
Towards Efficient and Scalable Training of Differentially Private Deep Learning

Sebastian Rodriguez Beltran 1 Marlon Tobaben 1 Niki Loppi 2 Antti Honkela 1

Abstract
Differentially private stochastic gradient descent
(DP-SGD) is the standard algorithm for training
machine learning models under differential pri-
vacy (DP). The major drawback of DP-SGD is the
drop in utility which prior work has comprehen-
sively studied. However, in practice another major
drawback that hinders the large-scale deployment
is the significantly higher computational cost. We
conduct a comprehensive empirical study to quan-
tify the computational cost of training deep learn-
ing models under DP and benchmark methods
that aim at reducing the cost. Among these are
more efficient implementations of DP-SGD and
training with lower precision. Finally, we study
the scaling behaviour using up to 80 GPUs.

1. Introduction
Training data of machine learning (ML) models can be ex-
tracted (Balle et al., 2022; Carlini et al., 2021). Differential
Privacy (DP) (Dwork et al., 2006) is the gold standard for
formalizing the privacy leakage of training data in ML and
mitigating the risk of privacy attacks on the training data.
DP is deployed in many applications involving sensitive
data (Abowd, 2018; Cormode et al., 2018).

The established algorithm for integrating DP into the train-
ing pipeline of deep learning models is DP stochastic gradi-
ent descent (DP-SGD) (Rajkumar & Agarwal, 2012; Song
et al., 2013; Abadi et al., 2016), which is the DP adaptation
of SGD (see also Algorithm 1). DP-SGD has two major
drawbacks in comparison to SGD:

• Higher computational cost: DP-SGD requires more
memory and is computationally more expensive due to

1Department of Computer Science, University of
Helsinki, Helsinki, Finland 2NVIDIA, Helsinki, Finland.
Correspondence to: Sebastian Rodriguez Beltran <se-
bastian.rodriguez@helsinki.fi>, Marlon Tobaben <mar-
lon.tobaben@helsinki.fi>, Niki Loppi <nloppi@nvidia.com>,
Antti Honkela <antti.honkela@helsinki.fi>.

Accepted to the Workshop on Advancing Neural Network Training
at International Conference on Machine Learning (WANT@ICML
2024).

PV
ghost
TF32

BK
ghost
TF32

O-flat
TF32

PV
ghost

BK
ghost

O-flat
Opacus

non-DP
JAX

O-flat
JAX

Training mode

0.3

0.4

0.6

1

2

R
el

at
iv

e
th

ro
ug

hp
ut

to
no

n-
D

P

Figure 1. Relative throughput to the respective non private baseline.
For each optimization method and each model size, we divide its
throughput with the non-private counterpart. Throughput is the
number of processed instances per second. The optimization mode
includes clipping optimizations, lower precision, and frameworks
like JAX.

the per-sample clipping.
• Loss in utility: The utility in comparison to non-DP

training drops but this can be mitigated to certain extend
by using larger batch sizes (Räisä et al., 2024) and training
longer (Ponomareva et al., 2023) which further increases
the computational cost.

List of contributions In this work we perform an extensive
empirical study on the computational efficiency of DP-SGD.
We will focus on fine-tuning a wide range of large computer
vision classification models but our findings can be applied
any other large models that are trained or fine-tuned with
DP-SGD. Our main contributions are the following:

1. We find that non-optimized training with DP-SGD costs
up to three and eight times more than non-private training
for ViT and ResNets, respectively (See Section 4).

2. We identify the reasons that lead to the higher computa-
tional cost of DP-SGD using profiling (See Section 4.3).

3. We benchmark different strategies that can reduce this
cost drastically up to a level that matches the non-
optimized non-private training:

• More efficient implementations of DP-SGD (See
Section 5.1).

1

Towards Efficient and Scalable Training of Differentially Private Deep Learning

• Use of JAX instead of PyTorch (See Section 5.2).

• Lower Precision with TF-32 (See Section 5.3).

4. We scale up the training to 80 GPUs and find that DP-
SGD scales better than non-private training (See Sec-
tion 6).

2. Background
This section will explain the main DP-SGD algorithm and
optimizations to alleviate its computational cost.

2.1. DP-SGD Algorithm

Algorithm 1 is the original DP-SGD algorithm, with virtual
batching, as proposed by Abadi et al. (2016).

Algorithm 1 Virtual Batching DP-SGD
Input: Training data points {x1, . . . , xN}, loss function
L(θ) = 1

N

∑
i L(θ, xi)

Parameters: Parameters: learning rate ηt, noise scale σ,
gradient norm bound C, number of steps T , logical batch
size L, physical batch size p.
for t ∈ [T] do

B← Sample batch by Poisson sampling L/N .
P← Divide the logical batch B into physical batches
of size p.
θacc ← 0
for s ∈ [P] do

Compute gradient
For each i ∈ s compute gt(xi)← ∇θtL(θt, xi)
Clip gradient
gt(xi)← gt/max(1, ∥gt(xi)∥2

C)
Accumulate gradient
θacc ← θacc +

∑
i gt(xi)

end for
Add noise
g̃t ← 1

|L| (θacc +N (0, σ2C2I))
Step
θt+1 ← θt − ηtg̃t

end for
Return Learned parameters θT and then the privacy cost
is computed.

Virtual Batching distinguishes between logical and physi-
cal batches. Logical batches are divided into multiple physi-
cal batches to allow taking optimizer steps with many sam-
ples without running out of memory. In our experiments,
we typically sample logical batch sizes of size L = 25000
while the memory only fits < 300 samples at a time. Imple-
menting DP-SGD with virtual batching Algorithm 1 does
not modify the privacy accounting. The amount of added
noise is the same and does not affect the model utility (Pono-
mareva et al., 2023).

Opacus Our baseline uses the PyTorch (Ansel et al., 2024)
library Opacus (Yousefpour et al., 2021). Opacus is the
most mature DP-SGD framework out of all considered im-
plementations. It supports nearly all neural layers that
are compatible with DP training. Opacus implements
per-sample clipping without any additional optimizations.
Opacus implements virtual batching algorithm in their
BatchMemoryManager. The privacy engine of Opacus
will sample the logical batches, as in the original DP-SGD
algorithm, and then divide them into physical batches. The
other implementations considered in our experiments do not
support virtual batching out-of-the-box.

Poisson subsampling Interestingly, Bu et al. (2022) and Bu
et al. (2023) never mention Poisson subsampling in their
works of Mix Ghost Clipping and Book Keeping. Even
more, Bu et al. (2022) states that it has a speed-up of ×1.7
times against other algorithms with a fixed batch size, which
would affect the privacy accountant method. The same
happens in practice for JAX implementations (De et al.,
2022), were the sampling is done by shuffling the dataset
and using each sample once per epoch. While it is easier to
implement in practice, it does not use the correct Poisson
subsampling for the numerical accounting methods.

To make a fair comparison between all methods, we im-
plement the Poisson subsampling, the same way Opacus
does it, for all frameworks and a new custom Batch Memory
Manager to flag when it is time to take a step. This way, all
the experiments are seeded and will have the same logical
and physical batch sizes.

2.2. DP-SGD Optimizations

We benchmark five types of clipping methods. Table A1
shows which clipping optimizations we are benchmark
against the library or framework that implements it.

JAX We compare all implementations with a native JAX
(Bradbury et al., 2018) implementation that clips the per-
sample gradients with Optax (DeepMind et al., 2020) with-
out utilizing any further optimization.

Ghost clipping computes the gradient norm loss after the
backpropagation optimization and then reweights the loss
to update the clipped gradients. Its main contribution is
memory saving at the cost of adding another backward pass
(Li et al., 2022).

Mixed Ghost clipping proposed by Bu et al. (2022) builds
on-top of Ghost clipping. It implements the ghost clipping
technique for convolutional layers. Its main contribution
is that the algorithm will decide when to clip the gradients
using per-example or ghost. This difference matters because
the ghost clipping is less efficient when the layer’s input
dimensions are too big. E.g., for ResNets, each clipping
method will be applied for half of the layers. The first layers

2

Towards Efficient and Scalable Training of Differentially Private Deep Learning

will be clipped using the the per-example and then ghost
clipping in the bottom layers. As the model goes deeper, the
feature size decreases, and the number of channels increases,
prioritizing ghost clipping (Bu et al., 2022).

Book keeping by Bu et al. (2023) uses all the previous tech-
niques but requires only one backpropagation pass without
explicitly calculating the per-example gradients. It avoids
the second pass that ghost clipping does by reusing the in-
termediate results of the output gradients to calculate the
sum of the clipped gradients and the clipping factor. Book
keeping can also be implemented together with the mix
optimization. It also implements another technique called
MixOpt, which does the same evaluation as the mix ghost
clipping, but also determines whether doing a second back-
ward pass is more efficient.

Implementations of optimized DP-SGD PrivateVision (Bu
et al., 2022), and FastDP (Bu et al., 2023) are PyTorch-based
implementations. While both PrivateVision and FastDP im-
plement ghost clipping and its variants, all FastDP imple-
mentations use the book keeping method.

3. Experiment Overview
In our experiments we compare the throughput, defined
as how many samples can be processed per second during
training.

Datasets We benchmark with the dataset CIFAR100
(Krizhevsky & Hinton, 2009). It contains 60,000 data points,
from 100 classes. It is a commonly used dataset for test-
ing computer vision models and their private counterparts
(Abadi et al., 2016; De et al., 2022; Yousefpour et al., 2021).

Models We benchmark two families of models. The Vi-
sion Transformer (ViT) (Dosovitskiy et al., 2021) and BiT-
ResNet (Kolesnikov et al., 2020) (SeeTable 1). All models
are pre-trained on the same public dataset, ImageNet-21k.
However, the ViT models are additionally fine-tuned on
ImageNet-1k (Steiner et al., 2022; Wightman, 2019). For
our experiments, we are fine-tuning the feature encoder on
CIFAR100. CIFAR-100 images are resized to 224x224.

Parameterization While parameter-efficient fine-tuning of
some parts of the model, e.g. using adapters like FiLM Perez
et al. (2018) or LoRA (Hu et al., 2022) has been shown to
be effective under DP (Tobaben et al., 2023; Yu et al., 2022),
our work focuses on the computational efficiency of DP-
SGD and thus we consider on the worst-case scenario which
is fine-tuning all parameters of the model. Furthermore, any
training from scratch requires training all parameters.

Hyperparameters All experiments use the optimal hyper-
parameters found previously by Tobaben et al. (2023) with
a privacy budget of ϵ = 8. We train for two epochs, and
according to the sampling rate and batch sizes, there will be

Table 1. Number of parameters, in millions, for each family archi-
tecture and size of the model.

MODEL # OF PARAMETERS

VIT

TINY 5.7 M
SMALL 22.1 M

BASE 86.6 M
LARGE 304.3 M
HUGE 630.8 M

BIT-RESNET

50× 1 23.7 M
101× 1 42.7 M
50× 3 211.8 M

101× 3 382.4 M
152× 4 929.2 M

four optimizer steps in total. Using only two epochs allows
us to test the experiments quickly and evaluate them over
multiple runs. We do not focus on finding the best possible
utility, which requires training for many more epochs. In
Table A4 we show the mean accuracy after training for just
two epochs. For optimal utility, it must be trained for a
higher number of epochs.

Environment specifications We use two GPU architectures,
NVIDIA V100 and NVIDIA A100, with 32 and 40 GB of
VRAM respectively. Both use identical Python environ-
ments, duplicated in both to make a fair comparison. For
the multinode experiments, each node has four GPU units.
All experiments use 16 CPU workers, except the distributed
DP, which breaks with more than one worker.

Source code We will make the source code for
replicating the experiments available at https:
//github.com/DPBayes/Towards-Efficient-
Scalable-Training-DP-DL.

4. What is the cost of DP in Deep Learning?
In this section we will quantify the computational cost of
deploying DP training as a whole. We do this by comparing
the maximum physical batch sizes and throughputs between
the non-private training and Opacus per-example clipping,
called O-flat, which is the most used DP-SGD implemen-
tation. Additionally, we identify the reasons for the higher
computational cost of DP-SGD through profiling.

4.1. Maximum Physical Batch Size

We first compare how many samples we can process in one
physical batch before running out of memory. In Figure 2,
we can see that the model size matters as its parameters must
be stored in memory, and their gradients must also be stored
for accumulation. As there are millions of parameters, it
becomes increasingly expensive to store them in memory.
As expected, due to its implementation of calculating the

3

https://github.com/DPBayes/Towards-Efficient-Scalable-Training-DP-DL
https://github.com/DPBayes/Towards-Efficient-Scalable-Training-DP-DL
https://github.com/DPBayes/Towards-Efficient-Scalable-Training-DP-DL

Towards Efficient and Scalable Training of Differentially Private Deep Learning

tiny small base large huge

Model

0

200

400

600

800

1000

1200

Ph
ys

ic
al

B
at

ch
Si

ze

1130

555

268

93
35

276

111
35 10 3

non-private
O-flat

(a) ViT Models

R50x1 R101x1 R50x3 R101x3 R152x4

Model

0

100

200

300

400

500

Ph
ys

ic
al

B
at

ch
Si

ze

510

333

150

56
24

178
135

23 15 4

non-private
O-flat

(b) BiT ResNet Models

Figure 2. Maximum achievable physical batch size by the different model sizes on A100 GPU (40 GB) before they reach Out Of Memory
(OOM) Error. The model sizes grow from left to right. To check the number of parameters of each size, refer to Table 1.

gradients for each sample, the per-example clipping fits
fewer instances.

The difference in throughput between non-private and pri-
vate training grows with respect to the model size. In Fig-
ure 2(a), the difference for the huge model size is already
11x times the number of fitted samples, and the private
model can only fit three samples, getting closer to just calcu-
lating one sample at a time and accumulating that for a large
logical batch, which is very inefficient. This is problematic
as a bigger model would be unable to fit even one sample.

From the experiments we also verified that the use of phys-
ical batches does not affect the model performance; each
model size will reach a different accuracy than the others,
but the same model size will always reach the same perfor-
mance independent of the physical batch size.

4.2. Throughput Comparision

The batch size alone does not tell the whole story, as the
main interest is how much slower the private training is. Fig-
ure 3 shows the relative difference between mean through-
put, which is how faster the non-private training is and how
much more expensive the private one is. It is consistent
with Figure 2 in that as the model size grows, the difference
between how many samples can be fitted and the throughput
difference will grow larger.

ViT The throughput difference between Opacus and a non-
private baseline for the ViT model (see Figure 3(a)) does not
spike and grows steadily, which is interesting considering
how big the relative difference is in physical batch size.
Using the previous example with the ViT huge model, the
throughput difference is about ×3.1, while we can fit 11
times more samples in the non-private implementation.

ResNets On the other hand, in Figure 3(b), the ResNet mod-

els have different behavior. They do have spikes of growth
as the model size grows. The contrast in Figure 3 between
ViT and BiT ResNet models is due to the architecture and
types of layers. The parameter space grows as the width fac-
tor (see Table 1) for the ResNets, so the×3 makes the neural
network wider by a factor of three. Based on our results,
the width of the layers affects throughput much more than
the depth of the network. They have comparable throughput
with the same width and different depths, but increasing
the width will make the model in the private setting much
slower and reduce the maximum batch size significantly.

How much does finding the maximum physical batch
size matter? In Figure 4, we display the relative throughput
as a percentage by dividing the throughput at a particular
physical batch size by the maximum achievable through-
put. We see that as the physical batch size increases, the
throughput will grow as expected, but at some point there is
no signifant further improvement in throughput from using
a larger physical batch size.

Practitioners may estimate the optimal batch size based
on available memory and performance trade-offs. It is not
crutial to set the physical batch size to the maximum pos-
sible but a good enough value be fine. Typically, smaller
batches are limited by data loading speeds, but as batch size
increases, computation becomes the limiting factor.

4.3. Reasons for the Increase in Computational Cost

Giving a detailed breakdown of low-level operations associ-
ated with DP is challenging. However, using GPU profiling
tool NVIDIA Nsight System we can identify three aspects
which constitute to the majority DP overheads. Firstly, due
to its larger memory footprint, DP-SGD is able to consume
smaller physical batches than its non-private counterpart.
This results in larger amount of smaller low-level kernel

4

Towards Efficient and Scalable Training of Differentially Private Deep Learning

tiny small base large huge

Model

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

R
el

at
iv

e
di

ff
er

en
ce

m
ea

n
th

ro
ug

hp
ut

2.60 2.67 2.78
2.96

3.17

(a) ViT Models

R50x1 R101x1 R50x3 R101x3 R152x4

Model

0

1

2

3

4

5

6

7

8

R
el

at
iv

e
di

ff
er

en
ce

m
ea

n
th

ro
ug

hp
ut

4.07 4.22

6.73
6.24

7.96

(b) BiT ResNet Models

Figure 3. Relative difference between mean throughputs between Opacus per-example clipping and the non-private baseline. It is defined
as private-throughput/non-private-throughput. It shows how many times private training is more expensive. These experiments are
executed on one A100 GPU.

1 2 4 8 16 32 64 128 256

Physical Batch Size

20

40

60

80

100

Pe
rc

en
ta

ge

non-private
O-flat

Figure 4. The relative difference with the throughput at the maxi-
mum batch size for the ViT base model on A100.

calls which leads to slightly lower utilisation of the GPU
compute. At very small batch sizes even the kernel launch
overheads can become a notable factor for slowdown. Sec-
ondly, the computation of per-example-gradients introduces
significant overhead in the backward pass as it cannot be
parallelised as in batched gradient computation. This is the
most prominent cause of the total overhead. Finally, an
additional DP-optimizer step that clips and accumulates the
per example gradients, which is not present in the non-dp
algorithm, needs to taken after each physical batch (see
Table A3).

5. Decreasing the computational cost
This section analyzes the different strategies for training
with DP-SGD more efficiently. We evaluate both algorith-
mic and hardware optimizations and their combinations.

Table 2. Maximum physical batch size reachable for each clipping
method, for the two GPU architectures we are comparing, for the
ViT base model.

CLIPPING MODE V100 A100

NON PRIVATE BASELINE 216 268
O-FLAT (OPACUS) 28 35
GHOST (PRIVATE VISION) 203 257
MIX GHOST (PRIVATE VISION) 203 257
BK GHOST (FASTDP) 189 209
BK MIX GHOST (FASTDP) 189 209
BK MIX OPT (FASTDP) 189 209

5.1. Optimized algorithms

First, we evaluate the more efficient implementations that
have been described in Section 2.2 using the ViT base model.
We chose it as our benchmark model because the middle
model size is large enough to test our hypothesis but less
extensive than it would take too much time to train. The
implementations do not support the BiT ResNet due to their
custom weight standardization layer.

Maximum physical batch size Table 2 compares the max-
imum physical batch size for both available GPUs. The
maximum physical batch size is larger for the optimizations
of DP-SGD than for Opacus because they do not require per-
example gradients. Thus, the optimizations allow training
much larger models without running out of memory. The
maximum physical batch size using Private Vision library
is the one that comes closest to the non-private baseline. In
general, we can see that the methods are consistent within
implementations, with Private Vision and the FastDP reach-
ing the same maximum physical batch size no matter the
clipping mode. As expected, the A100 achieves consistently

5

Towards Efficient and Scalable Training of Differentially Private Deep Learning

higher maximum physical batch sizes than the V100 due to
the larger amount of VRAM.

non-private PV
ghost

PV
ghost mixed

BK
ghost

BK
MixOpt

BK
MixGhostClip

Opacus
O-flat

Clipping Mode

0

20

40

60

80

100

120

140

160

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

111.7

62.0 61.8 68.7 68.3 68.4

36.9

149.5

80.3 80.4
91.8 92.0 92.0

54.0

V100
A100

Figure 5. Throughput using the maximum batch size for each clip-
ping algorithm. It compares the executions for both V100 and
A100, for the ViT Base model.

Throughput Comparision Figure 5 displays the through-
put for each clipping algorithm for each available GPU. To
understand it better, we also compute the relative difference
between the mean throughput. By using better hardware
components, in this case, improving from a V100 to an A100
GPU has an increment of ×1.3 times in throughput for all
clipping methods. The one that benefits the most is the
per-example clipping by Opacus with a×1.46 improvement
in throughput. It is because of Opacus-specific optimiza-
tions. Their implementation is optimized to vectorize the
virtual batches and get the most out of the processing unit
(Yousefpour et al., 2021) to compensate for the per-example
clipping. Also, we base our virtual batching module on
Opacus, being specially optimized for the Opacus imple-
mentation, yielding better results with better hardware. The
other implementations will have benefits similar to those
of non-private training. The clipping methods in both GPU
architectures will have the same relative throughput regard-
ing the non-private performance. Private Vision gets closer
to the non-private baseline physical batch size, but Book
Keeping is closer to its throughput with a smaller physical
batch size (see Figure 6).

Without sacrificing utility, these optimizations offer an alter-
native to the original per-example clipping algorithm. Even
though Book Keeping performs better, it is by a very narrow
margin. Consequently, Private Vision and FastDP remain
viable options for implementing ghost clipping. The differ-
ence between the two algorithms is the second backward
pass over the neural network. Since the Book Keeping trick
avoids doing the second backward pass through the network,
it has a higher throughput at a small memory cost.

Mixing ghost clipping does not yield any improvement be-

cause it determines whether it should apply ghost or per-
example clipping, which depends on the size of the inputs
and the parameter space. If the dimensions are large enough,
the ghost technique will be more expensive (Bu et al., 2022).
In a ViT model, the dimensions change less than in a convo-
lutional network. Therefore, despite continually evaluating
which method to apply, it always uses ghost clipping. How-
ever, if applied to a ResNet model, it should outperform
ghost clipping, as it is optimized for convolutional layers. It
could not be tested on BiT ResNet models used in this study
due to incompatibilities with the Private Vision and FastDP,
preventing an assessment of mixed optimization methods.

5.2. JAX framework

In this section we compare the performance of JAX with
all other DP-SGD frameworks (all of them are based on
PyTorch). To make a fair comparison between frameworks,
we implemented Poisson subsampling and virtual batching,
based on the Opacus implementation.

Compilation time Comparing JAX to PyTorch requires
taking the compilation time into account that the DP-SGD
implementations in PyTorch do not utilize. There is no
straightforward way of calculating the compilation time, but
we measure it as the duration to process the first physical
batch. The execution times for each batch shows that the
first one takes much more time than the others, therefore
including the compilation time (Figure A.1). To provide a
fair comparison, we also implemented a non-private JAX
training using the same virtual batching as PyTorch.

Throughput comparision In Figure 6, both JAX imple-
mentations start at the same point, since by using virtual
batching, they are processing just one sample at a time and
getting the gradients from the compiled function. The non-
private benefits more from a larger batch size, although its
throughput decreases at 128 instances. The compilation
time (see Figure A.1) grows with the batch size. For the pri-
vate model, it takes more time since the compiled function is
more complex than the non-private counterpart. It includes
expanding the dimensions and clipping the gradients, while
the non-private directly computes the gradient of the whole
mini-batch.

JAX per-example clipping reaches a higher physical batch
size, and the throughput is always higher than its Opacus
counterpart. However, the Book Keeping Ghost Clipping
implementation is closer to the JAX private version. They
are the same until the physical batch size of 32, but even
then, the variance in the JAX execution is high, meaning
that it can even be below the BK-ghost throughput. JAX
private implementation throughput drops when the batch
size doubles to 64. This comparison would be a reason to
use Book Keeping ghost clipping for Vision Transformer
models over JAX implementation. Its throughput is com-

6

Towards Efficient and Scalable Training of Differentially Private Deep Learning

1 2 4 8 16 32 64 128 256

Physical Batch Size

0

50

100

150

200

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

non-private
O-flat
PV-ghost
BK-ghost
non-private/jax
private/jax

Figure 6. Comparison of the throughput as a function of the physi-
cal batch size between the JAX and PyTorch clipping algorithms
on A100 GPU. Only the ghost implementations from Private Vi-
sion and Book Keeping are used, not the Mix algorithms, since
they have the same performance. The estimator is the median, and
the error bars are the 95% confidence interval using bootstrapping.
All methods use the same estimator and confidence interval, and
JAX is the only one in which the throughput spreads significantly
across runs.

parable to the execution of compiled code from JAX while
reaching a larger batch size.

JAX private model starts with a similar throughput as the
non-private model and then steadily grows until it surpasses
the Torch throughput after a physical batch size of 16. After
that, JAX will always have better throughput, except at a
physical batch size of 128, where JAX throughput drops
and is the same as the PyTorch non-private. We ran the
experiment multiple times, and at the 128 size, it has a low
variance, with always the same throughput value. Another
difference between the two frameworks is the variability in
the experiments. PyTorch runs are remarkably consistent
in having a low variance, and the same throughput result is
expected every time for a fixed seed.

JAX executions are more variable than those of PyTorch,
likely due to its sensitivity to HPC environment fluctuations
and accelerator stochasticity, as noted in Figure A.1. An-
other contributing factor is JAX’s asynchronous dispatch
method, which complicates time benchmarking by issuing a
promise rather than immediate results, concealing Python
overheads.

Poisson sampling Using JAX for DP introduces complex-
ities, particularly around subsampling which is crucial for
privacy accounting. Implementing Poisson subsampling
results in variable batch sizes in JAX; changes in batch size
require JIT to recompile, leading to graph retracing which
is costly and contributes to execution run variability, as
discussed by Chua et al. (2024).

Comparison with PyTorch Although compiling PyTorch
is possible, we could not see any improvements in terms of
speed-up. While compiling the non-private model worked,
the speed-up gained was minimal and, in the end, even
lower if we consider the compilation time. PyTorch also
recompiles after a batch size change. While trying to com-
pile, PyTorch falls back to predefined CUDA operations that
are already optimized. In the case of the private setting, the
compilation does not recognize Opacus hooks and continues
the execution without compiling them.

Leveraging the same kernels to support the private hooks
and avoid the compilation would require massive engineer-
ing work of writing special kernels for each specific private
case. On the other hand, JAX will compile the JIT functions
in XLA, but it does not fall back to the kernels, making it
more generalizable (Subramani et al., 2021).

JAX reaches a higher accuracy in Table A4 than its PyTorch
counterpart. We are still evaluating what is causing the sig-
nificant change, even when using the same hyperparameters
and training for just two epochs. The difference is more
prominent for the non-private case, but we still see the DP
utility cost.

5.3. Lower precision

We consider using lower precision to speed up computa-
tional times. We evaluate the use of Tensor Core 32 (TF32)
for training. It has 10 bits for precision, with eight range
bits, the same as 32 single precision (FP32)(Kharya, 2020).
Using lower precision can have benefits exactly where DP
training struggles: it requires less memory, uses fewer bits
to represent the data, and its operations are optimized for
GPU, making them much faster (NVIDIA, 2023). It is spe-
cially optimized for the A100 GPU and unavailable for the
V100, so the comparison will be between training on the
A100 with and without TF32.

tiny small base large huge

Model Size

2.0

2.5

3.0

3.5

4.0

R
el

at
iv

e
di

ff
er

en
ce

th
ro

ug
hp

ut

non-private
O-flat

Figure 7. Relative difference in mean throughput between TF32
and FP32 Training for ViT Models.

7

Towards Efficient and Scalable Training of Differentially Private Deep Learning

Experimental results In Figure 7, the relative difference be-
tween mean throughput between runs with TF32 and FP32.
For non-private training, throughput increases with model
size, peaking at nearly four times the speed for the ViT Huge
model. Then, the private training throughput increases for
the smaller models, but it goes down again as the model
size grows after the base size. The ViT Base model presents
the optimal speed-up, suggesting that the best throughput
can be obtained using a middle-size model. One that is too
small does not gain much from TF32, and the larger ones are
too expensive. If we compare the non-private, the growth
between the large and huge model sizes is minimal. The
model size is the bottleneck, and the private one is the most
affected by it due to the nature of the clipping algorithm.
However, this remains open for further investigation on why
the private training goes up and down with the model size
in lower precision. Regarding the memory advantages by
TF32, we could not see an improvement. Both models, with
and without TF32, could fit the same number of instances.

Concerns regarding TF-32 under DP There are two con-
cerns with using lower precision in DP deep learning: its
effects on utility and privacy. For the first issue, using lower
precision may affect utility, as it is less precise. We did
not find a significant decay in the accuracy of the models;
it differs by decimal points at the ×10−6 precision (See
Table A4 in the Appendix). For example, private training
using the optimal number of training steps, both models
reach the same accuracy of 0.879 with a significant ∼ 2.3
speed-up thanks to lower precision.

The second concern about privacy was first highlighted by
Mironov (2012), but no fully satisfactory solution exists
yet. The problem is that theoretical guarantees for most
algorithms assume computations are performed on reals,
and finite precision arithmetic can lead to actual violations.
Discrete mechanisms (e.g. Canonne et al., 2020; Agarwal
et al., 2021) that avoid the theoretical challenges exist, but
they are often less convenient and may lead to loss of utility,
especially in low precision settings. The efficiency of differ-
ent discrete mechanisms in TF-32 is an interesting topic of
further research.

6. Multi-GPU Training
This subsection will look at another angle to train deep learn-
ing with DP faster: increasing the computational resources
enough to decrease the training time. This is relevant when
training cost or resource constraints are less important than
the time to train a new model.

6.1. Experimental Setup

We utilize V100 GPUs on HPC nodes that have 4 GPUs per
node. The other experimental setting is idential to the one

in Section 4. Results for utilizing up to 24 A100 GPUs can
be found in the Appendix Figure A.3.

We focus on comparing the scaling behaivour between the
non-private baseline that uses PyTorch and the DP-SGD
implementation using Opacus. Both frameworks provide
mature tooling for distributed training. Although the other
clipping methods do not break, we are still determining if
they are correctly handling the distributed gradient computa-
tion and clipping or if distributed training is even supported.

12 4 8 16 32 64 80

GPU

0

2000

4000

6000

8000

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

non-private (observed)
O-flat (observed)
non-private (linear scaling)
O-flat (linear scaling)

Figure 8. Comparison between the throughput by scaling the num-
ber of GPUs with more nodes for the non-private and Opacus
training with the ViT base model on V100 GPUs. The dashed line
is the ideal growth if it were linear.

6.2. Experimental Results

Figure 8 shows the throughput increase as we add more com-
putational resources, going from one to 80 GPUs. The plot
shows that the throughput does not grow linearly and starts
changing from the ideal after using more than one node (i.e.
when using more than 4 GPUs). The communication inside
the node is fast, but the communication between nodes will
always be slower. The bottleneck is the bandwidth, and it
prevents the model from scaling linearly. Notably, it affects
the non-private training baseline much more, while the pri-
vate scales better. For the 80 GPUs, the private training
achieves 69.2% of the ideal throughput, and the non-private
training only achieves 53.3%. Private training scales bet-
ter because it is slower and only sometimes saturates the
network with updates.

If we use Amdalh’s law to compare the parallelism percent-
age for each case, we can see that in the private case, we
achieve a 99.5% parallelism compared to a 98.9% in the
non-private case (See Figure A.4 in the Appendix).

8

Towards Efficient and Scalable Training of Differentially Private Deep Learning

7. Conclusion
While DP-SGD is significantly more costly than non-private
training, we identified feasible speed-ups that are often easy
to apply but have some drawbacks. These are: (i) More
efficient implementations of DP-SGD which additionally
decrease the memory footprint (allowing for training larger
models). However, the implementations are not as mature
as Opacus and do not support all types of neural network
layers (yet). (ii) JAX which processes samples faster than
PyTorch but looses the advantage through frequent re-com-
pilations when utilizing proper Poisson sampling, does not
offer a comprehensive DP-SGD implementation as PyTorch
and runs not as stable as PyTorch. (iii) Lower Precision
using TF-32 which increases the throughput but the impli-
cations on the theoretical guarantees of DP-SGD need to be
explored in future work. Finally, we found that distributed
computing using DP-SGD scales better than non-private
training and allows for fast training of models.

Acknowledgements
This work was supported by the Finnish Ministry of Educa-
tion and Culture and CSC - IT Centre for Science (Decision
diary number OKM/10/524/2022), the Research Council of
Finland (Flagship programme: Finnish Center for Artificial
Intelligence, FCAI, Grant 356499 and Grant 359111), the
Strategic Research Council at the Research Council of Fin-
land (Grant 358247) as well as the European Union (Project
101070617). Niki Loppi contributed under the NVIDIA AI
Technology Center (NVAITC) Finland program. Views and
opinions expressed are however those of the author(s) only
and do not necessarily reflect those of the European Union
or the European Commission. Neither the European Union
nor the granting authority can be held responsible for them.
This work has been performed using resources provided by
the CSC – IT Center for Science, Finland. We thank Joonas
Jälkö for helpful discussions regarding implementing DP-
SGD with JAX.

References
Abadi, M., Chu, A., Goodfellow, I. J., McMahan, H. B.,

Mironov, I., Talwar, K., and Zhang, L. Deep learn-
ing with differential privacy. In Weippl, E. R., Katzen-
beisser, S., Kruegel, C., Myers, A. C., and Halevi, S.
(eds.), Proceedings of the 2016 ACM SIGSAC Confer-
ence on Computer and Communications Security, Vi-
enna, Austria, October 24-28, 2016, pp. 308–318. ACM,
2016. doi: 10.1145/2976749.2978318. URL https:
//doi.org/10.1145/2976749.2978318.

Abowd, J. M. The U.S. Census Bureau adopts differen-
tial privacy. In Guo, Y. and Farooq, F. (eds.), Proceed-
ings of the 24th ACM SIGKDD International Confer-

ence on Knowledge Discovery & Data Mining, KDD
2018, London, UK, August 19-23, 2018, pp. 2867. ACM,
2018. doi: 10.1145/3219819.3226070. URL https:
//doi.org/10.1145/3219819.3226070.

Agarwal, N., Kairouz, P., and Liu, Z. The skellam
mechanism for differentially private federated learning.
In Ranzato, M., Beygelzimer, A., Dauphin, Y. N., Liang,
P., and Vaughan, J. W. (eds.), Advances in Neural Infor-
mation Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS
2021, December 6-14, 2021, virtual, pp. 5052–5064,
2021. URL https://proceedings.neurips.cc/
paper/2021/hash/
285baacbdf8fda1de94b19282acd23e2-
Abstract.html.

Ansel, J., Yang, E. Z., He, H., Gimelshein, N., Jain, A.,
Voznesensky, M., Bao, B., Bell, P., Berard, D., Burovski,
E., Chauhan, G., Chourdia, A., Constable, W., Desmai-
son, A., DeVito, Z., Ellison, E., Feng, W., Gong, J.,
Gschwind, M., Hirsh, B., Huang, S., Kalambarkar, K.,
Kirsch, L., Lazos, M., Lezcano, M., Liang, Y., Liang,
J., Lu, Y., Luk, C. K., Maher, B., Pan, Y., Puhrsch, C.,
Reso, M., Saroufim, M., Siraichi, M. Y., Suk, H., Zhang,
S., Suo, M., Tillet, P., Zhao, X., Wang, E., Zhou, K.,
Zou, R., Wang, X., Mathews, A., Wen, W., Chanan, G.,
Wu, P., and Chintala, S. PyTorch 2: Faster machine
learning through dynamic Python bytecode transforma-
tion and graph compilation. In Gupta, R., Abu-Ghazaleh,
N. B., Musuvathi, M., and Tsafrir, D. (eds.), Proceedings
of the 29th ACM International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, Volume 2, ASPLOS 2024, La Jolla, CA,
USA, 27 April 2024- 1 May 2024, pp. 929–947. ACM,
2024. doi: 10.1145/3620665.3640366. URL https:
//doi.org/10.1145/3620665.3640366.

Balle, B., Cherubin, G., and Hayes, J. Reconstructing train-
ing data with informed adversaries. In 43rd IEEE Sympo-
sium on Security and Privacy, SP 2022, San Francisco,
CA, USA, May 22-26, 2022, pp. 1138–1156. IEEE, 2022.
doi: 10.1109/SP46214.2022.9833677. URL https:
//doi.org/10.1109/SP46214.2022.9833677.

Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary,
C., Maclaurin, D., Necula, G., Paszke, A., VanderPlas, J.,
Wanderman-Milne, S., and Zhang, Q. JAX: composable
transformations of Python+NumPy programs. http:
//github.com/google/jax, 2018.

Bu, Z., Mao, J., and Xu, S. Scalable and efficient
training of large convolutional neural networks with
differential privacy. In Koyejo, S., Mohamed, S.,
Agarwal, A., Belgrave, D., Cho, K., and Oh, A.
(eds.), Advances in Neural Information Processing

9

https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/2976749.2978318
https://doi.org/10.1145/3219819.3226070
https://doi.org/10.1145/3219819.3226070
https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/285baacbdf8fda1de94b19282acd23e2-Abstract.html
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1145/3620665.3640366
https://doi.org/10.1109/SP46214.2022.9833677
https://doi.org/10.1109/SP46214.2022.9833677
http://github.com/google/jax
http://github.com/google/jax

Towards Efficient and Scalable Training of Differentially Private Deep Learning

Systems 35: Annual Conference on Neural Infor-
mation Processing Systems 2022, NeurIPS 2022,
New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/
paper_files/paper/2022/hash/
fa5617c176e76fee83f3f9947fdf9f3f-
Abstract-Conference.html.

Bu, Z., Wang, Y., Zha, S., and Karypis, G. Differentially
private optimization on large model at small cost. In
Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato,
S., and Scarlett, J. (eds.), International Conference on
Machine Learning, ICML 2023, 23-29 July 2023, Hon-
olulu, Hawaii, USA, volume 202 of Proceedings of Ma-
chine Learning Research, pp. 3192–3218. PMLR, 2023.
URL https://proceedings.mlr.press/v202/
bu23a.html.

Canonne, C. L., Kamath, G., and Steinke, T. The
discrete gaussian for differential privacy. In
Larochelle, H., Ranzato, M., Hadsell, R., Balcan,
M., and Lin, H. (eds.), Advances in Neural Infor-
mation Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020,
NeurIPS 2020, December 6-12, 2020, virtual, 2020.
URL https://proceedings.neurips.cc/
paper/2020/hash/
b53b3a3d6ab90ce0268229151c9bde11-
Abstract.html.

Carlini, N., Tramèr, F., Wallace, E., Jagielski, M., Herbert-
Voss, A., Lee, K., Roberts, A., Brown, T. B., Song, D.,
Erlingsson, Ú., Oprea, A., and Raffel, C. Extracting
training data from large language models. In Bailey,
M. and Greenstadt, R. (eds.), 30th USENIX Security
Symposium, USENIX Security 2021, August 11-13, 2021,
pp. 2633–2650. USENIX Association, 2021. URL
https://www.usenix.org/conference/
usenixsecurity21/presentation/
carlini-extracting.

Chua, L., Ghazi, B., Kamath, P., Kumar, R., Manurangsi,
P., Sinha, A., and Zhang, C. How private is DP-SGD?
ArXiv preprint, abs/2403.17673, 2024. URL https:
//arxiv.org/abs/2403.17673.

Cormode, G., Jha, S., Kulkarni, T., Li, N., Srivas-
tava, D., and Wang, T. Privacy at scale: Local dif-
ferential privacy in practice. In Das, G., Jermaine,
C. M., and Bernstein, P. A. (eds.), Proceedings of
the 2018 International Conference on Management of
Data, SIGMOD Conference 2018, Houston, TX, USA,
June 10-15, 2018, pp. 1655–1658. ACM, 2018. doi:
10.1145/3183713.3197390. URL https://doi.org/
10.1145/3183713.3197390.

De, S., Berrada, L., Hayes, J., Smith, S. L., and Balle,
B. Unlocking high-accuracy differentially private
image classification through scale. ArXiv preprint,
abs/2204.13650, 2022. URL https://arxiv.org/
abs/2204.13650.

DeepMind, Babuschkin, I., Baumli, K., Bell, A., Bhupati-
raju, S., Bruce, J., Buchlovsky, P., Budden, D., Cai, T.,
Clark, A., Danihelka, I., Dedieu, A., Fantacci, C., God-
win, J., Jones, C., Hemsley, R., Hennigan, T., Hessel,
M., Hou, S., Kapturowski, S., Keck, T., Kemaev, I.,
King, M., Kunesch, M., Martens, L., Merzic, H., Miku-
lik, V., Norman, T., Papamakarios, G., Quan, J., Ring,
R., Ruiz, F., Sanchez, A., Sartran, L., Schneider, R.,
Sezener, E., Spencer, S., Srinivasan, S., Stanojević, M.,
Stokowiec, W., Wang, L., Zhou, G., and Viola, F. The
DeepMind JAX Ecosystem. http://github.com/
google-deepmind, 2020.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Min-
derer, M., Heigold, G., Gelly, S., Uszkoreit, J., and
Houlsby, N. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In 9th Interna-
tional Conference on Learning Representations, ICLR
2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. URL https://openreview.net/
forum?id=YicbFdNTTy.

Dwork, C., McSherry, F., Nissim, K., and Smith, A. D. Cal-
ibrating noise to sensitivity in private data analysis. In
Halevi, S. and Rabin, T. (eds.), Theory of Cryptography,
Third Theory of Cryptography Conference, TCC 2006,
New York, NY, USA, March 4-7, 2006, Proceedings, vol-
ume 3876 of Lecture Notes in Computer Science, pp. 265–
284. Springer, 2006. doi: 10.1007/11681878 14. URL
https://doi.org/10.1007/11681878_14.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., Wang, L., and Chen, W. Lora: Low-rank
adaptation of large language models. In The Tenth
International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net, 2022. URL https://openreview.net/
forum?id=nZeVKeeFYf9.

Kharya, P. TensorFloat-32 in the A100 GPU Ac-
celerates AI Training, HPC up to 20x. https:
//blogs.nvidia.com/blog/tensorfloat-
32-precision-format/, 2020.

Kolesnikov, A., Beyer, L., Zhai, X., Puigcerver, J., Yung,
J., Gelly, S., and Houlsby, N. Big transfer (BiT): Gen-
eral visual representation learning. In Computer Vi-
sion – ECCV 2020: 16th European Conference, Glas-
gow, UK, August 23-28, 2020, Proceedings, Part V,

10

http://papers.nips.cc/paper_files/paper/2022/hash/fa5617c176e76fee83f3f9947fdf9f3f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/fa5617c176e76fee83f3f9947fdf9f3f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/fa5617c176e76fee83f3f9947fdf9f3f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/fa5617c176e76fee83f3f9947fdf9f3f-Abstract-Conference.html
https://proceedings.mlr.press/v202/bu23a.html
https://proceedings.mlr.press/v202/bu23a.html
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/b53b3a3d6ab90ce0268229151c9bde11-Abstract.html
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://www.usenix.org/conference/usenixsecurity21/presentation/carlini-extracting
https://arxiv.org/abs/2403.17673
https://arxiv.org/abs/2403.17673
https://doi.org/10.1145/3183713.3197390
https://doi.org/10.1145/3183713.3197390
https://arxiv.org/abs/2204.13650
https://arxiv.org/abs/2204.13650
http://github.com/google-deepmind
http://github.com/google-deepmind
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://doi.org/10.1007/11681878_14
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9
https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/tensorfloat-32-precision-format/

Towards Efficient and Scalable Training of Differentially Private Deep Learning

pp. 491–507, Berlin, Heidelberg, 2020. Springer-Verlag.
ISBN 978-3-030-58557-0. doi: 10.1007/978-3-030-
58558-7 29. URL https://doi.org/10.1007/
978-3-030-58558-7_29.

Krizhevsky, A. and Hinton, G. Learning multi-
ple layers of features from tiny images. Techni-
cal Report 0, University of Toronto, Toronto, On-
tario, 2009. URL https://www.cs.toronto.edu/

˜kriz/learning-features-2009-TR.pdf.

Li, X., Tramèr, F., Liang, P., and Hashimoto, T. Large lan-
guage models can be strong differentially private learn-
ers. In The Tenth International Conference on Learn-
ing Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022. URL https:
//openreview.net/forum?id=bVuP3ltATMz.

Mironov, I. On significance of the least significant bits for
differential privacy. In Yu, T., Danezis, G., and Gligor,
V. D. (eds.), Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12,
pp. 650–661, New York, NY, USA, 2012. Association
for Computing Machinery. ISBN 9781450316514. doi:
10.1145/2382196.2382264. URL https://doi.org/
10.1145/2382196.2382264.

NVIDIA. Train with mixed precision. https:
//docs.nvidia.com/deeplearning/
performance/mixed-precision-training/
index.html, 2023.

Perez, E., Strub, F., de Vries, H., Dumoulin, V., and
Courville, A. C. Film: Visual reasoning with a
general conditioning layer. In McIlraith, S. A. and
Weinberger, K. Q. (eds.), Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intelli-
gence (EAAI-18), New Orleans, Louisiana, USA, Febru-
ary 2-7, 2018, pp. 3942–3951. AAAI Press, 2018.
URL https://www.aaai.org/ocs/index.php/
AAAI/AAAI18/paper/view/16528.

Ponomareva, N., Vassilvitskii, S., Xu, Z., McMahan, B.,
Kurakin, A., and Zhang, C. How to dp-fy ML: A practical
tutorial to machine learning with differential privacy. In
Singh, A. K., Sun, Y., Akoglu, L., Gunopulos, D., Yan, X.,
Kumar, R., Ozcan, F., and Ye, J. (eds.), Proceedings of the
29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD 2023, Long Beach, CA, USA,
August 6-10, 2023, pp. 5823–5824. ACM, 2023. doi:
10.1145/3580305.3599561. URL https://doi.org/
10.1145/3580305.3599561.

Räisä, O., Jälkö, J., and Honkela, A. Subsampling is
not magic: Why large batch sizes work for differen-
tially private stochastic optimisation. ArXiv preprint,
abs/2402.03990, 2024. URL https://arxiv.org/
abs/2402.03990.

Rajkumar, A. and Agarwal, S. A differentially private
stochastic gradient descent algorithm for multiparty clas-
sification. In Lawrence, N. D. and Girolami, M. A. (eds.),
Proceedings of the Fifteenth International Conference on
Artificial Intelligence and Statistics, AISTATS 2012, La
Palma, Canary Islands, Spain, April 21-23, 2012, vol-
ume 22 of JMLR Proceedings, pp. 933–941. JMLR.org,
2012. URL http://proceedings.mlr.press/
v22/rajkumar12.html.

Song, S., Chaudhuri, K., and Sarwate, A. D. Stochas-
tic gradient descent with differentially private updates.
In IEEE Global Conference on Signal and Informa-
tion Processing, GlobalSIP 2013, Austin, TX, USA, De-
cember 3-5, 2013, pp. 245–248. IEEE, 2013. doi:
10.1109/GlobalSIP.2013.6736861. URL https://
doi.org/10.1109/GlobalSIP.2013.6736861.

Steiner, A., Kolesnikov, A., Zhai, X., Wightman, R.,
Uszkoreit, J., and Beyer, L. How to train your ViT?
Data, augmentation, and regularization in vision trans-
formers. Transactions on Machine Learning Research,
2022, 2022. URL https://openreview.net/
forum?id=4nPswr1KcP.

Subramani, P., Vadivelu, N., and Kamath, G. Enabling fast
differentially private SGD via just-in-time compilation
and vectorization. In Ranzato, M., Beygelzimer,
A., Dauphin, Y. N., Liang, P., and Vaughan, J. W.
(eds.), Advances in Neural Information Processing
Systems 34: Annual Conference on Neural Information
Processing Systems 2021, NeurIPS 2021, Decem-
ber 6-14, 2021, virtual, pp. 26409–26421, 2021.
URL https://proceedings.neurips.cc/
paper/2021/hash/
ddf9029977a61241841edeae15e9b53f-
Abstract.html.

Tobaben, M., Shysheya, A., Bronskill, J., Paverd, A.,
Tople, S., Béguelin, S. Z., Turner, R. E., and Honkela,
A. On the efficacy of differentially private few-shot
image classification. Transactions on Machine Learn-
ing Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=hFsr59Imzm.

Wightman, R. PyTorch image models. https:
//github.com/huggingface/pytorch-
image-models, 2019.

Yousefpour, A., Shilov, I., Sablayrolles, A., Testuggine, D.,
Prasad, K., Malek, M., Nguyen, J., Ghosh, S., Bharad-

11

https://doi.org/10.1007/978-3-030-58558-7_29
https://doi.org/10.1007/978-3-030-58558-7_29
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://openreview.net/forum?id=bVuP3ltATMz
https://openreview.net/forum?id=bVuP3ltATMz
https://doi.org/10.1145/2382196.2382264
https://doi.org/10.1145/2382196.2382264
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16528
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16528
https://doi.org/10.1145/3580305.3599561
https://doi.org/10.1145/3580305.3599561
https://arxiv.org/abs/2402.03990
https://arxiv.org/abs/2402.03990
http://proceedings.mlr.press/v22/rajkumar12.html
http://proceedings.mlr.press/v22/rajkumar12.html
https://doi.org/10.1109/GlobalSIP.2013.6736861
https://doi.org/10.1109/GlobalSIP.2013.6736861
https://openreview.net/forum?id=4nPswr1KcP
https://openreview.net/forum?id=4nPswr1KcP
https://proceedings.neurips.cc/paper/2021/hash/ddf9029977a61241841edeae15e9b53f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ddf9029977a61241841edeae15e9b53f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ddf9029977a61241841edeae15e9b53f-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/ddf9029977a61241841edeae15e9b53f-Abstract.html
https://openreview.net/forum?id=hFsr59Imzm
https://openreview.net/forum?id=hFsr59Imzm
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models
https://github.com/huggingface/pytorch-image-models

Towards Efficient and Scalable Training of Differentially Private Deep Learning

waj, A., Zhao, J., Cormode, G., and Mironov, I. Opa-
cus: User-friendly differential privacy library in Py-
Torch. ArXiv preprint, abs/2109.12298, 2021. URL
https://arxiv.org/abs/2109.12298.

Yu, D., Naik, S., Backurs, A., Gopi, S., Inan, H. A., Ka-
math, G., Kulkarni, J., Lee, Y. T., Manoel, A., Wutschitz,
L., Yekhanin, S., and Zhang, H. Differentially pri-
vate fine-tuning of language models. In The Tenth In-
ternational Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net, 2022. URL https://openreview.net/
forum?id=Q42f0dfjECO.

12

https://arxiv.org/abs/2109.12298
https://openreview.net/forum?id=Q42f0dfjECO
https://openreview.net/forum?id=Q42f0dfjECO

Towards Efficient and Scalable Training of Differentially Private Deep Learning

A. Training Details
A.1. Framework and implementation compatibility

Table A1 shows the corresponding support between implementations and clipping methods. We also include general
frameworks, like PyTorch and JAX. Opacus, PrivateVision, and FastDP are PyTorch based implementations.

Table A1. Clipping optimization and the library or framework that implements it.

CLIPPING MODE PYTORCH OPACUS PRIVATEVISION FASTDP JAX

NON-PRIVATE
√ √

PER-EXAMPLE
√ √

GHOST CLIPPING
√ √

MIX GHOST
√ √

MIX OPT
√

A.2. Models

• Vision Transformer (ViT) (Dosovitskiy et al., 2021). Taken from https://huggingface.co/timm/vit_
base_patch16_224.augreg2_in21k_ft_in1k

• Big Transfer BiT-ResNet (Kolesnikov et al., 2020). Taken from https://github.com/google-research/
big_transfer

A.3. Hyperparameters

We use the hyperparameters obtained on request from Tobaben et al. (2023). The hyperparameters for both models are in
Table A2. We do not optimize them futher, as model utility is not the main objective in this work.

Table A2. Hyperparameters used for each model architecture.

MODEL TRAINABLE PARAMETERS EPSILON DELTA LEARNING RATE MAX GRAD NORM

VIT ALL 8 2.04e−5 0.0003 4.63
BIT-RESNET ALL 8 2.04e−5 0.00098 6.53

B. Additional Results
This section provides additional figures that supplement the findings in the main text.

Table A3. Average processing time for each section of the algorithm. We are comparing the non-private and Opacus per-example
clipping on A100, with the same physical batch size. It is calculated with NVIDIA Nsight Systems. All the measurements include the
syncronization time, which is needed for the profiling, but adds additional time that is not part of the normal execution. All values are in
milliseconds.

SECTION PYTORCH NON-PRIVATE OPACUS PER-EXAMPLE

FORWARD 81.14 101.53
BACKWARD 163.85 681.48
CLIP AND ACCUMULATION 0 26.76
OPTIMIZER STEP 38.17 99.65

13

https://huggingface.co/timm/vit_base_patch16_224.augreg2_in21k_ft_in1k
https://huggingface.co/timm/vit_base_patch16_224.augreg2_in21k_ft_in1k
https://github.com/google-research/big_transfer
https://github.com/google-research/big_transfer

Towards Efficient and Scalable Training of Differentially Private Deep Learning

1 2 4 8 16 32 64 128 256

Physical Batch Size

16

18

20

22

24

26

28

30

32

C
om

pi
la

tio
n

tim
e

(s
)

non-private/jax
private/jax

Figure A.1. Compilation time in seconds as a function of the physical batch size for JAX experiments for the ViT Base model on A100.
The estimator is the median and the error bars are the 95% confidence interval using bootstrapping.

1 2 4 8 16 32 64 128 256 512

Physical Batch

0

100

200

300

400

500

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

non-private
O-flat
non-private tf32
O-flat tf32

(a)

1 2 4

GPU

0

250

500

750

1000

1250

1500

1750

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

non-private tf32
non-private
O-flat tf32
O-flat

(b)

Figure A.2. Combining distributed training with the use of lower precision TF32 for the ViT base model on A100. (a) Throughput for one
GPU; (b) Throughput for multiple GPUs.

1 2 4 8 16 24

GPU

0

500

1000

1500

2000

2500

3000

3500

T
hr

ou
gh

pu
t(

sa
m

pl
es

/s
)

non-private
O-flat

Figure A.3. Comparison between the throughput by scaling the number of GPUs with more nodes for the non-private and Opacus training
with the ViT base model on A100 GPUs. The dashed line is the ideal growth if it were linear.

14

Towards Efficient and Scalable Training of Differentially Private Deep Learning

1 2 4 8 16 32 64 80

#GPUs

100

101

Sp
ee

du
p

non-private
O-flat
Amdahl’s Law 100
Amdahl’s Law 99.5
Amdahl’s Law 98.9
Amdahl’s Law 95

Figure A.4. Comparison between the throughput in our experiments and the theoretical Amdahl’s Law. Both axis are in log scale. In the
distributed setting, private training achieves a 99.5 % of parallel processing, with a 50 times speed up than single processing.

Table A4. Mean accuracy for CIFAR-100 test set for each clipping mode for the ViT models on A100 after training for two epochs. All
use the ViT hyperparameters from Table A2. While this work does not focus on the model’s utility, having their results still allows us to
compare them. Using optimal hyperparameters for DP causes low utility in non-private training. The use of TF32 as a lower precision
mode does not affect the model’s utility. We are still analyzing why JAX accuracy is significantly higher in both cases, even when it uses
sub-optimal hyperparameters.

CLIPPING MODE TEST ACCURACY

NON-PRIVATE 0.2285
NON-PRIVATE/TF32 0.2301
NON-PRIVATE JAX 0.8273

O-FLAT OPACUS 0.7096
O-FLAT OPACUS/TF32 0.7094
O-FLAT JAX 0.8009
PV-GHOST 0.6978
BK-GHOST 0.7341

15

