O)C)CNC(=[NH2+1])NC(=O)CN2C3=CC(OC)=CC=C3C=C2 False
ClC1=CC(=CC(Cl)=C1NC(=O)C)CNC(=[NH2+1])NC(=O)CN2C3=CC(CC)=CC=C3C=C2 True
ClC1=CC(=CC(Cl)=C1NC(=O)C)CNC(=[NH2+1])NC(=O)CN2C3=CC(F)=CC3C=C2 False

[Molecule]
ClC1=CC(=CC(Cl)=C1NC(=O)C)CNC(=[NH2+1])NC(=O)CN2C3=C(C=CC=C3)C=C2

Example 2: Prompt for ChemCoT-Based One-Shot Generattion

Example Prompt:

< PORMPT retrieved from OpenMol/ChemCoTDataset >

Example Response:

< RESPONSE retrieved from OpenMol/ChemCoTDataset >

Prompt:

< PORMPT likes Example 1 >

Response:
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Example 3: Prompt for Expert-Guided Task-Specific Generation

< PORMPT likes Example 1 >

[Expert]

< EXPERT KNOWLEDGE refined by GPT4o >

Example 4: Prompt for Logical Soundness Scoring

You are a professional reasoning-evaluation expert. Your
task is to assess the logical soundness of a large language
model’s chain-of-thought when answering a question, and
assign an integer score from 0 to 10. Focus strictly on the
logical connections between reasoning steps, not on whether
the final answer is correct.

Input:
- [Question]: The original question.
- [Model Response]: The model’s full response, including its
chain of thought.

Scoring Dimension (Logical Soundness):
- Do reasoning steps build progressively and refer back to
earlier points?
- Is each step a reasonable extension of the previous
inference?
- Is the language coherent, with no contradictions or
confusing wording?

Scoring Scale (0-10):
- 10: Perfect logical structure; steps are crystal-clear and
fully justified.
- 8-9: Overall logic sound; only minor or negligible
leaps/wording issues.
- 6-7: Main logic correct, but some jumps, insufficient
explanation, or minor conflicts.
- 4-5: Noticeable breaks or missing key inferences, yet some
coherent logic remains.
- 2-3: Most steps lack causality or contradict each other;
only sporadic correct parts.
- 0-1: Virtually no discernible valid reasoning structure.

Your Task:
Adhering strictly to the rubric above, you must output only
a single integer score from 0 to 10. Do not provide any
additional explanations, text, or justifications.

Question:
< QUESTION >

Model Response:
< RESPONSE >

Output Format: [integer score]
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Example 5: Prompt for Accuracy & Insight Scoring

You are a professional reasoning-evaluation expert. Your
task is to assess the accuracy and insight value of a large
language model’s chain-of-thought when answering a question,
and assign an integer score from 0 to 10...

Scoring Dimension (Accuracy & Insight):
- Are the concepts, formulas, and facts used accurate and
appropriate?
- Do the reasoning perspective, decomposition approach, or
intermediate conclusions provide substantive support or fresh
insights for domain experts?

Scoring Scale (0-10):
- 10: All methods and facts are completely correct, offering
deep and original insights.
- 8-9: Core content is correct, with only minor detail
errors or slightly shallower insights.
- 6-7: Mostly correct, but with notable secondary errors or
average insight depth.
- 4-5: Mix of correct and incorrect information; limited
insight value.
- 2-3: Most methods/facts are wrong or misused, providing
almost no insight.
- 0-1: Completely incorrect or irrelevant.
...

Example 6: Prompt for Accuracy & Insight Scoring

You are a professional reasoning-evaluation expert. Your
task is to assess the conciseness of a large language model’s
chain-of-thought when answering a question, and assign an
integer score from 0 to 10...

Scoring Dimension (Conciseness):
- Does the response go straight to the point, avoiding
irrelevant or repetitive explanations?
- Does it convey the full reasoning with the minimum
necessary steps?

Scoring Scale (0-10):
- 10: Extremely concise, with no redundant or repetitive
statements.
- 8-9: Generally concise, with only a tiny amount of
removable content.
- 6-7: Noticeable redundant paragraphs or repeated
explanations.
- 4-5: Long-winded and repetitive; key information diluted
by noise.
- 2-3: Large portions are irrelevant or repetitive; core
points hard to discern.
- 0-1: Almost entirely made up of redundant content.
...
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Table 3: Reasoning quality scores across three evaluation dimensions. All scores are on a 0-10 scale.

Model Logical Soundness Accuracy & Insight Conciseness Average
o3-mini 7.182 5.470 6.053 6.235
DeepSeek-V3.1-Think 7.395 6.517 6.257 6.723
GPT-4o 6.698 5.916 5.653 6.089
Qwen2.5-VL-72B-Instruct 7.641 6.241 5.492 6.458
Qwen2.5-VL-7B-Instruct 4.517 3.259 5.079 4.285
MPPReasoner (Ours) 8.556 7.039 7.352 7.730

B REASONING QUALITY SCORES

Table 3 presents the detailed reasoning quality scores across three evaluation dimensions (Fan et al.,
2025) for all models in our study. The detailed dimensional analysis reveals several important in-
sights into model capabilities and reasoning patterns (Ke et al., 2025; Liang et al., 2023; Yu et al.,
2025b; Chen et al., 2025a). MPPReasoner achieves the highest scores across all three evaluation di-
mensions, demonstrating comprehensive reasoning excellence. In logical soundness, MPPReasoner
scores 8.556, significantly outperforming the best baseline DeepSeek-V3.1-Think at 7.395, indicat-
ing superior coherence in step-by-step reasoning flow. For accuracy & insight, our model achieves
7.039, substantially exceeding DeepSeek-V3.1-Think’s 6.517, which demonstrates the effectiveness
of chemical principle integration in generating factually correct and insightful analyses.

Examining model category patterns, advanced reasoning models like o3-mini and DeepSeek-V3.1-
Think show relatively strong logical soundness but struggle with accuracy & insight, particularly o3-
mini at 5.470, suggesting that general reasoning capabilities cannot substitute for domain-specific
knowledge. Large-scale models exhibit mixed performance: Qwen2.5-VL-72B-Instruct achieves
decent logical soundness (7.641) but suffers in conciseness (5.492), while the smaller Qwen2.5-
VL-7B-Instruct shows consistently poor performance across all dimensions, with particularly low
accuracy & insight at 3.259. Notably, MPPReasoner maintains balanced excellence across all di-
mensions, avoiding the trade-offs observed in baseline models. The model’s conciseness score of
7.352 is particularly remarkable, as it demonstrates the ability to provide comprehensive chemical
reasoning without unnecessary verbosity, a crucial factor for practical applications where chemists
need clear and actionable insights.

C IMPLEMENTATION DETAILS

We implement MPPReasoner based on Qwen2.5-VL-7B-Instruct (Bai et al., 2025), configured with
a maximum sequence length of 8,192 tokens to accommodate detailed reasoning outputs. Our im-
plementation follows a two-stage training pipeline with carefully tuned hyperparameters for optimal
performance.

SFT stage employs 16,000 curated reasoning trajectories over 3 epochs. We use an effective batch
size of 16 with a learning rate of 1e-5 and the AdamW optimizer. A linear learning rate scheduler
with 3% warmup ratio ensures stable training convergence.

RL stage utilizes the GRPO algorithm (Shao et al., 2024) for 500 optimization steps with dynamic
sampling (Yu et al., 2025a)t o filter training instances and focus on tractable reasoning examples.
We employ a lower learning rate of 1e-6 with weight decay of 1e-2 and KL coefficient of 1e-2
to maintain stability during policy optimization. The rollout configuration generates 5 samples per
input with temperature 1.0, using a global batch size of 128 and rollout batch size of 512 for efficient
training.The hierarchical reward weights in RLPGR are set as (λ1, λ2, λ3) = (1.0, 0.25, 0.25) for
foundation, reasoning, and chemistry layers respectively.

All training is conducted on 8 NVIDIA A100 80GB GPUs with mixed precision (Micikevicius et al.,
2018) training for memory efficiency. The SFT stage requires approximately 2 hours, while the RL
stage takes 12 hours, totaling 14 hours for complete training. During inference, we use temperature
1.0 with top-k sampling (k=5) to generate diverse yet high-quality reasoning paths.
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Table 4: Hyperparameters Setting

Hyperparameter Value
# Supervised Fine-tuning (SFT)

GPU Number (A100) 8
Train Batch Size Per Device 2
Gradient Accumulation Steps 4
Learning Rate 1.0e-5
Number of Train Epochs 3
LR Scheduler Type Linear
Warmup Ratio 0.03

# Reinforcement Learning (RL)
GPU Number (A100) 8
Learning Rate 1.0e-6
Weight Decay 1.0e-2
KL Coefficient 1.0e-2
Rollout Number 5
Rollout Temperature 1.0
Global Batch Size 128
Rollout Batch Size 512
Micro Batch Size For Update Per Device 8

# Inference
Temperature 1.0
Top K 5
Max Tokens 8,192

D MORE CASES

Question: Can this molecule bind to the BACE1 protein?

Input Molecule

<think>
Step 1: Molecular Structure Analysis
The target molecule is a complex heptapeptide containing multiple tryptophan residues (Cc1c2c([nH]c1)cccc2),
leucine/isoleucine branched side chains, glutamate carboxylates ([O-]), and both N-terminal amino and C-terminal
carboxyl functionalities. The peptide backbone provides extensive amide hydrogen bonding capability, while the
aromatic indole rings offer π-π stacking interactions. The molecule adopts an extended conformation due to steric
interactions between bulky side chains.
Step 2: Chemical Principle Application
BACE1 accommodates peptide substrates with specific P1-P4 binding subsites, particularly favoring hydrophobic
residues at P1 and P3 positions for optimal cleavage. The calculated molecular weight approximately 1200 Da exceeds
typical small molecule inhibitors but matches endogenous peptide substrates. The multiple tryptophan residues can
form favorable π-π interactions with Phe108 and Tyr71 in the BACE1 active site, while the peptide backbone enables
key hydrogen bonds with catalytic Asp32 and Asp228 residues. The extended structure spans the bilobal enzyme
cleft effectively.
Step 3: Few-shot Comparative Analysis
The "True" example shares critical peptide characteristics: multiple amide bonds, charged termini, and aromatic side
chains distributed throughout the sequence. Both "False" examples are shorter peptides with fewer aromatic
residues and limited conformational flexibility for optimal active site engagement. Our target molecule exhibits
superior structural complexity with dual tryptophan residues providing enhanced binding interactions compared to the
single phenylalanine in negative examples. The extended peptide length matches the "True" example's capacity for
multi-point enzyme contact.
Conclusion:
Optimal peptide length + favorable aromatic interactions + structural similarity to positive substrate + appropriate
backbone flexibility for enzyme cleft binding indicates effective BACE1 recognition and binding.
<answer>True</answer>

Few-shot Example
✅ ❌ ❌

Figure 5: Successful case on MPPReasoner for BACE1 protein binding prediction (ID).
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Question: Does this molecule have oral bioavailability?

Input Molecule

<think>
Step 1: Molecular Structure Analysis
The target molecule is a dihydropyridine derivative containing a methyl ester at position 3, methyl groups at positions
2 and 6, and a chiral pyrrolidine ester substituent at position 5. The molecule features a meta-nitrophenyl group at
position 4 and includes a benzylated pyrrolidine ring system. The dihydropyridine core adopts a boat conformation due
to sp3 hybridization at position 4, while the pyrrolidine ring provides additional conformational constraint through its
five-membered ring structure.
Step 2: Chemical Principle Application
Oral bioavailability depends on Lipinski's Rule of Five parameters: molecular weight <500 Da, LogP <5, hydrogen bond
donors <5, and acceptors <10. The calculated molecular weight is approximately 455 Da, approaching the upper limit.
The nitro group significantly increases polarity while reducing membrane permeability, and the pyrrolidine nitrogen
provides basicity for potential salt formation but may limit passive diffusion. 
Step 3: Few-shot Comparative Analysis
Both "False" examples contain nitrophenyl dihydropyridines with similar ester functionalities but simpler alkyl ester
chains instead of the complex pyrrolidine system. The "True" example represents a structurally distinct
tetrahydroisoquinoline with a basic amine and fewer polar substituents. Our target molecule combines the
problematic nitrophenyl group from the "False" examples with additional structural complexity through the
pyrrolidine substituent, suggesting even greater potential for bioavailability limitations compared to the simpler
"False" examples.
Conclusion:
Nitrophenyl polarity reducing membrane permeability + ester susceptibility to first-pass metabolism + structural
similarity to negative examples + increased molecular complexity beyond simple dihydropyridines indicates poor oral
bioavailability. </think>
<answer>False</answer>

Few-shot Example
❌ ✅❌

Figure 6: Successful case on MPPReasoner for oral bioavailability prediction (OOD).

E LIMITATIONS

While MPPReasoner demonstrates significant advances in chemical reasoning for molecular prop-
erty prediction, several areas present opportunities for future enhancement:

• Molecular Representation: Current framework primarily utilizes 1D/2D molecular repre-
sentations through SMILES and molecular images. Incorporating 3D structural informa-
tion (Hong et al., 2023), conformational dynamics (Badar et al., 2022), and stereochemical
effects (Worch et al., 2019) could further enhance prediction accuracy for properties sensi-
tive to spatial arrangements and molecular flexibility.

• Computational Efficiency: The generation of detailed reasoning paths introduces additional
computational overhead compared to direct prediction models. This trade-off between
interpretability and efficiency may limit scalability for certain high-throughput screening
applications (Bajorath, 2002), though the enhanced explainability proves valuable for re-
search and development workflows.

• Domain Scope: The current evaluation focuses on molecular property prediction tasks.
Expanding the framework to broader chemical domains such as reaction mechanism pre-
diction (Chen et al., 2025b; Yuan et al., 2025), synthesis planning (Lin et al., 2025; Wang
et al., 2025a), and molecular optimization (Kristiadi et al., 2024; Ran et al., 2025) could
demonstrate wider applicability of the chemical reasoning approach.

Future work will address these limitations through more efficient architectures, enhanced molecular
representations, and broader domain applications while maintaining the interpretability advantages
that distinguish our approach.
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