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Abstract

Generative modeling-based visuomotor policies have been widely adopted in
robotic manipulation, attributed to their ability to model multimodal action dis-
tributions. However, the high inference cost of multi-step sampling limits its
applicability in real-time robotic systems. Existing approaches accelerate sam-
pling in generative modeling-based visuomotor policies by adapting techniques
originally developed to speed up image generation. However, a major distinction
exists: image generation typically produces independent samples without temporal
dependencies, while robotic manipulation requires generating action trajectories
with continuity and temporal coherence. To this end, we propose FreqPolicy, a
novel approach that first imposes frequency consistency constraints on flow-based
visuomotor policies. Our work enables the action model to capture temporal struc-
ture effectively while supporting efficient, high-quality one-step action generation.
Concretely, we introduce a frequency consistency constraint objective that enforces
alignment of frequency-domain action features across different timesteps along
the flow, thereby promoting convergence of one-step action generation toward the
target distribution. In addition, we design an adaptive consistency loss to capture
structural temporal variations inherent in robotic manipulation tasks. We assess
FreqPolicy on 53 tasks across 3 simulation benchmarks, proving its superiority
over existing one-step action generators. We further integrate FreqPolicy into the
vision-language-action (VLA) model and achieve acceleration without performance
degradation on 40 tasks of Libero. Besides, we show efficiency and effectiveness
in real-world robotic scenarios with an inference frequency of 93.5 Hz.

1 Introduction

Recently, the generative modeling-based visuomotor policy framework extends the powerful capa-
bilities of generative models in text-to-image synthesis [58 17, (56160, 9, 21] to imitation learning
for robotic manipulation [27, [11} 39} 19, 6], achieving significant breakthroughs. A prominent class
of such policies is diffusion-based approaches [11} 76, 46, (75 83 23], which are widely adopted
for the ability to model complex multimodal distributions in high-dimensional action spaces [[11]].
More recently, flow matching [40, [38, [13| [36] has emerged as a generalization of diffusion mod-
els, offering simpler optimization objectives and more stable training [68]]. It has been applied to
robotics [[59} 19} 112, [77. 16, [25]], proving the efficacy of flow-based policies. Despite these advance-
ments, these generative modeling-based visuomotor policies rely on an iterative sampling process to
transform Gaussian noise into actions, resulting in high-latency inference. This presents a significant
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bottleneck for real-time inference in robotic manipulation, where stable and smooth action execution
is essential, particularly in long-horizon or dynamic tasks [53}42].

To mitigate this issue, recent efforts leverage acceleration methods from the image generation domain
to accelerate the action generation by reducing the sampling steps [53} 42, 28,165, [16]. A pioneering
work, Consistency Policy (CP) [53]], adapts the consistency distillation from the text-to-image
domain [62} 31} 143|164, 41]] to the robotics domain. CP first trains a powerful diffusion-based teacher
using the EDM model [29]], and subsequently distills its knowledge into a student model via the
Consistency Trajectory Model objective [31], enabling the diffusion-based policy one-step action
generation. ManiCM [42] extends the consistency distillation to 3D diffusion-based policy [76] with
point cloud inputs. SDM [28]] and OneDP [65]] adopt distribution matching distillation originally
introduced in image generation [52} 66l 71, [14], distilling pretrained diffusion-based policies into
one-step action generators by aligning the action distributions. While the aforementioned methods
primarily focus on diffusion-based policies, FlowPolicy [78]] attempts to reduce the sampling step
of flow-based policy. It uses consistent constraints from Consistency-FM [68]] originally developed
for image generation, to enforce velocity consistency across different points along the flow without
distillation, facilitating straight flows and enabling one-step generation.

In fact, a key distinction between image generation and robotic manipulation lies in the presence
of temporal dependencies. While image generation produces individual samples that are typically
independent across time, robotic manipulation involves executing action trajectories that form a time-
series process. Therefore, it requires modeling outputs that are continuous and temporally coherent.
We argue that leveraging temporal characteristics is essential, as it provides richer contextual
information that can significantly enhance action generation. In this work, we proposed a novel
one-step visuomotor policy, named FreqPolicy, that first imposes frequency consistency constraints
on flow-based visuomotor policy, thus leveraging temporal knowledge and enabling efficient and
high-quality one-step action generation. Specifically, we introduce a frequency consistency objective
that enforces alignment of frequency-domain action features across timesteps, improving temporal
coherence in generated actions. Furthermore, we design an adaptive frequency component loss to
learn the structural temporal variations inherent in robotic manipulation tasks.

Frequency Consistency Objective. Inspired by the fields of time-series forecasting and speech
processing [82, 181} 70 [73]], frequency representations capture better non-stationary and oscillatory
patterns, where time-domain features often fail. Thus, frequency-domain features show high effective-
ness for modeling temporal dynamics. In robotic manipulation, for high-frequency sampled action
chunks, frequency features provide finer discrimination of subtle variations in smooth trajectories. To
exploit this advantage, we enforce consistency between velocities of action chunks across different
timesteps in the frequency space, thereby promoting the convergence of action generation.

Adaptive Frequency Component Loss. In robotic manipulation, the distribution of frequency com-
ponents within each action chunk varies over time throughout task execution. This variability arises
because robotic manipulation sequences typically alternate between stationary and non-stationary
motion phases. During low-dynamic movements (e.g., reaching or moving between positions), only a
subset of action dimensions exhibit noticeable variation, while others remain relatively smooth. Con-
versely, during high-dynamic movements (e.g., transitions between skills or contact-rich interactions),
high-frequency variations are more prominent and informative. To capture this structured temporal
variation, we draw inspiration from the Focal Loss [35] and propose an adaptive weighting scheme
that dynamically emphasizes frequency components with greater discrepancy.

Our contributions can be summarized as: 1) FreqPolicy is the first one-step visuomotor policy
that imposes temporal knowledge for robotic manipulation. 2) Inspired by the time-series and
speech processing field, we propose the frequency consistency constraint objective to enhance the
regularization of two arbitrary action velocities. Moreover, an adaptive frequency component loss is
proposed to capture the structured temporal variation of the action sequence. 3) We conduct extensive
experiments in both simulation and the real world to evaluate FreqPolicy, demonstrating its superiority
over existing one-step action generators, e.g., achieving 78.5% in MetaWorld. 4) We further integrate
FreqPolicy into a vision-language-action (VLA) model [6, [32]], achieving a significant improvement
in inference speed (e.g., Sx faster) without compromising overall task performance.



2 Related Work

Generative Modeling-based Visuomotor Policy. Learning from human demonstrations (a.k.a. imita-
tion learning [2} 151} 20L [1]]) has shown remarkable performance in robotic manipulation [18, [7, 34} 33]].
Compared to deterministic policies 50,79, 26,80, 4} [18} 54], generative modeling-based policies are
widely used for their ability to model multimodal action distributions, enhancing training stability in
high-dimensional action spaces [[L1]. The pioneer work, Diffusion Policy [[11], formulated visuomo-
tor policy learning as a conditional denoising diffusion process, achieving impressive manipulation
performance through a multi-step sampling inference process. Subsequent works [[76}130] extended
diffusion-based policies to 3D point cloud inputs, enabling action generation directly from point cloud
observations. [46} 67 factorizes the policy into a high-level key waypoint predictor and low-level
trajectory generator, achieving higher task success rates. Recently, another generative modeling
paradigm, Flow Matching (FM) [40, 38]] has shown strong performance in domains including image
generation [[13} 45, [17] and super-resolution [84]]. Compared to diffusion-based generative models,
flow matching (FM) directly defines probability paths via ordinary differential equations (ODEs) to
transport the simple prior distribution to a target distribution, offering better numerical stability and
fewer inference steps [36l]. Hence, it has been applied to robotic manipulation [6, 25} 161, 15]]. As
a pioneer, Rouxel ef al. [59] extend flow matching to multi-support tasks and demonstrated strong
performance. Subsequent works [[19}[12] incorporate point cloud inputs, achieving manipulation in
3D scenery. Zhang et al. [T7] innovatively integrate spatial affordance prediction with flow matching
for action prediction.

Accelerated Visuomotor Policy. Despite the impressive performance of generative-based policies,
they are limited in real-world deployment by the high inference cost of multi-step sampling [53]. To
address this issue, recent efforts have accelerated action sampling through four main mainstream as:
(1) Trajectory distillation. Consistency Policy [53]] pioneered consistency distillation [62} 143] [31]]
in robot manipulation, enabling a few-step action generation by constraining denoising trajectories
from different steps toward the same step. ManiCM [42] extended this approach to 3D scenarios
and achieved better one-step inference than 3D Diffusion Policy [76]. FlowPolicy [78], inspired
by ConsistencyFM [68]], applied constraints on the velocity field and transporting process in flow
matching, enabling one-step action generation. (2) Partial action denoising. Instead of denoising
from Gaussian noise per step, SDP [22] outputs a partially denoised action with variable levels of
noise, where the noise-free part guides current action execution and the noisy portion serves as input
for future rollouts. Falcon [[L0] proposed to select an action chunk from the historical denoised
trajectory as the input. Both enhance the inference speed but still require multiple sampling steps.
(3) Distribution matching. OneDP [65] and SDM [28]] incorporated variational score distillation [66,
44, 72|, 171,148 [14]] into imitation learning and achieved strong one-step generation performance in
both 2D [47] and 3D [74] input settings. Although effective, such approaches typically require a
pretrained teacher model. In addition to the above methods, some works have introduced advanced
Riemannian flow matching [[15] and variance-based adaptive sampling strategies [24] to achieve
faster generation, respectively. This work aims to accelerate flow-based visuomotor policies using
consistency-based paradigms, motivated by their potential to eliminate the need for teacher models.
Unlike existing works, we propose a novel perspective based on frequency consistency to enable
more effective one-step action generation by leveraging temporal knowledge in robotic manipulation.

3 Methodology

3.1 Task Setting

We focus on the robotic manipulation task via the imitation learning paradigm: given a dataset
D containing n observations O = {o};_, and corresponding expert action A = {a}”_,, the goal
is to train a flow matching-based policy mg(a1.m|0) : O — A to map the observations o € O to
action a;.z with chunking size H, enabling the robot to replicate expert behaviors and generalize
across diverse scenarios. Observations typically include proprioceptive states, RGB images from
various viewpoints (e.g., eye-in-hand or third-person cameras), and point cloud data. The action
space varies depending on the task and robot setup, and commonly includes either SE(3) motions of
the end-effector or joint states. To thoroughly evaluate the effectiveness of the proposed method, we
conduct extensive experiments under both 2D and 3D observation settings.
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Figure 1: Overview of FreqPolicy. a) For training, we use the frequency consistency constraint to
align the velocity vectors across different time steps in the frequency space. Besides, we introduce an
adaptive frequency component loss to accommodate the diverse frequency structures in manipulation
tasks. b) FreqPolicy takes 2D or 3D input and predicts the velocity vector of the action as output.

3.2 Preliminaries

Flow Matching. Let R¢ denote the data space with data points = € R%, and consider a simple prior
distribution xo ~ po(x), FM aims to learn a time-dependent vector field v(¢, z) : [0,1] x R? — R4,
that generates a time-conditioned ordinary differential equation (ODE) as follows:

dy(t,x

# :’U(taw(tvm))v ¢(Oa$) ~ Po (1)
() : [0,1] x RY — R? is the solution to the ODE, also known as the flow. Based on this, the
distribution py can be transported to a more complex distribution p; via the push-forward equation:

b= (67 () det | 07 (1.0) @

To transform the prior distribution p, into an unknown target distribution p; via flow v, with the
marginal distribution satisfying p;—g = pop and p;—1 = p1, flow matching seeks to optimize the vector
field v(¢, ) by minimizing the following objective:

Lo =Eep, [lve(t, ) — ult, ze)l, &)

where 6 denotes the learnable parameters of the vector field, which in turn leads to a deep parametric
model of the flow v. u(t, ;) is the corresponding target vector field. Despite the simplicity of the
objective, directly optimizing it in practice is challenging due to the lack of prior knowledge of the
desired p; and u(t, 2+). Therefore, Conditional Flow Matching [36] proposes to regress vy (t, ;) via
a conditional vector field u(t, z;|x1) and a conditional probability path p;(x¢|x1) as:

£9 = ]Etm1(331)7pt(xt,\$1) ||’Ug(t,ZL't) - u(t,xt|x1)||2 (4)

Here Eq. 3] and Eq. [] share the same gradient with respect to 6, thus Eq. [3| can be estimated if
u(t, x¢|z1) and p(t, x¢|z1 ) is tractable. The choice of u (¢, x¢|x1) is not unique, and a classic instance
is obtained by linearly interpolating between x; and x; [40l 38|, which owns the desirable property
of generating straight probability paths:

1 — Ty
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Ly = Et,pl(zl),pt(mt) ||v9(t,w(t,xt)) - (331 - xt)H2 (6)

U(t,$t|l‘1) =

3.3 FreqPolicy

Flow-based policies suffer from slow inference due to their iterative sampling process, limiting their
use in high-frequency control scenarios and deployment on edge devices. We propose FreqPolicy, a
novel approach that enables efficient one-step action generation by introducing temporal constraints
from the frequency perspective, as shown in Fig.[I] Inspired by the time-series and speech processing
fields, we propose the frequency consistency constraint objective to enhance the regularization of two



arbitrary action velocities. Besides, the adaptive frequency component loss is proposed to effectively
capture the structured temporal variation of the action sequence. We provide details on the model
architecture in Sec.[A]l

Basic Flow Matching Learning Objective. An intuitive way to apply flow matching in robotic
manipulation is to regress a vector field mapping noise to action chunks, as adopted in prior works [[19,
59,121 24} 16]]. We first equip FreqPolicy with this objective to enable multimodal action generation.

Specifically, considering a simple noise ag ~ N(0, I) and a corresponding expert action a1 ~ Pexperts
we aim to learn the vector field vy (¢, a;) that maps the prior noise to expert actions by approximating
the real conditional velocity field u(t, a;). Following flow matching based on optimal transport
theory [40, 38], we instantiate the target velocity field u(¢, a;) as a constant vector along the optimal
linear transport from a to a1, namely:

1
u(t,ar) = / u(z,a,)dz = a1 — ag 7
0

Next, for any timestep ¢ € [0, 1], we optimize the policy by minimizing the following objective:

Lim = Eit4(0,1), (ag,a0)~D Vo (t, as) — (a1 — ao)lly (8)
where a; is defined as the linear interpolation between ag and a; with respect to time ¢, a; =
(1 —=1%)-ap+t-ay. For inference, we sample an initial noise vector ay and deterministically
integrate the learned vector field vy(t, a;) from ¢ = 0 to ¢ = 1 using an ODE solver (e.g., Euler or
Runge-Kutta), yielding the final action a;. While optimizing the objective in Eq.[§]yields a functional
policy model, it still requires multiple sampling steps to generate a desired action (e.g., 10 steps in
o [6] and 4 steps in GROOT N1 [5]]).

Frequency Consistency Constraint Objective. In the fields of time-series analysis and speech
processing [82] 81} [70, 73], frequency-domain features show superior ability to model temporal
dynamics, e.g., non-stationary [69]] and oscillatory patterns, where time-domain signals often fall
short. In robotic manipulation, frequency features provide finer discrimination of subtle variations
in high-frequency sampled action chunks [49]]. Therefore, differing from prior approaches [/8] that
treat multi-dimensional action chunks as static vectors, the proposed FreqPolicy regards each action
chunk as a temporal signal. We aim to enforce consistency in the frequency space between action
velocity vectors across different timesteps of the flow, promoting straighter flow and one-step action
generation. Concretely, given a pair of initial noise and target actions (ag, a;) sampled from the
prior and expert distributions, we select two arbitrary timesteps s, r € [0, 1], and then construct the
interpolated state between ag and a; as:

ar=0—-r)-ap+7-a1, as=(1—-5s)-a0+s-a; )

We enforce the velocities vg(s,as) and vg(r, a,) to be consistent across timesteps through the
following training objectives:

Lireg = Ersn14(0,1), (ar,a0)~D [Sim(ve (s, as), ve(r, ar))] +
Er,s,uNU(O,l), (ar,as,ay)~D [Slm(a’9 =+ (U - S) Vo (Sa aS) ;ar + (u - T) Vo (Ta ar))]

where Sim(-) is a function measuring the consistency of two velocities, and u satisfies r < s < u.
The first part of Eq. [10|directly ensures the consistency of the two velocity vectors, while the second
part enforces the consistency of the vector field from a trajectory perspective. Specifically, starting
from arbitrary two points, a, and a,, are expected to converge to the same point at time u, thereby
providing a way to directly define straight flows [68]. These constraints enforce consistent and
straight flow across different timesteps, thus facilitating effective one-step action generation.

(10)

To leverage the temporal characteristic of the action chunks, we strengthen the temporal constraint
with the frequency regularization. Namely, we propose to project the velocity vectors into the
frequency domain using the type-II Discrete Cosine Transform (DCT):

1

H-1
F(v) = Z ve(n) - cos [;\rf (n+ 2) k] , fork=0,...,H—-1 (11)

n=0

where F'(vt)y, denotes the spectral coefficient of the k-th frequency component of vy (¢, a:). The
function Sim(-) in Eq. is then defined as the /2 norm between the two frequency coefficients as:

Sim (UMUS) = ||F(Ur) - F(”S)Hz (12)



This loss encourages the frequency spectral profiles of velocity signals at different timesteps to match,
thereby aligning their temporal dynamics. As a result, the action chunks generated across different
timesteps exhibit greater temporal consistency, which in turn guides the policy towards learning
straighter and more stable flow trajectories suitable for one-step inference.

Adaptive Frequency Component Loss. In robotic manipulation, the distribution of frequency com-
ponents within each action chunk varies over time throughout task execution. This variability arises
because robotic manipulation sequences typically alternate between stationary and non-stationary
motion phases. During low-dynamic movements (e.g., reaching or moving between positions),
only a subset of dimensions in the action chunks exhibit noticeable variation, while others remain
relatively smooth. Conversely, during high-dynamic movements (e.g., transitions between skills or
contact-rich interactions), high-frequency variations are more prominent and informative. We show
some visualization examples in Sec.[A.2] To effectively capture this structured temporal variation, we
draw inspiration from the Focal Loss [35] and propose an adaptive weighting scheme that emphasizes
frequency components with greater discrepancy. Concretely, for each frequency band &, we com-
pute a frequency-domain weight wy, based on the difference between the corresponding frequency
components of two action velocity vectors:

_ €xp (HF(UT)/C - F(US)k||2)
St exp (IF(vn); — Fvs);ll,)

where F'(v)y, is the DCT coefficient of the k-th frequency component. We then define the adaptive
frequency component loss as:

(13)

H-1
Sim (vy-, vs) Z wi - | F(vr)i — F(vs)llo (14)
k=0

This adaptive loss encourages the model to focus more on frequency bands that encode informative
dynamic variation across time. As a result, it strengthens the model’s ability to align the temporal
structure of action chunks across different timesteps. We investigate the effectiveness of the adaptivity
capability of the proposed loss in Sec.[4.3]

Overall Training Objective. Our training objective consists of two complementary components: a
standard flow matching loss in Eq.|8|supervising the flow from prior noise to expert actions, and a
frequency-domain loss in Eq.[T4]that enforces temporal consistency across various timesteps. We
jointly optimize these two objectives through the final loss:

ACtotal = £fm + Efreq (15)

This unified formulation ensures that FreqPolicy learns both accurate and temporally consistent flows,
ultimately enabling reliable one-step action generation across diverse manipulation tasks.

4 Experimental Results

4.1 Simulation Experiments

To thoroughly validate the FreqPolicy, we conduct simulation experiments under both 2D [47]] and
3D input settings [74] 3 [55] as shown in Fig. 2] and perform comprehensive comparisons. We
further integrate FreqPolicy with existing vision-language-action (VLA) models to demonstrate its
generalization ability.

Experiment with 2D Inputs. The FreqPolicy is evaluated on 5 tasks from the widely-used
Robomimic [47] benchmark: Lift, Can, Square, Transport, and Tool Hang. For each task, we
use proficient human demonstrations datasets with image-based observations, containing 200 demon-
strations per task. We evaluate the average success rate across 3 random seeds for all tasks. For each
seed, we evaluate each task over 50 different initializations and compute the mean success rate. The
Number of Function Evaluations (NFE) metric is reported to measure the number of generation steps.

Table [T| compares our approach with existing policies on the Robomimic benchmark. FreqPolicy
surpasses prior one-step methods, e.g., CP [53] and IMLE Policy [57]. Moreover, FreqPolicy
even outperforms a few classical multi-step policies. We further reproduced Consistency-FM [68]
that uses spatial-domain constraints for robotic manipulation with the same setting. FreqPolicy
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Figure 2: Experimental benchmarks. We evaluate FreqPolicy on 5 benchmarks, including a total of
93 simulated tasks (left) and 3 real robotics tasks (right).

Table 1: Performance on the Robomimic dataset [47]. We compare the FreqPolicy against a set of
state-of-the-art multi-step generative visuomotor policies. We report the mean and standard deviation
of success rates. Tasks marked with * are the result of our implementation.

Method NFE Lift Can Square Transport Toolhang
DDPM 15 1.00 0.98 & .01 0.91 £+ .01 0.80 & .04 0.52 £+ .05
DDiM 15 1.00 0.99 £ .01 0.92 £+ .03 0.79 + .04 0.55 £+ .05
RectifiedFlow* [40] 15 1.00 0.96 + .02 0.90 & .02 0.84 + .04 0.90 .02
ActionFlow 10 1.00 0.99 + .01 0.87 + .10 - 0.81 .09
AdaFlow [24] - 1.00 1.00 0.98 0.92 0.88

ConsistencyPolicy* 3 1.00 0.95 + .02 0.96 + .01 0.88 + .02 0.77 + .03
DDiM [11] 1 0.04 0.00 £+ .00 0.00 .00 0.00 .00 0.00 .00
ConsistencyPolicy* 1 1.00 0.98 £ .01 0.92 £.02 0.78 £.03 0.70 £.03
Consistent-FM* 1 1.00 0.94 £ .02 0.90 £ .01 0.84 £.02 0.80 £.02
IMLE Policy 1 1.00 0.98 0.82 0.90 0.81

Ours 1 1.00 0.98 £ .02 0.92 £ .02 0.90 & .02 0.85 £+ .03

achieves superior performance, improving the Transport task by 6% and the Tool Hang task by 5%,
demonstrating the effectiveness of the proposed frequency-domain consistency.

Experiment with 3D Inputs. To implement fair comparisons, we follow the existing methods [[76} 28]
and conduct experiments on 53 tasks across two benchmarks: Adroit [55] and MetaWorld [[74].
Specifically, we use reinforcement learning with VRL3 [63]) to collect expert demonstrations for
Adroit, and use scripted policies to obtain demonstrations for MetaWorld. Training is conducted using
10 expert demonstrations per task. Following the evaluation protocol in previous works [76] 28] [78],
we report the performance for each task across 3 random seeds. For each seed, we evaluate 20
segments every 200 training epochs and compute the average success rate of the top-5 trails, along
with the average inference time per task.

Table [2] presents the comparisons with previous methods and demonstrates consistently improved
performance. Compared to the SDM [28]] strategy using distribution matching distillation, FregPol-
icy achieves consistent gains in average success rate across 3 benchmarks, e.g., MetaWorld rises
from 74.8% to 78.5%. Unlike SDM, FreqPolicy eliminates the dependence on pretrained teachers.
Moreover, against FlowPolicy [[78] applying a direct consistency constraint in the spatial domain,
FreqPolicy maintains a 1.3% lead on MetaWorld. This advantage is particularly pronounced on the
Medium, Hard, and Very Hard splits of MetaWorld, further validating the benefit of our frequency
consistency supervision. Please refer to Sec.[A.3] for details.

Experiment with VLA settings. We combine different policies with the classic OpenVLA model [33]]
and conduct systematic experiments on the LIBERO simulation benchmark [37]], covering 4 task
suites: LIBERO-Spatial, LIBERO-Object, LIBERO-Goal, and LIBERO-Long. Each suite provides
500 expert demonstrations across 10 tasks, designed to evaluate policy generalization across varying
spatial layouts, object types, goal specifications, and long-horizon tasks. All models are evaluated
under the same experimental protocol, with results averaged success rate (%) over 500 trials per suite
(10 tasks x 50 episodes). Please refer to Sec.@for more details.

We integrate FreqPolicy, Diffusion Policy (DP) [11]], and Flow Matching (FM) with the
OpenVLA. Table [3]shows the comparisons of VLA models with various policy heads. Our method
(OpenVLA-FreqPolicy) achieves the highest average success rate of 94.8%, outperforming both



Table 2: Performance on the benchmarks with 3D inputs [74}55]. We assess performance on 53
challenging tasks with 3 random seeds, reporting the mean success rate (%) and standard deviation.
Tasks marked with * are reproduced results.

. Meteworld  Metaworld Metaworld  Metaworld

Method NFE | Adroit (3) g o0'(28)  Medium (11) Hard (6)  Very Hard (5) | Average

DP [IL1] 10 31.7 83.6 31.1 9.0 26.6 555+3.6
DP3x [[76] 10 74.3 89.0 72.7 38.0 75.8 76.1 £2.3
ManiCM [42] 1 72.3 83.6 55.6 33.3 67.0 69.0 £ 4.6
SDM [28] 1 74.0 86.5 65.8 35.8 71.6 74.8 £ 4.5
FlowPolicyx [78] 1 69.3 89.6 66.5 43.8 75.8 772 +2.8
Ours ‘ 1 ‘ 72.6 90.6 65.8 46.8 79.4 ‘ 78.5 +2.6

Table 3: Success rates and inference speed on LIBERO benchmark [37]]. Methods with * indicate
our implementations. FreqPolicy (NFE = 1) outperforms Diffusion Policy (NFE = 50) and Flow
Matching Policy (NFE = 10 & 1), achieving higher success rates and faster speed, demonstrating
superior effectiveness.

Method | NFE | Spatial (%) Object (%) Goal (%) Long (%) Average (%) | Speed (Hz)
OpenVLA-DP [32] 50 92.0 75.0 934 11.8 68.1 0.32
OpenVLA-FlowMatching 1 95.0 97.6 96.0 85.2 93.5 5.92
OpenVLA-FlowMatchingx 10 96.0 97.2 97.8 83.6 93.7 1.26
OpenVLA-FreqPolicy (Ours) ‘ 1 ‘ 97.0 98.6 96.0 87.6 94.8 ‘ 6.05

OpenVLA-DP and OpenVLA-FlowMatching in all categories except for the Goal suite, where it
is tied for second-best. Compared to OpenVLA-DP, which has an average success rate of 68.1%,
OpenVLA-FreqPolicy shows a significant improvement, especially in the Long task suite (87.6%
vs. 11.8%). Notably, OpenVLA-FreqPolicy with just 1 NFE achieves a higher average success rate
than OpenVLA-FlowMatching with 10 NFE (94.8% vs. 93.7%), while offering significantly faster
inference speed (5 times faster).

4.2 Real World Experiments

Task Design. We design 3 long-horizon real-world tasks on 2 different robotic arms as illustrated in
Fig.[3] to evaluate the FreqPolicy: 1) Fruit Sorting Task. The Franka robot is required to sequentially
place a banana, an avocado, and a mango into a basket. This is a compound pick-and-place task
involving ordered object manipulation. 2) Toy Organization Task. The Franka robot must first
pull open a drawer, place two toy dolls inside, and then close the cabinet door. This task integrates
multiple skills, including pull, push, and pick-and-place. 3) Trash Disposal Task. The UR robot
needs to open a trash bin lid, place several pieces of food waste (e.g., half a bun and half a piece
of bread) into the bin, and then close the lid. This task requires a combination of pressing and
pick-and-place fine manipulation capabilities. More demonstrations can be found in Sec.[A.3]

Main Results. We primarily compare against Diffusion Policy [11]] and Flow Matching Policy [59,
12, [19] with 1-step and 10-step inference settings, respectively. For each evaluation, we perform
20 trials with various initializations on the physical robot and report the mean success rate. We
also measure and report the real-time inference frequency of each policy using an NVIDIA RTX
4090. As shown in Fig. |3al and Fig. FreqPolicy achieves success rates comparable to, and in
some cases exceeding, those of multi-step policy models, while using only single-step inference. For
example, on Task 1, FreqPolicy achieves a top success rate of 70% at an inference speed of 93.5 Hz,
outperforming multi-step Diffusion Policy (55% at 19.8 Hz) and Flow Matching Policy (60% at
20.2 Hz). Similar trends are observed across all tasks. These results demonstrate that FreqPolicy can
match or surpass the performance of multi-step policy models with just one inference step, while
significantly reducing computational overhead. Additional evaluation details are provided in Sec.[A.3]

4.3 Ablation Study

Table [4] shows the effect of various consistency constraints on one-step action prediction. Model #1
serves as a baseline, using vanilla flow matching for one-step action generation. Model #2 equips
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(a) Success rate (%) on three real-world tasks. (b) Inference speed (Hz) on three real-world tasks.

Figure 3: Demonstrations of three real-world tasks (fop) and the test results of different policies
(bottom). We evaluated the success rate (%) and inference speed (Hz) for all methods. DP stands
for Diffusion Policy, FM for Flow Matching Policy, and the number represents inference steps of the
corresponding policy model. FreqPolicy consistently outperformed baselines in both success rate and
inference speed, demonstrating its effectiveness on real-world robotic platforms.

Table 4: Ablations on Robomimic. We analyze the impact of various designs in transitioning from a
vanilla flow matching policy with one-step action generation to our FreqPolicy. Results on the Lift
are omitted, as all methods achieve saturated performance. In addition, we evaluate FreqPolicy under
different spectral supervision settings to assess the importance of frequency-aware consistency.

Model Consistency Objectives Can Square Transport Toolhang
#1 Vanilla Flow Matching (NFE=1) 0.94 0.90 0.84 0.76
#2 w/ consistency constrain 098 092 0.90 0.78
#3 w/ frequency consistency constrain - high 096 092 0.88 0.80
#4 w/ frequency consistency constrain - low 095 0.90 0.88 0.82
#5 w/ frequency consistency constrain - full 096 092 0.92 0.82
#6 w/ frequency consistency constrain - adaptive 0.97  0.93 0.92 0.88

Model #1 with a consistency loss similar to Consistency-FM [68]], yielding a modest improvement
(e.g., success rate increases to 90% on the transport task).

To investigate the effect of supervising different frequency bands, Model #3 and Model #4 intro-
duce low-frequency and high-frequency consistency constraints on top of Model #1, respectively.
These methods manually select specific frequency components for constraints and result in minor
improvements. We attribute this to the diverse and dynamic nature of frequency components in
action chunks during robotic manipulation. Model #¥5 applies consistency constraints across the full
frequency component, leading to a more substantial gain, raising transport from 90% to 92% and
toolhang from 78% to 82%, thereby validating the efficacy of frequency consistency. Finally, Model
#6 incorporates our adaptive frequency loss, further boosting performance to state-of-the-art levels
and confirming the advantage of adaptive frequency constraints.

5 Limitation & Conclusion

In this work, we introduce FreqPolicy, a novel one-step action generation policy that performs
robustly under both 2D and 3D inputs. For the first time, FreqPolicy imposes a frequency-domain
consistency constraint on flow matching, encouraging consistent velocities across different timesteps,
and incorporates an adaptive loss that emphasizes higher-variance frequency components. Through
this training regimen, FreqPolicy learns a straight-line flow to produce single-step actions. We
validate its effectiveness on 53 simulated tasks and demonstrate a significant speed-up on 40 Libero
tasks for a VLA model. We hope that FreqPolicy will advance embodied vision—motion planning and
VLA models in real-world applications. However, our work presents certain limitations. We primarily
validated the effectiveness of our proposed FreqPolicy on flow matching. In principle, the same
core idea can be extended to diffusion-based visual-motor policies, which we will systematically
investigate in future work. Our method demands more computational resources, as it requires twice
forward passes to process two random samples. In future research, we will explore the computationally
efficient one-step action generators.
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by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Please refer to Sec.[3]and Sec. dl for details.

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: All simulation data used in our experiments are sourced from publicly available
benchmarks.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Please refer to Sec.[3|, f]and Appendix for details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: Please refer to Sec. @ for details.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The appendix includes training details for all experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: This research fully complies with the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work focus on computation efficiency for visuomotor policies, thus no
societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All third-party assets (e.g., code, data, models) are properly credited, and their
licenses and terms of use are fully respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing or research involving human
subjects.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No crowdsourcing or human subject research is involved in this work.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: We did not use any large language models (LLMs) for tasks related to the
content of this paper.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Technical Appendices and Supplementary Material

In this appendix, we first present further details on the model architecture of FreqPolicy in Sec.[A.T]
Next, Sec. [A.2] provides additional visualizations and frequency-domain analyses of various action
chunks. We then supplement the simulation experiments with additional information in Sec.
along with details on integrating FreqPolicy into VLA models in Sec.[A.4] Finally, Sec.[A.5]describes
the setup and results of the real-world experiments.

A.1 More Model Configuration

As a Visuomotor Policy. Following previous works [[L1} (76, 28}, 142, [78]], we adopt a standard 1D
CNN-based U-Net architecture as the backbone of FreqPolicy to ensure a fair comparison with
existing models. FreqPolicy is designed to accept both 2D and 3D observations as input. For 2D
images, we employ ResNet-18 as the visual encoder. For 3D input, we follow [76} [78]] and use a
lightweight MLP to encode the input point cloud.

As a Head of the VLA Model. FreqPolicy can also serve as a policy head for existing VLA models,
as long as the underlying VLA is capable of predicting action vector fields. In this work, we integrate
FreqPolicy into OpenVLA [33]], following the setup in [32], where the predicted action vector field is
obtained by applying a nonlinear mapping to the noise-conditioned latent features.

A.2 Extended Frequency Analysis for Robotic Manipulation

In Fig. 4} we present visualizations of action chunks from different real-world and simulation
scenarios, including the observed images, the corresponding multi-dimensional temporal action
signals, and the transformed DCT frequency coefficients. In the simulation scenario shown in Fig. fa]
the Franka robot transitions from “approaching the blue can” to “grasping the can”, during which the
expected action chunk contains high-frequency variations associated with gripper motion. Similarly,
in Fig. b} as the robot moves from “approaching the stove” to “placing down the kettle”, the gripper
opening action introduces high-frequency signals, while other control signals remain relatively
smooth. In the real-world scenario shown in Fig. during the process of picking up the doll, the
Franka robot exhibits relatively smooth motion transitions, with the action signal primarily dominated
by low-frequency components. Hence, based on the above observations of different action chunks and
their frequency-domain characteristics, we justify the motivation of the adaptive frequency coefficient
loss introduced in Sec |3| This loss enables the model to focus more effectively on the frequency
components that exhibit meaningful variation across diverse action chunks.

A.3 More Details on Visuomotor Policy Simulation
A.3.1 More Details on Simulation with 2D Inputs

Implementation Details. We implement the RectifiedFlow [40, 38]], ConsistencyPolicy [53]], and
Consistency-FM [68]] to comprehensively evaluate our proposed FreqPolicy. For RectifiedFlow, we
adopt a 1D CNN-based U-Net to predict action vector fields from observations. Following [6]], we
sample time steps ¢ from a Beta distribution during training to interpolate intermediate states. For
ConsistencyPolicy, we follow the procedure in [53], where an EDM [29] teacher model is first trained
in the initial stage, and then a student model is distilled for one-step action generation using the CTM
objective [31]. For Consistency-FM, we also use a 1D CNN-based U-Net to predict action vector
fields from observations. We then sample different time steps r and s from a uniform schedule and
apply velocity field consistency constraints between them. To train all models, we use observations
from the past 2 time steps as input and predict a 16-step action chunk, from which the first 8 steps are
selected for execution. All models are trained using a batch size of 128 with the AdamW optimizer
and a learning rate of 1.0e-4. Training is conducted for 1000 epochs on a single NVIDIA A100 GPU.
For ConsistencyPolicy, the student model is trained for 450 epochs.

A.3.2 More Details on Simulation with 3D Inputs

Implementation Details. Following the prior works [[76} [78]], we use a lightweight MLP to encode
the point cloud and use a 1D CNN-based U-Net to predict the action vector field. To train the
FreqPolicy model, we use a batch size of 128 and the AdamW optimizer with a learning rate of
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Robot State Over Time
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(a) Visualization of an action chunk from the Franka simulation dataset. When the robot transitions from “reach
the blue can” to “grasping it”, the change in gripper introduces high-frequency signal variations. Other states
exhibit no significant changes and tend to be smoother.
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(b) Visualization of an action chunk from the Franka simulation dataset. During the transition from “approaching
the stove” to “placing down the kettle”, the gripper exhibits high-frequency variations, while other states remain
nearly unchanged.
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(c) Visualization of an action chunk from the Franka robot demonstrations. Once the robot successfully grasps
the doll and begins placing it into the drawer, the overall motion exhibits relatively slow changes under a 30 Hz
action sampling rate, dominated by low-frequency signals.

Figure 4: Visualization of the spectral and temporal signals across different action chunks.
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Table 5: We report the evaluation details of the 53 challenging tasks from Adroit [55]] and Meta-
World [74] under 3 random seeds, and report the mean success rate (%) and standard deviation for
each task. Tasks marked with an asterisk * indicate re-implemented versions. Compared to Man-
iCM [42], a one-step action generation model using consistency distillation based on diffusion-based
policies, our method achieves superior performance. Similarly, we achieve an overall improvement
of 9.4% over SDM [28] that adopts variational score distillation [72, [71]] to achieve a one-step
diffusion policy. Finally, in comparison to the flow-based policy FlowPolicy [78]], which uses only
spatial-domain consistency loss, FreqPolicy still leads by 2.8% gains, demonstrating the effectiveness
of our frequency consistency constraint.

Adroit Meta-World (Easy)
Alg / Task Adroit Hammer Adroit Door Adroit Pen | Button Press Coffee Button Plate Slide Back Side
Diffusion Policy 45+5 37+2 13+£2 99 + 1 99 + 1 100+ 0
3D Diffusion Policy 100+ 0 75+3 48+3 100+ 0 100+ 0 100+ 0
ManiCM 100+ 0 68 + 1 49 +4 100+ 0 100+ 0 100+ 0
SDM Policy 100+ 0 73+£2 49 +4 100+ 0 100£0 100+ 0
FlowPolicyx* 97+3 62+6 49+5 100+ 0 100+ 0 100+ 0
Ours 98 +2 68+5 52+4 100+ 0 100+ 0 100+ 0
Meta-World (Easy)
Alg / Task Button Press Topdown Button Press Topdown Wall Button Press Wall Peg Unplug Side Door Close Door Lock
Diffusion Policy 98 +1 96 +3 97+3 74+3 1000 86+38
3D Diffusion Policy 9+1 96+3 100+0 93+3 100£0 96+3
ManiCM 100+ 0 96 +2 98+3 71£15 1000 98+2
SDM Policy 98 +2 99+ 1 100+0 74 + 19 1000 962
FlowPolicyx 100+ 0 100 £0 100+£0 88+5 1000 1000
Ours 100+ 0 100 +0 100+ 0 87 +4 1000 100+0
Meta-World (Easy)
Alg Task Door Open Door Unlock Drawer Close Drawer Open Faucet Close Faucet Open Handle Press Handle Pull
Diffusion Policy 98+3 98 +3 100+ 0 93+3 100 £0 100+ 0 81+4 27+22
3D Diffusion Policy | 100 +0 100+ 0 1000 1000 100+0 1000 100+ 0 52+8
ManiCM 100+ 0 82+ 16 100+ 0 100+ 0 100+ 0 100+ 0 1000 10+ 10
SDM Policy 100+ 0 100+ 0 100+ 0 100+ 0 99+ 1 100+ 0 100+0 28+ 11
FlowPolicy 100 £0 100+ 0 100+ 0 100+ 0 99+0 100+ 0 100 £0 25+8
Ours 100+0 100 £ 0 100 £0 100 £ 0 1000 100+0 100+0 22+5
Meta-World (Easy)
Alg Task Handle Press Side Handle Pull Side Lever Pull Plate Slide Plate Slide Back Dial Turn Reach  Reach Wall
Diffusion Policy 100+ 0 23+17 49+5 83+4 99+0 6310 18+2 5947
3D Diffusion Policy 0+0 82+5 84+8 100 £ 0 1000 910 26+3 T74+3
ManiCM 0+0 48+ 11 82+7 1000 96 +5 84+2 33+3 62+5
SDM Policy 0+0 68 £6 84+9 100£0 100£0 88+3 34+3 801
FlowPolicyx 100+ 0 50+6 74 £5 95+3 100£0 81+4 29+10 69+6
Ours 100 £ 0 59+6 80+5 96 +2 100 £ 0 91+5 32+10 72+5
Meta-World (Easy) Meta-World (Medium)
Alg Task Plate Slide Side Window Close Window Open | Basketball Bin Picking Box Close Coffee Pull Coffee Push
Diffusion Policy 100 £0 100 £0 1000 85+6 15+4  30+5 34+7 67 +4
3D Diffusion Policy 100 £0 100+0 9+1 1000 56+14 59%5 79+2 96 +2
ManiCM 100 £ 0 100+0 80 26 4+4 49+17 73+2 68 +18 96+3
SDM Policy 100+ 0 100+ 0 78 +18 28 26 55+13 613 72+9 97 +2
FlowPolicy 100+0 100+ 0 100+ 0 85+7 45+7  56+4 89+3 94 +£2
Ours 100 +0 100+0 100 £ 0 77 +4 40+£7 615 84 +5 95+3
Meta-World (Medium) Meta-World (Hard)
Alg Task Hammer Peg Insert Side Push Wall Soccer Sweep Sweep Into | Assembly Hand Insert Pick Out of Hole
Diffusion Policy 15+6 34+7 20+3  14+4 18+8 10+4 15+1 0+0 0+0
3D Diffusion Policy | 100 + 0 79+4 78+5 23+4 92+4 38+9 100+ 0 28+8 44+3
ManiCM 98 +2 75+8 31+7 2743 5416 37+13 87+3 28+ 15 30+ 16
SDM Policy 98 +2 83+5 83+4 25+2 906 32%15 100 £ 0 24+ 14 34+24
FlowPolicy 97+3 695 566 24+6 91+£3 265 912 23+5 33+3
Ours 95+2 70+4 64+11 27+4 88+4 23+4 100 £ 0 18+3 40+4
Meta-World (Hard) Meta-World (Very Hard)
Alg Task Pick Place Push Push Back | Shelf Place Disassemble Stick Pull Stick Push Pick Place Wall | Average
Diffusion Policy 0+0 30+£3 00 11£3 43+7 11+2 63+3 5+1 55.5+3.58
3D Diffusion Policy | 0+0 565 0%0 472 91+4 67+0 100+ 0 74 +4 76.1£2.32
ManiCM 0+0 55+2 00 48+3 87+3 63+2 1000 37+16 69.0 + 4.60
SDM Policy 0+0 57+0 100+0 51+4 86+ 10 68 + 10 0+0 53+12 74.8 £4.51
FlowPolicy 57+4 59%5 - 476 745 66+7 1000 92+4 77.2+2.84
Ours 63+5 605 - 51+3 82+6 74+6 100 £ 0 90 +4 78.5 +2.61
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1.0e-4, training for 3000 epochs. Evaluation is conducted every 200 epochs, and the best-performing
checkpoint is saved. All experiments are conducted on a single NVIDIA A100 GPU.

Result Details. We report the detailed success rates of FreqPolicy on 53 tasks from the Adroit
and MetaWorld benchmark in Table[5] The success rate of each task is averaged over experiments
conducted with 3 random seeds.

A.4 More Details about VLA Settings

Implementation. For Diffusion Policy, we leverage the implementation of ‘OpenVLA (fine-tuned) +
PD&AC, Cont-Diffusion’ from OpenVLA-OFT (OpenVLA-DP in this paper). For the Flow Matching
Policy, we integrate it into the OpenVLA pipeline (i.e., OpenVLA-FlowMatching) based on the
original implementation [40]. We train for 150K gradient steps for all models using a batch size of
16 across 4 A100 GPUs, policies receive one third-person image, one wrist camera image, robot
proprioceptive state, and language instruction as input. The detailed hyperparameters are shown in
Table[6] Please note that our training settings are not consistent with the original paper. In the default
settings of OpenVLA-OFT [32], they train for 150K steps, using a batch size of 64 across 8§ GPUs.
However, in our experiments, considering the computational overhead and resource capabilities, we
did not follow the full training settings consistent with the original paper (for example, the results we
show are all trained on 2.4M samples, while the original paper trained 9.6M samples or even more),
but to show the compatibility and superiority with VLA in comparison with the multi-step policy
baselines. In the test, we perform 50-steps inference for OpenVLA-DP, and 1-step and 10-steps
inference for OpenVLA-FlowMatching. The inference speed is averaged over the first three episodes
of LIBERO-spatial to estimate performance. We follow the default settings in OpenVLA—OFTE]for
other configurations.

Table 6: The hyperparameter settings for VLA experiments. These values are kept consistent
across all methods.

Parameter | Values
use_film True
use_proprio True
num_images_in_input 2
lora_rank 32
image_aug True
num_steps_before_decay 100,000
max_steps 150,000
num_gpus 4
batch_size 4
learning_rate Se-4
num_trials_per_task 50
num_inference_steps 1or 10 or 50

Compare with OpenVLA-OFT. OpenVLA-OFT is an improved version of OpenVLA [33]] that
integrates parallel decoding, action chunking, continuous action representation, and an L1 regression-
based learning objective. It achieves state-of-the-art performance on the LIBERO simulation bench-
mark, significantly improving the average success rate while increasing action generation throughput
by 26 times. We reproduced OpenVLA-OFT [32] under the same training and testing settings, and
the results are shown in Table[/] Specifically, our method leads or is on par with OpenVLA-OFT in
all categories except LIBERO-10, and leads OpenVLA-OFT in average success (94.8% vs. 94.2%).
Moreover, even though FreqPolicy leverages an additional policy head, the inference speed remains
competitive. (6.05Hz vs. 6.15Hz).

*https://github.com/moojink/openvla-oft
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Table 7: Comparison with OpenVLA-OFT on LIBERO simulation benchmark.

Method | NFE | Spatial (%) Object (%) Goal (%) Long (%) Average (%) | Speed (Hz)
OpenVLA-DP 50 92.0 75.0 934 11.8 68.1 0.32
OpenVLA-FlowMatching* | 1 95.0 97.6 96.0 85.2 93.5 5.92
OpenVLA-FlowMatching* | 10 96.0 97.2 97.8 83.6 93.7 1.26
OpenVLA-OFT - 96.6 98.6 91.0 90.6 94.2 6.15
OpenVLA-FreqPolicy 1 97.0 98.6 96.0 87.6 94.8 6.05

A.5 More Details about Real-World Tasks

Implementation. The real-world experiments are based on the open-source LeRobot framework
E} LeRobot is designed to support real-world robotics research by providing models, datasets, and
tools in PyTorch. It includes state-of-the-art methods, such as Diffusion Policy, which we use as
a baseline, that have demonstrated strong transfer capabilities to real-world settings, with a focus
on imitation learning. We convert our collected real-world data into the LeRobot-supported format
and integrate both the Flow Matching Policy and our proposed FreqPolicy into the framework. This
enables training directly on real data, facilitating practical deployment and inference. Training was
conducted on a single NVIDIA A100 GPU. To ensure a fair comparison, all policy models were
trained with aligned hyperparameters provided in Table|8| We also provide additional demonstration
images for the three tasks in Fig.[5] as well as demonstration videos in the supplementary materials to
facilitate better understanding.

Table 8: The hyperparameter settings for real-world experiments. These values are kept consistent
across all methods.

Parameter \ Values
input_images_Franka | [camera_front, camera_wrist]
input_images_UR [camera_left, camera_wrist]
use_robot_state True
image_size 480 x 480
vision_backbone ResNet-18
n_obs_steps 2

horizon 48
n_action_steps 48
num_inference_steps 1or10
batch_size 64

# of training steps 100,000
optimizer Adam
learning_rate le-4
weight_decay le-6
grad_clip_norm 10.0

Evaluation Criteria. The initialization of the task environment plays a critical role, as it directly
affects whether the robot can complete a task under the guidance of the policy model. Moreover, the
conditions leading to task failure vary across different tasks. To facilitate a deeper understanding of
the real-world experiments presented in this work, we provide target and object placement rules for
the three tasks, along with detailed descriptions of the conditions under which task execution fails:

1) Fruit Sorting.

Target: Pick up bananas, avocados, and mangoes and put them into the basket in order.

Object placement rules: During execution, the fruit basket remains stationary in a fixed position.
The spatial order of the three fruits—banana, avocado, and mango, from right to left—remains
unchanged. However, in each trial, the exact placement of the fruits is randomly initialized within the
front half of the basket.

https://github.com/huggingface/lerobot
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(a) Demonstrations of real-world Task_1. This task is carried out on the Franka platform. The robot arm is
tasked with sequentially picking up three different fruits—banana, avocado, and mango—and placing them
into a basket. The fruits are positioned one at a time in random locations in front of the basket, and the task
is deemed successful only if all three fruits are correctly picked up and placed in the basket.

(b) Demonstrations of real-world Task_2. This task is carried out on the Franka platform. The robot arm
must first rotate to the appropriate angle, open its gripper, and insert it into the drawer handle to pull the
drawer open. It then sequentially picks up two plush toys placed randomly on the table and places them
inside the drawer. Finally, it closes the gripper and pushes the handle to shut the drawer. This requires
the robot to accurately perceive the drawer handle’s start and end positions and be robust to the random
positions of the toys.

(c) Demonstrations of real-world Task_3. This task is carried out on the UR platform. The robot arm first
closes its gripper and attempts to tap a specific spot on the trash bin lid with the tip of the gripper to trigger
it to pop open. Then, with the gripper open, the arm sequentially picks up two pieces of soft food waste—a
half-steamed bun and a piece of bread—randomly placed on the table. Finally, the gripper closes again,
moves behind the lid, and pushes it while tapping once more to fully close the bin. This process requires
precise tapping actions and robustness to the random placement of the food waste.

Figure 5: Demonstrations of three long-horizon real-world tasks. Following a consistent protocol,
300 episodes are collected for each task for training, after which the trained policies are evaluated.
The numbers in each image indicate the sequential steps in the task execution process.
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Cases of task execution failed:

- If any fruit falls while picking it up, it will be considered a failure case.

- If the same fruit fails to be picked up more than 3 times in total, it will be considered a failure
case.

- If all fruits are not completely put into the basket, it will be considered a failure case.

2) Toy Organization.

Target: Open the drawer, then put the two dolls into the drawer one by one, and close the drawer.

Object placement rules: During each execution, the cabinet remains in a fixed position, while two
dolls are reinitialized with their relative spatial positions preserved.

Cases of task execution failed:

- If the drawer is not successfully opened, it is considered a failure case.

- If the drawer is not closed after all the dolls are placed, it is considered a failure case.

- If all the dolls are not placed in the drawer, it is considered a failure case.

- If the cumulative number of failures to pick up the same doll is 3 or more, it is considered a
failure case.

3) Trash Disposal.

Target: Tap the trash can lid to make it pop open, put the food waste (steamed buns and bread)
into the trash can one by one, and tap the lid again to close it.

Object placement rules: During the execution, the position of the trash can is fixed, the relative
spatial positions of the two types of food waste remain unchanged, and the trash positions are
reinitialized for each execution.

Cases of task execution failed:

- If the lid is not closed after picking up the food waste, it is considered a failure case.

- If the number of failed attempts to pick up the same food waste exceeds 3 times, the machine
will be deemed as a failed case.

- If the lid is closed before all the food wastes are put into the trash can, it will be considered a
failure case.

- If the lid is not opened and food waste is taken, it will be deemed as a failure case.
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