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1 Abstract

Recently, text-enhanced network
representation learning has achieved great
success by taking advantage of rich text

w N

4

5 information and network  structure
6 information. However, content-rich
7 network representation learning and
8 quantifying classification uncertainty are
9 challenging when it comes to integrating
10 complex structural dependencies and rich
1 content features at an evidence level. In this
12 paper, we propose an evidential graph
13 representation learning model (EGCN),
14 which can not only fuse network structure
15 and content information into a more
16 complete and powerful representation for
17 each node, but also assess the quality of
18 graph node features to improve
19 classification accuracy. To achieve better
20 fusion, we integrate the node’s features
21 representation into structure-aware
22 representation through a delivery operator.
23 Besides, to overcome the difficulty of
24 predicting node classification confidence,
25 we employ a novel module based on
26 Dirichlet distribution theory of evidence
27 and subject opinion learning to collect the
28 evidence of the class probabilities.
29 Experimental results on three real-world

networks show that our model can improve
both node classification accuracy and
robustness as compared to all baselines.
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.= 1 Introduction

s Content-rich networks are graphs with node
ss features and network structures widely applied in
3 academic citation networks, recommendation
a7 systems, etc. However, because of the complex
ss non-Euclidean graph structure, capturing structure
3 and feature information is a challenging task on
20 machine learning approaches.

21 Recently, research on analyzing networks with
22 deep learning has received widespread attention. In
23 particular, graph convolutional networks (GCNs)
22 (Defferrard et al., 2016; Kipf and Welling 2017),
ss which obtain node embeddings through the
s propagation and aggregation of the features on
27 network topology, have achieved great success.
22 While the success of GCNs and their variants, a key
29 issue with them is that the accuracy of multi-typed
so features classification varies greatly. To address
s1 this problem, (Yang et al., 2015) proposed text-
s2 associated DeepWalk (TADW), which
ss incorporates text features of vertices into network
s representation learning under the framework of
ss matrix factorization. But the model can only handle
ss the text attributes. (Cui et al., 2020) presented an
s7 adaptive graph encoder (AGE), a novel attributed
ss graph embedding framework which applied a
so carefully-designed Laplacian smoothing filter.
0 Nevertheless, all the above methods are designed
¢1 to handle the single-typed feature and the node
e features only serve as an initial solution of
s embeddings.

s« GCNs obtain node features from a local mixing
state of propagation by limiting the number of
s propagations to two or three layers. However, this
o7 will further make GCNs rely heavily on the local
homophily of topology, that is, neighborhoods
so should be similar, a very strong assumption in
0 many real-world text-rich networks. A lot of
71 methods are developed to handle the topological
limitations of GCNs. For example, several studies
attempted to utilize the self-supervised learning
72 methods (Zhu et al., 2020; You et al., 2020) which
s use several highly credible labels derived from
s GCNs to optimize the topological channels in the
77 following propagation of GCNs. These existing
s methods have achieved reasonable results at
7o handling the topological limitations of GCNs and
s0 thus improved the performance of GCNs. However,
s1 from the level of model architectures, an ideal way
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s> may be that the convolutions of features (on
a3 topology) and topology (on features) play together
s« in the same system. By jointly training the BERT
and GCN modules within Bert-GCN (Lin et al.,
2021), this model is able to leverage the advantages
of both worlds: large-scale pretraining which takes
the advantage of the massive amount of raw data
and transductive learning. However, the model was
trained with the BERT feature of node text and it
cannot utilize multi-typed features like term fre-
quency-inverse document frequency (TF-IDF) or
SimCSE(Gao et al., 2021).

To the best of our knowledge, no work has been
devoted to exploring both the multi-typed features
and the semantic graph relationships in an efficient
o7 way. In this paper, we develop a unified deep model
(EGCN) to capture both text-rich information and
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100 EGCN consists of three parts which focus on
preserving the information of multi-typed features,
102 network topologies, and node classification
confidence, respectively. The graph structure
information is mined by modeling the first-order
and second-order proximities between nodes; the
106 text features are processed with TF-IDF, BERT,
and SimCSE methods to capture the different
108 pattens. Also, our model combines different node
features at an evidence level, which produces a
stable and reasonable uncertainty estimation.
Figure 1 shows the illustration of our
implementation of EGCN. The main contributions
of this work are summarized as follows.

(1) We propose a unified deep model (EGCN) to
learn the embedding vector for each node of the
network by considering both multi-typed features
and the graph semantic relationships,
simultaneously.

(2) We develop a novel multi-typed features
classification method aiming to provide trusted and
interpretable decisions in an effective and efficient
way.

(3) We run extensive experiments which validate
the superior accuracy and robustness of our model
125 thanks to the promising uncertainty estimation and
126 multi-typed features integration strategy.
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2 Related Work

N

23 2.1 Enriching Graph Embeddings with
129 External Text
10 Graph  convolutional networks (GCN) s

connectionist models that fusion dependencies and

122 relations between graph nodes (Hamilton et al.,
133 2017; Keyulu et al.,, 2018). Besides structural
134 properties, nodes in a graph are often affiliated with
135 various contents, such as abstract or title text in the
135 academic citation network. Such networks are
137 called text-rich networks, and have been
133 extensively studied (Li et al., 2017; Zhang et al.,
130 2018; Zhou et al., 2018; Veli“ckovic” et al. 2019;
120 Meng et al. 2019). Their goal is to preserve not only
141 the network structure, but also the node attribute
142 proximity in learning representations. Recently,
123 much efforts have been made to gain insights from
144 attributed networks (Liao et al., 2018; Yang et al.,
15 2018; Li et al., 2017). Some approaches (Huang et
1 al., 2017; Xiao et al., 2017) simply take the label
147 iInformation into consideration, while others utilize
125 more detailed attribute information. The key point

topology structure features. The training process of 14 of attributed network embedding lies in sim-

150 ultaneously capturing node attributes, network
151 structure  and their relation-ship into hidden
152 representations. Our work is inspired by the work
152 of using graph neural networks to fusion node
15« features (Zhang et al., 2020). Existing works that
155 combine BERT and GNNs uses graph to model
156 relationships  between tokens within a single
157 document sample (Lu et al., 2020), which fall into
1ss the category of inductive learning. But different
150 from these works, we focus on combining, and
10 show that multi-typed features can significantly
161 benefit from uncertainty-based learning model.

.2 2.2 Uncertainty-based Learning

s The history of learning uncertainty-aware
164 predictors is concurrent with the advent of modern
165 Bayesian approaches to machine learning.
16 Bayesian neural networks (BNNs) (Neal et al.,
167 2012) endow deep models with uncertainty by
16s Teplacing the deterministic weight parameters with
160 distributions. Because BNNs need to consume a lot
170 of computing power when performing inference
171 calculations, a more stable and effective method,
172 MC-dropout (Gal et al., 2016), was proposed. The
173 inference calculation in this model is done by
174 dropout sampling from the training and test
175 weights.  Ensemble based methods (Lak-
176 shminarayanan et al., 2017) train and integrate
177 multiple deep networks and also achieve promising
17 performance. Instead of indirectly modeling
170 uncertainty  through net-work weights, the
100 algorithm (Sensoy et al.,, 2018) introduces the
181 subjective  logic theory to directly model
132 uncertainty without ensemble or Monte Carlo



sampling. Building upon RBF networks, the
distance between test samples and prototypes can
185 be used as the agency for deterministic uncertainty
(van Amersfoort et al., 2020). Benefiting from the
learned weights of different tasks with
homoscedastic un-certainty learning, (Kendall et
al.,, 2018) achieves impressive performance in
multi-task learning. (Han et al. 2021) utilized
multiple views to promote both classification relia-
192 bility and robustness by integrating evidence from
each view. Dempster-Shafer Evidence Theory is
about the theoretical method of the confidence
function, which directly models uncertainty. DST
allows beliefs from different sources to be
combined with various fusion operators to obtain a
new belief that considers all available evidence
(Jesang et al., 2012).
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3 EGCN Model

3.1

A text-rich network is a network G = {V, R, X},
where R is the set of relations. V is the set of nodes.
X is a matrix that encodes node attributes
information for n nodes. Given an attributed
network G and the set of adjacency matrices A, the
task of structure and features fusion with EGCN for
node classification is to learn the multi-type
features, and determine the confidence of each type
of feature for the node classification.
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211 3.2 GCN Module

212 The pre-training models can obtain the expression
213 of the semantic information of the text. In the
214 section, we will introduce how to use the GCN
21s module to propagate these representations
216 generated by the pre-training models. Once all the
217 multi-typed representations learned by BERT and
218 SIMCSE are integrated into GCN, then the output
210 feature of GCN will be able to accommodate for
220 two different kinds of information, i.e., data itself
221 and relationship. In particular, with the weight
222 matrix W, the representation learned by the {-th
223 layer of GCN, Z({), can be obtained by the
224 following convolutional operation:

1.1
225 VASES ¢ (D_EAD_EZ(K—l)W(f—l)) (1)

226 where A = A + I, ¢(.) is an activation function such

22728 ReLU. As can be seen from Eq. 1, the

226 representation Z(“V will propagate through the
1 1

2o normalized adjacency matrix D 24Dz to obtain
220 the new representation Z. Considering that the
231 representation learned by BERT or SimCSE, we
22> combine the two representations Z&D and H
233 together to get a more complete and powerful
23 representation as follows:

726D =1-ez2% Y +eH )

23 where € is a balance coefficient, H represents text
237 feature.
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Figure 1 Visual illustration of our implementation of EGCN. Text-rich network obtains the graph structure
information through GCN module, and at the same time, the text features of encoders such as BERT or SimCSE
are fused with GCN with Eq. 2. The text features such as TF-IDF, BERT and SimCSE and the features output by
the GCN module are mapped using Dirichlet distribution to calculate the confidence and uncertainty of each
feature through Uncertainty and the Theory of Evidence, combining them with Dempster - Shafer theory, and
obtain the confidence and classification uncertainty after all the features are combined.

20 Bayesian theory to subjective probabilities.
3.3 250 Subjective Logic (SL) formalizes DST’s notion of
The Dempster—Shafer Theory of Evidence (DST) zs: belief assignments over a frame of discernment as
is a theory on belief functions, was first proposed 252 a Dirichlet Distribution. Hence, we introduce a
by Dempster and is a generalization of the 2s: principle of evidential theory-based uncertainty

Uncertainty and the Theory of Evidence
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estimation technique which can provide more 2« In this paper, we design and train neural
accurate uncertainty and allow us to flexibly 2o networks to form multi-view opinions for the
integrate multi-typed features for trusted classification of a given sample i as a Dirichlet
classification decision making. More specifically, ** distribution - D(pjs), where pi is a simple
SL considers a frame of K mutually exclusive representing class assignment probabilities.

singletons (e.g., class labels) by providing a belief ,.; 3.4  Dempster’s Rule of Combination for
mass bx for each singleton k = 1, ..., K and ., Multi-typed features Classification
providing an overall uncertainty mass of u. These
K + 1 mass values are all non-negative and sum up
to one. Note that evidence ey refers to the metrics
collected from the multi-typed features to support
the classification in Figure 2.

2

29

®

so1 Having introduced evidence and uncertainty for
s> the single-feature case, we use the Dempster—
s0s Shafer theory of evidence to combine multi-typed
a0« features arriving at a degree of belief (represented
s0s by a mathematical object called the belief function)
u+tXie b =1 (3) 06 that focus on all the available evidence (see Figure
where u >0 and b, >0 fork=1,...,K. w07 2). Specifically, we combine V independent sets

A belief mass by, for a singleton k is computed ofprobabiKlity mass assignments {M"}}, where M"
using the evidence for the singleton. Let e;, > 0 be 30° = {{bk. .}k:u l}v}, b refers to the .conﬁdence
the evidence derived for the kth singleton, then the o probability, v is the feature type, k is the node

belief by, and the uncertainty u are computed as: ~ ** category, and u" is the uncertainty of the node
s12 classification for the feature v. The combined

K
by = e;k andu = < (4) ... calculation of confidence and uncertainty among
where S = SK_, (el + 1) =12 multiple types of features is as follows:
Eq. 4 actually describes the phenomenon where ;5 M=M'P Mm? @)

the more evidence observed for the k-th category,
the greater the probability assigned to the k-th class.
A belief mass assignment, i.e., subjective opinion,
corresponds to a Dirichlet distribution with =i b, = i(b,ﬁb,% + biu? + bfu'),u = iulu2 (8)
parameters ax = ex + 1. That is, a subjective opinion

can be derived easily from the parameters of the **

corresponding Dirichlet distribution using by = (ou 0 of conflict betwe;en the two mass sets, and the
~1)/S.  However, a Dirichlet distribution * scale factor 1-C is used for normalization.

a5 The more specific calculation rule can be
s17 formulated as follows:

where C = Y. bl-lbj2 is a measure of the amount

parametrized over evidence represents the density
of each such probability assignment; hence it
models second-order probabilities and uncertainty :»: The loss over a batch of training samples can be
(Han et al. 2021). The Dirichlet distribution is a 2« computed by summing the loss for each sample in
probability density function for possible values of ::s the batch. During training, the model mine patterns
the probability mass function p. It is characterized -2 in the node text and generate evidence for specific
by K parameters o= [a.,..., ox] and is given by s27 class labels based on these patterns to minimize the

s2s overall loss. For our model, given the evidence of
(5) =20 the i-th sample obtained through the evidence
0 otherwise 530 network, we can get the parameter o; (i.e., o = €' +
where Sk is the K-dimensional unit simplex, B(a) s:: 1) of the Dirichlet distribution and form the
is the K-dimensional multinomial beta function. 2> multinomial opinions D(pi|oi). we can treat D(pi|osi)

_ K _ 323 as a prior on the likelihood Mult(yi[p;) and obtain
Sc=p 1 i p=1and0<py . pe <1} (6) sa1 the nIe)gated logarithm of the margi(li/a|lpli)kelihood by

s3s integrating out the class probabilities

Lo (@) = [ |2, — yijlog(pij)] @H?ﬂ P;ij_ldpi =35 vy (¢(5i) - ¢(“ij)) 9)

where y(+) is the digamma function. a1 each sample generates more evidence than other

Eq. 9 is the integral of the cross-entropy loss s classes, however, it cannot guarantee that less
function on the simplex determined by o;. The ::: evidence will be generated for incorrect labels.
above loss function ensures that the correct label of z1« That is to say, in our model, we expect the evidence

222 3.5 Learning to Form Opinions

N
o

1 a;i—1
@ it forp € Sk

D(pla)={



a5 for incorrect labels to shrink to 0. To this end, the
a6 following KL divergence term is introduced:

KLID(p; | &) I D(p; | D]=

r(SR_, i) )
log (r(x) N, r@m)t
K

i(dik—u VCHETTDY
k=1

=1

(10)

ai}'

= where o i=yi + (1 — yi)@a is the adjusted parameter
as of the Dirichlet distribution which can avoid
a0 penalizing the evidence of the ground-truth class
a0 to 0, and I'(+) is the gamma function.

as1 Letus consider that a Dirichlet distribution with
a2 zero total evidence, i.e., S = K, corresponds to the
ss3 uniform  distribution and  indicates  total
351 uncertainty, i.e., u = 1. We achieve this by
as5 incorporating a Kullback-Leibler(KL) divergence

E Text-Rich Network

5

a5 term into our loss function that regularizes our
ss7 predictive  distribution by penalizing those
sss divergences from the "I do not know" state that do
35 not contribute to data fit. The loss with this
ss0 regularizing term reads:

sor L(a;) = Lyee (a;) + AKL[D(p; | @) | D(p; | 1)](11)

ss2 where A= min(1.0, t/10) € [0, 1] is the annealing
a3 coefficient, t is the index of the current training
ss2 epoch, D(pihi, . . ., hj) is the uniform Dirichlet
s6s distribution, to prevent the network from paying
sss too much attention to the KL divergence in the
s67 initial stage of training. To ensure that all views
ses can simultaneously form reasonable opinions and
a0 thus improve the overall opinion, we use a multi-
a70 task strategy with following overall loss function:

371 ‘Coverall = Iiv=1 [‘C(al) + Zgzl L(a}’)] (12)
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a73 Figure 2 Illustration of trusted multi-typed features classification. The evidence of each feature is obtained using
372 BERT, TF-IDF, SImCSE and GCN in Figure 1. The obtained evidence parameterizes the Dirichlet distribution to
375 induce the classification probability and uncertainty. The overall uncertainty and classification probability are
376 inferred by combining the beliefs of multiple views based on the DST. The combination rule and an example are

377 shown in EqQ.7 and Eq. 8, respectively.

ws 4 Experiments

a9 In this section, we run experiments on three real-
a0 world da-tasets: Cora, Citeseer and DBLP. We

ss1 compare EGCN to the following models: BERT ,

s (Devlin et al. 2018), SIimCSE (Gao et al. 2021),

sss GCN (Kipf et al. 2017), GAT (Velickovi¢ et al.
sea 2017), GraphSage (Hamilton et al. 2017), TADW
ass (' Yang et al. 2015), BertGCN (Lin et al. 2021) to
sss demonstrate the effectiveness of proposed model.

ss7 We also prove EGCN model can produce trusted o

ass classification decisions on different types of
ss0 attributed information.

.90 4.1  Datasets

301 Cora data is an open citation network data set,
302 containing 7 types of papers. The network contains
a03 2211 paper nodes and 5214 citation relationships.
30« Bach paper contains an average of 169 words, and
a5 the vocabulary of the entire data set contains a total

05 of 12619 words. The Citeseer data set consists of
s07 papers from 10 interdisciplinary research fields, it
a8 contains 4610 nodes and 5923 edges. The DBLP
s00 data set is a comprehensive data set covering 4
a00 types of papers, the network contains 13,404 nodes
o1 and 39861 edges.

Dataset Cora Citeseer DBLP
# Nodes 2211 4610 13404
# Edge 5214 5923 39861
# Text 169 10 10

# Classes 7 10 4

Table 1 Dataset statistics

a3 Table 1 illustrates the details of datasets used in
a04 our experiment. #Text denotes the average number
405 of words contained in each text node

w5 4.2 EXperiment Setups

207 For all methods using the BERT model, we use
203 BERT-base architecture with pre-trained weights
w0 from the original authors and adapted by



210 HuggingFace Transformers library3. We then fine-
a11 tune it using masked language model objective on
412 the three real-world datasets: Cora, Citeseer and
13 DBLP with a 1073 learning rate. We set the number
214 of layers to 2, And the hidden layer dimension is
u15 equal to 768, in order to be consistent with the
216 dimension of the graph structure data and the
217 BERT feature data. For the SimCSE method in the
18 article, the temperature constant of the contrast loss
210 function is set to 0.05.

As for our model, for different data sets, because
421 the number of words in the document is different,
222 the ability to represent different text features is not
223 the same. Therefore, it is necessary to effectively
224 fuse different features with confidence. The main
25 idea is to choose the single-typed feature with
26 higher classification capabilities. We choose multi-
s27 typed features from BERT, TF-IDF, and SimCSE
228 methods and incorporate GCN output features to
229 obtain the confidence and uncertainty of each
a0 feature for classification. In the fusion processing
31 of multi-typed features, we set the fusion ratio A to
432 be 0.3.

420

231 Table 2 presents the test accuracy of each model.
235 We can see that EGCN outperforms other models
a3 1n the three data sets. For the pre-training features
a7 of text data, the accuracy on the three data sets is
a3 low, the accuracy on the GCN, GAT and
s30 GraphSage models is improved to a certain ex-tent.
20 Our method has a higher advantage. Competing
a1 with the strongest baseline BertGCN, our model
a2 outperforms it by 3% on Cora, by 9% on Citeseer,
443 by 6% on DBLP.

Main Results

Models Cora Citeseer DBLP
BERT 0.55 0.60 0.63
SimCSE 0.71 0.67 0.67
GCN 0.78 0.72 0.65
GAT 0.79 0.80 0.69
GraphSage 0.78 0.81 0.71
BertGCN 0.83 0.88 0.84
EGCN 0.86 0.97 0.90

20 Table 2: Experimental results of node classification.

ws  From the text, graph structure, text and graph
as structure fusion of Table 2 to multi-typed features
w7 trusted  node  classification, the following
a3 conclusions can be drawn: for graph node
aas classification, Algorithms using both feature and
ss0 graph information achieve better performance than
251 methods leveraging information from single source.
252 This investigation demonstrates that features and

a3 graph structure contribute to classification from
as4 different perspectives.

Figure 3 shows the loss (a) and the corresponding
456 accuracy (b) of the model training process on the three
457 data sets. It can be seen from the figure that due to the
458 large amount of DBLP data, the loss and accuracy curve
450 1S longer. At the same time, (b) reflects the convergence
460 of our model and shows higher accuracy. For the
461 accuracy curve of (b), there is a jitter phenomenon,
462 which can be explained by (d) and (h) in Figure 4. The
463 classification error is caused by the conflict of multiple
464 types of features.

455

asf
Accuracy]

Epuchs

(b)

465

466 Figure 3 Illustration of the training process.

«7 4.4 Ablation study

a8 Table 3 shows the classification results of text
60 features. For the three data sets, learn feature
70 expressions of the node's TF-IDF, SimCSE, and
a7 BERT. BERT768 refers to the out-put dimension is
472 768, and BERT512 and BERT256 refer to the slave
473 the first 512-dimensional and 256-dimensional
a4 features cropped from the 768-dimensional
475 features. From Table 3, it can be seen that for node
a76 text classification, the TF-IDF feature performs the
477 best for the classification results of the three data
478 SEts.

MLP Cora Citeseer DBLP
TF-IDF 0.85 0.84 0.79
SimCSE 0.71 0.67 0.67
Bert768 0.55 0.6 0.63
Bert512 0.49 0.41 0.58
Bert256 0.29 0.33 0.5

Table 3 Experimental results of node text multi-type
a0 features classification.

479

GCN+MLP Cora Citeseer DBLP
TF-IDF 0.8381 0.9397 0.8715
SimCSE 0.6524 0.7397 0.6044
Bert768 0.7841 0.7511 0.5288
Bert512 0.7984 0.8519 0.8265
Bert256 0.7714 0.8153 0.7892

Table 4 Experimental results of classification of GCN
nodes with multiple types of features

481

482

Table 4 shows the node classification results.
s We utilize the 2-layer GCN to aggregate the node
«ss feature neighbor in-formation after the text node
26 has been learned by different feature expressions.
.7 It can be seen that, except for the feature vector

483



expressed by SimCSE, the node classification MGCN+(1-1) Cora Citeseer DBLP

48

®

139 @ccuracy obtained a big improvement. Features

20 Table 5 shows that different features are linearly TF-IDF 0.8048 0.8785 0.8436

s01 fused when GCN is used for feature aggregation. SimCSE 0.7952 0.8715  0.8407

22 =1 means the node feature classification using Bert768 08126 0.8708  0.8467
Bert512 0.7952 0.8769 0.8441

103 GCN, and A=0 means the node text feature
classification is used. As can be seen from the table,
for the three data Collection, linear fusion between ,.; Table 5 Experimental results of node classification of
96 multiple features, the output features are classiﬁed 499 multi-type features with linear fusion of text features
and the accuracy is greatly improved. and structural features

G e

Bert256 0.7984 0.8769 0.8449
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502 Figure 4 Illustration of node multi-type features classification confidence

so3 For the progressive experimental results in Tables 3, 4, s:9 third type. The color distribution in Figure (d) is messy
so4 5 and Table 2, we have the following observations: sa0 and the final classification is wrong. You can see the
sos (1) The basic observation is that our proposed s« third row of main features are all dark in color,
sos EGCN framework achieves better results on three s.. expressing that this type of feature is confident in the
so7 datasets compared with baseline methods and variants. s seven classification results, and the dark colors in the
sos This shows the effectiveness of our proposed model in sa first, third, and fourth columns cause confidence
soo modeling node features and network topology. By sis confusion, and the experimental results are wrong.
s10 comparing EGCN with baseline methods, we can s Figure (e) (f) (g) (h) represents the classification
si1 further infer the advantage of aggregating the multi- s.7 uncertainty of 6 different types of features for 4
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12 type features of nodes and structures to classify the sz samples. The lower the histogram, the lower the
13 confidence of nodes. s49 uncertainty and the higher the certainty. Figure (e) ()

©

14 (2) From node text feature classification, text feature sso (g) (h) respectively correspond to Figures (a) (b) (c) (d),
15 input to GCN node classification, text feature and GCN
16 structure feature linear aggregation node feature
17 classification to text feature, text feature and graph
1 structure feature multi-type features for category
19 confidence classification, classification The accuracy -, 5 Conclusion

20 continues to improve, showing the effective fusion of

o1 multiple types of features and the experimental sss In this work, we propose a novel trusted multi-
s2> verification of the confidence of each type of feature sss typed features graph node classification (EGCN)
522 on the classification from different types of features. .., model which, based on the Dempster-Shafer
=2« InFigure 4, for the four samples of the Cora dataset, .. evidence theory, can pro-duce trusted classification
s25 the rows in Figures (a) (b) (c) (d) represent six different s decisions on multi-typed features and can jointly
s26 types of features (including the text features and = learn low-dimensional representations of both

s27 structural features of the graph nodes), and the list is up d d features for text-rich networks. Our al
526 t0 7 classification types, color intensity codes, the °° 1100cS and teatures for text-rich networks. Lur al-

s20 confidence of each feature for the 7 types of samples, 5% gorithm focuses on decision-making by fusing the
o the darker the color, the more confidence, the sixth se: uncertainty of multi-typed features, which is
. column of Figure (a) has a darker color, expressing the ss« essential for making trusted decisions. Furthermore,
> confidence of multiple types of features for the sixth sss our model can produce the uncertainty of a current
2 category , Figure (b) is a darker color in the first .., decision while making the final classification,
4 column. Express the confidence of multiple types of ., providing interpretability. The empirical results

° fﬁgt(;lres Ifor the_ fi[r:s_t type. The cglorks inbthe Erst alnd validate the effectiveness of the proposed
s36 third columns in Figure (c) are darker, but the color algorithm in classification accuracy.
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in which the uncertainty of the six features for sample
> classification can also effectively reflect the
s confidence of the classification results.
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s37 depth of the third type is evenly distributed. The
s3s experimental results show that it is classified as the
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