
Would I Lie To You? Inference Time Alignment of
Language Models using Direct Preference Heads

Avelina Asada Hadji-Kyriacou
Department of Computer Science

University of St Andrews
College Gate, St Andrews, KY16 9AJ

lhk3@st-andrews.ac.uk

Ognjen Arandjelović
Department of Computer Science

University of St Andrews
College Gate, St Andrews, KY16 9AJ

oa7@st-andrews.ac.uk

Abstract

Pre-trained Language Models (LMs) exhibit strong zero-shot and in-context learn-
ing capabilities; however, their behaviors are often difficult to control. By utilizing
Reinforcement Learning from Human Feedback (RLHF), it is possible to fine-tune
unsupervised LMs to follow instructions and produce outputs that reflect human
preferences. Despite its benefits, RLHF has been shown to potentially harm a lan-
guage model’s reasoning capabilities and introduce artifacts such as hallucinations
where the model may fabricate facts. To address this issue we introduce Direct
Preference Heads (DPH), a fine-tuning framework that enables LMs to learn human
preference signals through an auxiliary reward head without directly affecting the
output distribution of the language modeling head. We perform a theoretical analy-
sis of our objective function and find strong ties to Conservative Direct Preference
Optimization (cDPO). Finally we evaluate our models on GLUE, RACE, and the
GPT4All evaluation suite and demonstrate that our method produces models which
achieve higher scores than those fine-tuned with Supervised Fine-Tuning (SFT) or
Direct Preference Optimization (DPO) alone.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) is a technique that can be used to align an
agent — such as a Large Language Model (LLM) — to human preferences and lead to more truthful,
more helpful, less harmful and more preferred outputs [29]. Proximal Policy Optimization (PPO)
[36] and Direct Preference Optimization (DPO) [31] are two such alignment techniques which have
been extensively used to improve the quality of LLM outputs, leading to instruction following agents
or chat assistants which are quickly approaching human-baselines in a variety of knowledge and
reasoning tasks [4, 10, 42, 18, 24, 35, 11].

However, recent research has shown that RLHF may actually hurt an LLM’s reasoning abilities rather
than improve it. One study [5] discovered that performing alignment during the Supervised Fine-
Tuning (SFT) stage of training may lead to worse performance on reasoning benchmarks, and another
[3] that SFT alone outperforms RLHF for smaller models with the benefits of RLHF only emerging
for models with more than 1 billion parameters. Ouyang et al. [29] also report an increased tendency
for RLHF models to make up information in closed domain tasks (“hallucination”) compared to
models trained with SFT alone.

To combat the the risk of RLHF compromising the abilities of an LLM in favour of producing
preferable outputs we introduce Direct Preference Heads (DPH), a novel feature based approach
that optimises a reward score produced by the LLM rather than optimising the logits produced by
language modelling head. DPH can be used in combination with (or without) existing alignment

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

techniques to allow language models to self-evaluate outputs sampled at inference time and select the
highest scoring candidate.

We evaluate the performance of DPH using an efficient 551M parameter LM on a variety of com-
monsense reasoning and Natural Language Understanding (NLU) tasks. All code used to train our
models is available on GitHub1 and we release our model weights on Hugging Face2.

2 Prior Approaches

Prior approaches to language model alignment involve directly optimizing the logits produced by
the language modelling head to increase the likelihood of producing preferable responses while
decreasing the likelihood of undesirable responses.

2.1 Reinforcement Learning from Human Feedback (RLHF)

Reinforcement Learning from Human Feedback seeks to learn a reward model from human feedback
on completions generated by a language model which can be used to align an LM with human
preferences. A typical RLHF pipeline consists of 3 steps: (1) supervised fine-tuning, (2) preference
sampling and reward modelling, and (3) RL fine-tuning.

Supervised Fine-Tuning The first step of a standard RLHF pipeline is fine-tuning a pre-trained LM
on high quality data for downstream tasks to obtain a model πSFT.

Reward Modelling Next, the SFT model is prompted with input tokens x to produce completions
y. These answers are then rated by human labellers which rate the answers based on one or more
criteria. A reward model rϕ(x, y) is then trained to estimate the scores assigned by human labellers
using maximum likelihood estimation.

RL Fine-Tuning During the RL phase the learned reward function is used to provide feedback to
the language model using the following optimization problem

max
πθ

Ex∼D,y∼πθ(y|x) [rϕ(x, y)]− βDKL [πθ(y|x)||πref(y|x)] , (1)

where β controls the deviation from the base reference policy πref, which is typically initialized from
πSFT. Due to the non-differentiable nature of language generation this objective must be optimized
using a reinforcement learning algorithm such as PPO [36].

2.2 Direct Preference Optimization (DPO)

Direct Preference Optimization was introduced as a reparametrization of RLHF which eliminates
both the sampling stage and the reward modelling stages and reformulates alignment procedure as
a loss function which can be optimized directly on a dataset of pairs of preferred and dispreferred
completions to given prompts. This allows DPO to stably and efficiently converge on an optimal
policy using what is effectively a classification loss over positive and negative pairs.

Given a dataset {(x, yw, yl)} where x is the prompt and yw, yl are the preferred and dispreferred
completions, we introduce the following loss function:

LDPO(x, yw, yl) = − log σ

(
β log

πθ(yw|x)
πref(yw|x)

− β log
πθ(yl|x)
πref(yl|x)

)
, (2)

where πθ(y∗|x) and πref(y∗|x) are the probabilities of completions y∗ for prompt x given by the
policy model and reference models respectively, and the β parameter controls the deviation from the
reference policy.

There also exists an augmentation of DPO namely Conservative DPO (cDPO) [26] which is designed
to be more robust to noisy labels through the introduction of label smoothing parameter ϵ. The
objective function for cDPO is given by:

LcDPO(x, yw, yl) = (1− ϵ)LDPO(x, yw, yl) + ϵLDPO(x, yl, yw). (3)
1
https://github.com/Avelina9X/direct-preference-heads

2
https://huggingface.co/collections/Avelina/direct-preference-heads-preprint-6612d8a6fa3843352943fd43

2

https://github.com/Avelina9X/direct-preference-heads
https://huggingface.co/collections/Avelina/direct-preference-heads-preprint-6612d8a6fa3843352943fd43
https://github.com/Avelina9X/direct-preference-heads
https://huggingface.co/collections/Avelina/direct-preference-heads-preprint-6612d8a6fa3843352943fd43

3 Direct Preference Heads

The hypothesis underlying the Direct Preference Optimization framework of Rafailov et al. [31] is
that a “language model is secretly a reward model” thereby making the purpose of Direct Preference
Heads to exploit this and extract explicit reward signals without the need of an additional reward
model.

3.1 Reward Head

To obtain the rewards from a sequence x; y three components are required: an aggregated hidden
state h which is conditioned on the intermediate representations of the language model, a pooling
function f which transforms the hidden state, and a learnable vector wdph with the same dimension
as the output of f . We then compute the reward r as follows:

r = f(h) · wdph. (4)

To obtain the hidden state we take the output of the last transformer layer for the final token of
the sequence, and we experiment with three choices of f : (1) the identity mapping following the
convention established by OpenAI’s GPT for sequence classification [30], (2) a learnable affine
projection with tanh nonlinearity following BERT’s pooling function [21], and (3) an inverted
bottleneck FFN with SwiGLU activation mirroring the FFN blocks used within the transformer
backbone followed by tanh nonlinearity [37].

3.2 Objective Function

We formulate two novel objective functions for our method: a separable objective which maximises
positive rewards and minimises negative rewards, and a contrastive objective which maximises the
margin between positive and negative rewards. The loss landscapes are illustrated by Figure 1 in the
appendix.

3.2.1 Separable DPH

The Separable DPH loss function given by (5) is a function of the preferred and dispreferred rewards
rw, rl, and the label smoothing parameter 0 ≤ ϵ ≤ 0.5 which controls the reward margin:

LSepDPH(rw, rl) = − [(1− ϵ) log σ(rw) + ϵ log σ(−rw)]−[ϵ log σ(rl) + (1− ϵ) log σ(−rl)] . (5)

Theorem 1. For all ϵ ∈ (0, 0.5] the objective function LSepDPH is convex and will optimize the policy
πθ such that the preferred rewards rw produced by the preference head converge towards log 1−ϵ

ϵ
and the dispreferred rewards rl converge to log ϵ

1−ϵ .

This can be proven by observing the first and second partial derivatives of the loss function with
respect to the rewards. The first partial derivative is equal to zero at the points rw = log 1−ϵ

ϵ and
rl = log ϵ

1−ϵ respectively, and the second partial derivative is strictly positive for all values of rw, rl.
A full proof is included in Appendix A.1.

3.2.2 Contrastive DPH

Like Separable DPH, the loss function for Contrastive DPH given by (6) is function of the preferred
and dispreferred rewards rw, rl and the label smoothing parameter 0 ≤ ϵ ≤ 0.5. This version of the
loss function optimizes the relative margin between the rewards rather than optimizing the absolute
positive and negative rewards as in Separable DPH.

LConDPH(rw, rl) = −(1− ϵ) log σ(rw − rl)− ϵ log σ(rl − rw). (6)

Theorem 2. For all ϵ ∈ (0, 0.5] the objective function LConDPH is convex and will optimize the policy
πθ such that the difference between preferred rewards rw and dispreferred rewards rl produced by
the preference head will converge to a fixed margin, given by r∆ = rw − rl = log 1−ϵ

ϵ .

This can be proven by reparametrising the loss function such that r∆ = rw − rl and then by
considering the first and second partial derivatives with respect to this reward margin. It can be
observed that the first partial derivative is equal to zero when r∆ = log 1−ϵ

ϵ , and the second partial
derivative is strictly positive for all values of r∆. A full proof is included in Appendix A.2.

3

3.2.3 Relation to cDPO

The properties of both Contrastive DPH and Separable DPH show a strong relationship with Conser-
vative DPO: SepDPH will converge to optimal fixed reward margins above zero for rw and below
zero for rl; ConDPH will converge to optimal fixed reward margins between rw and rl, and cDPO
will converge to a fixed delta from the reference model [26]. Like Conservative DPO, this makes both
Separable DPH and Contrastive DPH robust to preference label noise and makes training more stable
than naive maximum likelihood estimation without label-smoothing.

3.3 Novelty over Traditional Reward Modelling

Although similar to the reward modelling phase of an RLHF pipeline, DPH has some distinct
differences which set it apart. DPH does not require an SFT sampling and human labelling stage
meaning it can take advantage of pre-constructed preference datasets such as those used for DPO.
Typical RLHF also requires multiple models — a reward model, a reference model and a policy
model — while DPH requires only a single model to produce both responses and rewards.

Unlike other RLHF pipelines such as PPO [36], the rewards produced by DPH are not used for RL
fine-tuning; instead, the DPH rewards are to be used to prune candidate generations sampled from the
LM at inference time to select the candidate which aligns most with human preferences. This makes
DPH an excellent choice for small language models which are (1) more lightweight — and therefore
can be efficiently used to generate multiple samples — and, (2) are more prone to degradation when
aligned using typical RL techniques [5, 3].

4 Experimental Setup and Data

4.1 Datasets

We make use of a variety of datasets for fine-tuning and evaluation which are outlined below. The
specific prompt templates used for fine-tuning and evaluation are described in Appendix C.

Natural Language Understanding (NLU) For general NLU we make use of the standard GLUE
benchmark [40]. The overall score for GLUE is computed by the macro-average of unweighted
metric averages for all 9 tasks, however we also include a secondary score which does not included
the ‘problematic’ WNLI task following the evaluation used for BERT [21]. We opted to omit WNLI
during fine-tuning due to the low sample size.

Commonsense Reasoning In accordance with the GPT4All [1] evaluation suite, we use the
following datasets to evaluate commonsense reasoning abilities: HellaSwag [42], OpenBookQA
[25], WinoGrande [35], ARC [10], BoolQ [9], and PIQA [7].

Reading Comprehension To evaluate reading comprehension abilities we use the RACE dataset
[22], a multiple-choice task which requires reasoning over provided passages.

Instruction Following We include the Alpaca [38], OpenOrca [23], and UltraFeedback [12]
datasets to train our models for instruction following. We make use of OpenOrca and a cleaned
version of Alpaca for SFT, and binarized versions of OpenOrca and UltraFeedback for alignment.

Auxiliary Datasets To provide additional training data for SFT we include the MMLU [18], SQuAD
V2 [33, 32], Tiny Stories [15], CNN-Dailymail [27] and CoQA [34] training splits. For alignment
we only include MMLU and SQuAD V2.

4.2 Prompts and Sampling

Prompts We make use of the ChatML prompt templating scheme [28] with handcrafted system,
user and assistant prompts specific to each task. During fine-tuning we mask out the loss for all
tokens of the prompt and condition the model on the content of assistant messages including the
final <|im_end|> token. During evaluation we select the highest scoring answer using the average
log-probabilities of the tokens in the final assistant message, or compute the reward scores on the
final <|im_end|> token when evaluating with DPH.

4

https://huggingface.co/datasets/yahma/alpaca-cleaned
https://huggingface.co/datasets/Intel/orca_dpo_pairs
https://huggingface.co/datasets/argilla/ultrafeedback-binarized-preferences-cleaned

SFT Sampling When sampling from the datasets for SFT we randomly shuffle each dataset and
uniformly interleave samples from all tasks in the mix. To control the weighting of samples from each
task we fill the context window with n consecutive samples from the same task before sampling from
a different task, where n is chosen to be 5 in our experiments. To maximise compute utilisation and
minimize unused portions of the context window we make us of Transformer-XL [13] style training
with a context window size of 2048 tokens and a recurrent memory size of 2048 tokens.

DPH Sampling When sampling from datasets for DPH alignment we switch from the Transformer-
XL style pipeline to typical SFT training, opting to only include single samples in the context window
padded to a fixed maximum length. As some of the datasets we use for DPH are intended for
SFT rather than alignment (namely GLUE, GPT4All, RACE, MMLU and SQuAD) we synthesise
preference pairs where the ‘correct’ answer is used as the preferred completion and we uniformly
sample an ‘incorrect’ answer from the available choices for the dispreferred completion. This is
trivial for most datasets, however we use a special process for the SQuAD V2 dataset; for answerable
questions we use “unanswerable” as the dispreferred completion, and for unanswerable questions we
use SpaCy to randomly sample a noun span from the context to use as the dispreferred completion.

4.3 Regularization

The hidden states h used to compute the reward scores are likely sub-optimal for computing rewards
when initialising πθ from πSFT. As such, it may be desirable to fine-tune some or all parameters in the
language model to learn better reward signals. This necessitates the use of regularization to prevent
degradation of the models generative capabilities while learning to predict rewards.

Prior Regularization Typical parameter regularization strategies such as weight decay make the
assumption that parameters θ follow a zero-mean Normal distribution p(θ) ∼ N (0, 1

β I) leading

to an auxiliary loss term β
2 ||θ||

2
2. However, when performing transfer-learning or fine-tuning on a

pre-trained model this assumption can be harmful and aid in catastrophic forgetting of the model’s
previously learnt abilities.

An alternative regularization scheme is Prior Regularization [8, 14, 17] which instead makes the
assumption that the fine-tuned parameters are normally distributed around the original parameters
θref, that is θ ∼ N (θref,

1
β I), leading to the auxiliary loss term β

2 ||θ − θref||22.

We employ Prior Regularization to limit the divergence of πθ from πSFT while still facilitating the
learning of improved hidden state representations for the Direct Preference Head. Pseudocode for
optimizer based decoupled prior regularization is included in Appendix B.1.

cDPO Regularization Rather than directly employing a KL divergence penalty similar to that used
in (1) we find that it is possible — and even beneficial — to use Conservative DPO as a means of
limiting the divergence of the policy model to a fixed delta from the reference model, and ‘nudging’
the model towards generating more preferable outputs which increases the chance of generating a
better candidate completion at inference time with fewer sampling steps.

4.4 Training Pipeline

We progressively fine-tune the models in 3 stages: vocab extension, supervised fine-tuning, and DPH
alignment. The details of the pre-trained model are included in Appendix D.1.

Vocab Extension Since our model was pre-trained without a chat structure it is necessary to train the
embeddings for additional <|im_start|> and <|im_end|> tokens: we freeze all non-embedding
parameters and use the same datasets as SFT. We fine-tune the embeddings for 4096 steps with a
batch size of 128, a max LR of 6e-5 which warms up over 200 steps followed by cosine decay down
to zero, and clip the global gradient norm to 1.

Supervised Fine-Tuning After vocab extension we move onto the SFT step which conditions
the model for NLU tasks and instruction following using the sampling and loss masking method
described in Section 4.2. We fine-tune the model for 6144 steps with a batch size of 128, a max LR
of 3e-5 which warms up over 200 steps followed by cosine decay down to zero, prior-regularization
applied to all non-embedding parameters with coefficient 0.5, and clip the global gradient norm to 1.

5

DPH Alignment Using the sampling method described in section 4.2 we jointly learn DPH rewards
and perform cDPO alignment. The goal here is to gently push the model towards producing preferable
outputs without compromising the model’s reasoning abilities, and the priority is to attain the highest
validation metrics from the DPH rewards. This requires balancing the two objectives, and as such we
introduce weighting parameters α1, α2 to our final joint objective in (7) where LDPH is either LsepDPH
or LconDPH. We find α1, α2 = 1 to be a good balance between DPO and DPH in our experiments.

Ljoint(x, yw, yl, rw, rl) = α1LcDPO(x, yw, yl) + α2LDPH(rw, rl) (7)

We align the model for 23,040 steps with a batch size of 64 pairs, a max LR of 3e-6 which warms up
over 200 steps followed by cosine decay down to 3e-7, prior-regularization applied to all parameters
with coefficient 0.5, and clip the global gradient norm to 1. Following the optimal DPO parameters
for OpenHermes-7b-2.5 [20] we use β = 0.6 and chose cDPO ϵ = 0.25 and DPH ϵ = 0.1 for
regularisation. Additionally, we apply dropout with p = 0.1 to the outputs of the pooler.

4.5 Compute Resources

All fine-tuning was performed using an NVIDIA A100 SXM4 80GB GPU on a compute cluster,
with jobs allocated 24 cores and 160GB of memory. Each checkpoint is saved in FP16 format which
consumes about 1.1GB of storage; and the datasets require minimal storage space.

For vocab extension we train for 4096 steps with an average of 7.99 seconds of compute per step
which translates to about 9 hours. For supervised fine-tuning we train for 6144 steps with an average
of 9.26 seconds of compute per step which translates to about 16 hours. For DPH alignment we train
for 23040 steps with an average of 7.21 seconds of compute per step which translates to about 46
hours. The DPH ablations with our models use about 140 hours of compute, and the Qwen ablations
use about 60 hours of compute. In total, we used approximately 270 hours of A100 compute to train
our models and collect the results included in our paper. We used additional compute for preliminary
tests and fixing bugs for silently failing experiments although this wasn’t tracked.

5 Results

5.1 Evaluation Methodology

As described in Section 4 we use NLU, commonsense reasoning and reading comprehension tasks to
measure model capabilities, while the instruction following and auxiliary tasks are used to provide
additional training signals. For the NLU tasks we evaluate on the test set of GLUE, providing average
scores both with and without WNLI. For reading comprehension we evaluate on the RACE test set.
For commonsense reasoning we follow the LM Evaluation Harness [16] implementations of these
tasks, evaluating on the test sets of ARC and OpenBookQA and the validation sets of HellaSwag,
WinoGrande, BoolQ and PIQA, which brings our evaluations in line with other models.

For vocab extension and SFT checkpoints we obtain model predictions from the completions with
the highest scoring log-probabilities. For the DPH checkpoints we report metrics for both log-
probability predictions (OursDPO) and predictions chosen from the DPH rewards (OursDPH). We use
the SwiGLU-based pooler with the separable objective function for all our experiments as we found
this combination to perform best overall as shown in Section 5.2.1.

5.1.1 Natural Language Understanding

Our results for NLU performance are included in Table 1. Note that the results for GPT-1 [30] and
BERT [21] are from sub-task specific fine-tunes.

It is unsurprising that our model does not outperform BERTLarge even though it has more parameters;
this is likely due to BERT’s task specific fine-tunes in comparison to our model which was jointly
trained on several tasks. Despite this our instruction following DPH model achieves a 2.2% higher
average GLUE score compared to task-specific GPT-1 fine-tunes and manages to attain the highest
overall accuracy and macro-average on RTE and STS-B respectively.

6

Table 1: Comparison of GLUE performance. Dashes represent unpublished results. Note that the
Spearman correlation for OursVocab is misleading and caused by predicting “0” for all test samples.

System Tokens Params MNLI
m/mm

QQP
F1/Acc

QNLI
Acc

SST-2
Acc

CoLA
M Corr

STS-B
P/S Corr

MRPC
F1/Acc

RTE
Acc

Score
w/o WNLI

WNLI
Acc

Score
w/ WNLI

OursVocab 100B 551M 34.1/34.7 28.2/42.9 50.2 58.0 0.9 -0.9/99.2 69.4/57.4 50.9 42.8 34.9 41.9
OursSFT 100B 551M 73.6/75.0 59.1/82.8 81.4 90.8 22.7 80.6/92.4 80.6/75.2 71.4 72.0 38.4 68.2
OursDPO 100B 551M 78.8/80.2 65.6/85.6 87.0 93.3 36.5 83.7/94.4 83.9/79.1 73.9 77.0 37.7 72.7
OursDPH 100B +19M 80.0/80.6 65.8/85.3 87.5 94.0 43.8 85.3/93.0 85.5/80.2 75.3 78.6 46.6 75.0
GPT-1 32B 117M 82.1/81.4 70.3/ - 87.4 91.3 45.4 82.0/80.0 82.3/ - 56.0 - - 72.8
BERTBase 128B 110M 84.6/83.4 71.2/ - 90.5 93.5 52.1 - /85.8 88.9/ - 66.4 - - 78.3
BERTLarge 128B 340M 86.7/85.9 72.1/89.3 92.7 94.9 60.5 87.6/86.5 89.3/85.4 70.1 82.5 65.1 80.5

5.1.2 Commonsense Reasoning

Our results for commonsense reasoning are summarized in Table 2. Note the Pythia [6] and TinyLlama
[43] models were not fine-tuned for any specific task but received significantly more pre-training and
have much higher parameter counts.

Table 2: Comparison of accuracy on the GPT4All test suite.
System Tokens Params HellaSwag OpenBookQA WinoGrande ARC-Challenge ARC-Easy BoolQ PIQA Average
OursVocab 100B 551M 36.93 28.60 51.14 26.19 25.67 61.25 65.39 42.17
OursSFT 100B 551M 42.59 45.20 55.01 35.84 47.01 76.24 69.37 53.04
OursDPO 100B 551M 44.83 52.40 57.38 39.76 53.54 79.08 72.36 57.05
OursDPH 100B +19M 59.36 57.40 59.12 41.21 56.82 78.81 68.77 60.21
Pythia-1.0B 300B 1.1B 47.16 31.40 53.43 27.05 48.99 60.83 69.21 48.30
Pythia-1.4B 300B 1.5B 52.01 33.20 57.38 28.50 54.00 63.27 70.95 51.33
TinyLlama 3T 1.1B 59.20 36.00 59.12 30.12 55.25 57.83 73.29 52.99

With SFT alone we are able to attain comparable performance to TinyLlama using half as many
parameters, and when applying DPH alignment we achieve a 7.2% increase over the TinyLlama
average score and the highest accuracy in 5 of the 7 tasks.

5.1.3 Reading Comprehension

Our results for reading comprehension are included in Table 3. The results for GPT-1 were taken
from a RACE specific fine-tune, and the results for LLaMA [39] were zero-shot without fine-tuning.

Table 3: Comparison of accuracy on the RACE test set.
System Tokens Params RACE-middle RACE-high Weighted Average
OursVocab 100B 551M 26.0 24.6 25.0
OursSFT 100B 551M 56.1 52.9 53.8
OursDPO 100B 551M 65.9 59.8 61.6
OursDPH 100B +19M 66.9 60.6 62.5
GPT-1 32B 117M 62.9 57.4 59.0
LLaMA 7B 1T 6.7B 61.1 46.9 51.0
LLaMA 13B 1T 13B 61.6 47.2 51.4

Our SFT baseline achieves a higher average accuracy on RACE compared with the non fine-tuned
LLaMa models but cannot match the accuracy of the RACE specific GPT-1 fine-tune; however after
alignment our model attains a 3.5% higher average over GPT-1 while still maintaining excellent
scores on other tasks using the same model weights.

5.2 Ablations

5.2.1 Pooling Head Function and Objective Choice

We ablate over the three pooling head and two objective function choices. We perform alignment for
7680 steps and report the validation scores in Table 4.

For both separable and contrastive objectives the SwiGLU pooler performs best on the three bench-
marks, and for both GLUE and RACE the separable objective performs best overall. However
during these experiments we discovered that contrastive DPH was achieving higher scores than

7

Table 4: Comparison of DPH validation scores for different objective and pooler combinations.
Objective Pooling Function Add. Params GLUE GPT4All RACE HellaSwag WinoGrande PIQA
Separable Identity 1536 75.06 56.86 56.54 46.63 53.20 65.29
Separable BERT Style 2.4M 75.13 55.86 56.62 45.84 52.17 64.69
Separable SwiGLU FFN 19M 75.19 57.14 57.60 48.72 53.35 64.96

Contrastive Identity 1536 74.99 57.66 54.09 50.93 53.83 66.87
Contrastive BERT Style 2.4M 73.91 57.07 55.89 49.98 54.62 67.30
Contrastive SwiGLU FFN 19M 74.04 58.28 55.95 51.38 55.80 67.57

separable DPH for specifically the sentence completion style tasks like HellaSwag, WinoGrande and
PIQA. We hypothesise this is caused by situations where multiple completions to a given prompt
may be plausible even though there is only one ‘gold’ answer, and as such the model benefits from
maximising the relative reward margin with the contrastive objective rather than optimising absolute
rewards with the separable objective.

5.2.2 Task Specific Heads

By taking the DPH checkpoint and freezing all backbone parameters it is possible to learn task specific
heads and pooling functions for different downstream tasks at the cost of only 19M parameters per
task. We train new heads for the three task groups and plot the confusion matrix of each head for
each task average in Table 5. We further fine-tune for an additional 7680 steps on each task group
using the same training setup as DPH alignment.

Table 5: Confusion matrix comparing validation scores for alternate heads.
Benchmark Baseline Head GLUE Head GPT4All Head RACE Head
GLUE 76.12 76.36 76.20 76.13
GPT4All 60.19 60.13 60.29 60.24
RACE 64.17 64.05 64.48 64.43

Unsurprisingly the GLUE and GPT4All heads achieve the highest scores for GLUE and GPT4All
benchmarks respectively, however the GPT4All head manages to outperform the RACE head on
the RACE benchmark. We hypothesise this may be due to the inclusion of multiple choice QA and
reading comprehension tasks in GPT4All which may prove better training signals than the RACE
training data alone.

5.2.3 Frozen Model Ablations

Our final experiments involve exploring the behaviour of DPH when applied to frozen language
models without further fine-tuning of the original model weights. We experiment using the Qwen
1.5 model family [2] and train only the pooler and reward head weights, reporting results in Table 6.
We use an identical training setup to DPH alignment but disable dropout due to the low number of
trainable parameters.

Because the model backbone and embeddings remain frozen during alignment the ‘Log’ scores
represent the model’s pre-trained (or fine-tuned) capabilities. When observing the difference between
the Log scores of the 0.5B Qwen models it is evident that the fine-tuning and alignment used to
transform the pre-trained model into the “chat” model resulted in degraded performance across the
three tasks. This phenomenon is less apparent for the 1.8B models, and actually results in higher
GLUE scores for the “chat” variant of the model. This further confirms the hypothesis that alignment
can harm the reasoning capabilities of smaller language models.

Table 6: Comparison of validation scores calculated using the log probabilities from the vanilla model
checkpoints and reward scores produced by the trained Direct Preference Heads.

System GLUE Log GPT4All Log RACE Log GLUE DPH GPT4All DPH RACE DPH
Qwen1.5-0.5B 41.94 53.11 51.38 45.69 48.52 41.21
Qwen1.5-0.5B-Chat 39.82 49.70 50.32 48.99 49.72 46.90
Qwen1.5-1.8B 47.03 62.53 68.14 59.18 51.61 46.56
Qwen1.5-1.8B-Chat 53.85 61.69 67.47 62.38 54.47 53.33

8

For all models DPH is consistently able to attain higher scores on the GLUE tasks compared to the
log probabilities produced by the language modelling head, but the opposite is observed for RACE
which suggests the hidden states produced by the frozen backbone do not contain rich enough features
for long range modelling tasks such as reading comprehension. We also observe the “chat” variants
produce higher task scores for DPH than the non-chat variants which we hypothesise is a result of the
authors’ fine-tuning with the Chat-ML format which lead to the models’ greater understanding of
message structure and therefore improved hidden state aggregation for the final end message token.

When we combine these findings with those presented in Section 5.2.2, it becomes evident that the
pooling function and reward head exhibit slower convergence when the model backbone is frozen.
This observation further supports our hypothesis in Section 4.3, indicating that the hidden states
generated by the models are are initially sub-optimal and that further fine-tuning is necessary to
optimize these hidden states to achieve the best features for DPH.

6 Discussion

6.1 Future Work

As shown in the results section, DPH is capable of learning to assign higher rewards to preferred
outputs and lower rewards to dispreferred outputs which implies the pooling function learns rich
features with respect to prompt-completion pairs. We believe that it would be possible to also extract
additional information from the output of the pooling function to detect finer grained signals such as
helpfulness, humour, creativity, toxic content, etc. Such an approach has been explored by ArmoRM
[41] which was first trained with several reward heads to reflect different types of preference scores
and then a gating system to chose the best combination of heads based on the context. We believe
this technique can be integrated into the DPH process to facilitate context-dependent re-ranking.

6.2 Limitations

The main benefit of DPH being its ability to perform alignment without directly effecting the model’s
output distribution is also its main limitation: unlike other alignment techniques which can help
prevent the model generating harmful outputs, DPH is only capable of detecting harmful outputs.
Although we do include DPO alignment in our experiments to reduce the likelihood of harmful
outputs, DPH does not require such model alignment to function, which shifts the responsibility of
rejecting harmful outputs to the end user or service provider.

From a computational perspective, DPH reformulates alignment as a re-ranking process, which
necessitates sampling multiple candidate responses during inference. This approach requires more
computational resources and memory compared to generating a single response. However, modern
hardware used for LLM inference is often underutilized by smaller language models when generating
singular responses in an autoregressive manner. By leveraging this unused compute capacity, we can
generate multiple candidate responses in parallel when applying DPH to smaller models, without
significantly increasing latency.

6.3 Conclusion

In this paper we introduced Direct Preference Heads, a novel form of language model alignment
which is performed at inference time to prune candidate completions for a given prompt. Unlike other
alignment techniques which coerce the model into generating human preference aligned outputs,
DPH instead produces reward scores for candidate outputs without affecting the actual generation
process and therefore avoids the issue of RLHF leading to degraded performance when applied to
smaller language models. We formulated two loss functions for DPH and find strong connections
to Conservative DPO, implying that DPH is robust to label noise and can be tuned to a specific
confidence margin. Finally, we evaluated our methods on a number of NLU, commonsense reasoning
and reading Comprehension tasks and found that DPH is able to consistently outperform both our
SFT baseline and multiple publicly available language model checkpoints of varying size and training
volume.

9

Broader Impacts

As with all language modelling systems we cannot guarantee all responses produced by our models
are factually correct nor can we guarantee that they are safe and free from harmful content. Our work
focuses on creating a system that helps filter out incorrect and harmful messages by scoring candidate
outputs, but as with all alignment techniques our models may be susceptible to so-called ‘jailbreaks’
which can coerce the model into incorrectly assigning a higher score to less desirable content. To
maximise safety DPH should be implemented alongside other safety guardrails such as Llama Guard
[19] when used for publicly facing chat systems, and we intend for our provided model checkpoints
to be used for reproduction of results and further research in the field of alignment.

References
[1] Yuvanesh Anand, Zach Nussbaum, Brandon Duderstadt, Benjamin Schmidt, and Andriy Mulyar. GPT4All:

Training an assistant-style chatbot with large scale data distillation from GPT-3.5-Turbo. https://
github.com/nomic-ai/gpt4all, 2023.

[2] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han,
Fei Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin, Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren, Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Shengguang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang, Jian
Yang, Shusheng Yang, Yang Yao, Bowen Yu, Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingxuan Zhang,
Yichang Zhang, Zhenru Zhang, Chang Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang Zhu. Qwen
technical report. arXiv preprint arXiv:2309.16609, 2023.

[3] Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma, Dawn Drain,
Stanislav Fort, Deep Ganguli, Tom Henighan, et al. Training a helpful and harmless assistant with
reinforcement learning from human feedback. arXiv preprint arXiv:2204.05862, 2022.

[4] Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani,
Omar Sanseviero, Lewis Tunstall, and Thomas Wolf. Open LLM leaderboard. https://huggingface.
co/spaces/HuggingFaceH4/open_llm_leaderboard, 2023.

[5] Aibek Bekbayev, Sungbae Chun, Yerzat Dulat, and James Yamazaki. The poison of alignment. arXiv
preprint arXiv:2308.13449, 2023.

[6] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al. Pythia:
A suite for analyzing large language models across training and scaling. In Proceedings of the International
Conference on Machine Learning, pages 2397–2430, 2023.

[7] Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. PIQA: reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI Conference on Artificial Intelligence, pages
7432–7439, 2020.

[8] Ciprian Chelba and Alex Acero. Adaptation of maximum entropy capitalizer: little data can help a lot.
Computer Speech & Language, 20(4):382–399, 2006.

[9] Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: exploring the surprising difficulty of natural yes/no questions. In Proceedings of the
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, pages 2924–2936, 2019.

[10] Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. Think you have solved question answering? Try ARC, the AI2 reasoning challenge. arXiv preprint
arXiv:1803.05457, 2018.

[11] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

[12] Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. Ultrafeedback: boosting language models with high-quality feedback. arXiv preprint
arXiv:2310.01377, 2023.

[13] Zihang Dai. Transformer-XL: attentive language models beyond a fixed-length context. arXiv preprint
arXiv:1901.02860, 2019.

10

https://github.com/nomic-ai/gpt4all
https://github.com/nomic-ai/gpt4all
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard
https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard

[14] Hal Daumé III. Frustratingly easy domain adaptation. In Proceedings of the Annual Meeting of the
Association of Computational Linguistics, pages 256–263, 2007.

[15] Ronen Eldan and Yuanzhi Li. Tinystories: how small can language models be and still speak coherent
english? arXiv preprint arXiv:2305.07759, 2023.

[16] Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric Tang, Anish
Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation.
https://doi.org/10.5281/zenodo.5371628, 2021.

[17] Maarten Grachten and Carlos Eduardo Cancino Chacón. Strategies for conceptual change in convolutional
neural networks. arXiv preprint arXiv:1711.01634, 2017.

[18] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In International Conference on Learning
Representations, 2021.

[19] Hakan Inan, Kartikeya Upasani, Jianfeng Chi, Rashi Rungta, Krithika Iyer, Yuning Mao, Michael Tontchev,
Qing Hu, Brian Fuller, Davide Testuggine, et al. LLaMA guard: LLM-based input-output safeguard for
human-AI conversations. arXiv preprint arXiv:2312.06674, 2023.

[20] kashif, edbeeching, lewtun, lvwerra, and osanseviero. Preference tuning llms with direct preference op-
timization methods. Github. https://github.com/huggingface/blog/blob/main/pref-tuning.
md, 2024.

[21] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina Toutanova. BERT: pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the Annual Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 4171–4186, 2019.

[22] Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: large-scale ReAding
comprehension dataset from examinations. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 785–794, 2017.

[23] Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and "Teknium". Openorca:
An open dataset of gpt augmented flan reasoning traces. https://https://huggingface.co/
Open-Orca/OpenOrca, 2023.

[24] Stephanie Lin, Jacob Hilton, and Owain Evans. TruthfulQA: measuring how models mimic human
falsehoods. In Annual Meeting of the Association for Computational Linguistics, pages 3214–3252, 2022.

[25] Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct electricity?
A new dataset for open book question answering. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, pages 2381–2391, 2018.

[26] Eric Mitchell. A note on DPO with noisy preferences & relationship to IPO. https://ericmitchell.
ai/cdpo.pdf, 2023.

[27] Ramesh Nallapati, Bowen Zhou, Caglar Gulcehre, Bing Xiang, et al. Abstractive text summarization using
sequence-to-sequence rnns and beyond. arXiv preprint arXiv:1602.06023, 2016.

[28] OpenAI. Chat markup language. https://github.com/openai/openai-python/blob/
f7ccce126325ea35b6e5224ab954652c97a74896/chatml.md.

[29] Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow instructions with
human feedback. Advances in Neural Information Processing Systems, 35:27730–27744, 2022.

[30] Alec Radford and Karthik Narasimhan. Improving language understanding by generative pre-
training. https://cdn.openai.com/research-covers/language-unsupervised/language_
understanding_paper.pdf, 2018.

[31] Rafael Rafailov, Archit Sharma, Eric Mitchell, Christopher D Manning, Stefano Ermon, and Chelsea Finn.
Direct preference optimization: your language model is secretly a reward model. Advances in Neural
Information Processing Systems, 36:53728–53741, 2024.

[32] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions for
machine comprehension of text. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 2383–2392, 2016.

11

https://doi.org/10.5281/zenodo.5371628
https://github.com/huggingface/blog/blob/main/pref-tuning.md
https://github.com/huggingface/blog/blob/main/pref-tuning.md
https://https://huggingface.co/Open-Orca/OpenOrca
https://https://huggingface.co/Open-Orca/OpenOrca
https://ericmitchell.ai/cdpo.pdf
https://ericmitchell.ai/cdpo.pdf
https://github.com/openai/openai-python/blob/f7ccce126325ea35b6e5224ab954652c97a74896/chatml.md
https://github.com/openai/openai-python/blob/f7ccce126325ea35b6e5224ab954652c97a74896/chatml.md
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

[33] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: unanswerable questions for
SQuAD. In Proceedings of the Annual Meeting of the Association for Computational Linguistics, pages
784–789, 2018.

[34] Siva Reddy, Danqi Chen, and Christopher D Manning. CoQA: A conversational question answering
challenge. Transactions of the Association for Computational Linguistics, 7:249–266, 2019.

[35] Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adversarial
winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

[36] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[37] Noam Shazeer. GLU variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

[38] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy Liang,
and Tatsunori B Hashimoto. Stanford Alpaca: an instruction-following LLaMA model. URL https://github.
com/tatsu-lab/stanford_alpaca, 1(9), 2023.

[39] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[40] Alex Wang. Glue: A multi-task benchmark and analysis platform for natural language understanding.
arXiv preprint arXiv:1804.07461, 2018.

[41] Haoxiang Wang, Wei Xiong, Tengyang Xie, Han Zhao, and Tong Zhang. Interpretable preferences via
multi-objective reward modeling and mixture-of-experts. arXiv preprint arXiv:2406.12845, 2024.

[42] Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine
really finish your sentence? In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, pages 4791–4800, 2019.

[43] Peiyuan Zhang, Guangtao Zeng, Tianduo Wang, and Wei Lu. Tinyllama: An open-source small language
model. arXiv preprint arXiv:2401.02385, 2024.

[44] Liu Ziyin, Zhikang T Wang, and Masahito Ueda. LaProp: Separating momentum and adaptivity in Adam.
arXiv preprint arXiv:2002.04839, 2020.

12

A Appendix - Theory

A.1 Full Proof of Theorem 1

We can prove Theorem 1 by examining the partial gradients with respect to the rewards.

∂
∂rw
LSepDPH(rw, rl) = ϵ− 1

erw + 1
(8a)

∂
∂rl
LSepDPH(rw, rl) =

1

e−rl + 1
− ϵ (8b)

From equations 8a and 8b we find that the partials gradients are both equal to zero at the points
rw = log 1−ϵ

ϵ and rl = log ϵ
1−ϵ respectively. It is also interesting to note that log 1−ϵ

ϵ + log ϵ
1−ϵ = 0

which implies the positive and negative rewards will converge to an equal distance from 0.

∂2

∂r2w
LSepDPH(rw, rl) =

erw

(erw + 1)2
(9a)

∂2

∂r2l
LSepDPH(rw, rl) =

erl

(erl + 1)2
(9b)

If we derive the second derivatives for the rewards, as shown in equations 9a and 9b, we find that
they are both strictly positive for all values of rw and rl which implies that Separable DPH is convex
with respect to the rewards.

A.2 Full Proof of Theorem 2

We can prove Theorem 2 by examining the partial gradients with respect to the rewards.

∂
∂rw
LConDPH(rw, rl) = ϵ− erl

erl + erw
(10a)

∂
∂rl
LConDPH(rw, rl) =

erl

erl + erw
− ϵ (10b)

From equations 10a and 10b we can see a symmetry emerge, where the partial gradients with respect
to the preferred logits are equal and opposite to the partial gradients with respect to the dispreferred
logits. If we reparameterise the loss function such that r∆ = rw − rl we can derive the following
partial derivative

∂
∂r∆
LConDPH(rw, rl) = ϵ− 1

er∆ + 1
(11)

which is equal to zero for ϵ ∈ (0, 0.5] at the point r∆ = log 1−ϵ
ϵ .

If we derive the second derivative of the Contrastive DPH objective function with respect to the
reward margin r∆ we obtain the following formula

∂2

∂r2∆
LConDPH(rw, rl) =

er∆

(er∆ + 1)2
(12)

which is strictly positive for all values of r∆, and – with respect to the reward logits – frames
Contrastive DPH as a convex optimization problem with the additional properties of guaranteed
convergence to a fixed margin for all ϵ ∈ (0, 0.5].

A.3 Illustrative Loss Landscape

We provide an illustration of the loss landscapes to give a visual comparison of how our objective
functions ‘pull’ rewards towards the optimal margin bounds.

13

(a) Loss landscape of Separable DPH (b) Loss landscape of Contrastive DPH

Figure 1: The loss landscapes of the DPH loss functions. The red and green points represent the
rewards assigned to preferred and dispreferred answers, the vertical lines represent the direction and
magnitude of reward gradients, and the blue area represents the optimal margin parameterised by ϵ.

B Appendix - Pseudocode

B.1 Decoupled Prior Regularization

Rather than optimizing the auxiliary loss term β
2 ||θ−θref||22 we can follow the procedure of decoupled

weight decay and implicitly include prior regularization as a step within the optimizer update function.
The pseudocode for this is included below:

Algorithm 1 Decoupled Prior Regularization Update Function

λ← learning rate
β ← regularization coefficient
θ, θref ← current, initial parameters

θ ← θ − βλ(θ − θref) ▷ Prior regularization step
θ ← optimizer update step ▷ Normal optimizer update

14

C Appendix - Data

C.1 Dataset Mixes

C.2 Data Licences

Dataset License
GLUE - CoLA No License
GLUE - MNLI Multiple (OANC, CC BY-SA 3.0)
GLUE - MRPC MSR-SSLA
GLUE - QNLI CC BY-SA 4.0
GLUE - QQP Other
GLUE - RTE No License
GLUE - SST-2 No License
GLUE - STS-B Multiple (CC BY-SA 3.0, CC BY-SA 4.0)
GLUE - WNLI CC BY 4.0
HellaSwag MIT License
OpenBookQA Apache-2.0
WinoGrande CC-BY
ARC CC BY-SA 4.0
BoolQ CC BY-SA 3.0
PIQA AFL-3.0
RACE Other
SQuAD V2 CC BY-SA 4.0
MMLU MIT License
Tiny Stories CDLA-Sharing-1.0
CNN-Dailymail Apache-2.0
CoQA Multiple (CC BY-SA 4.0, MSR-LA, Other, Apache)
Alpaca Cleaned CC-BY-4.0
OpenOrca MIT License
OpenOrca Binarized Apache-2.0
UltraFeedback Binarized MIT License

Note that three of the GLUE tasks have no license specified on their homepages nor within their
publications: CoLA claims their dataset falls under “fair use,” no concrete license can be found for
RTE nor its pre-cursors, and SST-2 does not specify a license.

C.3 Prompt Templates

For brevity, we only include the prompt templates of the tasks we use for evaluation. All other prompt
templates are listed within the code repository.

C.3.1 GLUE

GLUE - CoLA
System User Assistant
Below is an instruction that describes a task.
Write a response that appropriately completes
the request using the provided answer options.

Given the following sentence, answer the
question with "yes" or "no".

Sentence: {{sentence}}

Question: Does this sentence make sense?

Answer:

{{no | yes}}

15

https://www.quora.com/about/tos
https://www.cs.cmu.edu/~glai1/data/race/
https://www.cs.cmu.edu/~glai1/data/race/

GLUE - MNLI
System User Assistant
Below is an instruction that describes a task.
Write a response that appropriately completes
the request using the provided answer options.

Given a premise statement and a hypothesis
statment, respond with "True" if the premise
entails the hypothesis, respond with "False"
if the premise contradicts the hypothesis, or
respond with "Neither" if the statements are
neurtral.

Premise: {{premise}}

Hypothesis: {{hypothesis}}

Question: True, False or Neither?

Answer:

{{True | Neither | False}}

GLUE - MRPC
System User Assistant
Below is an instruction that describes a task.
Write a response that appropriately completes
the request using the provided answer options.

Given the following sentences, answer the
question with "yes" or "no".

Sentence 1: {{sentence1}}

Sentence 2: {{sentence2}}

Question: Do both sentences mean the
same thing?

Answer:

{{no | yes}}

GLUE - QNLI
System User Assistant
Below is an instruction that describes a task.
Write a response that appropriately completes
the request using the provided answer options.

Given the following sentences, answer the
question with "yes" or "no".

Sentence 1: {{question}}

Sentence 2: {{sentence}}

Question: Does Sentence 2 correctly an-
swer Sentence 1?

Answer:

{{yes | no}}

GLUE - QQP
System User Assistant
Below is an instruction that describes a task.
Write a response that appropriately completes
the request using the provided answer options.

Given the following sentences, answer the
question with "yes" or "no".

Sentence 1: {{question1}}

Sentence 2: {{question2}}

Question: Do both sentences ask the
same question?

Answer:

{{no | yes}}

GLUE - RTE
System User Assistant
Below is an instruction that describes a task.
Write a response that appropriately completes
the request using the provided answer options.

Given the following sentences, answer the
question with "yes" or "no".

Sentence 1: {{sentence1}}

Sentence 2: {{sentence2}}

Question: Do both sentences mean the
same thing?

Answer:

{{yes | no}}

16

GLUE - SST-2
System User Assistant
Below is an instruction that describes a task.
Write a response that appropriately completes
the request using the provided answer options.

Given the following sentence, answer the
question with "positive" or "negative".

Sentence: {{sentence}}

Question: Is this sentence positive or
negative?

Answer:

{{negative | positive}}

GLUE - STS-B
System User Assistant
Below is an instruction that describes a task.
Write a response that appropriately completes
the request using the provided answer options.

Given the following sentences, answer the
question with a number between 0 and 5.

Sentence 1: {{sentence1}}

Sentence 2: {{sentence2}}

Question: On a scale of 0 to 5 how simi-
lar are Sentence 1 and Sentence 2?

Answer:

{{0 | 1 | 2 | 3 | 4 | 5}}

GLUE - WNLI
System User Assistant
Below is an instruction that describes a task.
Write a response that appropriately completes
the request using the provided answer options.

Given the following sentences, answer the
question with "yes" or "no".

Sentence 1: {{sentence1}}

Sentence 2: {{sentence2}}

Question: Based on the information in
Sentence 1, can we concluded that Sentence 2
is true?

Answer:

{{no | yes}}

C.3.2 Commonsense Reasoning

HellaSwag
System User Assistant
Below is an instruction that describes a task.
Write a response that appropriately completes
the request.

Continue the following sentence:
"{{context}}"

{{ending}}

OpenBookQA
System User Assistant
Below is a question, paired with multiple
choices. Respond with the choice that correctly
answers the question.

Question: {{question_stem}}

Choices:
{{label[0]}}. {{choice[0]}}
{{label[1]}}. {{choice[1]}}
{{label[2]}}. {{choice[2]}}
{{label[3]}}. {{choice[3]}}

Answer:

{{label}}. {{choice}}

WinoGrande
System User Assistant
Below is an instruction that describes a task.
Write a response that appropriately completes
the request.

Continue the following sentence:
"{{sentence.prefix}}"

{{option}} {{sentence.suffix}}

17

ARC
System User Assistant
Below is a question, paired with multiple
choices. Respond with the choice that correctly
answers the question.

Question: {{question}}

Choices:
{{label[0]}}. {{choice[0]}}
. . .
{{label[n]}}. {{choice[n]}}

Answer:

{{label}}. {{choice}}

BoolQ
System User Assistant
Below is an instruction that describes a task.
Write a response that appropriately completes
the request using the provided answer options.

Given the following sentences, answer the
question with "yes" or "no".

Background: {{passage}}

Question: {{question}}

Answer:

{{no | yes}}

PIQA
System User Assistant
Below is an instruction that describes a task.
Write a response that appropriately completes
the request.

Write a solution to the following sentence:
"{{goal}}"

{{solution}}

C.3.3 Reading Comprehension

RACE
System User Assistant
Below is a question, paired with a background
context and multiple choices. Respond with the
choice that correctly answers the question.

Background: {{article}}

Question: {{question}}

Choices:
A. {{option[0]}}
B. {{option[1]}}
C. {{option[2]}}
D. {{option[3]}}

Answer:

{{A | B | C | D}}. {{option}}

18

D Appendix - Model Details

D.1 Pre-Trained Model

Our pre-trained model was developed in house for efficiency and takes advantage of techniques
such as RoPE, SwiGLU activations and Flash Attention. The model totals 551 Million parameters
(including embeddings).

We initialise the embeddings from OPT-125m and use embedding tying for the language modelling
head. Since our model dimension is 1536 while the embedding dimension is 768 the model contains
an up-projection as the first layer of the backbone and a down-projection for the final layer. There are
a total of 18 transformer blocks in the model backbone which use pre-layer norm in the attention
and FFN residuals. The attention blocks have 24 attention heads and we use RoPE with a base
frequency of 500,000 for positional embedding, and the FFN block uses SwiGLU activation with
an intermediate dimension of 4096. The context window of the model is 2048 tokens and the
Transformer XL recurrent memory contains 2048 tokens which allows the model to use a sliding
window size of up to 4096 tokens at inference without any degradation.

The model was trained for approximately 100 billion tokens on the first 24 shards of The Pile. Each
batch is constructed of 480 sequences of 2048 tokens each which are continuously sampled from the
datasets shards using queues for the Transformer XL style pre-training method.

We use the LaProp optimizer [44] with β1 = 0.9, β2 = 0.95, a max learning rate of 6e-4 which
warms up over 2000 steps and cosine decays down to 6e-5, LR-coupled weight decay of 0.1 and
global gradient clipping with a max norm of 1.

Each epoch of 256 steps takes 1 hour and 59 minutes on 4x RTX A4500 GPUs. For the full 398
epochs (or 101888 steps) this comes out to around 790 hours or just under 33 days of training time
(ignoring time for validation in-between epochs and at the end of training).

19

NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We conduct a variety of experiments and ablations which validate the claims
made in the abstract. We make use of standard benchmarks in the field of language models
and compare our method with results from smaller, comparably sized and larger models.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We include a limitations sub-section in our discussion, and discuss the fact
that - as with all probabilistic models - there is no guarantee the outputs will be correct. We
also discuss the fact that models aligned using our method are still capable of producing
unsafe outputs if the end user ignores the reward scores.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

20

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: All theorems are numbered and include a sketch in the paper’s main body with
full proofs included in the appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We extensively describe our methodology, utilised datasets, and hyperpa-
rameters. We will also be publicly releasing the code with instructions to reproduce the
experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

21

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open Access to Data and Code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: All data used for fine-tuning is publicly available on Hugging Face, the code
used to train the models and perform the experiments is publicly available, and an additional
repository containing the code and reproduction instructions will be made available.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Experimental details are described in the body of the paper, with further
elaboration in the appendix, and source code to reproduce the experiments will be made
publicly available.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not provide error bars or statistical significance measures because it
would be too computationally expensive to perform the entire training pipeline several times
to collect alternate model checkpoints. Additionally, the GLUE evaluation server imposes
rate limiting which adds further time constraints on repeating tests for alternate model
checkpoints.

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We describe the compute requirements for all experiments in the main body of
the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work conducted in this paper conforms to all aspects of the NeurIPS
Code of Ethics. All datasets used for fine-tuning and evaluation are permissively licensed
or fall under fair use. All code assets were created by the authors and all libraries used are
permissively licensed. No human subjects were involved in the creation of this paper. And
our work has minimal risks of misuse.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

23

https://neurips.cc/public/EthicsGuidelines

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We include a broader impacts section at the end of our paper and describe
potential pitfalls of using our work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Although we are publicly releasing our model checkpoints they have an
incredibly low risk of misuse as other significantly more capable and more accessible
models exist. Additionally, the Hugging Face checkpoints do not support ‘AutoModel’
loading, which means a level of technical knowledge is required to set the model up, making
it less accessible those outside of the ML research sphere.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for Existing Assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

24

Answer: [Yes]

Justification: All datasets used are explicitly cited (and web links are included for cases
where a ‘cleaned’ version of the cited dataset is used) in the main paper body, and the license
information is listed in the appendix. Some datasets do not have an explicit licence, but the
original authors claim they fall under fair use.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The source code is very well commented in its original repo, and a new repo
will be released containing further instructions specific to this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Neither crowdsourcing nor human subjects were involved in our work.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

25

paperswithcode.com/datasets

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

	Introduction
	Prior Approaches
	Reinforcement Learning from Human Feedback (RLHF)
	Direct Preference Optimization (DPO)

	Direct Preference Heads
	Reward Head
	Objective Function
	Separable DPH
	Contrastive DPH
	Relation to cDPO

	Novelty over Traditional Reward Modelling

	Experimental Setup and Data
	Datasets
	Prompts and Sampling
	Regularization
	Training Pipeline
	Compute Resources

	Results
	Evaluation Methodology
	Natural Language Understanding
	Commonsense Reasoning
	Reading Comprehension

	Ablations
	Pooling Head Function and Objective Choice
	Task Specific Heads
	Frozen Model Ablations

	Discussion
	Future Work
	Limitations
	Conclusion

	Appendix - Theory
	Full Proof of Theorem 1
	Full Proof of Theorem 2
	Illustrative Loss Landscape

	Appendix - Pseudocode
	Decoupled Prior Regularization

	Appendix - Data
	Dataset Mixes
	Data Licences
	Prompt Templates
	GLUE
	Commonsense Reasoning
	Reading Comprehension

	Appendix - Model Details
	Pre-Trained Model

