Diffusion-Guided Graph Data Augmentation

Maria Marrium!, Arif Mahmood!, Muhmmad Haris Khan?,
Muhammad Saad Shakeel’, Wenxiong Kang?

!Information Technology Univeristy, Lahore, Pakistan
MBZUALI, Abu Dhabi, UAE
3South China University of Technology, Guangdong, China
{phdcs22002, arif.mahmood}@itu.edu.pk, muhammad.haris@mbzuai.ac.ae,
{saadshakeel, auwxkang}@scut.edu.cn

Abstract

Graph Neural Networks (GNNs) have achieved remarkable success in a wide range
of applications. However, when trained on limited or low-diversity datasets, GNNs
are prone to overfitting and memorization, which impacts their generalization. To
address this, graph data augmentation (GDA) has become a crucial task to enhance
the performance and generalization of GNNs. Traditional GDA methods employ
simple transformations that result in limited performance gains. Although recent
diffusion-based augmentation methods offer improved results, they are sparse,
task-specific, and constrained by class labels. In this work, we propose a more
general and effective diffusion-based GDA framework that is task-agnostic and
label-free. For better training stability and reduced computational cost, we em-
ploy a graph variational auto-encoder (GVAE) to learn a compact latent graph
representation. A diffusion model is used in the learned latent space to generate
both consistent and diverse augmentations. For a fixed augmentation budget, our
algorithm selects a subset of samples that would benefit the most from the augmen-
tation. To further improve performance, we also perform test-time augmentation,
leveraged by the label-free nature of our method. Thanks to the efficient utiliza-
tion of GVAE and latent diffusion, our algorithm significantly enhances machine
learning safety measures, including calibration, robustness to corruptions, and
prediction consistency. Moreover, our method has shown improved robustness
against four types of adversarial attacks and achieves better generalization perfor-
mance. To demonstrate the effectiveness of the proposed method, we compare
it with 30 existing methods on 12 benchmark datasets across node classification,
link prediction, and graph classification in various learning settings, including
semi-supervised, supervised, and long-tailed data distributions. Code is available
at https://github.com/MariaMarrium/D-GDA.

1 Introduction

Graph Neural Networks (GNNs) have achieved remarkable success across diverse domains, such as
social networks [29][16]], recommendation systems [[77,157], and molecular property prediction [4}[53]].
However, their expressive power makes them prone to overfitting and memorization, particularly
when trained on limited, imbalanced, or low-diversity graph datasets [54, 190, 136 [7, [87]]. These
limitations undermine their generalization to diverse test scenarios, posing a significant challenge
for real-world applications [92]]. To address this challenge, Graph Data Augmentation (GDA) has
emerged as a promising strategy to enhance the generalization of GNNs by improving the diversity
of training data [88)45]]. Traditional GDA methods are based on static transformations, such as
edge modifications [7, [17], node feature alterations [31} [84], or subgraph manipulations [2} [72].

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/MariaMarrium/D-GDA

12 85

4 GoN

Random Samples %4 TSS Accepted Samples # TSS Rejected Samples @ +DropEdge

H* +FLAG

80| ® LA
+LeDA

B +D-GDA

D-GDA
n

LA

75| °
GCN
*

Gain in Acc. (%)
=

Test-set Consistency

7 %
i 7/ ,

Citeseer Pubmed ArXiv Products

FLAG LeDA
*

Poatels!
pasiess!

70|

DropEdge
L]

o 5 10 15

Test-set Diversity

2
3

(a) (b)

Figure 1: a) Node classification performance comparison: baseline GCN (zero-line), augmenting 20%
random, 20% TSS-rejected, and 20% TSS-selected samples. (b) Diversity vs. consistency averaged
over the same six datasets. Top-right corner shows a good balance of diversity vs. consistency.

However, these approaches often fail to balance consistency (preserving the original labels) and
diversity (introducing meaningful variations), as illustrated in Figure [Tb] Recent diffusion-based
GDA methods, such as Data-Centric Transfer (DCT) [40] and Diffusion on Graph (DoG) [71],
leverage diffusion models to generate synthetic graphs or nodes, offering improved results. However,
these methods are task-specific and rely on class labels that limit their applicability to general tasks.
Moreover, the GDA methods have not been thoroughly evaluated for robustness against adversarial
attacks and machine learning (ML) safety measures, such as calibration, corruption, and prediction
consistency (see Table|[T).

To overcome these limitations, we propose Diffusion-based Graph Data Augmentation (D-GDA),
which is a novel, applicable to different graph tasks and label-free framework. It improves the
generalization of GNNs in various graph tasks, including node classification, link prediction, and
graph classification. The D-GDA introduces three key concepts: (1) Target sample selection, which
identifies candidates for effective augmentation to maximize performance gain. It helps D-GDA focus
on challenging regions in the training data space (Figure [Ta); (2) Graph variational auto-encoder, to
encode local graph structure and semantics into a compact latent space to reduce computational cost
without affecting performance; (3) Latent Diffusion Model, which generates consistent and diverse
synthetic nodes and edges conditioned on neighborhood embeddings. It ensures that the generated
augmentations preserve local graph structure while introducing meaningful diversity (Figure [Tb).
Unlike prior diffusion-based GDA methods, the proposed D-GDA is label-free, and therefore, it can
be used to augment the test samples to improve performance. The test-time augmentation [27] has
not been well studied in the graph data. We observe a consistent performance gain by performing
test-time augmentation in graph and node classification tasks.

Table 1: A comparison of SOTA GDA methods: 1) Basic building blocks: graph auto-encoder
(GAE), Graph Variational auto-encoder (GVAE), and Diffusion models. 2) Supported tasks: Node
Classification (NC), Link Prediction (LP), and Graph Classification (GC). 3) Robustness evaluations:
adversarial robustness (Adv) and machine learning safety measures (MSM). 4) Learning Settings:
semi-supervised, Supervised, and Long-tailed (LT). 5) Test-Time Augmentation (TTA).

Basic Building Blocks | Supported Tasks | Robustness Learning Setting
Methods GAE [GVAE | Difft. [NC LP GC | Adv MSM | Semi Sup. LT | LA
DropEdge [54] X X X v X X X X v X X X
GAug [90] v X X v X X X X v X X X
FLAG [31] X X X v Ve v X X v v X X
LA [42] X v X v v v X X v v X X
GraphPatcher [25] X X X v X X X X v X X Ve
DCT [40] X X v X X v X X X v X X
LeDA [41] X X X v X X v X v X X X
DoG [71] v X v v X X X X v X X X
GraphVCM [52] X X X v X X X X X X v X
D-GDA (ours) X v v v oV v v v v v v v

[\

The proposed D-GDA offers several advantages over existing methods, including performance gains,
improvements in ML safety measures, robustness to adversarial attacks, and lower computational
cost compared to other diffusion-based methods. ML safety measures include calibration, corruption,
and prediction consistency. D-GDA improves robustness to Random, DICE, GF, and Meta-Attacks.
D-GDA is evaluated in semi-supervised, supervised, and long-tailed classification settings, demon-
strating consistent improvements. D-GDA also achieves a good balance of diversity vs. consistency
over existing compared methods. Through extensive experiments on 12 benchmark datasets for node
classification, link prediction, and graph classification, D-GDA has shown excellent performance
compared to 30 state-of-the-art methods.

Contributions: (1) We propose D-GDA, a label-free, diffusion-based graph data augmentation
framework that excels in node classification, link prediction, and graph classification across semi-
supervised, supervised, and long-tailed settings. It supports test-time augmentation for enhanced
performance. (2) D-GDA leverages a variational auto-encoder and latent diffusion model for proposed
neighborhood-aware node generation. (3) D-GDA introduces a Target Sample Selector to select
effective candidates resulting in overall performance improvement for a fixed augmentation budget. (4)
D-GDA enhances ML safety measures including calibration, resistance to corruption, and consistency.
It is more robust against adversarial attacks (Random, DICE, GF, Meta-Attack) and converges to a
flatter minima for improved generalization and reduced over-smoothing.

2 Related Work

Traditional Graph Data Augmentation methods do not rely on generative models. Instead, they
apply augmentations by modifying the graph structure or features—such as adding/removing edges
[Z, 190, altering node features [1} 68} [73]], or manipulating subgraphs [48l [72] [14} |65| [82]. Some
methods also adopt hybrid strategies that combine multiple techniques [80} 64, [83} 32 [76]]. For
instance, DropEdge [54] randomly removes edges for regularization, and FLAG [31]] introduces
gradient-based feature perturbations. GAMS [2]] partitions graphs into clusters, computes inter-cluster
similarity, and swaps the most similar clusters. GeoMix [91] incorporates spatial structure through
geometry-aware mixup. Notably, these methods modify existing graphs without increasing dataset
size, whereas D-GDA explicitly enlarges the training set by generating new, task-relevant augmented
samples. Generative Graph Data Augmentation methods leverage generative models to enrich
graph data. LA [42]] uses a Variational Graph Autoencoder (VGAE) to generate local node features
for augmentation. DCT [40] focuses on graph classification, generating entire graphs conditioned
on graph-level properties. DoG [71]] targets node classification and employs a diffusion model
conditioned on class labels to synthesize node features. In addition to these, there are methods that
generate molecular graphs conditioned on input graphs using both GVAE [81}, 58] and diffusion
models [24} 169} 138115, 9]]. However, these approaches primarily focus on generating valid molecules,
and their effectiveness for improving graph classification performance remains unexplored. In
contrast, D-GDA is a versatile framework applicable to node classification, link prediction, and
graph classification. Rather than conditioning on class labels, it introduces neighborhood-aware
conditioning to guide the diffusion model denoising process, enabling context-aware and task-relevant
augmentations that enhance performance across diverse graph tasks. Class Imbalance Handling
methods tackle class imbalance in graph data by primarily augmenting minority class nodes to
balance the training set. Recent approaches include GraphSMOTE [_87], ImgAGN [51]], GraphENS
[49]], GraphSHA [37], and GraphVCM [52]]. These methods typically use mixup to generate new
node features and connect them either to the neighbors of both mixed nodes or just the target
node. A comprehensive survey of such techniques is provided by [44]]. In contrast, D-GDA focuses
on difficult-to-learn nodes and employs GVAE and LDM models to generate augmentations with
selected nodes. Masked Autoencoders learn robust representations by masking parts of the input and
training the model to reconstruct the missing content. Originally popularized in NLP with masked
language modeling [12], this approach has been adapted for graphs via Masked Graph Modeling
(MGM) [47, 1341 166], which predicts masked node features and edges. We leverage MGM into our
GVAE framework to enhance the quality of latent representations for our latent diffusion model.

777

Jol =

/l\

Sample
Selector

G=a%)

Reverse Diffusion

i) LDM

‘ * A) Node Classification

@Target Node @Augmented Node === Target Edge === Augmented Edge

Figure 2: Overall architecture of the proposed D-GDA framework: A) Node classification: i) We
propose Target Sample Selector (TSS) to select challenging-to-learn nodes. ii) We harness Graph
Variational Autoencoder (GVAE) to encode the graph structure into a latent representation. GVAE
decoders reconstruct augmented node features and edges from the latent space. iii) Latent Diffusion
Model (LDM) generates a neighborhood-aware latent representation. B) Link Prediction: TSS
selects challenging-to-learn target links. GVAE encodes graph latent representation. LDM generates
augmented node latent representation based on average aggregated edge neighborhood. C) Graph
Classification: TSS selects challenging-to-learn target graphs. GVAE encodes each graph to latent
space. Maximum degree nodes are selected as target nodes. Augmented nodes are generated using
LDM based on target node neighborhood.

3 Methodology

Preliminaries: Let G = (V, £) be a graph, where V = {v;}?_; be the set of n nodes and & be that set
of edges. Each node is associated with a feature vector z; € Rd and X = [z, o, . . } € Rnxd
be the feature matrix. The edges are encoded in adjacency matrix A € R"™*", where A = wy;
if there is an edge from v; to v;, and 0 otherwise. Graph Neural Networks (GNNs) learn low-

dimensional node representations H € R"Xd/ by aggregating neighborhood information. A common
GNN variant, Graph Convolutional Network (GCN) [29], updates node embeddings layer-wise as:

5 (D (ﬁ—%Af)—%H(l)WU)) :)

where, A = A + Lis the adjacency matrix with self-loops, D is its corresponding degree matrix,
H©) = X is the initial node feature matrix, W) € R%*di+1 5 the weight matrix at layer [, and
o(+) is a non-linear activation function such as ReLU. The final layer output, H, provides node

embeddings for downstream tasks. Node Classification: For a graph G with V; C V labeled nodes

with labels Yn = {yz}lVll, where y, € R€ is a one-hot vector for c classes. The H is passed

through a softmax layer for classification. Link Prediction: For a graph G, node embeddings H are
used with a scoring function (e.g., inner product) to predict edge (link) likelihood between node pairs.
Graph Classification: For a set of graphs G = {G1, ..., G,,} with labels Yg, the node embeddings
H are aggregated using a permutation-invariant readout layer, for example, mean pooling, to obtain
the graph representation r¢,, followed by the classification layer.

3.1 Proposed Diffusion-based Graph Data Augmentation (D-GDA) Framework

Our proposed D-GDA framework enhances GNN generalization by generating diverse augmentations.
D-GDA comprises of three components: (1) a new Target Sample Selector (TSS) to identify samples

that maximize augmentation advantage, (2) a Graph Variational Autoencoder (GVAE) to learn
compact latent representations to reduce computational complexity, and (3) a Latent Diffusion Model
(LDM) to generate augmentations which we propose to be conditioned on target node neighborhood.
The overall D-GDA framework is shown in Figure 2]

3.1.1 Target Sample Selector (TSS)

Given a fixed augmentation budget, our TSS selects a subset of samples that would benefit the most
from augmentation, thereby improving overall performance. In Figure[Ta| a comparison is shown
for node classification using a budget of 20%. A comparison of Randomly-selected, TSS-selected,
and TSS-rejected samples demonstrates the importance of this stage. For this purpose, we train a
baseline GNN and compute the entropy (e;) of the predicted class probabilities for each sample s:
es=— 5, {7 log pl¥), where c is the number of classes and p.” is the prediction probability for
i-th class. High entropy indicates prediction uncertainty, marking samples as difficult to learn. The
samples are sorted in descending order based on entropy e. If the augmentation budget corresponds
to k-samples, the top-k samples are selected as augmentation targets from the sorted list. The bottom
k samples of this list are considered as TSS-rejected samples.

3.1.2 Graph Variational Autoencoder (GVAE)

In our proposed framework, the latent diffusion model (LDM) is used for the generation of augmented
samples. Training of LDM is more stable and computationally efficient in latent representations [21]].
Variational graph autoencoders learn expressive latent representations of graph data, capturing both
node features and local structure 30} [34} 47]]. Therefore, we employ a variant of this architecture
for compact latent representation learning, resulting in reduced computational complexity and
improved performance. Our GVAE consists of a GCN-based encoder and two decoders for node
feature and edge reconstruction. The GVAE consists of a GCN-based encoder and two decoders
for node feature and edge reconstruction. GVAE Encoder maps node feature matrix X and the
graph adjacency matrix A to a latent space representation by learning a Gaussian distribution. It
first applies L—1 layers of graph convolution to compute intermediate node representations H~!
(See Eq. . Then, it is used to parameterize the mean and variance of a Gaussian distribution:
p=f,(H-"1A), logo? = f,(H™! A), where, f, and f, denote separate GCN layers acting
as linear transformations. To enable gradient-based learning through stochastic sampling, the latent
embedding Z is drawn using the reparameterization trick [28]: Z = p+o®e€, €~ N(0,I), where
® denotes element-wise multiplication. The resulting vector Z € R™*: is the latent representation
of G. GVAE Feature Decoder reconstructs the original node features x; from the latent variable
z; using a multilayer perceptron: X; = frea(2;). Feature decoder constraints the latent space to
preserve semantic information about node attributes and serves as an auxiliary supervision signal.
GVAE Link Predictor reconstructs the graph structure by estimating the probability of a link
(edge) between node pairs (v;, v;) based on their latent representation: p;; = o (fiink(2:||z;)) where
o(+) is the sigmoid function and || shows concatenation operation. Link predictor constraints the
model to learn structural dependencies and reconstruct the adjacency matrix from the latent space Z.
Regularization: To improve effectiveness of GVAE, we use two different regularization strategies,
including edge masking [34] and feature masking [47]]. Edge masking randomly removes a subset of
edges during training, forcing the model to reconstruct them from partial graph. Feature masking
randomly zeros out a fixed percentage of node features coefficient, encouraging generalization. GVAE
Loss Function: The GVAE is optimized with an overall loss: Lovag = Ledge + M Lteat + A2 LkL
where, Liea = Y, [|Xi — X; Hg is the feature reconstruction loss that measures the Euclidean distance
between original and reconstructed node features, Leage = — > (; 1ye 108 Dij =2 (i)¢ 108(1—Dij)
is the link prediction loss with sub-sampling of non-edges for balancing both type of samples,
Lxi. = Dk [q(zi|x;) || N(0,I)] is the KL divergence loss used to regularize the learned latent
distributions ¢(z;|x;) to match a standard Gaussian prior, and A1, Ay are hyperparameters used as
reported by [30].

3.1.3 Latent Diffusion Model (LDM)

The LDM generates diverse augmentations in the GVAE latent space by leveraging a Denoising
Diffusion Probabilistic Model (DDPM) [21]. This approach is more efficient than diffusion in the
input graph space due to improved training stability and reduced augmentation overhead. In addition,

it can effectively capture local structure through conditioning. In the forward (diffusion) process,
Gaussian noise is gradually added to a clean latent vector z_ over a sequence of 7' time steps. At
each step t € {1,...,T}, the noisy latent vector z; is computed as: z! = /&@; z) + /1 — ar €,
where, € ~ N(0,1) , a; = Hi:l as, where s € (0, 1) are predefined noise schedule parameters
controlling the rate at which noise is injected. This process transforms a structured latent vector into

a nearly pure Gaussian noise vector as t — 7.

Reverse Process with Proposed Conditioning: The existing LDM reverse process aims to recover
the clean latent representation z_ solely from a noisy latent vector zt. Such a reverse process may
generate augmentations far from the target samples resulting in performance degradation. To handle
this issue DoG [71]] constrained noise recovery process by class-labels. However, due to intra-class
variations it does not ensure the generated augmentation to be close to the target sample. Also, the
requirement of class-labels restricts the augmentation to training set only. In contrast, we propose the
generation process to be constrained using target-node neighborhood which better encodes a difficult
to learn regions. Being label-free, D-GDA is able to extend augmentations beyond training set for
better utilization the graph structure, resulting in improved performance. Our proposed conditioning
vector c?, encodes the local topology by mean aggregating the one-hop neighborhood embeddings
z? of node v;: c? =E;¢ N(v;)Zj- A denoising network €y, implemented as a 1D-UNet [S5]], predicts
the noise € using z!, and cY, formulated as &; = €4(z!,t,c). The LDM is trained with a denoising
score matching loss: Laier = Ezy ¢ ||€ — €] g which ensures the predicted noise aligns with the true
noise. By leveraging both temporal dynamics and our proposed neighborhood-aware conditioning,
our approach achieves superior denoising and generates structurally coherent augmentations.

3.1.4 Task-Specific Augmentation Generation

D-GDA adapts its augmentation strategy to each task, using TSS, GVAE, and LDM to generate
augmented samples.

Node Classification: For each TSS-selected target node v;, we encode its one-hop neighborhood
N (v;) via the GVAE encoder to obtain the proposed conditioning vector c{ using mean aggregation.
The LDM generates a new latent vector Z?Au 0,7 conditioned on c? which is then decoded into feature

VECTOr X (aug,i) Using feature decoder of GVAE. The augmented node is linked with the most probable
neighbor of v; as determined by the GVAE link predictor. The augmented node vy, 18 given the
same label as v;, and is added to the training set. Such neighborhood-aware augmentation allows
better learning of the structurally hard nodes in the graph, ultimately enhancing generalization and
robustness.

Link Prediction: TSS selects a set of target links each defined by its adjacent nodes (v;, v;). For
both of these nodes, we encode their 1-hop neighborhood nodes using GVAE encoder. An aggregated

conditioning vector c% = (c? + CJQ) /2 is computed by averaging across both neighborhoods. Using

c% an augmented node latent Vector z(aqg4,;,5) is estimated using LDM and decoded to feature
X(Aug,i,j) and is connected to both nodes v; and v;. Such an augmentation guides the link prediction

model to focus on challenging-to-learn links in a given graph.

Graph Classification: Given a set of graphs G, TSS is employed to select a subset of target graphs
for augmentation. For each selected graph G, the top- highest degree nodes are identified as target
nodes and for each of these nodes the augmentation procedure as discussed in the node classification
section is followed. Selecting high-degree nodes ensures that the augmentation has a significant
impact on the overall graph representation, as these nodes are more structurally influential. In contrast,
augmenting low-degree nodes has minimal effect on the global structure, leading to less meaningful
variation. Our augmented graph G (ayg,;) inherits the label of its corresponding target graph G'; and is
added to the training set, thereby enriching data diversity and enhancing model generalization.

Test-Time Augmentation: The test-time augmentation has not been well explored in GDA [25]]. Our
proposed D-GDA being label-free is able to perform augmentation in test sets in node and graph
classification tasks. Such augmentation facilitates efficient usage of graph structure resulting in
performance improvement, without label assignment. During inference, we set each test-sample as a
target and obtain its augmentation. The labels are predicted for both original and augmented samples.
If different class labels are assigned, then the most confident label is selected as the final label.

Table 2: Node Classification performance comparison of D-GDA framework with SOTA methods on
small-scale datasets. Best and 2" best performances are in bold and underline, respectively.

Method Cora Flickr Citeseer Pubmed Mean
GCN [29] 81.60+0.70 61.20+0.40 71.60+0.40 78.80+0.60 | 73.30
+DropEdge [54] 82.00+£0.80 61.40+0.70 71.804+0.20 77.30+0.32 | 73.13
+AdaEdge [7] 81.90+0.70 61.20+0.50 72.80+0.70 77.40+0.50 | 73.33
+NodeAug [80] 82.10+0.90 - 71.404+0.60 78.80 +£0.40 | 77.43
+GAug[90] 83.60+£0.50 62.20+0.30 73.30+1.10 80.20+0.30 | 74.83
+Graph Mixup [73] | 73.80+0.02 - 64.30+£0.04 76.60+£0.18 | 71.57
+FLAG [31] 75.204£0.40 62.90+0.20 62.70+0.60 78.50+0.01 | 69.83
+LA [42] 84.60+0.50 64.24+0.30 74.70+0.50 81.70+0.70 | 76.31
+NASA [3] 85.10+0.30 - 75.504+0.40 80.204+0.30 | 80.30
+DropMessage [13] | 83.33+0.11 53.554+0.23 71.83+0.09 79.20+0.06 | 71.98
+S-Mixup [26] 84.78+0.15 - 74.3940.10 79.70+0.17 | 79.62
+DropEdge++ [17] | 83.10+0.12 63.18+0.14 72.70+£0.06 80.00+£0.42 | 74.75
+GraphPatcher [25] | 84.174+0.54 - 71.65+0.05 81.13+0.68 | 78.98
+iGraphMix [23] 83.78+0.42 53.61+0.12 73.67+0.61 79.93+0.60 | 72.75
+SkipNode [43] 82.00£0.40 50.73+0.09 69.60+0.50 77.504+0.70 | 69.96
+GeoMix [91] 84.08+0.74 - 75.06+0.36 80.06+0.93 | 79.73
+RGDA [39] 84.33+0.41 - 73.02+0.36 82.08+0.50 | 79.81
+LeDA [41] 78.60+0.32 62.644+0.32 67.50+0.18 79.70+0.02 | 72.11
+DoG [71] 84.00+0.30 - 73.60+0.40 82.80+0.30 | 80.13
+D-GDA (ours) 89.10+0.42 87.30+0.60 81.50+0.15 88.20+0.18 | 86.53

4 Experiments

Experiments for Node Classification Task: We evaluate D-GDA on four small-scale datasets:
Cora, Citeseer, Pubmed [56], and Flickr [46] and two large-scale datasets: Ogbn-Arxiv [22], and
Ogbn-Products [22] under transductive learning. Following [29} [7] we use semi-supervised settings
for the small-scale datasets and following [22] supervised settings are used for the large-scale ones.
D-GDA outperforms both the baseline GCN and compared SOTA methods across all datasets as
shown in Tables [2| and [3] Compared to GCN, D-GDA improves test accuracy by 7.5% for Cora,
26.1% for Flickr, 9.9% for Citeseer, 9.4% for Pubmed, 3.18% for Ogbn-Arxiv, and 7.48% for Ogbn-
Products. We also evaluate D-GDA on GNN backbones including GAT [67] and GraphSAGE [16]
as shown in Table 4] where D-GDA again surpasses existing methods. On Cora, Citeseer, and
Pubmed, improvements with GAT are 4.7%, 4.3%, and 9.1%, and with GraphSAGE are 5.3%, 7.5%,
and 7.4%, respectively. More comparisons are shown in Appendix [B.2} More details of all datasets

are given in Appendix
Experiments for Link Prediction Task: We evaluate D-GDA on five link prediction benchmarks:
ogbl-collab, ogbl-ddi, Cora, Citeseer, and Pubmed using GCN [29] and GSAGE [16] backbones

and the results are shown in Table[5] D-GDA consistently outperforms existing methods on most
datasets and backbones, with notable gains on smaller citation datasets. More results are shown in

Appendix

Table 4: Node Classification Performance of D-
GDA on GAT [67] and GSAGE [16] backbones.

Table 3: Node classification performance com-
parison on large-scale datasets.

Method Ogbn-Arxiv Ogbn-Products Method Cora Citeseer Pubmed
GCN [29] 71.62+0.29 71.37+£0.50 Véfiiﬂa o] gé; ;(1)2 ;g;‘
7 +GAug . . .
+DropEdger[54j 56.26£0.02 56.41£3.40 B LA 2) 847 747 798
+FLAG [31] 71.75+0.01 76.14+0.30 J . .
: YT +SkipNode [43] | 81.6 68.4 77.6
+LA [42] 72.08+£0.14 76.11+0.09 TD-GDA (ours) | 894 79.0 889
+DropMessage [13] | 71.2740.02 - Vamilla 313 706 =68
+RGDA [39] 72.8840.65 - 2 “+GAug [90] v — 735
+DoG [71] 73.10£0.30 - < +SkipNode [43] | 81.5 68.5 77.4
+D-GDA (ours) 74.80-:0.04 78.85+0.24 B +RGDA [39] 83.4 72.6 82.1
+D-GDA (ours) | 88.7 80.2 89.5

Table 5: Link prediction performance comparison with SOTA methods.

Method Ogbl-collab Ogbl-ddi Cora Citeseer Pubmed
(Hits@50) (Hits@20) (AUC) (AUC) (AUC)
Vanilla 44.754+1.07 37.0745.07 89.554+0.53 69.474+1.40 96.114+0.80
- +FLAG [31] 46.224+0.81 51.41£3.76 91.344+0.25 85.63+0.73 96.21£0.52
O +CFLP [89] - 52.51£1.09 92.5540.50 89.65+0.20 96.99+0.08
© +GM [63] - 59.184+2.09 92.02+0.45 90.61+0.30 97.35+0.15
+D-GDA (ours) | 50.24+0.97 57.534+0.15 96.96+0.15 93.72+0.36 97.82+0.18
Vanilla 48.10+0.81 53.90+4.74 91.14+0.34 86.98+1.39 96.78+0.11
B +FLAG [31] 48.44+0.40 63.31£6.06 91.52+0.42 90.483+0.19 96.89+0.14
p +CFLP [89] - 75.494+4.33 92.61+0.52 91.844+0.20 97.01+0.01
O +GM [63] - 79.26+1.12 92.414+0.50 92.85+0.35 98.62+0.09
+D-GDA (ours) | 51.08+0.72 78.824+0.35 97.624+0.35 95.64+0.12 98.88-+0.32

Table 6: Graph Classification Performance (ROC-AUC) comparison with SOTA methods.

Method ogbg-molISIDER ogbg-molClinTox ogbg-molHIV ogbg-molBACE
Vanilla [29] 59.60£1.17 88.55+2.09 76.06+£0.97 71.47+£0.32
- +FLAG [31] 59.92+0.05 92.06£0.32 76.83£1.01 74.28+1.16
U +RGDA [39] 63.16+1.51 89.61+£1.50 77.94£0.65 81.91+2.41
© “ID-GDA (ours) 64.85+0.32 94.82+0.12 79.03+£0.92 83.45+£0.85
Vanilla 58.104+0.90 88.80+3.80 75.58+1.40 77.50£2.80
+FLAG [31] 60.741+0.07 87.75+0.16 76.54+1.14 79.10£1.20
% +G-Mixup [18] 56.80+3.50 60.20+7.50 77.10£1.10 77.80+3.30
+DCT [40] 63.90+0.30 92.10£0.80 79.50+1.00 85.60+0.60
+RGDA [39] 60.14+2.04 87.89+3.68 79.32+0.92 82.3742.37
+D-GDA (ours) 64.83+0.14 94.72+0.48 79.45+£1.37 86.12+£0.98

Experiments for Graph Classification Task: We evaluate D-GDA on four graph classification bench-
marks: ogbg-molSIDER, ogbg-molClinTox, ogbg-molHIV, and ogbg-molBACE, using GCN [29]
and GIN [79] backbones. D-GDA outperforms compared SOTA methods on most datasets and
backbones as shown in Table[6] Additional details are given in Appendix [B.4]

Experiments on Long Tailed Datasets: We evaluate D-GDA on two long-tailed datasets, Cora-LT
and Citeseer-LT, with an imbalance ratio of p = 100 to assess its performance under class imbalance.
Unlike prior methods that focus on oversampling minority classes, D-GDA adopts a class-agnostic
strategy by identifying and selectively augmenting challenging samples. As shown in Table[7] D-
GDA achieves consistent improvements on both datasets without requiring imbalance-specific tuning,
highlighting its effectiveness in long-tailed settings. Additional results are provided in Appendix [B.5]

Improvements in ML Safety Measures. We evalu- 1able 7: Balanced accuracy (%) comparison
ate D-GDA on three ML safety measures: calibration under class imbalance (p = 100).

(assessing how well predic.ted probabilities rqﬂect Method Cora-IT _ Citeseer-LT
actual correctness), corruption (robustness to input ~GCN (Vanilla) 59.42£0.74 44.64£0.42
perturbations), and consistency (stability of predic- +ReNode [8] | 67.61£0.13 47.78+0.31
tions under minor input changes). Models are trained ~ +GraphSMOTE [S7] | 66.29:£0.43 44.40:£0.29
lean data and tested across these tasks. D-GDA ~ TOraPnENS [79316024 35.4240.32

on clean , . +TAM (G-ENS) [59] | 72.10£0.23 57.15+0.34
shows strong performance on all metrics (see Table[8). +GraphSHA [37] 74.624+0.29 59.04+0.41
More details are in Appendix +GraphVCM [52] 75.81+£0.42 60.53+1.37
+D-GDA (ours) 80.34+0.51 64.95+0.18

Adversarial Robustness. We evaluate D-GDA robustness against four evasion attacks: Random
(randomly flip edges), DICE [74] (deletes intra-class edges and adds inter-class ones), GFAttack
[6] (optimizes a low-rank loss for structural perturbations), and Meta-attack [93]] (meta-gradient-
based loss maximization), at two perturbation ratios (¢ € 0.05,0.2). Table E] shows improved
node classification accuracy under these attacks compared to baseline GCN. More details are in

Appendix [B.7]

D-GDA promotes flatter minima for better generalization. Following [86} I85], we analyze
whether D-GDA leads to flatter loss landscapes. Using a trained GCN, we compare D-GDA to
DropEdge, FLAG, and LA under Gaussian noise perturbations of model parameters. As shown
in Figure 3] D-GDA maintains higher accuracy and lower loss, indicating flatter minima. t-SNE

Table 8: D-GDA performance comparison on ML safety measures (lower is better). Error is reported
on clean data, corruptions are Gaussian (G), Shot (S), Impulse (I), and Shift noise.

Method Error | Calib. | Consist. G Cgrruptloln s ShiTT Mean
GCN [29] 18.40 | 19.65 16.26 | 4942 57.12 54.00 32.60 | 35.06
. +DropEdge [54] | 18.00 | 21.16 18.74 | 62.62 2090 71.08 19.00 | 35.38
& +FLAG [31] 24.80 | 19.52 2559 | 33.71 3517 3748 31.7 | 284l
© 4LA[42] 15.40 | 3433 27.35 6342 27.68 782 27.1 | 3447
+D-GDA (ours) 10.9 9.96 15.77 13.34 1281 16.64 13.59 | 13.29
GCN [29] 28.40 | 3343 2542 | 46.84 4990 51.16 40.20 | 39.34
§ +DropEdge [54] | 28.20 | 24.14 19.83 | 70.36 309 75.66 29.99 | 40.38
& +FLAG [31] 37.30 | 27.95 25.48 39.08 61.6 56.58 39.7 | 3845
O +LA[42] 2530 | 31.44 2636 | 68.38 2798 78.86 26.8 | 36.44
+D-GDA (ours) 18.5 | 11.51 18.6 21.29 20.52 24.28 20.79 | 19.36
GCN [29] 212 | 16.74 11.03 | 4588 31.26 51.86 33.30 | 30.18
3 +DropEdge [54] | 22.7 17.47 14.28 5032 23.64 55.82 21.09 | 29.33
£ +FLAG [31] 21.5 | 21.05 9.11 39.64 35.18 59.92 24.29 | 30.09
£ +LA [42] 183 | 16.92 1024 | 36.00 19.34 46.32 19.30 | 23.77
+D-GDA (ours) 11.8 8.17 8.13 23.8 1544 3572 14.7 | 16.82

Table 9: Results on adversarial robustness.

Datasets | Method Clean Random DICE GF-Attack | Meta-Attack
0.00 | 0.05 02 0.05 02 [005 02 0.05 0.2
Cora GCN 81.6 | 787 772 | 782 745 |79.8 789 |79.1 784
+D-GDA 89.1 85.8 833 | 8.7 823|853 839 | 8.1 839
Citeseer GCN 71.6 | 641 62.6 | 6342 609 | 649 5451 | 63.6 55.13
+D-GDA 815 (779 737 | 773 734|778 723 | 775 731
Pubmed GCN 788 | 779 76 776 7271779 686 | 76.1 689
+D-GDA 88.2 | 844 83.1| 839 819|842 825 |848 829

visualizations (Figured)) show more cohesive, well-separated clusters with D-GDA, further supported
by an improved silhouette score (from 0.02 to 0.38). See Appendix [B.9]for details.

Over-Smoothness Analysis. Using MADGap
[7] by measuring feature similarity gaps be-
tween neighboring and remote nodes: Table [T0]
shows that D-GDA consistently achieves higher
MADGap scores than others (see Appendix
for details).

Ablation Study. Table[TT]shows that model per- : :
formance improves as augmentation is applied pro- (a) Validation Accuracy (b) Validation Loss
gressively to the training, validation, and test sets,
with the best accuracy achieved when all are aug-
mented. Validation-set augmentation adds unlabeled synthetic nodes to aid learning in difficult
regions, while test-set augmentation serves as test-time augmentation by combining predictions
from original and augmented nodes. To evaluate the role of the GVAE Link Predictor in guiding
augmented node connections, we compare it with three heuristics: Random (target or 1-hop neigh-
bor), Target-only, and Target+1-hop. Table [I2] shows that our method outperforms all heuristics,
highlighting its effectiveness in capturing meaningful structure and boosting classification accuracy.
To assess the impact of GVAE Feature Decoder, we replaced it with two heuristics: random features
(Rand Feat) and target node features (Target Feat). Both led to notable performance drops (Table @]),

curacy (%)

Vali

Figure 3: D-GDA encourages flatter minima.

Table 10: MADGap Comparison.
Method Cora Citeseer Pubmed
GCN (Vanilla) | 0.49 0.53 0.71
+DropEdge 041 049 0.27
+AdaEdge 0.66 0.53 0.73 E k-
+FLAG 0.12 0.17 0.31 (a) GON (0.02) (b) GCN+D-GDA (0.38)
+LA 0.49 0.44 0.35
+D-GDA 0.64 0.81 0.86 Figure 4: t-SNE of node embeddings on Cora.

Table 11: Comparison of augmentation strategies. Table 12: Importance of proposed link predictor.

Augmentation | o oo pubmed Edge injection | Cora Citeseer Pubmed
T}‘ Val | Test 1o <3 o Random 82.1 72.5 79.4
v v | 858 773 235 Target 85.3 75.3 80.8
vl 382 798 855 1-hop 83.7 74.5 79.6
vl vl v | 8.1 81.5 88.2 Ours 89.1 81.5 88.2

Table 13: Importance of Feature Decoder Table 14: Importance of each module in D-GDA

Node Features | Cora Citescer Pubmed TSS | LDM | GVAE | GAE | Cora Citeseer Pubmed
v v v X 89.1 81.5 838.2
Rand Feat 78.6 69.92 75.94
X v v X 83.5 72.7 80.9
Target Feat 78.8 78.9 71.95 v « v % 83.8 73.5 81.5
Ours 891 815 88.2 | v X v | 873 796 85.8

Table 15: Training time and inference time per sample (sec) comparison of D-GDA with baselines.

Cora Flickr Ogbn-Arxiv

Type Method Train Inf. Train Inf. Train Inf.
GCN [29] 9.05 | 0.003 | 79.82 | 0.058 | 928.21 | 0.567
Non-Diffusion DropEdge[54] 11.75 | 0.005 | 132.23 | 0.096 | 1786.40 | 0.813
FLAG [31] 3420 | 0.019 | 547.80 | 0.160 | 3307.50 | 0.815
Diffusion D-GDA w/o TTA (ours) | 37.72 | 0.019 | 328.17 | 0.160 | 2507.20 | 0.816
D-GDA with TTA (ours) | 37.72 | 1.41 | 328.17 | 1.33 | 2507.20 | 1.80

highlighting the decoder’s role in generating meaningful features and enhancing D-GDA effectiveness.
Table [14]assesses the contributions of each module in the D-GDA framework. The full model (TSS
+ GVAE + LDM) achieves the best performance. Removing TSS leads to a performance drop, high-
lighting its role in directing augmentation to challenging regions. Replacing LDM with GVAE results
in subpar performance, underscoring LDM’s critical role in generating synthetic nodes and edges.
Substituting GVAE with GAE also produces lower results. For more ablations see Appendix

Computational Cost Comparison. Table compares the overall training and inference times
(in seconds) of D-GDA with and w/o TTA against baseline GCN, and non-diffusion graph data
augmentation methods including DropEdge, and FLAG, across three datasets of varying sizes: Cora,
Flickr, and Ogbn-Arxiv (large-scale dataset). Note that the execution times of SOTA Diffusion
based GDA methods, could not be compared due to non-availability of their codes. Among these
methods, DropEdge consistently demonstrates the lowest training and inference costs, making it the
most efficient overall. D-GDA shows better efficiency than FLAG on the larger datasets, Flickr and
Ogbn-Arxiv, highlighting its scalability. Additionally, the D-GDA variant without TTA achieves
inference times comparable to FLAG. See Appendix [B.I]for component-wise training time of
D-GDA.

5 Conclusions

In this work, we proposed Diffusion-based Graph Data Augmentation (D-GDA), which leverages
LDMs to enhance GCN performance. Target Sample Selector (TSS) is introduced for identifying
challenging-to-learn samples. Graph Variational Autoencoder (GVAE) is employed for learning com-
pact latent representations. We propose neighbourhood based constraint for Latent Diffusion Model
(LDM) based node generation. D-GDA enables label-free augmentation applicable to node, edge,
and graph-level tasks. Extensive experiments on 14 benchmarks demonstrate D-GDA superiority
over the compared SOTA techniques. D-GDA also improves safety measures, including calibration,
corruption, consistency, and robustness to adversarial attacks. These results highlight D-GDA’s
potential as an effective and versatile augmentation strategy for advancing graph learning.

Acknowledgement

This work was supported by the International Science and Technology Cooperation Project of
Guangzhou Economic and Technological Development District (No.2023GH16), China.

10

References

[1] Amitoz Azad and Yuan Fang. A learned generalized geodesic distance function-based approach
for node feature augmentation on graphs. In Proceedings of the 30th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining, pages 49-58, 2024.

[2] Alessandro Bicciato and Andrea Torsello. Gams: Graph augmentation with module swapping.
In ICPRAM, pages 249-255, 2022.

[3] Deyu Bo, BinBin Hu, Xiao Wang, Zhiqgiang Zhang, Chuan Shi, and Jun Zhou. Regularizing
graph neural networks via consistency-diversity graph augmentations. In Proceedings of the
AAAI conference on artificial intelligence, volume 36, pages 3913-3921, 2022.

[4] Markus J. Buehler. Generative pretrained autoregressive transformer graph neural network ap-
plied to the analysis and discovery of novel proteins. Journal of Applied Physics, 134(8):084902,
2023.

[5] Zhou Cai, Xiyuan Wang, and Muhan Zhang. Latent graph diffusion: A unified framework for
generation and prediction on graphs. arXiv e-prints, pages arXiv—2402, 2024.

[6] Heng Chang, Yu Rong, Tingyang Xu, Wenbing Huang, Honglei Zhang, Peng Cui, Wenwu Zhu,
and Junzhou Huang. A restricted black-box adversarial framework towards attacking graph
embedding models. In Proceedings of the AAAI conference on artificial intelligence, volume 34,
pages 3389-3396, 2020.

[7] Deli Chen, Yankai Lin, Wei Li, Peng Li, Jie Zhou, and Xu Sun. Measuring and relieving
the over-smoothing problem for graph neural networks from the topological view. In AAAI,
volume 34, pages 3438-3445, 2020.

[8] Deli Chen, Yankai Lin, Guangxiang Zhao, Xuancheng Ren, Peng Li, Jie Zhou, and Xu Sun.
Topology-imbalance learning for semi-supervised node classification. NeurIPS, 34:29885—
29897, 2021.

[9] Yuzhou Chen and Yulia Gel. Topological zigzag spaghetti for diffusion-based generation and
prediction on graphs. In The Thirteenth International Conference on Learning Representations,
2025.

[10] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based
on effective number of samples. In CVPR, pages 9268-9277, 2019.

[11] Vincenzo Marco De Luca, Antonio Longa, Andrea Passerini, and Pietro Lid. xai-drop: Don’t
use what you cannot explain. arXiv:2407.20067, 2024.

[12] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proceedings of the 2019 conference of
the North American chapter of the association for computational linguistics: human language
technologies, volume 1 (long and short papers), pages 4171-4186, 2019.

[13] Taoran Fang, Zhiqing Xiao, Chunping Wang, Jiarong Xu, Xuan Yang, and Yang Yang. Dropmes-
sage: Unifying random dropping for graph neural networks. In AAAI, volume 37, pages
4267-42175, 2023.

[14] Hongyu Guo and Yongyi Mao. ifmixup: Towards intrusion-free graph mixup for graph
classification. arXiv, 2110, 2021.

[15] Aric Hagberg, Pieter J Swart, and Daniel A Schult. Exploring network structure, dynamics,
and function using networkx. Technical report, Los Alamos National Laboratory (LANL), Los
Alamos, NM (United States), 2008.

[16] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. NeurIPS, 30, 2017.

[17] Jiagi Han, Wenbing Huang, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Structure-
aware dropedge toward deep graph convolutional networks. TNNLS, 2023.

11

[18] Xiaotian Han, Zhimeng Jiang, Ninghao Liu, and Xia Hu. G-mixup: Graph data augmentation
for graph classification. arXiv:2202.07179, 2022.

[19] Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common
corruptions and perturbations. arXiv:1903.12261, 2019.

[20] Dan Hendrycks, Mantas Mazeika, and Thomas Dietterich. Deep anomaly detection with outlier
exposure. arXiv:1812.04606, 2018.

[21] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances
in Neural Information Processing Systems, 33:6840-6851, 2020.

[22] Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele
Catasta, and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, NeurIPS, volume 33,
pages 22118-22133. Curran Associates, Inc., 2020.

[23] Jongwon Jeong, Hoyeop Lee, Hyui Geon Yoon, Beomyoung Lee, Junhee Heo, Geonsoo Kim,
and Kim Jin Seon. igraphmix: Input graph mixup method for node classification. In ICLR,
2024.

[24] Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based generative modeling of graphs via
the system of stochastic differential equations. In International conference on machine learning,

pages 10362-10383. PMLR, 2022.

[25] Mingxuan Ju, Tong Zhao, Wenhao Yu, Neil Shah, and Yanfang Ye. Graphpatcher: Mitigat-
ing degree bias for graph neural networks via test-time augmentation. Advances in Neural
Information Processing Systems, 36:55785-55801, 2023.

[26] Junghurn Kim, Sukwon Yun, and Chanyoung Park. S-mixup: Structural mixup for graph neural
networks. In CKIM, pages 4003—4007, 2023.

[27] Masanari Kimura. Understanding test-time augmentation. In International Conference on
Neural Information Processing, pages 558-569. Springer, 2021.

[28] Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv:1312.6114,
2013.

[29] Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional
networks. arXiv:1609.02907, 2016.

[30] Thomas N. Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016.

[31] Kezhi Kong, Guohao Li, Mucong Ding, Zuxuan Wu, Chen Zhu, Bernard Ghanem, Gavin Taylor,
and Tom Goldstein. Robust optimization as data augmentation for large-scale graphs. In CVPR,
pages 60-69, 2022.

[32] Yurui Lai, Xiaoyang Lin, Renchi Yang, and Hongtao Wang. Efficient topology-aware data
augmentation for high-degree graph neural networks. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, pages 1463—1473, 2024.

[33] Jintang Li, Bingzhe Wu, Chengbin Hou, Guoji Fu, Yatao Bian, Liang Chen, Junzhou Huang,
and Zibin Zheng. Recent advances in reliable deep graph learning: inherent noise, distribution
shift, and adversarial attack. arXiv preprint arXiv:2202.07114, 2022.

[34] Jintang Li, Ruofan Wu, Wangbin Sun, Liang Chen, Sheng Tian, Liang Zhu, Changhua Meng,
Zibin Zheng, and Weiqiang Wang. What’s behind the mask: Understanding masked graph
modeling for graph autoencoders. In Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 1268—1279, 2023.

[35] Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang Tang, and
Dawei Yin. Evaluating graph neural networks for link prediction: Current pitfalls and new
benchmarking. In Neural Information Processing Systems NeurlPS, Datasets and Benchmarks
Track, 2023.

12

[36] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks
for semi-supervised learning. In AAAI, volume 32, 2018.

[37] Wen-Zhi Li, Chang-Dong Wang, Hui Xiong, and Jian-Huang Lai. Graphsha: Synthesizing
harder samples for class-imbalanced node classification. arXiv:2306.09612, 2023.

[38] Stratis Limnios, Praveen Selvaraj, Mihai Cucuringu, Carsten Maple, Gesine Reinert, and Andrew
Elliott. Sagess: A sampling graph denoising diffusion model for scalable graph generation. In
ECAI 2024, pages 2950-2957. 10S Press, 2024.

[39] Gang Liu, Eric Inae, Tengfei Luo, and Meng Jiang. Rationalizing graph neural networks with
data augmentation. ACM Trans. Knowl. Discov. Data, 18(4), February 2024.

[40] Gang Liu, Eric Inae, Tong Zhao, Jiaxin Xu, Tengfei Luo, and Meng Jiang. Data-centric learning
from unlabeled graphs with diffusion model. NeurIPS, 36, 2024.

[41] Gen Liu, Zhongying Zhao, Chao Li, and Yanwei Yu. Leda-gnn: Learnable dual augmentation
for graph neural networks. Expert Systems with Applications, 268:126288, 2025.

[42] Songtao Liu, Rex Ying, Hanze Dong, Lanqing Li, Tingyang Xu, Yu Rong, Peilin Zhao, Junzhou
Huang, and Dinghao Wu. Local augmentation for graph neural networks. In ICML, pages
14054-14072. PMLR, 2022.

[43] Weigang Lu, Yibing Zhan, Binbin Lin, Ziyu Guan, Liu Liu, Baosheng Yu, Wei Zhao, Yaming
Yang, and Dacheng Tao. Skipnode: On alleviating performance degradation for deep graph
convolutional networks. TKDE, 2024.

[44] Yihong Ma, Yijun Tian, Nuno Moniz, and Nitesh V Chawla. Class-imbalanced learning on
graphs: A survey. arXiv:2304.04300, 2023.

[45] Maria Marrium and Arif Mahmood. Data augmentation for graph data: recent advancements.
arXiv preprint arXiv:2208.11973, 2022.

[46] Zaiqiao Meng, Shangsong Liang, Hongyan Bao, and Xiangliang Zhang. Co-embedding
attributed networks. In WSDM, WSDM ’19, page 393-401, New York, NY, USA, 2019.
Association for Computing Machinery.

[47] Pushkar Mishra, Aleksandra Piktus, Gerard Goossen, and Fabrizio Silvestri. Node masking:
Making graph neural networks generalize and scale better. arXiv preprint arXiv:2001.07524,
2020.

[48] Joonhyung Park, Hajin Shim, and Eunho Yang. Graph transplant: Node saliency-guided graph
mixup with local structure preservation. arXiv:2111.05639, 2021.

[49] Joonhyung Park, Jaeyun Song, and Eunho Yang. Graphens: Neighbor-aware ego network
synthesis for class-imbalanced node classification. In /CLR, 2021.

[50] Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Character-
izing graph datasets for node classification: Homophily-heterophily dichotomy and beyond.
Advances in Neural Information Processing Systems, 36:523-548, 2023.

[51] Liang Qu, Huaisheng Zhu, Ruiqi Zheng, Yuhui Shi, and Hongzhi Yin. Imgagn: Imbalanced
network embedding via generative adversarial graph networks. In SIGKDD, pages 1390-1398,
2021.

[52] Yixiao Ren, Yunfei Han, Yi Wang, Zhengdong Luo, Jinlong Liu, and Yupeng Ma. Graphvcm:
Virtual center mixing with distance-aware regulation for class imbalanced node classification. In
ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1-5. IEEE, 2025.

[53] Yu Rong, Yatao Bian, Tingyang Xu, Weiyang Xie, Ying Wei, Wenbing Huang, and Junzhou

Huang. Self-supervised graph transformer on large-scale molecular data. In Advances in Neural
Information Processing Systems, volume 33, pages 12559-12571, 2020.

13

[54] Yu Rong, Wenbing Huang, Tingyang Xu, and Junzhou Huang. Dropedge: Towards deep graph
convolutional networks on node classification. In /CLR, 2020.

[55] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation. In International Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 234-241, 2015.

[56] Prithviraj Sen, Galileo Mark Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina
Eliassi-Rad. Collective classification in network data. AI Magazine, 29:93-106, 2008.

[57] Kartik Sharma, Yeon-Chang Lee, Sivagami Nambi, Aditya Salian, Shlok Shah, Sang-Wook
Kim, and Srijan Kumar. A survey of graph neural networks for social recommender systems.
ACM Computing Surveys, 56(10):1-34, 2024.

[58] Martin Simonovsky and Nikos Komodakis. Graphvae: Towards generation of small graphs
using variational autoencoders. In Artificial Neural Networks and Machine Learning—ICANN
2018: 27th International Conference on Artificial Neural Networks, Rhodes, Greece, October
4-7, 2018, Proceedings, Part I 27, pages 412—422. Springer, 2018.

[59] Jaeyun Song, Joonhyung Park, and Eunho Yang. Tam: topology-aware margin loss for class-
imbalanced node classification. In ICML, pages 20369-20383. PMLR, 2022.

[60] Rui Song, Fausto Giunchiglia, Ke Zhao, and Hao Xu. Topological regularization for graph
neural networks augmentation. arXiv:2104.02478, 2021.

[61] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in neural information processing systems, 32, 2019.

[62] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. In
International Conference on Learning Representations, 2020.

[63] Tangina Sultana, Md Delowar Hossain, Md Golam Morshed, and Young-Koo Lee. Enhancing
link prediction in graph data augmentation through graphon mixup. Neural Computing and
Applications, pages 1-16, 2025.

[64] Junwei Sun, Bai Wang, and Bin Wu. Automated graph representation learning for node
classification. In IJCNN, pages 1-7. IEEE, 2021.

[65] Mengying Sun, Jing Xing, Huijun Wang, Bin Chen, and Jiayu Zhou. Mocl: data-driven
molecular fingerprint via knowledge-aware contrastive learning from molecular graph. In
SIGKDD, pages 3585-3594, 2021.

[66] Peng Tang, Cheng Xie, and Haoran Duan. Node and edge dual-masked self-supervised graph
representation. Knowledge and Information Systems, 66(4):2307-2326, 2024.

[67] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. stat, 1050:20, 2017.

[68] Vikas Verma, Meng Qu, Kenji Kawaguchi, Alex Lamb, Yoshua Bengio, Juho Kannala, and Jian
Tang. Graphmix: Improved training of gnns for semi-supervised learning. arXiv:1909.11715,
2019.

[69] Clement Vignac, Igor Krawczuk, Antoine Siraudin, Bohan Wang, Volkan Cevher, and Pas-
cal Frossard. Digress: Discrete denoising diffusion for graph generation. In The Eleventh
International Conference on Learning Representations, 2023.

[70] Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul
Kanakia. Microsoft academic graph: When experts are not enough. Quantitative Science
Studies, 1:396-413, 2020.

[71] Yancheng Wang, Changyu Liu, and Yingzhen Yang. Diffusion on graph: Augmentation of
graph structure for node classification. Transactions on Machine Learning Research.

14

[72] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Graphcrop: Subgraph
cropping for graph classification. arXiv:2009.10564, 2020.

[73] Yiwei Wang, Wei Wang, Yuxuan Liang, Yujun Cai, and Bryan Hooi. Mixup for node and graph
classification. In Web Conference, pages 3663-3674, 2021.

[74] Marcin Waniek, Tomasz P Michalak, Michael J Wooldridge, and Talal Rahwan. Hiding
individuals and communities in a social network. Nature Human Behaviour, 2(2):139-147,
2018.

[75] David S Wishart, Yannick D Feunang, An C Guo, Elvis J Lo, Ana Marcu, Jason R Grant, Tanvir
Sajed, Daniel Johnson, Carin Li, Zinat Sayeeda, et al. Drugbank 5.0: a major update to the
drugbank database for 2018. NAR, 46(D1):D1074-D1082, 2018.

[76] Lirong Wu, Jun Xia, Zhangyang Gao, Haitao Lin, Cheng Tan, and Stan Z Li. Graphmixup:
Improving class-imbalanced node classification by reinforcement mixup and self-supervised
context prediction. In Joint European conference on machine learning and knowledge discovery
in databases, pages 519-535. Springer, 2022.

[77] Shiwen Wu, Wentao Tang, Yuxuan Sun, Chen Xing, Xinyu Zhang, and Yunpeng Chen. Lightgcn:
Simplifying and powering graph convolution network for recommendation. In Proceedings of
the 43rd International ACM SIGIR Conference on Research and Development in Information
Retrieval, pages 639—648, 2020.

[78] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes, Caleb Geniesse, Aneesh S
Pappu, Karl Leswing, and Vijay Pande. Moleculenet: a benchmark for molecular machine
learning. Chemical science, 9:513-530, 2018.

[79] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv:1810.00826, 2018.

[80] Yifan Xue, Yixuan Liao, Xiaoxin Chen, and Jingwei Zhao. Node augmentation methods for
graph neural network based object classification. In CDS, pages 556-561. IEEE, 2021.

[81] Ling Yang, Zhilin Huang, Zhilong Zhang, Zhongyi Liu, Shenda Hong, Wentao Zhang, Wenming
Yang, Bin Cui, and Luxia Zhang. Graphusion: Latent diffusion for graph generation. /EEE
Transactions on Knowledge and Data Engineering, 2024.

[82] Yuning You, Tianlong Chen, Yang Shen, and Zhangyang Wang. Graph contrastive learning
automated. In ICML, pages 12121-12132. PMLR, 2021.

[83] Jinliang Yuan, Hualei Yu, Meng Cao, Ming Xu, Junyuan Xie, and Chongjun Wang. Semi-
supervised and self-supervised classification with multi-view graph neural networks. In CKIM,
pages 2466-2476, 2021.

[84] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. In ICLR, 2017.

[85] Linfeng Zhang, Jiebo Song, Anni Gao, Jingwei Chen, Chenglong Bao, and Kaisheng Ma.
Be your own teacher: Improve the performance of convolutional neural networks via self
distillation. In Proceedings of the IEEE/CVF international conference on computer vision,
pages 3713-3722, 2019.

[86] Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan Lu. Deep mutual learning.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
43204328, 2018.

[87] Tianxiang Zhao, Xiang Zhang, and Suhang Wang. Graphsmote: Imbalanced node classification
on graphs with graph neural networks. In WSDM, pages 833-841, 2021.

[88] Tong Zhao, Wei Jin, Yozen Liu, Yingheng Wang, Gang Liu, Stephan Gilinnemann, Neil Shah, and
Meng Jiang. Graph data augmentation for graph machine learning: A survey. arXiv:2202.08871,
2022.

15

[89] Tong Zhao, Gang Liu, Daheng Wang, Wenhao Yu, and Meng Jiang. Learning from counter-
factual links for link prediction. In International Conference on Machine Learning, pages
26911-26926. PMLR, 2022.

[90] Tong Zhao, Yozen Liu, Leonardo Neves, Oliver Woodford, Meng Jiang, and Neil Shah. Data
augmentation for graph neural networks. In AAAI volume 35, pages 11015-11023, 2021.

[91] Wentao Zhao, Qitian Wu, Chenxiao Yang, and Junchi Yan. Geomix: Towards geometry-aware
data augmentation. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining, pages 4500-4511, 2024.

[92] Yangiao Zhu, Yichen Xu, Feng Yu, Qiang Liu, Shu Wu, and Liang Wang. Graph neural networks:
A review of methods and applications from a robustness perspective. IEEE Transactions on
Neural Networks and Learning Systems, pages 1-20, 2021.

[93] Daniel Ziigner and Stephan Giinnemann. Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations (ICLR), 2019.

16

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction accurately reflect the paper’s contributions and
scope by clearly stating the claims made, including the contributions, assumptions, and
limitations

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation are discussed in Appendix [B.13]

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: The paper is based on empirical results no theoretical proof is required.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The paper fully discloses all the information needed to reproduce the main
experimental results. It provides detailed descriptions of the experimental setup, including
the datasets used, preprocessing steps, model architectures, hyperparameters, and evaluation
metrics. A github link of code will be provided upon acceptance.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The paper provides open access to the data and code, to reproduce the main
experimental results. The code is available at https://github.com/MariaMarrium/D-GDA.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Yes, all training and test details have been provided.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Mean and standard deviation is provided in many experimental results.
8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

17

https://github.com/MariaMarrium/D-GDA

10.

11.

12.

13.

14.

15.

16.

Answer: [Yes]
Justification: We do provide information on the compute resources.

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes, the research conforms with the NeurIPS code of Ethics.
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: The presented work does not have any negative societal impacts.
Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All core data and models are properly referred and have been available in
public domain.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not publically release new assets.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

18

https://neurips.cc/public/EthicsGuidelines

Answer: [NA]

Justification: The paper’s core method development does not involve LLMs as any important,
original, or non-standard components.

19

Diffusion-Guided Graph Data Augmentation

Supplementary Material

A How Proposed D-GDA is Different from the Existing SOTA Methods?

Table [T6]presents an extended comparison of D-GDA against 30 State-Of-The-Art (SOTA) methods,
evaluating key aspects such as basic building blocks, supported tasks, robustness assessments, learning
settings, and test-time augmentation. It table is an extension of Table|l|in the main paper.

Table 16: (Table [1| extension) A comparison of SOTA GDA methods: 1) Basic building blocks:
graph auto-encoder (GAE), Graph Variational auto-encoder (GVAE), and Diffusion models. 2)
Supported tasks: Node Classification (NC), Link Prediction (LP), and Graph Classification (GC).
3) Robustness evaluations: adversarial robustness (Adv) and machine learning safety measures
(MSM). 4) Learning Settings: semi-supervised, Supervised, and Long-tailed (LT). 5) Test-Time
Augmentation (TTA).

TTA

Methods Basic Building Blocks | Supported Tasks | Robustness Learning Setting

GAE | GVAE | Diff. | NC LP GC | Adv MSM | Semi Sup. LT
DropEdge [54]

X X X
AdaEdge [7]
NodeAug [80]
GAug [90]
Graph Mixup [73]
ReNode [8]
GraphSMOTE [87]
SR+DR [60]
GraphENS [49]
FLAG [31]
LA [42]
NASA [3]
CFLP [89]
TAM(G-ENS) [59]
G-Mixup [18]
GraphSHA [37]
DropMessage [13]
S-Mixup [26]
DropEdge++ [17]
GraphPatcher [25]
iGraphMix [23]
SkipNode [43]
GeoMix [91]
RGDA [39]
xAl-DropEdge [11]
DCT [40]
LeDA [41]
GM [63]
DoG [71]
GraphVCM [52]

XIX AX XX XXX XXXXXXXXXXXXXXXXXXANX XX
YOAX AX LA ARRRCLLAX AX AR R R S
AIXXAXX XXX XAXXXAXXXAXAAX XX XX X XXX
NX XXX AXAXX XXX XXX AXXXACNAX XX XX XXX
NX XX AX XXX XX XXX XXXXXXXXXXXXXXXX

AIX XX XXX XXX XXXXXXXXXXXXXXXXXXXXX
WX AX AX CLACLCRCNNAX X X X AN CAX X AN
NX X AXAXAXCANAXAXAX X XAX AAX X X XAX XX

ANEAX X XXX XXX XXX XXANANAX XX XAXANAX X X XX
AIX XX XXX XXX XAXX XXX XXX X XXX X XXX XXX

NX XX XXX XXX XXXXXXXXXXAXXXXXXXXX
NXAXXAX XXX XXXXXXXXXXXXXXXXXXXXX

D-GDA (ours)

B Details of Experiments Performed using Proposed D-GDA

B.1 Datasets’ Details

Node Classification: We evaluate our proposed method on four small-scale and two large-scale
datasets. Cora, Citeseer, and Pubmed [56] are citation networks where nodes are papers and edges
represent citation links. Node features are bag-of-words representation of papers. Flickr [460] is a
social network in which nodes are users and edges represent user interaction from an image and video
hosting website. OGBN-Arxiv [22] is a directed graph, representing the citation network between all
Computer Science (CS) arXiv papers. Each node is an arXiv paper and each directed edge indicates
that one paper cites another one. Each paper comes with a 128-dimensional feature vector obtained by

averaging the embeddings of words in its title and abstract. OGBN-Products [22] is a co-purchasing
network having products as nodes and the edge indicates that the products are bought together. Table
[[7 summarizes the dataset statistics.

Table 17: Summary statistics of node classification evaluation datasets

Datsets #Nodes #Edges #Classes Train/Valid/Test split
Cora 2,708 5,278 7 140/500/1,000 [29]
Citeseer 3,327 4,552 6 120/500/1,000 [29]
Flickr 7,575 2,39,738 9 757/1,515/5,303 [90]
Pubmed 19,717 44,338 3 60/500/1,000 [29]
OGBN-Arxiv 169,343 1,166,243 40 90,941/29,799/48,603 [22]
OGBN-Products | 2,449,029 61,859,140 47 196,615/39,323/2,213,091 [22]

Link Prediction: We evaluate our proposed method on five datasets: ogbl-collab [70] ogbl-ddi [[75],
Cora, Citeseer, and Pubmed [56]. Ogbl-collab [70] is an undirected collaboration network between
authors indexed by MAG. Each node represents an author, and edges indicate collaborations between
authors. All nodes have 128-dimensional features, obtained by averaging the word embeddings of
papers published by the authors. Each edge is associated with two pieces of meta-information: the
year and the edge weight, representing the number of co-authored papers published in that year. The
task is to predict future author collaborations given past collaborations. Ogbl-ddi [75] is an undirected
graph representing the drug-drug interaction network. Each node represents an FDA-approved or
experimental drug, and edges represent interactions between drugs, indicating that the joint effect of
taking the two drugs together is significantly different from their independent effects. The task is to
predict drug-drug interactions given information on known interactions. Cora, Citeseer, and Pubmed
are citation networks. Table [I8 summarizes the dataset details.

Table 18: Summary Statistics of link prediction evaluation datasets

Datasets #Nodes #Edges #Features Train/Val/Test
Ogbl-collab | 235,868 1,285,465 128 92/04/04 [22]
Ogbl-ddi 4,267 1,334,889 - 80/10/10 [22]
Cora 2,708 5,278 1,433 85/05/10 [35]
Citeseer 3,327 4,552 3,703 85/05/10 [33]]
Pubmed 19,717 44,338 500 85/05/10 [35]

Graph Classification: We evaluate our proposed method on four molecular property prediction
datasets: ogbg-molSIDER, ogbg-ClinTox, ogbg-molHIV, and ogbg-molBACE [78]]. Each graph
represents a molecule, where nodes are atoms, and edges are chemical bonds. The input node features
are 9-dimensional, including atomic number, chirality, and additional atom features such as formal
charge and ring membership. Table|19|summarizes the key statistics for all five datasets.

Table 19: Summary Statistics of graph classification evaluation datasets

Datasets #Graphs Average #Nodes Average #Edges #Classes Train/Val/Test
Ogbg-moISIDER | 1,427 33.6 70.7 27 80/10/10 [22]
Ogbg-molClinTox | 1,477 26.2 55.8 2 80/10/10 [22]
Ogbg-molHIV 41,127 25.5 27.5 2 80/10/10 [22]
Ogbg-molBACE 1,513 34.1 73.7 2 80/10/10 [22]

Datasets for Class Imbalance Evaluations: We evaluate our method on the Cora and Citeseer
datasets [56] in a long-tailed setting. To assess models under conditions of high class imbalance,
we create long-tailed citation networks following the methodology outlined in [[L0]. This involves
adjusting the class distribution to follow a long-tailed pattern by systematically removing nodes,
thereby increasing the imbalance ratio, which is defined as the ratio between the most frequent class
and the least frequent class. To achieve this, we sort the classes in descending order by size and
iteratively remove nodes from each class, starting with the major class. During the node removal
process, we prioritize eliminating nodes with low degrees and removing the corresponding edges
while striving to maintain graph connectivity. Table[20] summarizes the dataset statistics.

Table 20: Summary Statistics of Graph Class Imbalance Evaluation Datasets

Datasets | #Nodes #Edges #Classes #Training Nodes Per Class
Cora 2,708 5,278 7 [34,7, 158, 341,73, 15, 3]
Citeseer | 3,327 4,552 6 [3, 23, 371, 147, 58, 9]

Table 21: (Tableextension) Node classification performance comparison of D-GDA variants and
SOTA methods on small-scale datasets. Best and 2™ best performances are in bold and underline,
respectively.

Method Cora Flickr Citeseer Pubmed Mean
GCN [29] 81.60+0.70 61.204+0.40 71.60+£0.40 78.80+£0.60 | 73.30
+DropEdge [54]] 82.004+0.80 61.404+0.70 71.80+0.20 77.30+0.32 | 73.13
+AdaEdge [7] 81.90+0.70 61.204+0.50 72.80+£0.70 77.4040.50 | 73.33
+SR+DR [60] 83.444-0.34 - 71.76+0.15 80.64+0.12 | 78.61
+NodeAug [80] 82.10+0.90 - 71.40+0.60 78.80 +£0.40 | 77.43
+GAug[90] 83.60+0.50 62.204+0.30 73.30£1.10 80.20+0.30 | 74.83
+Graph Mixup [73]] 73.8040.02 - 64.30+£0.04 76.60+0.18 | 71.57
+FLAG [31]] 75.20+0.40 62.9040.20 62.704+0.60 78.504-0.01 | 69.83
+LA [42] 84.60+0.50 64.244+0.30 74.70+0.50 81.70+£0.70 | 76.31
+NASA [3] 85.10+0.30 - 75.50+£0.40 80.20+£0.30 | 80.30
+DropMessage [[13] 83.33+0.11 53.554+0.23 71.83£0.09 79.2040.06 | 71.98
+S-Mixup [26] 84.78+0.15 - 74.39+0.10 79.70+0.17 | 79.62
+DropEdge++ [17]] 83.104+0.12 63.184+0.14 72.70+0.06 80.00+0.42 | 74.75
+GraphPatcher [23]] 84.17+0.54 - 71.65+£0.05 81.13+0.68 | 78.98
+xAl-DropEdge [11] | 83.60+0.50 - 74.00+0.40 79.50+0.40 | 79.03
+iGraphMix [23]] 83.784+0.42 53.61+0.12 73.67+£0.61 79.93+0.60 | 72.75
+SkipNode [43] 82.00+0.40 50.734£0.09 69.60+£0.50 77.50%0.70 | 69.96
+GeoMix [91]] 84.08+0.74 - 75.06+£0.36 80.06+0.93 | 79.73
+RGDA [39] 84.3340.41 - 73.02+0.36 82.08+0.50 | 79.81
+LeDA [41]] 78.60+0.32 62.64+0.32 67.50+0.18 79.704+0.02 | 72.11
+DoG [71]] 84.00+0.30 - 73.60+0.40 82.80+0.30 | 80.13
+D-GDA (ours) 89.10+0.42 87.30+0.60 81.50+0.15 88.20+0.18 | 86.53

B.2 More Details of Experiments for Node Classification
B.2.1 Experiment Setup and Implementation Details

For TSS, we train a baseline 2-layer Graph Convolutional Network (GCN) with a hidden dimension
of 32, trained using the Adam optimizer with a learning rate of 0.001 for 500 epochs. Early stopping
is applied with a patience of 20 epochs to prevent overfitting. Next, we train a Graph Variational
Autoencoder (GVAE) to learn latent representation. The GVAE consists of a 2-layer GCN encoder
to learn node representations and two 2-layer Multi-Layer Perceptrons (MLPs) for decoding edge
and feature information, respectively. We set the latent dimension to 64. The GVAE is optimized
using a composite loss function: Lgvag = Ledge + M Liear + A2Lkr, where Ay = 0.3 weights the
feature reconstruction loss and Ay = 0.01 controls the KL-divergence term for regularization as
recommended by the original authors [30]. The GVAE is trained for 1000 epochs with the Adam
optimizer, using a learning rate of 0.01 and a weight decay of 5 x 10~°. Following [34} [47]], we
apply edge masking at a rate of 0.3 and feature masking at a rate of 0.5 to enhance robustness during
training. Finally, we train a Latent Diffusion Model (LDM) with a timestep 7" = 1000 and a hidden
dimension of 64. The LDM is optimized using the Adam optimizer with a learning rate of 1 x 10~*
for 1000 epochs, generating high-quality augmented samples for the node classification task.

B.2.2 Improvements over GCN backbone

Table [21] presents a comprehensive comparison of D-GDA against existing SOTA methods using the
GCN backbone. Across all evaluated datasets, D-GDA consistently outperforms both the baseline
GCN and the second-best SOTA method, demonstrating significant performance improvements.

B.2.3 Improvements over GAT backbone

We evaluate the performance of D-GDA on the Graph Attention Network (GAT) backbone [[67]]
using three benchmark citation network datasets: Cora, Citeseer, and Pubmed. Table @] presents
a comparative analysis of D-GDA against existing SOTA methods under the GAT architecture. D-
GDA achieves substantial performance gains over both the baseline GAT model and current SOTA
approaches. Specifically, D-GDA outperforms the GAT baseline by 8.1%, 8.5%, and 9.5%, and
exceeds the previous SOTA performance by 4.7%, 4.3%, and 9.1% on Cora, Citeseer, and Pubmed,
respectively. Given that GAT is a self-attention-based model, where performance is known to be
highly sensitive to both graph connectivity and node features, the observed improvements highlight
the effectiveness and compatibility of the augmentation strategies introduced by D-GDA within
attention-based architectures.

Table 22: (TableE]extension) Node classification performance comparison of D-GDA using additional
backbones including GAT [67] and GSAGE [16].

Method Cora Citeseer Pubmed
Vanilla 81.3 70.5 79.4
+DropEdge [54] 81.9 71.0 79.6
+AdaEdge [7] 82.0 71.1 76.6
+SR+DR [60] 83.5 72.4 79.4
+NodeAug [80] 84.1 70.8 78.3
. +GAug [90] 82.2 71.6 79.3
g tLA[a2 84.7 74.7 79.8
+DropMessage [13] 82.2 71.5 78.1
+xAl-DropEdge [11] | 82.6 72.8 78.8
+iGraphMix [23] 83.2 72.3 78.4
+LeDA [41]] 83.5 72.1 79.5
+SkipNode [43] 81.6 68.4 77.6
+D-GDA (ours) 89.4 79.0 88.9
Vanilla 81.3 70.6 76.8
+DropEdge [54]] 81.6 70.8 77.1
+AdaEdge [7] 81.5 71.3 77.2
i +NodeAug [80] 82.2 70.2 78.1
2 +GAug [90] 83.2 12.7 78.5
O +LeDA [41]] 82.2 72.3 77.6
+SkipNode [43] 81.5 68.5 77.4
+RGDA [39] 83.4 72.6 82.1
+D-GDA (ours) 88.7 80.2 89.5

B.2.4 Improvements over GSAGE backbone

We evaluate the performance of D-GDA using GSAGE (Graph SAmple and aggreGatE) [16] backbone
using three benchmark datasets, including Cora, Citeseer, and Pubmed. In Table@ we compare
our results with existing SOTA methods on GSAGE backbone. D-GDA consistently improves over
both baseline GSAGE and SOTA methods. Specifically, D-GDA outperforms the GSAGE baseline
by 7.4%, 9.6%, and 7.4%, and exceeds the previous SOTA performance by 5.3%, 7.5%, and 7.4% on
Cora, Citeseer, and Pubmed, respectively.

B.3 Implementation Details for Link Prediction

To enhance data augmentation for link prediction tasks, for TSS, we train 2-layer Graph Convolutional
Network (GCN) with a hidden dimension of 32 to generate node embeddings, followed by a simple

Table 23: (Table |7|extension) Balanced accuracy (%) comparison under class imbalance ratio of

p = 100.
Method Cora-LT Citeseer-LT
GCN (Vanilla) 59.4240.74 44.6440.42
+Reweight 78.424+0.10 63.614+0.22
+cRT 76.54+0.22 60.604+0.25
+PC Softmax 77.30+0.13 62.154+0.45
+CB Loss 77.97+0.19 61.4740.51
+Focal Loss 78.43+0.19 59.66+0.38
+ReNode [8]] 67.61+0.13 47.78+0.31
+Upsample 75.524+0.11 55.0540.11
+DR-GCN 73.90+0.29 56.18+1.10
+GraphSMOTE [87] | 66.29+0.43 44.404+0.29
+GraphENS [49] 70.31+£0.24 55.42+0.35
+TAM (G-ENS) [59] | 72.104+0.23 57.154+0.34
+GraphSHA [37] 74.62+0.29 59.04+0.41
+GraphVCM [52] 75.81+£0.42 60.534+1.37
+D-GDA (ours) 80.34+0.51 64.95+0.18

dot product to predict links. It is trained using the Adam optimizer with a learning rate of 0.001 for
1000 epochs, incorporating early stopping with a patience of 20 epochs to prevent overfitting. For all
link prediction datasets, we set augmentation budget in the Target sample selector (TSS) to 20% of
total number of training links for all datasets. The GVAE and LDM for link prediction are trained
with the same parameters as those used for node classification.

B.4 Implementation Details for Graph Classification

To enhance data augmentation for graph classification tasks, we begin by training a Target Sample
Selector (TSS) to identify the most informative graphs for augmentation. The TSS employs a 2-
layer GCN with a hidden dimension of 32 to compute node embeddings, which are subsequently
aggregated into graph-level representations using a mean readout layer. The model is optimized using
the Adam optimizer with a learning rate of 0.001 and trained for up to 1000 epochs, employing early
stopping with a patience of 20 epochs to mitigate overfitting. For all graph classification datasets,
we set augmentation budget in the Target sample selector (TSS) to 20% of total number of training
graphs for all datasets. This targeted approach ensures augmentation focuses on samples with the
highest potential impact. The GVAE and LDM used for augmentation are trained with the same
hyperparameters as those employed in the node classification setting.

B.5 Extended Experiments for Class Imbalance Handling Methods

The TSS, GVAE, and LDM components follow the same training procedures as described in the node
classification setup (Section B.2).

B.5.1 Extended comparison with SOTA Methods

Table[23] provides an extended comparison of D-GDA with existing SOTA methods for handling class
imbalance in the node classification task. This table serves as an extension of Table [7] presented in the
main paper.

B.5.2 Imbalance Ratio Analysis

The Imbalance Ratio (IR) is defined as the ratio of the sample size of the largest majority class to that
of the smallest minority class [[L0], with higher IR values indicating more severe class imbalance.
Many existing graph imbalance handling methods attempt to mitigate this by generating synthetic
nodes for all classes to match the majority class [87) 137, [49], thereby balancing the training data.
However, such approaches often introduce unnecessary complexity and may lead to overfitting.
In contrast, D-GDA effectively reduces class imbalance without enforcing class-level symmetry
or generating synthetic nodes across all classes. At the core of D-GDA is the Targeted Sample

Selector (TSS), which identifies the nodes, regardless of their class, that are most likely to benefit
from augmentation. This class-agnostic selection enables a more natural and targeted correction of
imbalance. As a result, D-GDA leads to a significant reduction in the imbalance ratio. For instance,
the IR drops from 113.67 to 19.55 on Cora, and from 123.67 to 14.6 on Citeseer, as shown in Table
24

Table 24: Comparison of the augmentation budget (AugBudget) for reducing class imbalance ratio
(IR) using D-GDA and SOTA methods.

Datasets | Methods #Training Nodes per Class IR AugBudget
Original Data [34,7, 158, 341, 73, 15, 3] 113.67 -

Cora SOTA (Table 22) Augmentation | [341, 341, 341, 341, 341, 341, 341] 1 278%
D-GDA Augmented Data [85, 25, 160, 391, 78, 39, 20] 19.55 26.4%
Original Data [3, 23,371, 147, 58, 9] 123.67 -

Citeseer | SOTA (Table 22) Augmentation | [371, 371, 371, 371, 371, 371] 1 264%
D-GDA Augmented Data [30, 66, 438, 208, 66, 36] 14.6 38.13%

B.6 D-GDA Improvements in ML Safety Measures (More Details)

We evaluate D-GDA across three key machine learning (ML) safety measures, including calibration,
corruption robustness, and consistency, using three widely adopted benchmark datasets: Cora,
Citeseer, and Pubmed. Table[8]in the main paper summarizes the results. All models are trained on
clean versions of the datasets, i.e., the original data for the GCN baseline, and augmented versions
for D-GDA and other GDA baselines. Performance is then assessed across the aforementioned
safety tasks. Below, we define each safety measure, describe its objective, and provide details on the
corresponding evaluation metrics.

Calibration: The goal of the calibration task is to classify nodes with calibrated prediction probabili-
ties, i.e. matching the empirical frequency of correctness. In other words, a model that predicts with
80% confidence should be correct approximately 80% of the time. To evaluate this, we use the Root

Mean Squared (RMS) Calibration Error [20] defined as: \/ E[(P(Y =Y|C = ¢) — ¢)?], where C

is the classifier confidence that it’s prediction Y is correct. We compute the RMS calibration error
using 15 bins to estimate the empirical accuracy at different confidence levels.

Corruption: The objective of this task is to evaluate model robustness by classifying corrupted test
nodes, with performance measured using the mean classification error. We assess D-GDA under four
types of feature corruption: Gaussian noise, shot noise, impulse noise, and feature shift. Following
the protocol from [19], we apply five severity levels to the Gaussian (G), shot (S), and impulse (I)
noise corruptions to simulate varying degrees of degradation. For the feature shift corruption, we
randomly select 10% of the test nodes and replace their features with those of a randomly chosen
one-hop neighbor. It is important to emphasize that only test node features are corrupted, and the
model is never trained on corrupted data. Below, we include the Python code used to generate these
corrupted node features.

def gaussian_noise(feature, severity=1):
c = [0.04, 0.06, .08, .09, .10][severity - 1]
return feature + np.random.normal(size=feature.shape, scale=c)

def shot_noise(feature, severity=1):
c = [600, 250, 100, 75, 50][severity - 1]
return np.random.poisson(feature * c)

def impulse_noise(feature, severity=1):
c=1[.01, .02, .03, .05, .07][severity - 1]

return sk.util.random_noise(feature, mode='s&p', amount=c)

def shift(node, features, adj):

one_order_nei = adj[node] .nonzero() [1]

neighbors = np.append(one_order_nei, node)

swap_with = random.choice(neighbors)

corr_feat = features.clone()

corr_feat[node], corr_feat[swap_with] = corr_feat[swap_with], corr_feat[node]
return corr_feat

Consistency: This task evaluates a model’s ability to consistently classify similar versions of the
same test node. For each node, we create a sequence .S containing the original node’s features and
several perturbed versions with increasing noise levels. The goal is for the model to predict the same
class for all nodes within a sequence S, even as the features become progressively noisier. We denote
m perturbation sequences with S = {:cgz), xg'), e ng)} Following [19], we set n = 31. To measure
consistency, we use the mean flip rate (mFR), as defined in Eq. (). The mFR corresponds to the
probability that adjacent nodes within a sequence .S of increasing noise levels have different predicted
classes.

1 — i i
mFR = mzi:lzj:Z:L(f(x;)) # f(l’g))a (2)

where, f(-) is the trained classifier and x is the original unperturbed features. Below is the Python
code to obtain sequence S of original features.

def get_sequence(features, n=31):
seq = []
for i in range(l, n+1):
features = features + 0.02 * torch.randn_like(features)
seq.append(features)
return seq

B.7 D-GDA Adversarial Robustness Analysis (More Details)

To evaluate the robustness of D-GDA against adversarial attacks, we employ four well-established
evasion attacks: Random (random edge flips), DICE [74] (removes intra-class edges and adds
inter-class edges), GFAttack [6] (optimizes a low-rank loss to generate structural perturbations),
and Meta-attack [93] (uses meta-gradient-based loss maximization). Each attack is applied at two
perturbation levels, with perturbation ratios (o € 0.05,0.2). All attacks are conducted under an
evasion attack setting, where the graph structure is perturbed only at test time, leaving the training
data unchanged. For GCN, the model is trained on clean data, whereas D-GDA is trained using
its graph-augmented data. We leverage the GreatX: Graph Reliability Toolbox [33] to generate the
adversarially perturbed graphs. Table[9]in the main paper summarizes the results.

003 oos 005 006 007 008 009 003 o004 005 006 o007 008 009 .

Standard deviation (o) of noise Standard deviation (o) of noise

(a) Validation Accuracy (b) Validation Loss (c) GCN (-0.06) (d) GCN+D-GDA (0.18)

Figure 5: Citeseer dataset: (a) and (b): D-GDA promotes flatter minima in the loss landscape. (c)
and (d): t-SNE visualizations of node embeddings, demonstrating improved class separability with
D-GDA. Silhouette score is shown in parenthesis.

|

B.8 D-GDA Robustness to Homophily

The node homophily is defined as the average fraction of a node’s neighbors that share the same label
[50]. Table [25]compares these node homophily scores with GCN and D-GDA performance, as well
as the resulting performance gain across six node classification and three link prediction datasets.
Pearson’s correlation coefficient between node homophily and these performances is computed. We
observe a positive correlation of 0.63 between homophily and GCN performance, however, a reduced
correlation of 0.45 with D-GDA performance. It suggests that D-GDA performance is not strongly
correlated with homophily compared to GCN. More interestingly, we observe a negative correlation
of -0.37 between homophily and performance gain of D-GDA, indicating that D-GDA performance
gain is robust to homophily. On the remaining datasets, node labels are not available, so homophily
can not be computed.

Table 25: Node Homophily Vs GCN and D-GDA performance: The D-GDA performance gain is
robust to homophily.

Downstream Task | Datasets Node Homophily | GCN | D-GDA | Performance Gain
Cora 0.83 81.6 89.1 9.19
Flickr 0.67 61.2 87.3 42.65
Node Citeseer 0.72 71.6 81.5 13.83
Classification Pubmed 0.79 78.8 88.2 11.93
Ogbn-Arxiv 0.63 71.62 74.8 4.44
Ogbn-Products 0.83 7137 | 78.85 10.48
Link Cgra 0.83 89.55 96.96 8.27
Prediction Citeseer 0.72 69.47 93.72 3491
Pubmed 0.79 96.11 97.82 1.78
Pearson’s Correlation - 0.63 0.45 -0.37

B.9 More insights to the improvements obtained by D-GDA
B.9.1 D-GDA promotes flatter minima for enhanced generalization

In addition to the Cora dataset results in the main paper, we evaluate D-GDA on the Citeseer and
Pubmed datasets. Using a trained GCN, we compare D-GDA against DropEdge, FLAG, and LA
under Gaussian noise perturbations of model parameters. As shown in Figure[5[(a), D-GDA achieves
higher accuracy and lower loss (Figure [5[b)) on Citeseer, indicating flatter minima that enhance
generalization. t-SNE visualizations (Figure Ekc) and (d)) reveal more cohesive and well-separated
clusters for D-GDA, with the silhouette score improving from -0.06 to 0.18. A similar trend is
observed on Pubmed (Figure @, where the silhouette score increases from 0.13 to 0.34, further
confirming D-GDA’s ability to promote robust and generalizable representations.

Validation Loss

0.06 7
Standard deviation () of noise

Standard deviation (a) of noise

(a) Validation Accuracy (b) Validation Loss (¢) GCN (0.13) (d) GCN+D-GDA (0.34)

Figure 6: Pubmed dataset: (a) and (b): D-GDA promotes flatter minima in the loss landscape. (c)
and (d): t-SNE visualizations of node embeddings, demonstrating improved class separability with
D-GDA. Silhouette score is shown in parenthesis.

B.9.2 Oversmoothness analysis using MADGap measure (More Details)

To quantify the smoothness of graph representations, we employ the MADGap measure, as described
by Chen et al. [7]. The results are presented in Table |10 of the main paper. Below, we outline the

MADGap measure and its computation. The Mean Average Distance (MAD) assesses graph represen-
tation smoothness by computing the average distance between nodes. Given a graph representation
matrix H € R"*?% (where d’ is the hidden dimension of the final GNN layer), we first calculate the
distance matrix D € R™*" using the cosine distance between all node pairs. We then filter target
node pairs by element-wise multiplication with a mask matrix M'€" to obtain D' = D & M'¢. The
average distance for each row in D'¢ is computed as:

n tgt
YioDij 3)
tgt

20 01(D;f)

where 1(-) is the indicator function. The MAD score for the target node pairs is then calculated by
averaging the non-zero ngt values:

Ptgt _

n ptgt
aapte = =0 @
S LD
Using the graph topology to approximate node categories, we compute the MADGap to evaluate
oversmoothness:
MADGap = MAD™ — MAD"™®, (5)

where MAD™ is the MAD for remote nodes (order > 8) and MAD™ is the MAD for neighboring
nodes (order < 3). A large positive MADGap indicates that nodes receive more useful information
than noise, reflecting appropriate smoothing and good GNN performance. Conversely, a small or
negative MADGap suggests oversmoothing, leading to degraded performance.

B.9.3 Test-Time Consistency and Diversity (More Details)

To evaluate the quality of augmented data, we adopt the consistency and diversity metrics proposed
by Bo et al. [3] and extend them to the test set. We train two models, Fy and .7:'9 : R — R¢, on
the original training data Dy, and augmented data Dlrain, respectively, where d is the input feature
dimension, c is the number of classes, and € represents the learnable parameters. Both models are
then used to predict on the test set D Effective augmentations should enable fg to achieve higher
test accuracy and establish a distinct decision boundary compared to Fy.

Test-Time Consistency: We measure consistency as the accuracy of the augmented model on the
test set, defined as Clegt = Acc(]:'g (Diest), Yiest), where Y denotes the test data labels. A low Cieg
indicates that the augmentations are inconsistent with the original data, potentially reducing model
accuracy. However, a high Ci.: does not necessarily imply high-quality augmentations, as it may
reflect limited generalization.

Test-Time Diversity: To assess diversity, we compute the difference between the predictions of
the original and augmented models using the Frobenius norm: Dy = ||]:"9 (Diest) — Fo(Drest) || %
A low Dy suggests that the augmented data closely resembles the original data, offering little
benefit to model generalization (Yin et al., 2019). Conversely, a high D« does not guarantee correct
augmentations, as it may introduce noise.

A robust augmentation strategy should balance high consistency (Cies) and sufficient diversity (Dies)
to ensure both accuracy and improved generalization. Figure [/|illustrates the trade-off between
diversity and consistency for D-GDA compared to existing SOTA augmentation methods. Across
all datasets, D-GDA achieves a favorable balance between the two, suggesting that its performance
gains may stem from this effective trade-off.

B.10 Additional Ablations

In this section, we present additional ablation studies beyond those in the main paper to provide a
clearer understanding of various design choices.

B.10.1 Impact of Neighborhood Aggregation Method on Performance

To assess the impact of different neighborhood aggregation strategies, we experiment with two
commonly used methods: mean and max aggregation. These strategies are used to compute the con-
ditioning vector ¢! for augmentation generation. As shown in Table 26} the mean aggregation yields

90 -
90 4 GeN D-G.DA 4 GeN D EDA 4 GoN D'ﬁDA
o ® :DropEdge N @ +DropEdge ol ® +DropEdge
* +FLAG g * +FLAG * +FLAG
— ® 1A > ® LA > ® 1A
£ +LeDA Lf £ 8o +LeDA £ +LeDA LA
2 84 W :D-GDA z W :D-GDA z 7 B +D-GDA]
2z DropEdge 2 2 GeN DropEdge
S wlON o s 7 s e
g % 3 LeDA
£ 80 LeDA % 7 %
& & é
7 LA
65 FLAG o LeDA 65
76 FLAG GCN DropEdge + FLAG
* * . *
60|
o 5 0 " 20 o 5 0 " 20 25
Test-set Diversity Test-set Diversity Test-set Diversity
(a) Cora (b) Flickr (c) Citeseer
* ooy D-GDA . * coy D-GDA 80 * cox D-GDA
88 ® +DropEdge ") ® +Drophdge " ® +DropEdge
* +FLAG GON 4 Lpiac LA * 4FLAG *FLAG
- ® . e oo @ XFLAG .
g +LeDA g Y LeDA +LeDA LA
z W DGDA 5 ’ W D-GDA e
5 s 3 W +D-GDA [EDA
LA S o
2 ° g
K LeDA 3
= 8o =1
GgN FLAG 60
*
78 DropEdge DropEdge DropEdge
. L] .
55|
10 15 o 5 10 15 20 o 5 10
Test-set Diversity Test-set Diversity Test-set Diversity
(d) Pubmed (e) Ogbn-ArXiv (f) Ogbn-Products

Figure 7: (Details of Figure Diversity vs. consistency comparison on six datasets. Methods
falling in top-right corner shows a good balance of diversity vs. consistency

superior performance, indicating its effectiveness in capturing relevant neighborhood information for
guiding the augmentation process.

Table 26: Impact of Neighborhood Aggregation Method on Performance
Aggregation Method | Cora Citeseer Pubmed
Max 87.5 78.8 84.7
Mean (ours) 89.1 81.5 88.2

B.10.2 TImpact of Multi-Hop Neighborhood Condition on Performance

To assess the effect of multi-hop neighborhood condition on model performance, we conducted
an ablation study by modifying the conditioning vector ¢! in the LDM to incorporate embeddings
from 1-hop, 2-hop, and 3-hop neighboring nodes. The results, summarized in Table show a
decline in performance as neighborhood depth increases. This may be attributed to the changing
class labels of nodes in deeper neighborhoods, which could prevent the synthetic node features from
accurately capturing the target class’s characteristics. Notably, as depicted in Figure[8] increasing the
neighborhood depth enhances test-time diversity but reduces test-time consistency.

87
@ +D-GDA (1-hop)

5 o #D-GDA (1-hop) ® +D-GDA (2-hop)
8 * +D-GDA (3-ho
Table 27: Impact of Multi-hop Neighborhood Ag- 3 o D-GDA (2-hop) D-GDA (-hop)
gregation on overall performance. S
Conditioned On Cora Citeseer Pubmed g &
1-hop neighbors (ours) | 89.1 81.5 88.2 s *D-GDA (3-hop)
2-hop neighbors 88.2 79.9 87.9 18 20 22
3-hop neighbors 86.8 77.6 85.3 Test-set Diversity

Figure 8: Multi-hop Neighborhood impact on
test-time consistency and diversity

10

B.10.3 Node Importance Selection Strategies for Graph Classification

To evaluate the effectiveness of the proposed degree-based node selection method, we compared it
against two alternative strategies including random selection and PageRank-based selection. Table[28]
summarizes the results for graph classification across these strategies. Following [15]], we compute
PageRank with a damping factor of 0.85 and a convergence tolerance of 1 x 10~5. We observe that
the proposed degree-based selection consistently outperforms both alternatives. This supports the
intuition that high-degree nodes are indeed more structurally influential, reinforcing the effectiveness
of degree-based selection as the optimal strategy in our setting.

Table 28: D-GDA performance comparison on graph classification datasets using the proposed degree-
based node selection strategy, compared against random and PageRank-based selection methods.

Node Selection Strategy ogbg-molISIDER ogbg-molClinTox ogbg-molHIV ogbg-molBACE
Random node 61.19 89.98 77.42 75.68
Page-rank top-node 63.24 92.76 78.83 81.92
Highest degree node (ours) 64.85 94.82 79.03 83.45

B.10.4 Effectiveness of Test Time Augmentation (Extended Evaluation)

We present an extended evaluation of Test Time Augmentation (TTA) by expanding the analysis
to 10 datasets to provide a more comprehensive view. Table 29] summarizes the results for GCN
and D-GDA, both with and without TTA, along with the per-sample TTA cost. Across all datasets
and tasks, we observe consistent performance improvements when employing TTA, highlighting its
generalizability and effectiveness.

Table 29: Performance comparison of GCN and D-GDA with and without test time augmentation
(TTA) along with Per-sample inference time (sec) with TTA

Datasets GCN . D-GDA TTA Inference
w/o TTA with TTA | w/o TTA with TTA | Cost/Sample | Time/Sample

Cora 81.6 83.2 88.2 89.1 1.39 1.41
Flickr 61.2 64.01 84.65 87.3 1.17 1.33
Citeseer 71.6 73.37 79.2 81.5 1.53 1.55
Pubmed 78.8 80.41 85.5 88.2 1.21 1.23
Ogbn-Arxiv 71.62 72.52 72.7 74.8 0.98 1.8

Ogbn-Products 71.37 72.85 77.60 78.85 1.02 1.94
Ogbg-molSIDER 59.6 61.08 62.92 64.85 0.96 1.08
Ogbg-molClinTox 88.55 89.92 91.8 94.82 0.97 1.11
Ogbg-molHIV 76.06 77.63 71.9 79.03 0.96 1.09
Ogbg-molBACE 71.47 73.26 79.24 83.45 0.95 1.06

B.10.5 Ablation of Different Choices of Target Sample Selection (TSS) Backbones

In D-GDA, TSS identifies difficult samples based on prediction entropy. To maintain consistency,
we use the same backbone architecture in TSS as in the downstream model being evaluated. For
example, when comparing D-GDA performance with a GCN backbone, we also use GCN within
TSS; similarly, for GAT or GraphSAGE, the corresponding backbone is used in both components.
The rationale behind this design is that each GNN backbone employs a different message passing
mechanism, and as a result, a node that may appear difficult for one model may not be difficult
for another architecture. Table @] summarizes the results of using GCN, GAT, and GraphSAGE
within the TSS module across multiple experiments. The findings show that the best performance is
consistently achieved when the same backbone is used in both TSS and the downstream classifier,
confirming the importance of the proposed choice of architecture in TSS.

B.10.6 Hyperparameter Analysis

To evaluate the influence of hyperparameters on the overall performance of D-GDA, we conduct
an ablation study focusing on the weighting parameters A\; and A, in the GVAE loss function using
Cora, Citeseer, and Pubmed datasets for the node classification task. The parameters A; and A,

11

Table 30: Ablation on different choices of TSS backbones.
Downstream Backbone TSS Backbone Cora Citeseer Pubmed

GCN 89.1 815 88.2
GCN GAT 87.8 79.8 85.5
GSAGE 874 80.2 85.4
GCN 86.2 76.2 87.1
GAT GAT 894 79.0 88.9
GSAGE 873 784 86.8
GCN 86.7 715 85.8
GSAGE GAT 873 7189 86.1
GSAGE 88.7 80.2 89.5

regulate the trade-off between feature reconstruction and latent space regularization, both of which
are critical for generating high-quality augmented graph data. In this ablation, we systematically
vary A1 € {0.1,0.3,0.5} and Ay € {0.01,0.05,0.1}, while keeping all other components of D-GDA
unchanged. For each pair of \; and Ay values, we train the GVAE to generate augmented graphs,
which are subsequently used to train the node classification model. Table [31] presents the results,
reporting classification performance across different hyperparameter configurations. The analysis
highlights the sensitivity of GVAE to the balance between feature reconstruction and regularization.
For example, increasing A\; emphasizes feature reconstruction, which can improve node-level fidelity
but may lead to overfitting. Conversely, higher A5 values impose stronger regularization on the latent
space, promoting stability but potentially reducing the model’s capacity to capture nuanced structural
information.

Table 31: Hyperparameter Analysis

A1 Ao Cora Citeseer Pubmed
0.01 88.38 79.92 86.45
0.1 0.05 85.5 75.36 84.68
0.1 82.28 72.83 81.73
0.01 (ours) | 89.1 81.5 88.2
0.3 (ours) 0.05 87.12 79.8 87.02
0.1 82.52 73.86 84.7
0.01 88.56 80.13 87.14
0.5 0.05 85.23 78.25 84.88
0.1 82.48 74.6 81.92

B.11 D-GDA Training Time Breakdown

Table[32] provides a component-wise breakdown of the D-GDA training time, covering Traget Sample
Selector (TSS), Graph Variational Autoencoder (GVAE), and Latent Diffusion Model (LDM), along
with its inference time with Test-Time Augmentation (TTA). Training and inference time are reported
using a 4x A16 GPU machine with 128GB RAM.

B.12 D-GDA Scalability and Efficiency Analysis

Table[33] compares the scalability of D-GDA across datasets of varying numbers of nodes and number
of graphs. Specifically, performance gain, training time, and per-sample inference time of D-GDA
are compared with the dataset size. For datasets containing multiple graphs, we report the average
number of nodes per graph. The results demonstrate that D-GDA scales efficiently with increasing
dataset size. The training time increases sublinearly as the dataset size increases, while still delivering
significant performance improvements over GCN.

B.13 Limitations of the Proposed D-GDA Algorithm

A potential limitation of the proposed D-GDA framework is its training time computational cost and
test-time memory overhead. It requires training GCN baseline, GVAE, and LDM for each dataset.

12

Table 32: Training (sec) and Inference time per sample (sec) component-wise breakdown of the
proposed D-GDA framework.

Datasets Train Time _ Inference Time
TSS GVAE+LDM Data Aug+Training Total TTA Inference Total
Cora 9.35 12.82 15.55 37.72 1.39 0.019 1.41
Flickr 79.87 85.13 163.17 328.17 1.17 0.16 1.33
Citeseer 11.67 17.86 18.32 47.85 1.53 0.021 1.55
Pubmed 40.01 43.62 145.79 229.42 1.21 0.024 1.23
Ogbn-Arxiv 728.86 77492 903.42 2407.2 | 098 0.816 1.8
Ogbn-Products 1253.84 154824 1698.23 450031 | 1.02 092 1.94
ogbg-molSIDER | 95.11 105.32 113.72 314.15 | 096 0.12 1.08
ogbg-molClinTox | 96.32 106.46 116.24 319.02 | 097 0.14 1.11
ogbg-molHIV 572.28 585.18 596.48 1753.94 | 0.96 0.13 1.09
ogbg-molBACE 96.84 103.92 114.62 31538 | 095 0.114 1.06

Table 33: Scalability analysis of D-GDA with varying graph sizes (number of nodes IVl and number
of graphs IGl), showing performance gains over the baseline GCN, along with total training and
inference times (in seconds). D-GDA exhibits sublinear growth in training time with increasing
dataset size.

Datasets VI IGl Gain | Inf. Time | Train Time | Train Time Per Sample
Cora 2,708 1 9.19 1.41 37.72 0.0139
Flickr 7,575 1 42.65 | 1.33 328.17 0.0433
Citeseer 3327 1 13.83 | 1.55 47.85 0.0144
Pubmed 19,717 1 11.93 | 1.23 229.42 0.0116
Ogbn-Arxiv 169,343 1 4.44 1.8 2407.2 0.0142
Ogbn-Products 2,449,029 | 1 10.48 | 1.94 4500.31 0.0018
ogbg-molSIDER | 33.6 1,427 | 8.81 1.08 314.15 0.2201
ogbg-molClinTox | 26.2 1,477 | 7.08 1.11 319.02 0.216
ogbg-molHIV 25.5 41,127 | 3.9 1.09 1753.94 0.0426
ogbg-molBACE 34.1 1,513 16.76 | 1.06 315.38 0.2084

This process is resource-intensive than some traditional augmentation methods, such as DropEdge.
However, some traditional methods such as FLAG have also shown similar computational time.
Being diffusion based framework, D-GDA requires GVAE and LDM during inference if test-time
augmentation is employed. Without test-time augmentation its inference time remains almost the same
as existing SOTA methods. Despite the higher computational overhead, the substantial performance
improvements over SOTA methods justify the additional cost, making D-GDA a compelling choice
for high-quality graph data augmentation.

C Convergence Proof of LDM in D-GDA Framework

We provide a theoretical justification for the convergence of LDM in the D-GDA framework setting,
which operates in label-free settings. Despite the inherent challenges of sparse graph supervision, we
show that the denoising network in D-GDA converges to the true conditional score function, enabling
it to sample augmentations from a neighborhood-aware latent distribution. Our analysis follows the
foundational results from score-based generative modeling 21,162, |61]], adapted to the graph setting
with local structural conditioning. Let v; denote a node in graph G = (V, &), with latent representation
29 € (R)? obtained from a Graph Variational Autoencoder (GVAE). We assume a standard DDPM-
style forward process that gradually corrupts 2? with Gaussian noise. The reverse process aims to
estimate the noise via a denoising network €q (2!, ¢, ¢?), conditioned on a neighborhood-aware vector
¢;. The model is trained with a score-matching loss: Lpy (¢ = .o, ||e — eg(2}, 1, })|[3.. For details
See Section 3.1.3. Our goal is to show that under mild assumptions, the denoising model ¢y converges
to the true conditional score function of the local latent distribution, enabling realistic and diverse
augmentations without reliance on class labels. We begin by stating the following assumptions:

Assumption 1 (Locality Assumption): The latent variable z) is drawn from a smooth conditional
distribution p(2? | N'(v;)), supported on a low-dimensional manifold.

13

Table 34: Impact of reducing training data for LDM on training loss, validation loss, early stopping
epoch, and node classification accuracy.
Training Data Percentage Performance Metric Cora Citeseer Pubmed Ogbn-Arxiv

Train Loss 0.069 0.084 0.077 0.068
100% Val Loss 0.153 0.176 0.249 0.251
Test Acc. 89.1 81.5 88.2 74.8
Train Loss 0.059 0.064 0.067 0.057
60% Val Loss 0.178 0.197 0.275 0.307
Test Acc. 86.8 79.2 86.4 73.1
Train Loss 0.029 0.034 0.042 0.032
40% Val Loss 0.203 0.236 0.319 0.324
Test Acc. 82.3 75.6 81.9 71.8

Assumption 2 (Model Capacity): The denoising network €y is a universal approximator i.e. has
enough expressive power to learn any function within a given function class (For D-GDA the score
function of the noisy latent distribution).

Assumption 3 (Diffusion Schedule): The noise schedule {c;}7_; is chosen such that a7 — 0 as
T — o0, ensuring near-total corruption at the final step.

Theorem 1: Let ¢4(2!,t,¢}) be trained using the denoising score matching objective. Then, as
T — oo and model capacity increases, ey converges to the conditional score function: eg(2?,t, c?) —
V.t logpi(2f | €}), where p; (2] | ¢) is the marginal distribution of the noisy latent variable at time
t, conditioned on the local structure of node v;.

Sketch of Proof: This result follows from established results in score-based generative modeling
[61]. Minimizing the denoising score-matching loss recovers the true score function of the noisy data
distribution. In D-GDA, the conditioning vector ¢! restricts generation to a node’s local neighborhood,
simplifying the modeling of p(z) | N(v;)) as a smooth, low-dimensional conditional distribution.
Assumption Al ensures the score function is well-defined and smooth, while Assumption A2
guarantees that €g can approximate this function arbitrarily well. The noise schedule in A3 ensures
that the diffusion process sufficiently corrupts the latent code, enabling meaningful denoising learning.
Together, these yield convergence to the true conditional score function. This theoretical justification
confirms that D-GDA’s latent diffusion process, when conditioned on local neighborhood structure,
can provably learn a neighborhood-aware augmentation distribution, without requiring access to class
labels.

Empirical validation: we evaluate D-GDA’s LDM under increasingly limited training data. Specifi-
cally, we reduce the amount of training data from 100% to 60% and 40%, and track LDM behavior
across four graph datasets: Cora, Citeseer, Pubmed, and Ogbn-Arxiv. Early stopping is applied based
on validation loss with a patience of 10 epochs. In Table[34] we report the training loss, validation
loss, early stopping epoch, and D-GDA test accuracy. We observe that, as the training data decreases,
training loss consistently decreases (e.g., Cora: 0.069 to 0.029), due to easier overfitting on fewer
samples. Validation loss increases (e.g., Pubmed: 0.249 — 0.319), indicating reduced generalization
from limited training data. LDM trained with less data tend to converge earlier (e.g., Ogbn-Arxiv:
672 — 172), suggesting faster overfitting. Test accuracy drops across datasets (e.g., Citeseer: 81.5%
— 75.6%), as the model struggles to generate diverse augmentations.

14

	Introduction
	Related Work
	Methodology
	Proposed Diffusion-based Graph Data Augmentation (D-GDA) Framework
	Target Sample Selector (TSS)
	Graph Variational Autoencoder (GVAE)
	Latent Diffusion Model (LDM)
	Task-Specific Augmentation Generation

	Experiments
	Conclusions
	How Proposed D-GDA is Different from the Existing SOTA Methods?
	Details of Experiments Performed using Proposed D-GDA
	Datasets' Details
	More Details of Experiments for Node Classification
	Experiment Setup and Implementation Details
	Improvements over GCN backbone
	Improvements over GAT backbone
	Improvements over GSAGE backbone

	Implementation Details for Link Prediction
	Implementation Details for Graph Classification
	Extended Experiments for Class Imbalance Handling Methods
	Extended comparison with SOTA Methods
	Imbalance Ratio Analysis

	D-GDA Improvements in ML Safety Measures (More Details)
	D-GDA Adversarial Robustness Analysis (More Details)
	D-GDA Robustness to Homophily
	More insights to the improvements obtained by D-GDA
	D-GDA promotes flatter minima for enhanced generalization
	Oversmoothness analysis using MADGap measure (More Details)
	Test-Time Consistency and Diversity (More Details)

	Additional Ablations
	Impact of Neighborhood Aggregation Method on Performance
	Impact of Multi-Hop Neighborhood Condition on Performance
	Node Importance Selection Strategies for Graph Classification
	Effectiveness of Test Time Augmentation (Extended Evaluation)
	Ablation of Different Choices of Target Sample Selection (TSS) Backbones
	Hyperparameter Analysis

	D-GDA Training Time Breakdown
	D-GDA Scalability and Efficiency Analysis
	Limitations of the Proposed D-GDA Algorithm

	Convergence Proof of LDM in D-GDA Framework

