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Abstract 1 

Recently, text-enhanced network 2 

representation learning has achieved great 3 

success by taking advantage of rich text 4 

information and network structure 5 

information. However, content-rich 6 

network representation learning and 7 

quantifying classification uncertainty are 8 

challenging when it comes to integrating 9 

complex structural dependencies and rich 10 

content features at an evidence level. In this 11 

paper, we propose an evidential graph 12 

representation learning model (EGCN), 13 

which can not only fuse network structure 14 

and content information into a more 15 

complete and powerful representation for 16 

each node, but also assess the quality of 17 

graph node features to improve 18 

classification accuracy. To achieve better 19 

fusion, we integrate the node’s features 20 

representation into structure-aware 21 

representation through a delivery operator. 22 

Besides, to overcome the difficulty of 23 

predicting node classification confidence, 24 

we employ a novel module based on 25 

Dirichlet distribution theory of evidence 26 

and subject opinion learning to collect the 27 

evidence of the class probabilities. 28 

Experimental results on three real-world 29 

networks show that our model can improve 30 

both node classification accuracy and 31 

robustness as compared to all baselines. 32 

1 Introduction 33 

Content-rich networks are graphs with node 34 

features and network structures widely applied in 35 

academic citation networks, recommendation 36 

systems, etc. However, because of the complex 37 

non-Euclidean graph structure, capturing structure 38 

and feature information is a challenging task on 39 

machine learning approaches. 40 

Recently, research on analyzing networks with 41 

deep learning has received widespread attention. In 42 

particular, graph convolutional networks (GCNs) 43 

(Defferrard et al., 2016; Kipf and Welling 2017), 44 

which obtain node embeddings through the 45 

propagation and aggregation of the features on 46 

network topology, have achieved great success. 47 

While the success of GCNs and their variants, a key 48 

issue with them is that the accuracy of multi-typed 49 

features classification varies greatly. To address 50 

this problem, (Yang et al., 2015) proposed text-51 

associated DeepWalk (TADW), which 52 

incorporates text features of vertices into network 53 

representation learning under the framework of 54 

matrix factorization. But the model can only handle 55 

the text attributes. (Cui et al., 2020) presented an 56 

adaptive graph encoder (AGE), a novel attributed 57 

graph embedding framework which applied a 58 

carefully-designed Laplacian smoothing filter. 59 

Nevertheless, all the above methods are designed 60 

to handle the single-typed feature and the node 61 

features only serve as an initial solution of 62 

embeddings. 63 

GCNs obtain node features from a local mixing 64 

state of propagation by limiting the number of 65 

propagations to two or three layers. However, this 66 

will further make GCNs rely heavily on the local 67 

homophily of topology, that is, neighborhoods 68 

should be similar, a very strong assumption in 69 

many real-world text-rich networks. A lot of 70 

methods are developed to handle the topological 71 

limitations of GCNs. For example, several studies 72 

attempted to utilize the self-supervised learning 73 

methods (Zhu et al., 2020; You et al., 2020) which 74 

use several highly credible labels derived from 75 

GCNs to optimize the topological channels in the 76 

following propagation of GCNs. These existing 77 

methods have achieved reasonable results at 78 

handling the topological limitations of GCNs and 79 

thus improved the performance of GCNs. However, 80 

from the level of model architectures, an ideal way 81 

Structure and Features Fusion with Evidential Graph Convolutional 

Neural Network for Node Classification 

 

 

Anonymous ACL submission 

 

 

 

 

 



2 

 
 

may be that the convolutions of features (on 82 

topology) and topology (on features) play together 83 

in the same system. By jointly training the BERT 84 

and GCN modules within Bert-GCN (Lin et al., 85 

2021), this model is able to leverage the advantages 86 

of both worlds: large-scale pretraining which takes 87 

the advantage of the massive amount of raw data 88 

and transductive learning. However, the model was 89 

trained with the BERT feature of node text and it 90 

cannot utilize multi-typed features like term fre-91 

quency-inverse document frequency (TF-IDF) or 92 

SimCSE(Gao et al., 2021). 93 

To the best of our knowledge, no work has been 94 

devoted to exploring both the multi-typed features 95 

and the semantic graph relationships in an efficient 96 

way. In this paper, we develop a unified deep model 97 

(EGCN) to capture both text-rich information and 98 

topology structure features. The training process of 99 

EGCN consists of three parts which focus on 100 

preserving the information of multi-typed features, 101 

network topologies, and node classification 102 

confidence, respectively. The graph structure 103 

information is mined by modeling the first-order 104 

and second-order proximities between nodes; the 105 

text features are processed with TF-IDF, BERT, 106 

and SimCSE methods to capture the different 107 

pattens. Also, our model combines different node 108 

features at an evidence level, which produces a 109 

stable and reasonable uncertainty estimation. 110 

Figure 1 shows the illustration of our 111 

implementation of EGCN. The main contributions 112 

of this work are summarized as follows. 113 

(1) We propose a unified deep model (EGCN) to 114 

learn the embedding vector for each node of the 115 

network by considering both multi-typed features 116 

and the graph semantic relationships, 117 

simultaneously.  118 

(2) We develop a novel multi-typed features 119 

classification method aiming to provide trusted and 120 

interpretable decisions in an effective and efficient 121 

way. 122 

(3) We run extensive experiments which validate 123 

the superior accuracy and robustness of our model 124 

thanks to the promising uncertainty estimation and 125 

multi-typed features integration strategy. 126 

2 Related Work 127 

2.1 Enriching Graph Embeddings with 128 

External Text 129 

Graph convolutional networks (GCN) is 130 

connectionist models that fusion dependencies and 131 

relations between graph nodes (Hamilton et al., 132 

2017; Keyulu et al., 2018). Besides structural 133 

properties, nodes in a graph are often affiliated with 134 

various contents, such as abstract or title text in the 135 

academic citation network. Such networks are 136 

called text-rich networks, and have been 137 

extensively studied (Li et al., 2017; Zhang et al., 138 

2018; Zhou et al., 2018; Veliˇckovic´ et al. 2019; 139 

Meng et al. 2019). Their goal is to preserve not only 140 

the network structure, but also the node attribute 141 

proximity in learning representations. Recently, 142 

much efforts have been made to gain insights from 143 

attributed networks (Liao et al., 2018; Yang et al., 144 

2018; Li et al., 2017). Some approaches (Huang et 145 

al., 2017; Xiao et al., 2017) simply take the label 146 

information into consideration, while others utilize 147 

more detailed attribute information. The key point 148 

of attributed network embedding lies in sim-149 

ultaneously capturing node attributes, network 150 

structure and their relation-ship into hidden 151 

representations. Our work is inspired by the work 152 

of using graph neural networks to fusion node 153 

features (Zhang et al., 2020). Existing works that 154 

combine BERT and GNNs uses graph to model 155 

relationships between tokens within a single 156 

document sample (Lu et al., 2020), which fall into 157 

the category of inductive learning. But different 158 

from these works, we focus on combining, and 159 

show that multi-typed features can significantly 160 

benefit from uncertainty-based learning model.  161 

2.2 Uncertainty-based Learning 162 

The history of learning uncertainty-aware 163 

predictors is concurrent with the advent of modern 164 

Bayesian approaches to machine learning. 165 

Bayesian neural networks (BNNs) (Neal et al., 166 

2012) endow deep models with uncertainty by 167 

replacing the deterministic weight parameters with 168 

distributions. Because BNNs need to consume a lot 169 

of computing power when performing inference 170 

calculations, a more stable and effective method, 171 

MC-dropout (Gal et al., 2016), was proposed. The 172 

inference calculation in this model is done by 173 

dropout sampling from the training and test 174 

weights. Ensemble based methods (Lak-175 

shminarayanan et al., 2017) train and integrate 176 

multiple deep networks and also achieve promising 177 

performance. Instead of indirectly modeling 178 

uncertainty through net-work weights, the 179 

algorithm (Sensoy et al., 2018) introduces the 180 

subjective logic theory to directly model 181 

uncertainty without ensemble or Monte Carlo 182 
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sampling. Building upon RBF networks, the 183 

distance between test samples and prototypes can 184 

be used as the agency for deterministic uncertainty 185 

(van Amersfoort et al., 2020). Benefiting from the 186 

learned weights of different tasks with 187 

homoscedastic un-certainty learning, (Kendall et 188 

al., 2018) achieves impressive performance in 189 

multi-task learning. (Han et al. 2021) utilized 190 

multiple views to promote both classification relia-191 

bility and robustness by integrating evidence from 192 

each view. Dempster-Shafer Evidence Theory is 193 

about the theoretical method of the confidence 194 

function, which directly models uncertainty. DST 195 

allows beliefs from different sources to be 196 

combined with various fusion operators to obtain a 197 

new belief that considers all available evidence 198 

(Jøsang et al., 2012). 199 

3 EGCN Model  200 

3.1 Problem Statement 201 

A text-rich network is a network G = {V, R, X}, 202 

where R is the set of relations. V is the set of nodes. 203 

X is a matrix that encodes node attributes 204 

information for n nodes. Given an attributed 205 

network G and the set of adjacency matrices A, the 206 

task of structure and features fusion with EGCN for 207 

node classification is to learn the multi-type 208 

features, and determine the confidence of each type 209 

of feature for the node classification.  210 

3.2 GCN Module 211 

The pre-training models can obtain the expression 212 

of the semantic information of the text. In the 213 

section, we will introduce how to use the GCN 214 

module to propagate these representations 215 

generated by the pre-training models. Once all the 216 

multi-typed representations learned by BERT and 217 

SimCSE are integrated into GCN, then the output 218 

feature of GCN will be able to accommodate for 219 

two different kinds of information, i.e., data itself 220 

and relationship. In particular, with the weight 221 

matrix W, the representation learned by the ℓ-th 222 

layer of GCN, Z(ℓ), can be obtained by the 223 

following convolutional operation: 224 

𝑍(ℓ) = 𝜙 (�̃�−
1

2�̃��̃�−
1

2𝑍(ℓ−1)𝑊(ℓ−1))                       (1) 225 

where Ã = A + I, ϕ(.) is an activation function such 226 

as ReLU. As can be seen from Eq. 1, the 227 

representation Z(ℓ−1) will propagate through the 228 

normalized adjacency matrix �̃�−
1

2�̃��̃�−
1

2  to obtain 229 

the new representation Z(ℓ). Considering that the 230 

representation learned by BERT or SimCSE, we 231 

combine the two representations Z(ℓ−1) and H 232 

together to get a more complete and powerful 233 

representation as follows: 234 

Z̃(ℓ−1) = (1 − ϵ)Z(ℓ−1) + ϵ𝐻                      (2) 235 

where ϵ is a balance coefficient, H represents text 236 

feature.237 

 238 

Figure 1 Visual illustration of our implementation of EGCN. Text-rich network obtains the graph structure 239 

information through GCN module, and at the same time, the text features of encoders such as BERT or SimCSE 240 

are fused with GCN with Eq. 2. The text features such as TF-IDF, BERT and SimCSE and the features output by 241 

the GCN module are mapped using Dirichlet distribution to calculate the confidence and uncertainty of each 242 

feature through Uncertainty and the Theory of Evidence, combining them with Dempster–Shafer theory, and 243 

obtain the confidence and classification uncertainty after all the features are combined. 244 

3.3 Uncertainty and the Theory of Evidence 245 

The Dempster–Shafer Theory of Evidence (DST) 246 

is a theory on belief functions, was first proposed 247 

by Dempster and is a generalization of the 248 

Bayesian theory to subjective probabilities. 249 

Subjective Logic (SL) formalizes DST’s notion of 250 

belief assignments over a frame of discernment as 251 

a Dirichlet Distribution. Hence, we introduce a 252 

principle of evidential theory-based uncertainty 253 



4 

 
 

estimation technique which can provide more 254 

accurate uncertainty and allow us to flexibly 255 

integrate multi-typed features for trusted 256 

classification decision making. More specifically, 257 

SL considers a frame of K mutually exclusive 258 

singletons (e.g., class labels) by providing a belief 259 

mass bk for each singleton k = 1, …, K and 260 

providing an overall uncertainty mass of u. These 261 

K + 1 mass values are all non-negative and sum up 262 

to one. Note that evidence ek refers to the metrics 263 

collected from the multi-typed features to support 264 

the classification in Figure 2. 265 

𝑢 + ∑  𝐾
𝑘=1 𝑏𝑘 = 1                           (3) 266 

where 𝑢 ≥ 0 and 𝑏𝑘 ≥ 0 for k = 1, . . . , K.  267 

A belief mass 𝑏𝑘 for a singleton k is computed 268 

using the evidence for the singleton. Let 𝑒𝑘 ≥ 0 be 269 

the evidence derived for the kth singleton, then the 270 

belief 𝑏𝑘 and the uncertainty u are computed as: 271 

𝑏𝑘 =
𝑒𝑘

𝑆
 and 𝑢 =

𝐾

𝑆
                         (4) 272 

where 𝑆 = ∑  𝐾
𝑘=1 (𝑒𝑘

𝑣 + 1).  273 

Eq. 4 actually describes the phenomenon where 274 

the more evidence observed for the k-th category, 275 

the greater the probability assigned to the k-th class. 276 

A belief mass assignment, i.e., subjective opinion, 277 

corresponds to a Dirichlet distribution with 278 

parameters αk = ek + 1. That is, a subjective opinion 279 

can be derived easily from the parameters of the 280 

corresponding Dirichlet distribution using bk = (αk 281 

−1)/S. However, a Dirichlet distribution 282 

parametrized over evidence represents the density 283 

of each such probability assignment; hence it 284 

models second-order probabilities and uncertainty 285 

(Han et al. 2021). The Dirichlet distribution is a 286 

probability density function for possible values of 287 

the probability mass function p. It is characterized 288 

by K parameters α= [α1,…, αK] and is given by 289 

𝐷(𝑝 ∣ 𝛼) = {
1

𝐵(𝛼)
∏  𝐾

𝑖=1 𝑝𝑖
𝛼𝑖−1

for 𝑝 ∈ 𝑆𝐾

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
              (5) 290 

where SK is the K-dimensional unit simplex, B(α) 291 

is the K-dimensional multinomial beta function. 292 

𝑆𝐾 = {𝑝 ∣ ∑  𝐾
𝑖=1 𝑝𝑖 = 1 and 0 ≤ 𝑝1, … , 𝑝𝐾 ≤ 1}       (6) 293 

In this paper, we design and train neural 294 

networks to form multi-view opinions for the 295 

classification of a given sample i as a Dirichlet 296 

distribution D(pi|αi), where pi is a simple 297 

representing class assignment probabilities. 298 

3.4 Dempster’s Rule of Combination for 299 

Multi-typed features Classification 300 

Having introduced evidence and uncertainty for 301 

the single-feature case, we use the Dempster–302 

Shafer theory of evidence to combine multi-typed 303 

features arriving at a degree of belief (represented 304 

by a mathematical object called the belief function) 305 

that focus on all the available evidence (see Figure 306 

2). Specifically, we combine V independent sets 307 

of probability mass assignments {Mv}
V 

1 , where Mv 308 

= {{b
v 

k }
K 

k=1, uv}, b refers to the confidence 309 

probability, v is the feature type, k is the node 310 

category, and uv is the uncertainty of the node 311 

classification for the feature v. The combined 312 

calculation of confidence and uncertainty among 313 

multiple types of features is as follows: 314 

ℳ = ℳ1 ⊕ ℳ2                                    (7) 315 

The more specific calculation rule can be 316 

formulated as follows: 317 

𝑏𝑘 =
1

1−𝐶
(𝑏𝑘

1𝑏𝑘
2 + 𝑏𝑘

1𝑢2 + 𝑏𝑘
2𝑢1), 𝑢 =

1

1−𝐶
𝑢1𝑢2      (8) 318 

where 𝐶 = ∑  𝑖≠𝑗 𝑏𝑖
1𝑏𝑗

2  is a measure of the amount 319 

of conflict between the two mass sets, and the 320 

scale factor 1−C is used for normalization. 321 

3.5 Learning to Form Opinions 322 

The loss over a batch of training samples can be 323 

computed by summing the loss for each sample in 324 

the batch. During training, the model mine patterns 325 

in the node text and generate evidence for specific 326 

class labels based on these patterns to minimize the 327 

overall loss. For our model, given the evidence of 328 

the i-th sample obtained through the evidence 329 

network, we can get the parameter αi (i.e., α
v 

i = ei + 330 

1) of the Dirichlet distribution and form the 331 

multinomial opinions D(pi|αi). we can treat D(pi|αi) 332 

as a prior on the likelihood Mult(yi|pi) and obtain 333 

the negated logarithm of the marginal likelihood by 334 

integrating out the class probabilities335 

ℒace (𝛼𝑖) = ∫ [∑  𝐾
𝑗=1 − 𝑦𝑖𝑗𝑙𝑜𝑔 (𝑝𝑖𝑗)]

1

𝐵(𝛼𝑖)
∏  𝐾

𝑗=1 𝑝
𝑖𝑗

𝛼𝑖𝑗−1
𝑑𝑝𝑖 = ∑  𝐾

𝑗=1 𝑦𝑖𝑗 (𝜓(𝑆𝑖) − 𝜓(𝛼𝑖𝑗))        (9) 336 

where ψ(·) is the digamma function.  337 

Eq. 9 is the integral of the cross-entropy loss 338 

function on the simplex determined by αi. The 339 

above loss function ensures that the correct label of 340 

each sample generates more evidence than other 341 

classes, however, it cannot guarantee that less 342 

evidence will be generated for incorrect labels. 343 

That is to say, in our model, we expect the evidence 344 
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for incorrect labels to shrink to 0. To this end, the 345 

following KL divergence term is introduced: 346 

𝐾𝐿[𝐷(𝑝𝑖 ∣ �̃�𝑖) ∥ 𝐷(𝑝𝑖 ∣ 1)]= 

𝑙𝑜𝑔 (
𝛤(∑  𝐾

𝑘=1 �̃�𝑖𝑘)

𝛤(𝐾) ∏  𝐾
𝑘=1 𝛤(�̃�𝑖𝑘)

)+ 

∑  

𝐾

𝑘=1

(�̃�𝑖𝑘 − 1) [𝜓(�̃�𝑖𝑘) − 𝜓 (∑  

𝐾

𝑗=1

�̃�𝑖𝑗)] 

(10) 

where α ĩ=yi + (1 − yi)⊙αi is the adjusted parameter 347 

of the Dirichlet distribution which can avoid 348 

penalizing the evidence of the ground-truth class 349 

to 0, and Γ(·) is the gamma function. 350 

Let us consider that a Dirichlet distribution with 351 

zero total evidence, i.e., S = K, corresponds to the 352 

uniform distribution and indicates total 353 

uncertainty, i.e., u = 1. We achieve this by 354 

incorporating a Kullback-Leibler(KL) divergence 355 

term into our loss function that regularizes our 356 

predictive distribution by penalizing those 357 

divergences from the "I do not know" state that do 358 

not contribute to data fit. The loss with this 359 

regularizing term reads: 360 

ℒ(𝛼𝑖) = ℒace (𝛼𝑖) + 𝜆𝑡𝐾𝐿[𝐷(𝑝𝑖 ∣ �̃�𝑖) ∥ 𝐷(𝑝𝑖 ∣ 1)](11) 361 

where λt = min(1.0, t/10) ∈ [0, 1] is the annealing 362 

coefficient, t is the index of the current training 363 

epoch, D(pi|h1, . . . , hi) is the uniform Dirichlet 364 

distribution, to prevent the network from paying 365 

too much attention to the KL divergence in the 366 

initial stage of training. To ensure that all views 367 

can simultaneously form reasonable opinions and 368 

thus improve the overall opinion, we use a multi-369 

task strategy with following overall loss function: 370 

ℒoverall = ∑  𝑁
𝑖=1 [ℒ(𝜶𝑖) + ∑  𝑉

𝑣=1 ℒ(𝜶𝑖
𝑣)]            (12) 371 

 372 

Figure 2 Illustration of trusted multi-typed features classification. The evidence of each feature is obtained using 373 

BERT, TF-IDF, SimCSE and GCN in Figure 1. The obtained evidence parameterizes the Dirichlet distribution to 374 

induce the classification probability and uncertainty. The overall uncertainty and classification probability are 375 

inferred by combining the beliefs of multiple views based on the DST. The combination rule and an example are 376 

shown in Eq.7 and Eq. 8, respectively.  377 

4 Experiments 378 

In this section, we run experiments on three real-379 

world da-tasets: Cora, Citeseer and DBLP. We 380 

compare EGCN to the following models: BERT 381 

(Devlin et al. 2018), SimCSE (Gao et al. 2021)，382 

GCN (Kipf et al. 2017), GAT (Veličković et al. 383 

2017), GraphSage (Hamilton et al. 2017), TADW 384 

( Yang et al. 2015), BertGCN (Lin et al. 2021) to 385 

demonstrate the effectiveness of proposed model. 386 

We also prove EGCN model can produce trusted 387 

classification decisions on different types of 388 

attributed information. 389 

4.1 Datasets 390 

Cora data is an open citation network data set, 391 

containing 7 types of papers. The network contains 392 

2211 paper nodes and 5214 citation relationships. 393 

Each paper contains an average of 169 words, and 394 

the vocabulary of the entire data set contains a total 395 

of 12619 words. The Citeseer data set consists of 396 

papers from 10 interdisciplinary research fields, it 397 

contains 4610 nodes and 5923 edges. The DBLP 398 

data set is a comprehensive data set covering 4 399 

types of papers, the network contains 13,404 nodes 400 

and 39861 edges.  401 

Dataset Cora Citeseer DBLP 

# Nodes 2211 4610 13404 
# Edge 5214 5923 39861 
# Text 169 10 10 
# Classes 7 10 4 

Table 1 Dataset statistics 402 

Table 1 illustrates the details of datasets used in 403 

our experiment. #Text denotes the average number 404 

of words contained in each text node 405 

4.2 Experiment Setups 406 

For all methods using the BERT model, we use 407 

BERT-base architecture with pre-trained weights 408 

from the original authors and adapted by 409 
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HuggingFace Transformers library3. We then fine-410 

tune it using masked language model objective on 411 

the three real-world datasets: Cora, Citeseer and 412 

DBLP with a 10−5 learning rate. We set the number 413 

of layers to 2, And the hidden layer dimension is 414 

equal to 768, in order to be consistent with the 415 

dimension of the graph structure data and the 416 

BERT feature data. For the SimCSE method in the 417 

article, the temperature constant of the contrast loss 418 

function is set to 0.05. 419 

As for our model, for different data sets, because 420 

the number of words in the document is different, 421 

the ability to represent different text features is not 422 

the same. Therefore, it is necessary to effectively 423 

fuse different features with confidence. The main 424 

idea is to choose the single-typed feature with 425 

higher classification capabilities. We choose multi-426 

typed features from BERT, TF-IDF, and SimCSE  427 

methods and incorporate GCN output features to 428 

obtain the confidence and uncertainty of each 429 

feature for classification. In the fusion processing 430 

of multi-typed features, we set the fusion ratio λ to 431 

be 0.3. 432 

4.3 Main Results 433 

Table 2 presents the test accuracy of each model. 434 

We can see that EGCN outperforms other models 435 

in the three data sets. For the pre-training features 436 

of text data, the accuracy on the three data sets is 437 

low, the accuracy on the GCN, GAT and 438 

GraphSage models is improved to a certain ex-tent. 439 

Our method has a higher advantage. Competing 440 

with the strongest baseline BertGCN, our model 441 

outperforms it by 3% on Cora, by 9% on Citeseer, 442 

by 6% on DBLP. 443 

Models Cora  Citeseer DBLP 

BERT 0.55 0.60 0.63 
SimCSE 0.71 0.67 0.67 
GCN 0.78 0.72 0.65 
GAT 0.79 0.80 0.69 
GraphSage 0.78 0.81 0.71 
BertGCN 0.83 0.88 0.84 
EGCN 0.86 0.97 0.90 

Table 2: Experimental results of node classification. 444 

From the text, graph structure, text and graph 445 

structure fusion of Table 2 to multi-typed features 446 

trusted node classification, the following 447 

conclusions can be drawn: for graph node 448 

classification, Algorithms using both feature and 449 

graph information achieve better performance than 450 

methods leveraging information from single source. 451 

This investigation demonstrates that features and 452 

graph structure contribute to classification from 453 

different perspectives. 454 

Figure 3 shows the loss (a) and the corresponding 455 

accuracy (b) of the model training process on the three 456 

data sets. It can be seen from the figure that due to the 457 

large amount of DBLP data, the loss and accuracy curve 458 

is longer. At the same time, (b) reflects the convergence 459 

of our model and shows higher accuracy. For the 460 

accuracy curve of (b), there is a jitter phenomenon, 461 

which can be explained by (d) and (h) in Figure 4. The 462 

classification error is caused by the conflict of multiple 463 

types of features. 464 

 465 

Figure 3 Illustration of the training process. 466 

4.4 Ablation study 467 

Table 3 shows the classification results of text 468 

features. For the three data sets, learn feature 469 

expressions of the node's TF-IDF, SimCSE, and 470 

BERT. BERT768 refers to the out-put dimension is 471 

768, and BERT512 and BERT256 refer to the slave 472 

the first 512-dimensional and 256-dimensional 473 

features cropped from the 768-dimensional 474 

features. From Table 3, it can be seen that for node 475 

text classification, the TF-IDF feature performs the 476 

best for the classification results of the three data 477 

sets. 478 

MLP Cora Citeseer DBLP 

TF-IDF 0.85 0.84 0.79 
SimCSE 0.71 0.67 0.67 
Bert768 0.55 0.6 0.63 
Bert512 0.49 0.41 0.58 
Bert256 0.29 0.33 0.5 

Table 3 Experimental results of node text multi-type 479 

features classification. 480 

GCN+MLP Cora Citeseer DBLP 

TF-IDF 0.8381 0.9397 0.8715 
SimCSE 0.6524 0.7397 0.6044 
Bert768 0.7841 0.7511 0.5288 
Bert512 0.7984 0.8519 0.8265 
Bert256 0.7714 0.8153 0.7892 

Table 4 Experimental results of classification of GCN 481 

nodes with multiple types of features 482 

Table 4 shows the node classification results. 483 

We utilize the 2-layer GCN to aggregate the node 484 

feature neighbor in-formation after the text node 485 

has been learned by different feature expressions. 486 

It can be seen that, except for the feature vector 487 
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expressed by SimCSE, the node classification 488 

accuracy obtained a big improvement. 489 

Table 5 shows that different features are linearly 490 

fused when GCN is used for feature aggregation. 491 

λ=1 means the node feature classification using 492 

GCN, and λ=0 means the node text feature 493 

classification is used. As can be seen from the table, 494 

for the three data Collection, linear fusion between 495 

multiple features, the output features are classified, 496 

and the accuracy is greatly improved. 497 

λGCN+(1-λ) 

Features 

Cora Citeseer DBLP 

TF-IDF 0.8048 0.8785 0.8436 
SimCSE 0.7952 0.8715 0.8407 
Bert768 0.8126 0.8708 0.8467 
Bert512 0.7952 0.8769 0.8441 
Bert256 0.7984 0.8769 0.8449 

Table 5 Experimental results of node classification of 498 

multi-type features with linear fusion of text features 499 

and structural features 500 

 501 

Figure 4 Illustration of node multi-type features classification confidence 502 

For the progressive experimental results in Tables 3, 4, 503 

5 and Table 2, we have the following observations: 504 

(1) The basic observation is that our proposed 505 

EGCN framework achieves better results on three 506 

datasets compared with baseline methods and variants. 507 

This shows the effectiveness of our proposed model in 508 

modeling node features and network topology. By 509 

comparing EGCN with baseline methods, we can 510 

further infer the advantage of aggregating the multi-511 

type features of nodes and structures to classify the 512 

confidence of nodes. 513 

(2) From node text feature classification, text feature 514 

input to GCN node classification, text feature and GCN 515 

structure feature linear aggregation node feature 516 

classification to text feature, text feature and graph 517 

structure feature multi-type features for category 518 

confidence classification, classification The accuracy 519 

continues to improve, showing the effective fusion of 520 

multiple types of features and the experimental 521 

verification of the confidence of each type of feature 522 

on the classification from different types of features.  523 

In Figure 4, for the four samples of the Cora dataset, 524 

the rows in Figures (a) (b) (c) (d) represent six different 525 

types of features (including the text features and 526 

structural features of the graph nodes), and the list is up 527 

to 7 classification types, color intensity codes, the 528 

confidence of each feature for the 7 types of samples, 529 

the darker the color, the more confidence, the sixth 530 

column of Figure (a) has a darker color, expressing the 531 

confidence of multiple types of features for the sixth 532 

category , Figure (b) is a darker color in the first 533 

column. Express the confidence of multiple types of 534 

features for the first type. The colors in the first and 535 

third columns in Figure (c) are darker, but the color 536 

depth of the third type is evenly distributed. The 537 

experimental results show that it is classified as the 538 

third type. The color distribution in Figure (d) is messy 539 

and the final classification is wrong. You can see the 540 

third row of main features are all dark in color, 541 

expressing that this type of feature is confident in the 542 

seven classification results, and the dark colors in the 543 

first, third, and fourth columns cause confidence 544 

confusion, and the experimental results are wrong. 545 

Figure (e) (f) (g) (h) represents the classification 546 

uncertainty of 6 different types of features for 4 547 

samples. The lower the histogram, the lower the 548 

uncertainty and the higher the certainty. Figure (e) (f) 549 

(g) (h) respectively correspond to Figures (a) (b) (c) (d), 550 

in which the uncertainty of the six features for sample 551 

classification can also effectively reflect the 552 

confidence of the classification results. 553 

5 Conclusion 554 

In this work, we propose a novel trusted multi-555 

typed features graph node classification (EGCN) 556 

model which, based on the Dempster-Shafer 557 

evidence theory, can pro-duce trusted classification 558 

decisions on multi-typed features and can jointly 559 

learn low-dimensional representations of both 560 

nodes and features for text-rich networks. Our al-561 

gorithm focuses on decision-making by fusing the 562 

uncertainty of multi-typed features, which is 563 

essential for making trusted decisions. Furthermore, 564 

our model can produce the uncertainty of a current 565 

decision while making the final classification, 566 

providing interpretability. The empirical results 567 

validate the effectiveness of the proposed 568 

algorithm in classification accuracy. 569 



8 

 
 

References  570 

Kipf, T. N.; Welling, M. 2017.Semi-Supervised 571 

Classification with Graph Convolutional Networks. 572 

In ICLR. 573 

Defferrard, M; Bresson, X.; Vandergheynst, P. 2016. 574 

Convolutional neural networks on graphs with fast 575 

localized spectral filtering. Advances in neural 576 

information processing systems,3844-3852. 577 

Yang, C.; Liu, Z., Zhao; D., Sun, M.;  Chang, E. 2015. 578 

Network representation learning with rich text 579 

information. In Twenty-fourth international joint 580 

conference on artificial intelligence. 581 

Cui, G.; Zhou, J.; Yang, C.; Liu, Z. 2020. Adaptive 582 

graph encoder for attributed graph embedding. In 583 

Proceedings of the 26th ACM SIGKDD 584 

International Conference on Knowledge Discovery 585 

& Data Mining, 976-985. 586 

Zhu, Q.; Du, B.; Yan, P. 2020. Self-supervised training 587 

of graph convolutional networks. arXiv preprint 588 

arXiv:2006.02380. 589 

You, Y.; Chen, T.; Wang, Z.; Shen, Y. 2020. When does 590 

self-supervision help graph convolutional 591 

networks?. In International Conference on Machine 592 

Learning (pp. 10871-10880). PMLR. 593 

Lin Y; Meng Y; Sun X. 2021. BertGCN: Transductive 594 

Text Classification by Combining GNN and 595 

BERT.In Findings of the Association for 596 

Computational Linguistics: ACL-IJCNLP,1456–597 

1462. 598 

Gao, T.; Yao, X.; Chen, D. 2021. SimCSE: Simple 599 

Contrastive Learning of Sentence Embeddings. In 600 

Empirical Methods in Natural Language Processing. 601 

In EMNLP. 602 

Hamilton W; Zhitao Y; and Jure L. 2017. Inductive 603 

representation learning on large graphs. In 604 

Advances in neural information processing 605 

systems,1024–1034. 606 

Keyulu X; Weihua H; Jure L; and Stefanie J. 2018. 607 

How powerful are graph neural networks? arXiv 608 

preprint arXiv:1810.00826. 609 

Li, J.; Dani, H.; Hu, X.; Tang, J.; Chang, Y.; and Liu, 610 

H. 2017.Attributed network embedding for learning 611 

in a dynamic environment. In CIKM. ACM. 612 

Zhang, Z.; Yang, H.; Bu, J.; Zhou, S.; Yu, P.; Zhang, J.; 613 

Ester, M.;and Wang, C. 2018. Anrl: Attributed 614 

network representation learning via deep neural 615 

networks. In IJCAI. 616 

Zhou, S.; Yang, H.; Wang, X.; Bu, J.; Ester, M.; Yu, P.; 617 

Zhang, J.;and Wang, C. 2018. Prre: Personalized 618 

relation ranking embed-ding for attributed networks. 619 

In CIKM. ACM. 620 

Veliˇckovi´c, P.; Fedus, W.; Hamilton, W. L.; Li` o, P.; 621 

Bengio, Y.; and Hjelm, R. D. 2019. Deep graph 622 

infomax. ICLR. 623 

Meng, Z.; Liang, S.; Bao, H.; and Zhang, X. 2019. Co-624 

embedding attributed networks. In WSDM. ACM. 625 

Liao L.; He X.; Zhang H.2018. Attributed social 626 

network embed-ding, IEEE Transactions on 627 

Knowledge and Data Engineering. 628 

Yang H.; Pan, S; Zhang P; Chen L.; Lian D.; and Zhang 629 

C..2018. Binarized attributed network embedding,” 630 

in ICDM. IEEE,1476–1481. 631 

Li J.; Dani H.; Hu X.; Tang J.; Chang Y.; and Liu H. 632 

2017. Attributed network embedding for learning in 633 

a dynamic environ-ment.in CIKM. ACM, 387–396. 634 

Huang X.; Li J.; and Hu X. 2017. Accelerated 635 

attributed network embedding. In SIAM 636 

International Conference on Data Mining, 633–641. 637 

Xiao H.; Jundong L.; and Xia H. 2017. Label informed 638 

attributed network embedding. In WSDM. ACM, 639 

731–739. 640 

Zhang H and Zhang X. 2020. Text graph transformer 641 

for document classification. In Proceedings of the 642 

2020 Conference on Empirical Methods in Natural 643 

Language Processing (EMNLP),8322–8327. 644 

Lu Z; Pan Du P; and Nie J. 2020. Vgcn-bert: 645 

augmenting bert with graph embedding for text 646 

classification. In European Conference on 647 

Information Retrieval, pages 369–382. Springer. 648 

Radford M Neal. 2012 Bayesian learning for neural 649 

networks. Springer Science & Business Media. 650 

Gal Y and Ghahramani Z. 2016. Dropout as a bayesian 651 

approxima-tion: Representing model uncertainty in 652 

deep learning. In International Conference on 653 

Machine Learning, 1050–1059. 654 

Lakshminarayanan B; Pritzel A; and Blundell C. 655 

2017.Simple and scalable predictiveuncertainty 656 

estimation using deep ensembles. In Advances in 657 

Neural Information Processing Systems, 6402–6413. 658 

Sensoy M; Kaplan L and Kandemir M. 2018. 659 

Evidential deep learning to quantify classification 660 

uncertainty. In Advances in Neural Information 661 

Processing Systems, 3179–3189. 662 

van Amersfoort J; Smith L; Whye Te ,Y and Gal Y. 663 

2020. Uncer-tainty estimation using a single deep 664 

deterministic neural network. In International 665 

Conference on Machine Learning. 666 

Alex Kendall, Yarin Gal, and Roberto Cipolla. 2018. 667 

Multi-task learning using uncertainty to weigh 668 

losses for scene geometry and semantics. In 669 

Proceedings of the IEEE Conference on Computer 670 

Vision and Pattern Recognition, 7482–7491. 671 



9 

 
 

 

Han, Z., Zhang, C., Fu, H., & Zhou, J. T. 2021. Trusted 672 

Multi-View Classification. In ICLR. 673 

Jøsang A and Hankin R. 2012. Interpretation and fusion 674 

of hyper opinions in subjective logic. In 2012 15th 675 

International Conference on Information 676 

Fusion,1225–1232 677 

Devlin, J.; Chang, M. W.; Lee, K; Toutanova, K. 2018. 678 

Bert: Pre-training of deep bidirectional transformers 679 

for language under-standing. arXiv preprint 680 

arXiv:1810.04805. 681 

Veličković, P., Cucurull, G., Casanova, A., Romero, A., 682 

Lio, P., & Bengio, Y. 2017. Graph attention 683 

networks. arXiv preprint arXiv:1710.10903. 684 

Hamilton W, Ying Z, Leskovec J.2017.Inductive 685 

representation learning on large graphs. Advances in 686 

Neural Information Processing Systems, 1024-1034. 687 


