Under review as a conference paper at ICLR 2025

A BENCHMARK ON DIRECTED GRAPH
REPRESENTATION LEARNING IN HARDWARE DESIGNS

Anonymous authors
Paper under double-blind review

ABSTRACT

To keep pace with the rapid advancements in design complexity within modern
computing systems, directed graph representation learning (DGRL) has become
crucial, particularly for encoding circuit netlists, computational graphs, and devel-
oping surrogate models for hardware performance prediction. However, DGRL
remains relatively unexplored, especially in the hardware domain, mainly due to
the lack of comprehensive and user-friendly benchmarks. This study presents a
novel benchmark comprising five hardware design datasets and 13 prediction tasks
spanning various levels of circuit abstraction. We evaluate 21 DGRL models, em-
ploying diverse graph neural networks and graph transformers (GTs) as backbones,
enhanced by positional encodings (PEs) tailored for directed graphs. Our results
highlight that bidirected (BI) message passing neural networks (MPNNs) and ro-
bust PEs significantly enhance model performance. Notably, the top-performing
models include PE-enhanced GTs interleaved with BI-MPNN layers and BI-Graph
Isomorphism Network, both surpassing baselines across the 13 tasks. Addition-
ally, our investigation into out-of-distribution (OOD) performance emphasizes the
urgent need to improve OOD generalization in DGRL models. This benchmark,
implemented with a modular codebase, streamlines the evaluation of DGRL models
for both hardware and ML practitionersﬂ

1 INTRODUCTION

Directed graphs, where edges encode directional information, are widely utilized as data models in
various applications, including email communication |[Kossinets et al.| (2008); |Khrabrov & Cybenko
(2010), financial transactions |Gale & Kariv|(2007)); |Chinazzi & Fagiolo| (2015)); Tiwari et al.| (2021)),
and supply chains |Surana et al.| (2005); Kaur et al.| (2006); |Wagner & Neshat| (2010). Notably,
hardware designs can be represented as directed graphs, such as circuit netlists Hachtel & Somenzi
(2005); [Vladimirescu (1994), control and data flow graphs Cummins et al.| (2021); Wu et al.| (2022b);
Bai et al.|(2023); |Ye et al.| (2024)), or computational graphs Zhang et al.| (2021a); [Phothilimthana
et al.| (2023), often exhibiting unique properties. These graph structures reflect restricted connection
patterns among circuit components or program operation units, with directed edges encapsulating
long-range directional and logical dependencies.

Recently, employing machine learning (ML) to assess the properties of hardware designs via their
directed graph representations has attracted significant attention Wu & Xie|(2022)); Bai et al.| (2023);
Dong et al.| (2023); [Li et al.| (2020c); [Ma et al.| (2019b); Biicher et al.| (2022)); |He et al.| (2021);
Guo et al.|(2022); Phothilimthana et al.|(2023)). Traditional simulation-based methods often require
considerable time (hours or days) to achieve the desired accuracy in assessing design quality Zhao
et al.| (2017); Dai et al.[{(2018); Wu et al.|(2021a; 2022b), substantially slowing down the hardware
development cycle due to repeated optimization-evaluation iterations. In contrast, ML models can
serve as faster and more cost-effective surrogates for simulators, offering a balanced alternative
between simulation costs and prediction accuracy |[Mirhoseini et al.| (2021); Al-Hyari et al.[(2021); [Wu
et al.|(2021a); /Chen et al.| (2018)); J1a et al.| (2020); |Cakir & Malik! (2018)); \Dudziak et al. (2020)); |(Cao
et al.|(2022); |Liu et al.|(2021)); /Wang et al.|(2020); /Wu et al.|(2023)). Such an approach is promising
to expedite hardware evaluation, especially given the rapid growth of design complexity in modern
electronics and computing systems [Society.

"Document (PDF version) and code for the toolbox are provided in supplementary materials.

Under review as a conference paper at ICLR 2025

Despite the promising use cases, developing ML models for reliable predictions on directed graphs,
particularly within hardware design loops, is still in its early stages, largely due to the lack of
comprehensive and user-friendly benchmarks. Existing studies in the M. community have primarily
focused on undirected graphs, utilizing Graph Neural Networks (GNNs) [Kipf & Welling| (2016); [Xu
et al.| (2019); [Velickovic et al.| (2018)) or Graph Transformers (GTs) [Rampasek et al.| (2022)); Kreuzer
et al.| (2021); |Ying et al.|(2021); Min et al.| (2022). Among the limited studies on directed graph
representation learning (DGRL) [Zhang et al.| (2021b); Tong et al.| (2020bga); Geisler et al.| (2023)),
most have only evaluated their models for node/link-level predictions on single graphs in domains
such as web networks, or financial networks He et al.|(2024). These domains exhibit very different
connection patterns compared to those in hardware design. To the best of our knowledge, CODE2
in the Open Graph Benchmark (OGB) Hu et al.|(2020) is the only commonly used benchmark that
may share some similarities with hardware data. However, the graphs in CODE?2 are intermediate
representations (IRs) of Python programs, which may not fully reflect the properties of data in
hardware design loops.

Numerous DGRL models for hardware design tasks have been developed by domain experts. While
promising, hardware experts tend to incorporate domain-specific insights with off-the-shelf GNNs
(e.g., developing hierarchical GNNs to mimic circuit modules|Wu et al.|(2022b); [Dong et al.| (2023)
or encoding circuit fan-in and fan-out in node features Ren et al.| (2020); |Alrahis et al.| (2021b));
Vasudevan et al.|(2021))), with limited common design principles investigated in model development.
In contrast, state-of-the-art (SOTA) DGRL techniques proposed by the ML community lack thorough
investigation in these tasks. These techniques potentially offer a more general and effective manner
of capturing data patterns that might be overlooked by domain experts.

Present Benchmark. This work addresses the aforementioned gaps by establishing a new benchmark
consisting of representative hardware design tasks and extensively evaluating various DGRL tech-
niques for these tasks. On one hand, the evaluation results facilitate the identification of commonly
useful principles for DGRL in hardware design. On the other hand, the ML community can leverage
this benchmark to further advance DGRL techniques.

Specifically, our benchmark collects five hardware design datasets encompassing a total of 13
prediction tasks. The data spans different levels of circuit abstraction, with graph sizes reaching up to
400+ nodes per graph across 10k+ graphs for graph-level tasks, and up to 50k+ nodes per graph for
node-level tasks (see Fig. [I]and Table.[T). We also evaluate 21 DGRL models based on 8 GNN/GT
backbones, combined with different message passing directions and various enhancements using
positional encodings (PEs) for directed graphs|Geisler et al.|(2023). PEs are vectorized representations
of node positions in graphs and have been shown to improve the expressive power of GT/GNNs for
undirected graphs|Wang et al.|(2022a); Huang et al.[(2024); Lim et al|(2022); Rampasek et al. (2022).
PEs for directed graphs are still under-explored |Geisler et al.[(2023)), but we believe they could be
beneficial for hardware design tasks that involve long-range and logical dependencies.

Our extensive evaluations provide significant insights into DGRL for hardware design tasks. Firstly,
bidirected (BI) message passing neural networks (MPNNs) can substantially improve performance
for both pure GNN encoders and GT encoders that incorporate MPNN layers, such as GPS Rampasek
et al.|(2022). Secondly, PEs, only when used stably Wang et al.|(2022a); [Huang et al.[(2024), can
broadly enhance the performance of both GTs and GNNs. This observation contrasts with findings
from undirected graph studies, particularly in molecule property prediction tasks, where even unstable
uses of PEs may improve model performance Dwivedi et al.|(2023)); Kreuzer et al.|(2021)); Lim et al.
(2022); [Rampasek et al.[(2022)). Thirdly, GTs with MPNN layers typically outperform pure GNNs on
small graphs but encounter scalability issues when applied to larger graphs.

With these insights, we identify two top-performing models: GTs with BI-MPNN layers (effective for
small graphs in the HLS and AMP datasets) and the BI-Graph Isomorphism Network (GIN) Xu et al.
(2019), both enhanced by stable PEs. These models outperform all baselines originally designed
by hardware experts for corresponding tasks, across all 13 tasks. Notably, this work is the first to
consider GTs with BI-MPNN layers and using stable PEs in DGRL, so the above two models have
novel architectures essentially derived from our benchmarking effort.

Furthermore, recognizing that hardware design often encounters out-of-distribution (OOD) data
in production (e.g., from synthetic to real-world [Wu et al.| (2022b), before and after technology
mapping Wu et al.|(2023)), inference on different RISC-V CPUs|He et al.|(2021))), for each dataset we

Under review as a conference paper at ICLR 2025

High-level circuit abstraction .
(g.g.. behavior description) Prediction Task

Application: CG |—— Latency on different platforms (CPU/GPU630/GPU640)
High-level Synthesis: HLS B Resource usage (LUT/DSP) and timing (CP)

Logic Synthesis: SR
Physical Synthesis: TIME &= Hold/Setup slack

Operational Amplifiers: AMP Circuit specifications (DC gain, PM, BW)

Low-level circuit
abstraction

Workload
deployment

Hardware
Design

Hardware
synthesis

— Functional unit identification (shared and root)

Figure 1: Coverage of Datasets/Tasks.

High-level Synthesis Symbolic Reasonin, Pre-routing Timing Prediction Computational Graph Operational Amplifiers
(HLS)/Wu et al. 42022b| (SR)|Wu et al.|(2023 (Time)|Guo et al. 42()22 (CG)|Zhang et al. 12021a| (AMP)[Dong et al. 12023|

Type digital digital digital digital analog
Level graph node node graph graph
Target regression classification regression regression regression
Task LUT, DSP, CP node shared by MAJ and XOR, hold slack, CPUIGPU630/GPU640 gain, PM, BW
root node of an adder setup slack
Evaluation Metric mse, 12 accuracy.At_] mse, 12 rmse, acc5, acc10 mse, rmse
recall, precision
In-Distribution CDFG 24-bit graph structure network structure stage3
Out-of-Distribution DFG 32, 36, 48- bit graph structure network structure stage2
Training Graph 16570 - 16570 1-1 7-7 5% - 10000 7223-7223
- . average 95 4440 29839 218 9
#TrainNodes = ¢ 474 4440 58676 430 16
. average 123 10348 41268 240 15
#Train Edges N 636 10348 83225 487 36

Table 1: Statistics of selected datasets. In row ‘# Training graph’, we report ‘# Graph Structures - # Samples’. *:
in CG, there are only five unique CNN designs, yet the structure of graphs within each design may vary slightly.

evaluate the methods data with distribution shift to simulate potential OOD challenges. We observe
that while ML models perform reasonably well on tasks (8 of 13) with diverse graph structures in the
training dataset, they generally suffer from OOD generalization issues on the remaining tasks. This
finding highlights the urgent need for future research to focus on improving the OOD generalization
capabilities of DGRL models.

Lastly, our benchmark is implemented with a modular and user-friendly codebase, allowing hardware
practitioners to evaluate all 21 DGRL models for their tasks with data in a PyG-compatible format Fey|
& Lenssen| (2019)), and allowing ML researchers to advance DGRL methods using the collected
hardware design tasks.

2 RELATED WORK

Graph Representation Learning as Powerful Surrogate Models. ML-based surrogate models have

been widely adopted in scientific fields Olivier et al.| (2021); and recently extended
in hardware design. Beyond traditional methods Biggs et al.| (2022)); [Xiao et al. (20234); Mack|
(2023)), graph-learning-based surrogate models for hardware design have already demonstrated
effectiveness Wang et al.| (2022b)); [Ustun et al.| (2020); [Wu et al.| (2022b; [2021a); Bai et al.| (2023]
Ren et al.| (2020); [Zhang et al.| (2019a); Li et al.| (2020c); Ma et al.| (2019b)); [Vasudevan et al.| (2021));
Biicher et al.| (2022)); |Alrahis et al.|(2021b); |Lu et al.|(2023); Qin et al.| (2024); |Sohrabizadeh et al|
(2023} 2022)Xiao et al.| (2023D) , several aspects warrant further investigation. First, existing studies
often rely on task-specific heuristics to encode circuit structural information (2019b);
et al.| (2020); |Alrahis et al.[|(2021b); Biicher et al.| (2022)); |Vasudevan et al.|(2021)); Mirhoseini et al.
(2021)), hindering the migration of model-design insights from one task to an even closely related task.
Second, the majority of these studies conduct message passing of GNNs along edge directions, with
few considering BI implementation He et al|(2021); |Guo et al. (2022)), and there is an absence of a
comparative analysis of different DGRL approaches. Third, the designed models are often trained and
tested within similar data distributions |Alrahis et al.|(2021b);|Zhao & Shamsi (2022); He et al.|(2021)),
lacking systematic OOD evaluation for new or more complicated designs. Hence, it is imperative to
establish a comprehensive benchmark to compare different DGRL approaches for hardware design
tasks.

Methods for DGRL. NN architectures for DGRL can be classified into three types: spatial GNNs,
spectral GNNs, and transformers. Spatial GNNs use graph topology as inductive bias, some employ
bidirected message passing for regular directed graphs [Jaume et al.| (2019); [Wen et al.| (2020); Kollias|

Under review as a conference paper at ICLR 2025

et al.| (2022); Rossi et al.| (2024), others use asynchronous message passing exclusively designed
for directed acyclic graphs (DAGs) |[Zhang et al.|(2019b)); Dong et al.|(2022); Thost & Chen| (2020).
Spectral GNNs generalize the ideas of Fourier transform and corresponding spectral convolution
from undirected to directed graphs Furutani et al.|(2020); He et al.|(2022)); |[Fiorini et al.|(2023));|Zhang
et al.[(2021b); Singh et al.|(2016);|Ma et al.| (2019a)); Monti et al.|(2018); [Tong et al.| (2020b)); Koke &
Cremers| (2023)); Transformers with attention mechanism reply on designing direction-aware PEs to
capture directed graph topology. This benchmark is the first to consider combining transformers with
MPNN layers for DGRL, extending the ideas in Rampasek et al.|(2022)). Regarding the choices of
PEs, most studies are on undirected graphs/Wang et al.| (2022a));|Huang et al.|(2024)); |ILim et al.| (2022);
Dwivedi et al.|(2022a)). For directed graphs, the potential PEs are Laplacian eigenvectors of the
undirected graphs by symmetrizing the original directed ones Dwivedi et al.|(2023)), singular vectors
of adjacency matrices |Hussain et al.| (2022) and the eigenvectors of Magnetic Laplacians [Shubin
(1994)); Fanuel et al.|(2017;[2018)); Geisler et al.| (2023)). No previous investigate benefit for DGRL
from stably incorporating PE |Wang et al.|(2022a)); Huang et al.|(2024), and we are the first to consider
stable PEs for DGRL.

Existing Relevant Benchmarks. Dwivedi et al. Dwivedi et al| (2022b) benchmark long-range
reasoning of GNNs on undirected graphs; PyGSD [He et al.| (2024)) benchmarks signed and directed
graphs, while focusing on social or financial networks. We also compare all the methods for directed
unsigned graphs in PyGSD and notice that the SOTA spectral method therein - MagNet |Zhang et al.
(2021b) still works well on node-level tasks on a single graph (SR), which shares some similar insights.
The hardware community has released graph-structured datasets from various development stages to
assist surrogate model development, including but not limited to NN workload performance |[Zhang
et al.|(2021a)); Phothilimthana et al.| (2023)), CPU throughput|Chen et al.|(2019); [Sykora et al.| (2022);
Mendis et al.|(2019), resource and timing in HLS Wu et al.|(2022b)); Bai et al.| (2023)), design quality in
logic synthesis|Chowdhury et al.|(2021), design rule checking in physical synthesis |Guo et al.|(2022);
Chai et al.| (2023)); Xun et al.|(2024)); \(Chhabria et al.|(2024), and hardware security |Yu et al.| (2021]).
In addition to datasets, ProGraML (Cummins et al.|(2021) introduces a graph-based representation
of programs derived from compiler IRs (e.g., LLVM/XLA IRs) for program synthesis and compiler
optimization. Very recently, Google launched TPUgraph for predicting the runtime of ML models
based on their computational graphs on TPUs |Phothilimthana et al.|(2023). Our CG dataset includes
computational graphs of ML models, specifically on edge devices.

3 DATASETS AND TASKS

This section introduces the five datasets with thirteen tasks used in this benchmark. The datasets
cover both digital and analog designs, selected to represent different circuit abstraction levels. From a
bottom-up perspective, we include operational amplifiers (AMP) at the device level, timing prediction
(TIME) in physical synthesis, symbolic reasoning (SR) in logic synthesis, performance prediction
in high-level synthesis (HLS), and workload mapping on hardware platforms (CG), as illustrated in
Fig.[I] Table|[I]displays the statistics of each dataset. Next, we briefly introduce the five datasets,
with details provided in Appendix. [D| Although these datasets are generated by existing studies,
we offer modular pre-processing interfaces to make them compatible with PyTorch Geometric and
user-friendly for integration with DGRL methods.

High-Level Synthesis (HLS) [Wu et al. (2022b): Constructing C/C++ into graphs originates form
Xiao et al.[(2017). The HLS dataset collects IR graphs of C/C++ code after front-end compilation Al
fred et al.|(2007)), and provides post-implementation performance metrics on FPGA devices as labels
for each graph, which are obtained after hours of synthesis with Vitis [vit and implementation with
Vivado|vivl The labels to predict include resource usage, (i.e., look-up table (LUT) and digital signal
processor (DSP)), and the critical path timing (CP). See Appendix. [D.T]for graph input details.

Significance: The HLS dataset is crucial for testing NNs’ ability to accurately predict post-
implementation metrics to accelerate design evaluation in the stage of HLS.

OOD Evaluation: For training and ID testing, we use control data flow graphs (CDFG) that integrate
control conditions with data dependencies, derived from general C/C++ code; As to OOD cases, we
use data flow graphs (DFG) derived from basic blocks, leading to distribution shifts.

Symbolic Reasoning (SR) Wu et al.| (2023): The SR dataset collects bit-blasted Boolean networks
(BNs) (unstructured gate-level netlists), with node labels annotating high-level abstractions on local
graph structures, e.g., XOR functions, majority (MAJ) functions, and adders, generated by the logic

Under review as a conference paper at ICLR 2025

synthesis tool ABC Brayton & Mishchenko| (2010). Each graph supports two tasks: root nodes of
adders, and nodes shared by XOR and MAJ functions. See Appendix.[D.2|for detailed input encoding
and label explanation.

Significance: Reasoning high-level abstractions from BNs has wide applications in improving
functional verification efficiency (Ciesielski et al.| (2019) and malicious logic identification Mahzoon
et al.|(2019). GNN surrogate models are anticipated to replace the conventional structural hashing
and functional propagation |Li et al.|(2013)); Subramanyan et al.|(2013) and boost the scalability with
significant speedup. For graph ML, due to significant variation in the size of gate-level netlists under
different bit widths, SR is an ideal real-world application to evaluate whether GNN designs can
maintain performance amidst the shifts in graph scale.

OOD Evaluation: We use a 24-bit graph (4440 nodes) for training, and 32, 36, 48-bit graphs (up to
18096 nodes) for ID testing, derived from carry-save-array multipliers before technology mapping.
OOD testing data are multipliers after ASAP 7nm technology mapping |Xu et al.| (2017) with the
same bits.

Pre-routing Timing Prediction (TIME) |Guo et al.|(2022): The TIME dataset collects real-world
circuits with OpenROAD |ope|(b) on SkyWater 130nm technology [skyl The goal is to predict slack
values at timing endpoints for each circuit design by using pre-routing information. Two tasks are
considered: hold slack and setup slack. Details are provided in Appendix.

Significance: In physical synthesis, timing-driven placement demands accurate timing information,
which is only available after routing. Repetitive routing and static timing analysis provide accurate
timing but are prohibitively expensive. ML models that precisely learn routing behaviors and timing
computation flows are highly expected to improve the efficiency of placement and routing.

OOD Evaluation: We divide ID-OOD based on the difference in graph structures (e.g. ‘blabla’ and
‘xtea’ are different circuit designs, allocated into ID or OOD groups). See details in Appendix.

Computational Graph (CG) Zhang et al.| (2021a): The CG dataset consists of computational
graphs of convolutional neural networks (CNNs) with inference latency on edge devices (i.e., Cortex
A76 CPU, Adreno 630 GPU, Adreno 640 GPU) as labels. The CNNs have different operator types or
configurations, either manually designed or found by neural architecture search (NAS). Details are in
Appendix. [D.4}

Significance: Accurately measuring the inference latency of DNNSs is essential for high-performance
deployment on hardware platforms or efficient NAS Ren et al.| (2021)); [Shi et al.| (2022), which
however is often costly. ML-based predictors offer the potential for design exploration and scaling up
to large-scale hardware platforms.

OOD Evaluation: We split ID-OOD with different graph structures. (e.g. ‘DenseNets’ and ‘ResNets’
are CNNs with different structures, allocated into different groups). See Appendix.[D.4.1]for details.

Operational Amplifiers (AMP) Dong et al.| (2023): AMP dataset contains 10, 000 distinct 2- or
3-stage operational amplifiers (Op-Amps). Circuit specifications (i.e. DC gain, phase margin (PM),
and bandwidth (BW)) as labels are extracted after simulation with Cadence Spectre [spel Details are
in Appendix.[D.5

Significance: Analog circuit design is less automated and requires more manual effort compared to
its digital counterpart. Mainstream approaches such as SPICE-based circuit synthesis and simula-
tion |Vladimirescu| (1994), are computationally expensive and time-consuming. If ML algorithms can
approximate the functional behavior and provide accurate estimates of circuit specifications, they may
significantly reduce design time by minimizing reliance on circuit simulation |Afacan et al.| (2021).

OOD Evaluation: For training and ID testing, we use 3-stage Op-Amps, which have three single-stage
Op-Amps in the main feed-forward path). For OOD evaluation, we use 2-stage Op-Amps.

Extensions Although the datasets cover different levels of circuit abstraction, there are additional
tasks in hardware design worth exploration with DGRL surrogates, as reviewed in Section |2} Our
modular benchmark framework allows for easy extension to accommodate new datasets.

Under review as a conference paper at ICLR 2025

Message Passing
\.__ Direction /

spectral ! node PE(NPE) |
1 .
GCN ! stable edge PE (EPE) ! Method type Clg)r/;ri:;is‘e
DGCN \ Positional E g plexity
DIiGCN |+ TTTTTTT | GCN|Kipf & Welling|(2016) spectral O(|E|)
MagNet|Zhang et al.|(2021b) spectral O(|E|)
_____________ N MagNet DGCN|Tong et al.|(2020b] spectral O(|E|)
¢ - (undirected) .- - DiGCN|Tong et al. [(2020a) spectral O(|E)
i '
! DI (directed) | oot v GAT|Velickovic et al. (2018} spatial O(|E)
' Bl (bidirected) h H Transformer H GIN(E)|Xu et al.|(2019) spatial O(|E|)
' ' ; ; | i
' ' e Performer ! EDGNNJaume et al.|(2019] spatial ()(.\E\)
| 1 “' GPS-T|Rampasek et al. |(2022) spatial+transformer ~ O(|V|? + |E|)

7 GPS-P|Choromanski et al.[(2020) ~ spatial+transformer ~ O(|V| + |E])

TmD|Geisler et al.[(2023] transformer o(|V[*)
. . . . BI-GIN(E)+EPE(new) spatial O(|E|)
Figure 2: The benchmark considers 21 combinations BL-GPS-T+EPE(new) spatial+transformer O(|V[? + |E])

(‘+’) of message passing direction, GNN backbone,
transformer selection and PE incorporation, covers 10 Table 2: Existing methods and two top-
existing SOTA methods from graph ML community and performing methods highlighted at bottom.
discovers 2 novel top-performing models (see Table. EI)

4 BENCHMARK DESIGN

4.1 DESIGN SPACE FOR DIRECTED GRAPH REPRESENTATION LEARNING

In this section, we introduce the DGRL methods evaluated in this benchmark. Our evaluation focuses
on four design modules involving GNN backbones, message passing directions, transformer selection,
and PE incorporation, illustrated in Fig.[2] Different GNN backbones and transformer adoptions cover
10 methods in total with references in Tab.[2l We also consider their combinations with different
message-passing directions and various ways to use PEs, which overall gives 21 DGRL methods.

For GNNs, we consider 4 spectral methods, namely GCN [Kipf & Welling| (2016), DGCN |Tong et al.
(2020b), DiGCN [Tong et al.| (2020a) and MagNet|Zhang et al.|(2021b)), where the latter three are
SOTA spectral GNNs s specifically designed for DGRL [He et al.[(2024)); For spatial GNNs, we take
GIN Xu et al.|(2019) and Graph Attention Network (GAT) Velickovic et al.|(2018)), which are the
most commonly used MPNN backbones for undirected graphs. We evaluate the combination of
GCN, GIN and GAT with three different message-passing directions: a) ‘undirected’(-) treats directed
graphs as undirected, using the same NN parameters to perform message-passing along both forward
and reverse edge directions; b) ‘directed’(DI) only passes messages exclusively along the forward
edge directions; c) ‘bidirected’ (BI) performs message passing in both forward and reverse directions
with distinct parameters for either direction. The other GNNs (DGCN, DiGCN and MagNet) adopt
spectral convolution that inherently considers edge directions. The combination of ‘BI” with spatial
GNN layers gives the state-of-the-art spatial GNNs for DGRL, i.e., EDGNN [Jaume et al.|(2019).

For GTs, we adopt the eigenvectors of the graph Magnetic Laplacian (MagLAP) matrix as the PEs
of nodes [Furutani et al.|(2020); Shubin| (1994), as they are directional-aware. The MagLap matrix
L, is a complex Hermitian matrix with parameter ¢ € [0, 1) named potential, which is treated as a
hyper-parameter in our experiments. Note that when ¢ = 0, MagLap degenerates to the symmetric
Laplacian matrix L as a special case. See Appendix [B|for a brief review of MagLap. The GT with
the MaglLap PEs attached to node features gives the SOTA GT model for DGRL, named TmD for
brevity, proposed in|Geisler et al.| (2023)). GPS Rampasek et al.|(2022)) is a GT model with MPNN
layers [Hamilton et al.| (2017); |Gilmer et al.| (2017)) interleaving with transformer layers |Vaswani
et al.| (2017), originally proposed for undirected graphs. We extend GPS to directed graphs by
using MagLap PEs for transformer layers and DI/BI message passing in its MPNN layers. Hence,
GPS is also an extension of TmD by incorporating MPNN layers. As transformers may not scale
well on large graphs, we evaluate vanilla transformer layers and their lower-rank approximation
Performer |[Kreuzer et al.| (2021) for efficient computation, named as GPS-T and GPS-P, respectively.

4.2 STABLE DIRECTION-AWARE POSITIONAL ENCODINGS

Recent studies on undirected graphs

have demonstrated that models by NPE = [Re{V;}, Im{V}]
naively attaching PEs to node features EPE = p(Re{V,diag(r1(A))V,}, ..., Re{ Vydiag(rm (X)) V] },
may suffer from an issue of instability Im{ Vgdiag(r1 () V' }, ..., Im{ Vgdiag(km (X)) V, })

because small changes in the graph

. . Table 3: Different ways to handle PEs. NPE directly concatenates
structure may cause big changes in

the eigenvectors to node features. EPE computes an edge-level PE
in a permutation equivariant and stable manner.

6

Under review as a conference paper at ICLR 2025

PEs Wang et al.| (2022a); Huang et al.|(2024); |Lim et al|(2022)). We name this way of using PEs as
node-PE (NPE). The instability provably leads to undesired OOD generalization [Huang et al.| (2024).
We think this is also true for directed graphs and indeed observe the subpar model performance with
NPE.

Therefore, besides NPE, we also consider a stable way of incorporating PEs for DGRL, namely
‘edge PE’ (EPE), inspired by Wang et al.| (2022a); [Huang et al.| (2024). Specifically, we take
the smallest d eigenvalues \, € R? and their corresponding eigenvectors V, € CVIxd from
L,. Then, permutation equivariant and smooth functions & : R? — R? (we have m many k)
are adopted to map d-dim eigenvalues to an embedding vector. It will then produce m many n-
by-n matrices VlZdiag(m()\))VqT, ey quiag(kcm()\))VqT by doing matrix multiplication between
eigenvalue embeddings and eigenvectors. Lastly, these n-by-n matrices are concatenated and passed
to p, a permutation equivaraint and smooth function (e.g., standard GNNs). The output EPE is of
dimension n X n X d, representing PE-refined features of edges (node pairs). In a high level, the
key to achieve stability here is the permutation equivariance as well as smoothness of x, which
ensures smooth weights x(\) of eigenvectors’ inner product across different eigenvalues (see similar
argument of Theorem 3.1 in|Huang et al.{(2024)). Finally, in GTs, EPE,, , is added to the attention
weight between nodes © and v as a bias term at each attention layer.

We note that PEs can also be used in more than GTs, to improve the expressive power of GNNs |Li
et al.| (2020b); Ying et al.|(2021)); [Lim et al.| (2022); [Huang et al.| (2024). We leverage this idea and
enhance the GNN models for directed graphs with PEs. Specifically, for the GNNs NPE will use
NPE, as extra node features of node v while EPE will use EPE,, ,, as extra edge features of edge uv
if wv is an edge.

The incorporation with EPE helps discover a novel GT model for directed graphs, i.e., GT with
BI-MPNN layers enhanced by EPE, abbreviated as BI-GPS+EPE. We also make the first attempt to
combine GNNs with PEs for directed graphs, which yields the model BI-GIN(E)+EPE.

4.3 HYER-PARAMETER SPACE AND TUNING

For each combination of DGRL method in this benchmark, we perform automatic hyper-parameter
tuning with RAY |Liaw et al.| (2018)) adopting Tree-structured Parzen Estimator (TPE) [Watanabe
(2023)), a state-or-the-art bayesian optimization algorithm. The hyper-parameter space involves
searching batch size, learning rate, number of backbone layers, dropout rate in MPNN and MLP
layers, hidden dimension, and MLP layer configurations. The detailed hyper-parameter space of
each model is shown in Appendix. We auto-tune the hyper-parameters with seed 123 with 100
trial budgets and select the configuration with the best validation performance. Then, the selected
configuration is used for model training and testing ten times with seeds 0 — 9 and the average is
reported as the final performance.

5 MODULAR TOOLBOX

PyTorch Geometric Lib: GCN, GIN, GAT
PyGSD Lib: MagNet, DGCN, DiGCN

New/Customized GNN Backbones

Batch Size, Learning Rate,
! | Dropout Rate, Hidden Dimension. ete. }

Auto-Tuning

Figure 3: Illustration of the directed graph representation learning (DGRL) toolbox.

We develop a highly modular toolbox involving designing, auto hyper-parameter tuning, and evalua-
tion for DGRL methods. The framework is shown in Fig.[3] The toolbox comes with the 21 DGRL
methods, allowing practitioners to evaluate them on any new task with data compatible with PyTorch
Geometric (PyG)|Fey & Lenssen|(2019). This may be used even beyond hardware design applications.
Users can also customize new methods. Once the method is configured, auto hyper-parameter tuning
can be performed using RAY |[Liaw et al.| (2018)). The toolbox also includes the above 5 datasets

Under review as a conference paper at ICLR 2025

Distribution | In-Distribution (ID) I Out-of-Distribution (OOD)
Dataset | HLS | AMP | SR | TIME | cG || HLS | AMP | SR | TIME | CG
Task [DSPLUT CP |gain PM BW |share root|hold setup|CPU GPU630 GPU640|[DSP LUT CP |gain PM BW [share root|hold setup|CPU GPU630 GPU640

DGCN |15.0 15.0 15.0/14.0 8.0 15.0/10.0 9.0 [15.0 5.5 |[13.0 15.0 14.0 ||15.0 14.0 15.014.0 3.0 15.0] 7.5 5.0|15.0 7.0 |13.3 11.7 11.2
DiGCN |12.0 14.0 13.0{12.0 9.0 14.0/ 8.5 7.8 |13.5 15.0|14.0 14.0 15.0 ||12.515.014.0/9.0 4.0 14.0{ 9.0 5.0|13.514.0|13.2 13.2 133
Spectral MagNet | 7.0 7.0 10.5/8.0 11.0 8.0 11.0 11.5 4.7 7.0 7.0 10.5/3.0 120 8.0 3.5 88|9.0 7.0 42 82 7.3

GCN |14.0 12.0 14.015.013.012.0{13.3 13.5/9.5 14.0/15.0 12.3 11.7 {|12.5 10.0 12.0{14.514.011.0[14.8 14.5{ 7.5 10.5

127 127 11.5
112 115 12.2
132 113 12,5

DI-GCN |13.5 13.0 12.0/11.0/3.0 13.0{15.0 15.0{11.0 13.0{11.0 11.3 12.0 ||14.0 11.0 13.0{12.0 7.0 13.0[13.5 11.8/10.0 8.0
BI-GCN |11.0 10.5 9.0{5.0 14.0 6.0| 55 53|50 9.0 |123 123 123 |[11.0 12.5 8.0 13.0 5.0

GIN |60 55 8.0[7.0 6.0 10.0/10.0 11.0 0[50 33 8.3 6.0 3.5 5.0(8.010070]|90 73
DI-GIN 4.0 6.5/9.0 100 7.0| 6.5 { 57 80 3.3 7.0]10.0 5.0 12.0/ 6.3 9.0]6.5 7. 0
Spatial BI-GIN 5.0(3.0 40 3.0 4.7 4.0 9.0 3.0 .

GAT |85 90 65|60 15.0 5.0 (138 135105 11.5]9.0 90 87 |90 9.0 55|7.0 150 6.0 .
DI-GAT |10.0 10.5 10.5/10.0 12.0 9.0 | 11.8 10.0[13.5 10.0{100 10.0 10.0 {[10.0 12.5 11.0[11.0 6.0 100 57 13
BI-GAT |9.0 8.0 [l 40 BJ11.0 40 63|65 75|80 53 70 ||80 80 107 105
GPS-T [4.0 3.0 25(13.0 7.0 [L . -~ ||50 60 95[13.0 8.0
DI-GPS-T| 5.0 5.5 4.0 5.0 B e -~ 130 50 5.0 110
Transformer BEGPS-T| 3.0 X R -- 35 4560 B -
GPS-P | -- -- --|-- -- --|55120(65 40|63 53 78 11380 7.5 62 EEE 62
DI-GPS-P| -- - --|-- -- --|65 40 75 27 57 - 58 75|75 80|75 70 58
BLGPSP| -~ -- --|-- -- --|78 75|80 55(47 60 43 ||-- -- --|-- -- -- 75 80(85 52 |[NEEE

Table 4: Average ranking (J) of methods across datasets/tasks/metrics on ID and OOD data.

with 13 tasks that can be used to develop new DGRL models. For details please refer to the official
document for this toolbox.

6 EXPERIMENTS

In this section, we first evaluate DGRL methods combining different GNN backbones, message
passing directions, transformer selection, and PE incorporation, across all 5 datasets and 13 tasks,
using in-distribution (ID) and out-of-distribution (OOD) testing data.

6.1 MAIN RESULTS

The performances of the methods under all evaluation metrics for both in-distribution and out-of-
distribution testing across all 13 tasks are reported from Table. [TT]to Table.[33]in Appendix.[H.T} We
summarize the averaged ranking with respect to all evaluation metrics given a task in Table.[4] The
details of ranking calculation is in Appendix.[G.I] The results tell the following insights:

‘Bidirected” (BI) message passing in the MPNN layers significantly boosts the models’ performance
on three GNN backbones (GCN, GIN, GAT) and one GT backbone (GPS-T): BI-GCN outperforms
GCN on 10 out of 13 tasks in both ID and OOD evaluations. Similarly, in ID/OOD evaluations,
BI-GIN outperforms GIN in 11/12 out of 13 tasks, BI-GAT outperforms GAT in 11/9 out of 13 tasks
and BI-GPS-T outperforms GPS-T in 5/5 out of 6 tasks, respectively.

As to the models, on datasets with small graphs (HLS and AMP), BI-GPS-T consistently delivers
excellent results, achieving top-3 performance in 5 out of 6 tasks on both ID and OOD testing data. BI-
GIN also demonstrates competitive performance on these datasets. However, for datasets with larger
graphs (SR, CG, and TIME), BI-GPS-T encounters a scalability issue. BI-GIN secures top-three
performance in 6 out of 7 tasks in both ID and OOD testing data. For the ‘shared’ and ‘root’ tasks
from the SR dataset and the ‘CPU’ and ‘GPU630’ tasks from the CG dataset, MagNet|Zhang et al.
(2021b)) performs best in the ID setting. This is likely because training and testing are conducted on
the same graph structures for these specific datasets, reducing the need for significant generalization
across different graph structures. This scenario aligns well with the spectral filtering approach used by
MagNet. These observations match findings from previous studies on directed networks |Zhang et al.
(2021b); He et al.| (2024). However, MagNet’s performance falters in OOD evaluations which ask for
the ability to generalize across different graph structures. GPS-P, despite its capability to handle large
graphs, delivers only mediocre performance overall. In conclusion, BI-GPS is well-suited for small
(around one hundred nodes) directed graphs. For larger graphs, BI-GIN is efficient and performs
well. For tasks where the training and testing data share the same graph structures, one may also
attempt to adopt MagNet.

Comparing PE-enhanced methods: We further investigate the impact of different ways of using
PEs. We combine NPE or EPE with the top-performing models from the previous section and evaluate
BI-GIN+NPE, BI-GIN+EPE, and BI-GPS+EPE. Note that BI-GPS already utilizes NPE. We have
chosen not to consider adding PE to MagNet because MagNet only accepts 1-dimensional edge

Under review as a conference paper at ICLR 2025

Distribution | In-Distribution (ID) | Out-of-Distribution (OOD)
Dataset ‘ HLS AMP SR TIME CG ‘ HLS AMP SR TIME CG
Task [DSPLUT CP |gain PM BW |share roothold setup|CPU GPU630 GPU640|[DSP LUT CP |gain PM BW |share root|hold setup|CPU GPU630 GPU640

MagNet ~ |14.5 11.0 14.5[12.0 15.0 12.0 [ENSHIENSY 13.0 13.0 | 2.3 [N 6.7 |[11.0 11.0 145[EMI16012.0[5.5 10.8]11.0 16052 9.5 83

BI-GIN(E) [9.0 20 90|60 60 60|48 68/25 20|60 33 60 [[75 35 6.0[40 130 50| 3.0 25 47 58 48
5013050[30 6855 50(83 50 53 |[90 40 70 80 7.0(28 35[55 125]60
9.0 10.0J5H 4.0 6.8 67 [7.0 25]60 60 4.0

BI-GIN(E)+NPE| 5.0 4.0 5.0 6.0
BI-GPS-T (NPE)| 45 55 45[20 20 70| -- --|-- -- —- [[40 70 80[9.0 20 65| -- --|-- --|--
B - 15 35|55 e

BI-GIN(E)+EPE| 5.0 - 5.0

BI-GPS-T+EPE 3.0 40| -- -

Table 5: Comparison of competitive methods involving NPE and EPE. The ranking ({) is based on
all the 18 methods in TableE|p]us BI-GIN(E)+NPE, BI-GIN(E)+EPE and BI-GPS-T+EPE.

dataset AMP|Dong et al.|(2023} HLS|Wu et al.|(2022b) SR|Wu et al.|(2023) CG|Zhang et al.|(2021a) TIME|Guo et al.|(2022)
(baseline’s name) (CKTGNN) (Hierarchical GNN) (GAMORA) (nn-meter) (Timer-GNN)
task | gain PM BW | dsp lut cp | shared | cpu (average) | hold
metric | rmsel rmsel rmsel | msel mse/ msel | accuracy? | rmsel acc5T acclOf | 21
Baseline 0.52 1.15 4.47 3.94 245 0.88 0.99 3.20 0.80 0.99 0.97
BI-GINE+EPE [0.51+0.07 1.14+0.00 4.20+0.13|2.13+0.08 1.73+0.10 0.61+0.02

0.99+0.00 2.79+0.14 0.8620.02 0.99+0.01 0.99+0.00

BI-GPS-T+EPE |0.34£0.08 1.1540.00 3.7940.112.13%0.15 1.96+0.13 0.60£0.01

Table 6: Comparison of BI-GIN+EPE and BI-GPS-T+EPE with baselines specific for each dataset.

weights, limiting its ability to leverage EPE. We provide a summary of the performance data from
Table[34]to Table [@3in Appendix [H.2]and report the average rankings of the methods for each task.
All 18 methods in Table[d] along with the 3 new combinations, are included in the ranking. We detail
the results of the most competitive methods in Table[5] For BI-GIN, EPE enhances its performance
on 10 out of 13 tasks in the in-distribution (ID) testing data and 11 tasks in the out-of-distribution
(OOD) testing data. Conversely, NPE only improves the performance of BI-GIN on 7 tasks in
the ID testing and 4 tasks in the OOD testing and performs unstable for the rest tasks. Notably,
EPE-enhanced BI-GIN surpasses MagNet on the CPU task in the CG dataset. For BI-GPS-T, EPE
improves its performance on all 6 tasks in both ID and OOD testing, while NPE does not yield
substantial improvements. This observation contrasts with previous work Rampasek et al.|(2022) on
undirected graphs for molecular property prediction. In conclusion, we find that incorporating PEs
in a stable way as EPE significantly boosts the performance of different models across the selected
tasks and datasets.

6.2 SUMMARY: THE RECIPE FOR DGRL

Through benchmarking various combinations within the design space, we have formulated a design
recipe for DGRL methods tailored for encoding hardware data: The use of ’bidirected’ (BI) message
passing and stable positional encodings (PE) can significantly enhance model performance. Therefore,
we recommend BI-GPS-T+EPE for encoding small graphs and BI-GIN+EPE for large graphs.

We further compare the two models’ performance with the baseline methods proposed by hardware
design practitioners specifically for the corresponding tasks in the original papers. Results are shown
in Table. [6] The comparison focuses on ID evaluation as for most of the tasks, the original studies
did not even report OOD evaluations. We follow the same data split as baseline methods for fair
comparison (see the details in Appendix [C). BI-GIN+EPE achieves results comparable to, or better
than, the baseline methods. BI-GPS+EPE achieves even better performance than BI-GIN+EPE for
small graphs. Note that the baseline methods for certain tasks may incorporate domain-specific
expert knowledge and additional data processing. For example, CKTGNN Dong et al.| (2023) for
the AMP dataset modifies the graph structures into DAGs and employs an asynchronized message
passing to mimic the signal flow in these amplifiers; ‘timer-GNN’ |Guo et al.[(2022) is tailored for the
TIME dataset to mimic the transmission rules of clock signals and designs a non-linear delay model
(NLDM) along with a novel module ‘cell library’. Such domain knowledge may further enhance
BI-GPS+EPE and BI-GIN+EPE for these specific tasks, which is left for future research.

Discussion on OOD Evaluation: Despite BI-GPS-T+EPE and BI-GIN+EPE outperforming other
methods in OOD testing across all tasks, we cannot yet conclude that these methods are sufficiently
effective for practical OOD usage. In fact, making accurate predictions with OOD data in hardware
design remains a significant challenge. When the graph structures in training sets are sufficiently
diverse, such as in datasets with a large number of small graphs (e.g., AMP, HLS) or those with
abundant local structures (e.g., SR), BI-GIN+EPE and BI-GPS-T+EPE tend to maintain reasonably
good performance on OOD data. However, OOD generalization becomes challenging when the

Under review as a conference paper at ICLR 2025

diversity of graph structures in the training set is limited. For instance, in the TIME dataset, which
has a limited variety of graph structures for training and OOD testing data with entirely different
graph structures, both BI-GIN+EPE and BI-GPS-T+EPE perform worse than timer-GNN |Guo et al.
(2022), which integrates the knowledge of the physical structure of circuits (as shown in Table 2.
We identify ensuring OOD performance, especially when training sets lack sufficiently diversified
graph structures, as a key direction for future DGRL research.

7 CONCLUSIONS AND LIMITATIONS

Through benchmarking 21 methods on in-distribution and out-of-distribution test sets across 13 tasks
and 5 datasets within the hardware design loop, we find bidirected (BI) message passing neural
networks can substantially improve the performance of both Graph Transformer (GT) encoders that
incorporate MPNN layers and pure GNN encoders. Positional Encodings (PEs), particularly when
used stably, can broadly enhance the performance of both GTs and GNNs. With these insights, we
identify two top-performing models: BI-GPS-T+EPE and BI-GIN+EPE, both of which outperform
the baseline models originally proposed for the corresponding tasks.

Limitations: Although the benchmark covers multiple stages in hardware design loop, there are
other tasks Mendis et al.|(2019)); [Sykora et al.| (2022); [Xun et al.| (2024); [Chai et al.| (2023)); [Chen
et al.|(2019); |Alrahis et al.|(2021b); Zhang et al.|(2019a) that could be included in this benchmark as
DGRL tasks. Given technological advancements and the diversity of design tools, ensuring OOD
performance remains an urgent open problem in hardware design. Future research may involve
high-quality data collection Jain et al.| (2020); \Gupta et al.| (2021)); 'Wu et al.|(2021b); Whang et al.
(2023); 'Wu et al.| (2020) or the development of OOD-aware DGRL methods Liu et al.|(2023)); Shi
et al.[(2024); |Liu et al.|(2024); [Liu & Ding|(2024).

REFERENCES

Opencores, a. https://opencores.org/|
Openroad, b. https://github.com/The-OpenROAD-Project/OpenROAD.
Skywater. https://github.com/google/skywater—-pdk.

Cadence spectre simulation platform. https://www.cadence.com/en_US/home/tools/
custom—-ic—-analog-rf-design/circuit—-simulation.htmll

Vitis hls tool. https://www.x1linx.com/products/design—-tools/vitis/
vitis—hls.html.

Vivado. https://www.xilinx.com/products/design-tools/vivado.html.

Engin Afacan, Nuno Lourengo, Ricardo Martins, and Giinhan Diindar. Machine learning techniques
in analog/rf integrated circuit design, synthesis, layout, and test. Integration, 77:113-130, 2021.

Abeer Al-Hyari, Hannah Szentimrey, Ahmed Shamli, Timothy Martin, Gary Grewal, and Shawki
Areibi. A deep learning framework to predict routability for fpga circuit placement. ACM
Transactions on Reconfigurable Technology and Systems (TRETS), 14(3):1-28, 2021.

V Aho Alfred, S Lam Monica, and D Ullman Jeffrey. Compilers Principles, Techniques & Tools.
pearson Education, 2007.

Lilas Alrahis, Abhrajit Sengupta, Johann Knechtel, Satwik Patnaik, Hani Saleh, Baker Mohammad,
Mahmoud Al-Qutayri, and Ozgur Sinanoglu. Gnn-re: Graph neural networks for reverse engineer-
ing of gate-level netlists. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 41(8):2435-2448, 2021a.

Lilas Alrahis, Abhrajit Sengupta, Johann Knechtel, Satwik Patnaik, Hani Saleh, Baker Mohammad,
Mahmoud Al-Qutayri, and Ozgur Sinanoglu. GNN-RE: Graph neural networks for reverse
engineering of gate-level netlists. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, pp. 1-1, 2021b. doi: 10.1109/TCAD.2021.3110807.

10

https://opencores.org/
https://github.com/The-OpenROAD-Project/OpenROAD
https://github.com/google/skywater-pdk
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation.html
https://www.cadence.com/en_US/home/tools/custom-ic-analog-rf-design/circuit-simulation.html
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
https://www.xilinx.com/products/design-tools/vitis/vitis-hls.html
https://www.xilinx.com/products/design-tools/vivado.html

Under review as a conference paper at ICLR 2025

Yunsheng Bai, Atefeh Sohrabizadeh, Zongyue Qin, Ziniu Hu, Yizhou Sun, and Jason Cong. Towards
a comprehensive benchmark for high-level synthesis targeted to fpgas. Advances in Neural
Information Processing Systems, 36:45288-45299, 2023.

Ioana Baldini, Stephen J Fink, and Erik Altman. Predicting gpu performance from cpu runs using
machine learning. In 2014 IEEE 26th International Symposium on Computer Architecture and
High Performance Computing, pp. 254-261. IEEE, 2014.

David Bieber, Charles Sutton, Hugo Larochelle, and Daniel Tarlow. Learning to execute programs
with instruction pointer attention graph neural networks. Advances in Neural Information Process-
ing Systems, 33:8626-8637, 2020.

Benjamin Biggs, Ian MclInerney, Eric C Kerrigan, and George A Constantinides. High-level synthesis
using the julia language. arXiv preprint arXiv:2201.11522, 2022.

Robert Brayton and Alan Mishchenko. Abc: An academic industrial-strength verification tool. In
Proc. CAV. Springer, 2010.

Tim Biicher, Lilas Alrahis, Guilherme Paim, Sergio Bampi, Ozgur Sinanoglu, and Hussam Amrouch.
Appgnn: Approximation-aware functional reverse engineering using graph neural networks. In
Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design, pp. 1-9,
2022.

Burcin Cakir and Sharad Malik. Reverse engineering digital ics through geometric embedding of
circuit graphs. ACM Transactions on Design Automation of Electronic Systems (TODAES), 23(4):
1-19, 2018.

Weidong Cao, Mouhacine Benosman, Xuan Zhang, and Rui Ma. Domain knowledge-based automated
analog circuit design with deep reinforcement learning. arXiv preprint arXiv:2202.13185, 2022.

Zhuomin Chai, Yuxiang Zhao, Wei Liu, Yibo Lin, Runsheng Wang, and Ru Huang. Circuitnet: An
open-source dataset for machine learning in vlsi cad applications with improved domain-specific
evaluation metric and learning strategies. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 2023. doi: 10.1109/TCAD.2023.3287970.

Dexiong Chen, Leslie O’Bray, and Karsten Borgwardt. Structure-aware transformer for graph
representation learning. In International Conference on Machine Learning, pp. 3469-3489. PMLR,
2022.

Jingsong Chen, Jian Kuang, Guowei Zhao, Dennis J-H Huang, and Evangeline FY Young. Pros: A
plug-in for routability optimization applied in the state-of-the-art commercial eda tool using deep
learning. In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD), pp.
1-8. IEEE, 2020.

Tiangi Chen, Lianmin Zheng, Eddie Yan, Ziheng Jiang, Thierry Moreau, Luis Ceze, Carlos Guestrin,
and Arvind Krishnamurthy. Learning to optimize tensor programs. Advances in Neural Information
Processing Systems, 31, 2018.

Yishen Chen, Ajay Brahmakshatriya, Charith Mendis, Alex Renda, Eric Atkinson, Ondrej Sykora,
Saman Amarasinghe, and Michael Carbin. Bhive: A benchmark suite and measurement framework
for validating x86-64 basic block performance models. In 2019 IEEE international symposium on
workload characterization (IISWC). IEEE, 2019.

Vidya A Chhabria, Wenjing Jiang, Andrew B Kahng, Rongjian Liang, Haoxing Ren, Sachin S
Sapatnekar, and Bing-Yue Wu. Openroad and circuitops: Infrastructure for ml eda research and
education. In 2024 IEEE 42nd VLSI Test Symposium (VTS), pp. 1-4. IEEE, 2024.

Matteo Chinazzi and Giorgio Fagiolo. Systemic risk, contagion, and financial networks: A survey.
SSRN, 2015.

Krzysztof Marcin Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea
Gane, Tamas Sarlos, Peter Hawkins, Jared Quincy Davis, Afroz Mohiuddin, Lukasz Kaiser, et al.
Rethinking attention with performers. 2020.

11

Under review as a conference paper at ICLR 2025

Animesh Basak Chowdhury, Benjamin Tan, Ramesh Karri, and Siddharth Garg. Openabc-d: A
large-scale dataset for machine learning guided integrated circuit synthesis. arXiv preprint
arXiv:2110.11292, 2021.

Fan RK Chung. Spectral graph theory, volume 92. American Mathematical Soc., 1997.

Maciej Ciesielski, Tiankai Su, Atif Yasin, and Cunxi Yu. Understanding algebraic rewriting for
arithmetic circuit verification: a bit-flow model. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 39(6):1346—-1357, 2019.

Chris Cummins, Zacharias Fisches, Tal Ben-Nun, Torsten Hoefler, Michael O’Boyle, and Hugh
Leather. ProGraML: A Graph-based Program Representation for Data Flow Analysis and Compiler
Optimizations. In Thirty-eighth International Conference on Machine Learning (ICML), 2021.

Steve Dai, Yuan Zhou, Hang Zhang, Ecenur Ustun, Evangeline FY Young, and Zhiru Zhang. Fast
and accurate estimation of quality of results in high-level synthesis with machine learning. In 2018
IEEE 26th Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), pp. 129-132. IEEE, 2018.

Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the scope of reproducible neural architecture
search. In International Conference on Learning Representations, 2019.

Zehao Dong, Muhan Zhang, Fuhai Li, and Yixin Chen. Pace: A parallelizable computation encoder
for directed acyclic graphs. In International Conference on Machine Learning, pp. 5360-5377.
PMLR, 2022.

Zehao Dong, Weidong Cao, Muhan Zhang, Dacheng Tao, Yixin Chen, and Xuan Zhang. Cktgnn:
Circuit graph neural network for electronic design automation. International Conference on
Learning Representations, 2023.

Lukasz Dudziak, Thomas Chau, Mohamed Abdelfattah, Royson Lee, Hyeji Kim, and Nicholas Lane.
Brp-nas: Prediction-based nas using gcns. Advances in Neural Information Processing Systems,
33:10480-10490, 2020.

Vijay Prakash Dwivedi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and Xavier Bresson.
Graph neural networks with learnable structural and positional representations. In International
Conference on Learning Representations, 2022a.

Vijay Prakash Dwivedi, Ladislav Rampasek, Mikhail Galkin, Ali Parviz, Guy Wolf, Anh Tuan
Luu, and Dominique Beaini. Long range graph benchmark. In Thirty-sixth Conference on
Neural Information Processing Systems Datasets and Benchmarks Track, 2022b. URL https:
//openreview.net/forum?id=in7XC5RcjEnk

Vijay Prakash Dwivedi, Chaitanya K. Joshi, Anh Tuan Luu, Thomas Laurent, Yoshua Bengio, and
Xavier Bresson. Benchmarking graph neural networks. Journal of Machine Learning Research, 24
(43):1-48, 2023.

Hadi Esmaeilzadeh, Soroush Ghodrati, Andrew Kahng, Joon Kyung Kim, Sean Kinzer, Sayak Kundu,
Rohan Mahapatra, Susmita Dey Manasi, Sachin Sapatnekar, Zhiang Wang, et al. An open-source
ml-based full-stack optimization framework for machine learning accelerators. ACM Transactions
on Design Automation of Electronic Systems, 2023.

Michaél Fanuel, Carlos M Alaiz, and Johan AK Suykens. Magnetic eigenmaps for community
detection in directed networks. Physical Review E, 95(2):022302, 2017.

Michaél Fanuel, Carlos M Alaiz, Angela Fernandez, and Johan AK Suykens. Magnetic eigenmaps
for the visualization of directed networks. Applied and Computational Harmonic Analysis, 44(1):
189-199, 2018.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In

ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

12

https://openreview.net/forum?id=in7XC5RcjEn
https://openreview.net/forum?id=in7XC5RcjEn

Under review as a conference paper at ICLR 2025

Stefano Fiorini, Stefano Coniglio, Michele Ciavotta, and Enza Messina. Sigmanet: One laplacian to
rule them all. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
7568-7576, 2023.

Satoshi Furutani, Toshiki Shibahara, Mitsuaki Akiyama, Kunio Hato, and Masaki Aida. Graph
signal processing for directed graphs based on the hermitian laplacian. In Machine Learning
and Knowledge Discovery in Databases: European Conference, ECML PKDD 2019, Wiirzburg,
Germany, September 16-20, 2019, Proceedings, Part I, pp. 447-463. Springer, 2020.

Douglas M Gale and Shachar Kariv. Financial networks. American Economic Review, 97(2):99-103,
2007.

Simon Geisler, Yujia Li, Daniel] Mankowitz, Ali Taylan Cemgil, Stephan Gilinnemann, and Cosmin
Paduraru. Transformers meet directed graphs. In International Conference on Machine Learning,
pp. 11144-11172. PMLR, 2023.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263-1272. PMLR, 2017.

Daya Guo, Shuo Ren, Shuai Lu, Zhangyin Feng, Duyu Tang, LIU Shujie, Long Zhou, Nan Duan,
Alexey Svyatkovskiy, Shengyu Fu, et al. Graphcodebert: Pre-training code representations with
data flow. International Conference on Learning Representations, 2020.

Zizheng Guo, Mingjie Liu, Jiaqi Gu, Shuhan Zhang, David Z Pan, and Yibo Lin. A timing engine
inspired graph neural network model for pre-routing slack prediction. In Proceedings of the 59th
ACM/IEEE Design Automation Conference, pp. 1207-1212, 2022.

Nitin Gupta, Shashank Mujumdar, Hima Patel, Satoshi Masuda, Naveen Panwar, Sambaran Bandy-
opadhyay, Sameep Mehta, Shanmukha Guttula, Shazia Afzal, Ruhi Sharma Mittal, et al. Data
quality for machine learning tasks. In Proceedings of the 27th ACM SIGKDD conference on
knowledge discovery & data mining, pp. 4040-4041, 2021.

Gary D Hachtel and Fabio Somenzi. Logic synthesis and verification algorithms. Springer Science &
Business Media, 2005.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Yixuan He, Michael Perlmutter, Gesine Reinert, and Mihai Cucuringu. Msgnn: A spectral graph
neural network based on a novel magnetic signed laplacian. In Learning on Graphs Conference,
pp. 40-1. PMLR, 2022.

Yixuan He, Xitong Zhang, Junjie Huang, Benedek Rozemberczki, Mihai Cucuringu, and Gesine
Reinert. Pytorch geometric signed directed: A software package on graph neural networks for
signed and directed graphs. In Learning on Graphs Conference, pp. 12—1. PMLR, 2024.

Zhuolun He, Ziyi Wang, Chen Bai, Haoyu Yang, and Bei Yu. Graph learning-based arithmetic block
identification. In 2021 IEEE/ACM International Conference On Computer Aided Design (ICCAD),
pp- 1-8. IEEE, 2021.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118-22133, 2020.

Yinan Huang, William Lu, Joshua Robinson, Yu Yang, Muhan Zhang, Stefanie Jegelka, and Pan
Li. On the stability of expressive positional encodings for graph neural networks. International
Conference on Learning Representations, 2024.

William Hughes, Sandeep Srinivasan, Rohit Suvarna, and Maithilee Kulkarni. Optimizing design
verification using machine learning: Doing better than random. arXiv preprint arXiv:1909.13168,
2019.

13

Under review as a conference paper at ICLR 2025

Md Shamim Hussain, Mohammed J Zaki, and Dharmashankar Subramanian. Global self-attention as
a replacement for graph convolution. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pp. 655-665, 2022.

Abhinav Jain, Hima Patel, Lokesh Nagalapatti, Nitin Gupta, Sameep Mehta, Shanmukha Guttula,
Shashank Mujumdar, Shazia Afzal, Ruhi Sharma Mittal, and Vitobha Munigala. Overview and
importance of data quality for machine learning tasks. In Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining, pp. 3561-3562, 2020.

Guillaume Jaume, An-phi Nguyen, Maria Rodriguez Martinez, Jean-Philippe Thiran, and Maria
Gabrani. edgnn: a simple and powerful gnn for directed labeled graphs. arXiv preprint
arXiv:1904.08745, 2019.

Wenhao Jia, Kelly A Shaw, and Margaret Martonosi. Stargazer: Automated regression-based gpu
design space exploration. In 2012 IEEE International Symposium on Performance Analysis of
Systems & Software, pp. 2—13. IEEE, 2012.

Zhihao Jia, Sina Lin, Mingyu Gao, Matei Zaharia, and Alex Aiken. Improving the accuracy,
scalability, and performance of graph neural networks with roc. Proceedings of Machine Learning
and Systems, 2:187-198, 2020.

Sam Kaufman, Phitchaya Phothilimthana, Yanqi Zhou, Charith Mendis, Sudip Roy, Amit Sabne, and
Mike Burrows. A learned performance model for tensor processing units. Proceedings of Machine
Learning and Systems, 3:387-400, 2021.

Arshinder Kaur, Arun Kanda, and SG Deshmukh. A graph theoretic approach for supply chain
coordination. international journal of logistics Systems and Management, 2(4):321-341, 2006.

Alexy Khrabrov and George Cybenko. Discovering influence in communication networks using
dynamic graph analysis. In 2010 IEEE Second International Conference on Social Computing, pp.
288-294. IEEE, 2010.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Christian Koke and Daniel Cremers. Holonets: Spectral convolutions do extend to directed graphs.
In The Twelfth International Conference on Learning Representations, 2023.

Georgios Kollias, Vasileios Kalantzis, Tsuyoshi Idé, Aurélie Lozano, and Naoki Abe. Directed graph
auto-encoders. In Proceedings of the AAAI conference on artificial intelligence, volume 36, pp.
7211-7219, 2022.

Gueorgi Kossinets, Jon Kleinberg, and Duncan Watts. The structure of information pathways in a
social communication network. In Proceedings of the 14th ACM SIGKDD international conference
on Knowledge discovery and data mining, pp. 435-443, 2008.

Devin Kreuzer, Dominique Beaini, Will Hamilton, Vincent Létourneau, and Prudencio Tossou.
Rethinking graph transformers with spectral attention. Advances in Neural Information Processing
Systems, 34:21618-21629, 2021.

Menghao Li, Minjia Zhang, Chi Wang, and Mingqin Li. Adatune: Adaptive tensor program
compilation made efficient. Advances in Neural Information Processing Systems, 33:14807-14819,
2020a.

Pan Li, Yanbang Wang, Hongwei Wang, and Jure Leskovec. Distance encoding: Design provably
more powerful neural networks for graph representation learning. Advances in Neural Information
Processing Systems, 33:4465-4478, 2020b.

Wenchao Li, Adria Gascon, Pramod Subramanyan, Wei Yang Tan, Ashish Tiwari, Sharad Malik,
Natarajan Shankar, and Sanjit A Seshia. Wordrev: Finding word-level structures in a sea of bit-level
gates. In 2013 IEEFE international symposium on hardware-oriented security and trust (HOST), pp.
67-74. IEEE, 2013.

14

Under review as a conference paper at ICLR 2025

Yaguang Li, Yishuang Lin, Meghna Madhusudan, Arvind Sharma, Wenbin Xu, Sachin S Sapatnekar,
Ramesh Harjani, and Jiang Hu. A customized graph neural network model for guiding analog ic
placement. In 2020 IEEE/ACM International Conference On Computer Aided Design (ICCAD),
pp- 1-9. IEEE, 2020c.

Rongjian Liang, Hua Xiang, Diwesh Pandey, Lakshmi Reddy, Shyam Ramji, Gi-Joon Nam, and Jiang
Hu. Drc hotspot prediction at sub-10nm process nodes using customized convolutional network.
In Proceedings of the 2020 International Symposium on Physical Design, pp. 135-142, 2020.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz, Joseph E Gonzalez, and Ion Stoica. Tune:
A research platform for distributed model selection and training. arXiv preprint arXiv:1807.05118,
2018.

Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, and Stefanie
Jegelka. Sign and basis invariant networks for spectral graph representation learning. International
Conference on Learning Representations, 2022.

Ting-Ru Lin, Yunfan Li, Massoud Pedram, and Lizhong Chen. Design space exploration of memory
controller placement in throughput processors with deep learning. IEEE Computer Architecture
Letters, 18(1):51-54, 2019.

Zhe Lin, Jieru Zhao, Sharad Sinha, and Wei Zhang. Hl-pow: A learning-based power modeling
framework for high-level synthesis. In 2020 25th Asia and South Pacific Design Automation
Conference (ASP-DAC), pp. 574-580. IEEE, 2020.

Mingjie Liu, Walker J Turner, George F Kokai, Brucek Khailany, David Z Pan, and Haoxing Ren.
Parasitic-aware analog circuit sizing with graph neural networks and bayesian optimization. In
2021 Design, Automation & Test in Europe Conference & Exhibition (DATE), pp. 1372-1377.
IEEE, 2021.

Shikun Liu, Tianchun Li, Yongbin Feng, Nhan Tran, Han Zhao, Qiang Qiu, and Pan Li. Structural re-
weighting improves graph domain adaptation. In International Conference on Machine Learning,
pp. 21778-21793. PMLR, 2023.

Shikun Liu, Deyu Zou, Han Zhao, and Pan Li. Pairwise alignment improves graph domain adaptation.
International Conference on Machine Learning, 2024.

Shuhan Liu and Kaize Ding. Beyond generalization: A survey of out-of-distribution adaptation on
graphs. arXiv preprint arXiv:2402.11153,2024.

Daniel Lo, Taejoon Song, and G Edward Suh. Prediction-guided performance-energy trade-off for
interactive applications. In Proceedings of the 48th International Symposium on Microarchitecture,
pp. 508-520. ACM, 2015.

Yi-Chen Lu, Sai Pentapati, and Sung Kyu Lim. Vlsi placement optimization using graph neural net-
works. In Proceedings of the 34th Advances in Neural Information Processing Systems (NeurIPS)
Workshop on ML for Systems, Virtual, pp. 6-12, 2020.

Yi-Chen Lu, Siddhartha Nath, Sai Pentapati, and Sung Kyu Lim. Eco-gnn: Signoff power predic-
tion using graph neural networks with subgraph approximation. ACM Transactions on Design
Automation of Electronic Systems, 28(4):1-22, 2023.

Yi-Chen Lu, Haoxing Ren, Hao-Hsiang Hsiao, and Sung Kyu Lim. Gan-place: Advancing open
source placers to commercial-quality using generative adversarial networks and transfer learning.
ACM Transactions on Design Automation of Electronic Systems, 29(2):1-17, 2024.

Yi Ma, Jianye Hao, Yaodong Yang, Han Li, Junqi Jin, and Guangyong Chen. Spectral-based graph
convolutional network for directed graphs. arXiv preprint arXiv:1907.08990, 2019a.

Yuzhe Ma, Haoxing Ren, Brucek Khailany, Harbinder Sikka, Lijuan Luo, Karthikeyan Natarajan, and
Bei Yu. High performance graph convolutional networks with applications in testability analysis.
In Proceedings of the 56th Annual Design Automation Conference 2019, pp. 1-6, 2019b.

15

Under review as a conference paper at ICLR 2025

Joshua Mack, Sahil Hassan, Nirmal Kumbhare, Miguel Castro Gonzalez, and Ali Akoglu. Cedr:
A compiler-integrated, extensible dssoc runtime. ACM Transactions on Embedded Computing
Systems, 22(2):1-34, 2023.

Farzaneh Mahdisoltani, loan Stefanovici, and Bianca Schroeder. Proactive error prediction to improve
storage system reliability. In 2017 USENIX Annual Technical Conference (USENIX ATC 17), pp.
391-402, 2017.

Alireza Mahzoon, Daniel Grof3e, and Rolf Drechsler. Revsca: Using reverse engineering to bring
light into backward rewriting for big and dirty multipliers. In Proceedings of the 56th Annual
Design Automation Conference 2019, pp. 1-6, 2019.

Hosein Mohammadi Makrani, Farnoud Farahmand, Hossein Sayadi, Sara Bondi, Sai Manoj Pudukotai
Dinakarrao, Houman Homayoun, and Setareh Rafatirad. Pyramid: Machine learning framework
to estimate the optimal timing and resource usage of a high-level synthesis design. In 2019 29th
International Conference on Field Programmable Logic and Applications (FPL), pp. 397-403.
IEEE, 2019.

Charith Mendis, Alex Renda, Saman Amarasinghe, and Michael Carbin. Ithemal: Accurate, portable
and fast basic block throughput estimation using deep neural networks. In International Conference
on machine learning, pp. 4505-4515. PMLR, 2019.

Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin Zhao,
Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview from
architecture perspective. arXiv preprint arXiv:2202.08455, 2022.

Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,
Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, et al. A graph placement methodology
for fast chip design. Nature, 594(7862):207-212, 2021.

Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Dag-aware aig rewriting a fresh look at
combinational logic synthesis. In Proceedings of the 43rd annual Design Automation Conference,
pp. 532-535, 2006.

Nikita Mishra, Connor Imes, John D Lafferty, and Henry Hoffmann. Caloree: Learning control for
predictable latency and low energy. In Proceedings of the Twenty-Third International Conference
on Architectural Support for Programming Languages and Operating Systems, pp. 184—198, 2018.

Federico Monti, Karl Otness, and Michael M Bronstein. Motifnet: a motif-based graph convolutional
network for directed graphs. In 2018 IEEE data science workshop (DSW), pp. 225-228. IEEE,
2018.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602-4609, 2019.

Joseph F Murray, Gordon F Hughes, and Kenneth Kreutz-Delgado. Machine learning methods for
predicting failures in hard drives: A multiple-instance application. Journal of Machine Learning
Research, 6(May):783-816, 2005.

Audrey Olivier, Michael D Shields, and Lori Graham-Brady. Bayesian neural networks for uncertainty
quantification in data-driven materials modeling. Computer methods in applied mechanics and
engineering, 386:114079, 2021.

Kenneth O’Neal, Philip Brisk, Emily Shriver, and Michael Kishinevsky. Halwpe: Hardware-assisted
light weight performance estimation for gpus. In 2017 54th ACM/EDAC/IEEE Design Automation
Conference (DAC), pp. 1-6. IEEE, 2017.

The pandas development team. pandas-dev/pandas: Pandas, February 2020. URL https://doil
org/10.5281/zenodo.3509134.

16

https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

Under review as a conference paper at ICLR 2025

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Ashutosh Pattnaik, Xulong Tang, Adwait Jog, Onur Kayiran, Asit K Mishra, Mahmut T Kandemir,
Onur Mutlu, and Chita R Das. Scheduling techniques for gpu architectures with processing-in-
memory capabilities. In Proceedings of the 2016 International Conference on Parallel Architectures
and Compilation, pp. 31-44, 2016.

Mangpo Phothilimthana, Sami Abu-El-Haija, Kaidi Cao, Bahare Fatemi, Michael Burrows, Charith
Mendis, and Bryan Perozzi. Tpugraphs: A performance prediction dataset on large tensor compu-
tational graphs. Advances in Neural Information Processing Systems, 36, 2023.

Zongyue Qin, Yunsheng Bai, Atefeh Sohrabizadeh, Zijian Ding, Ziniu Hu, Yizhou Sun, and Jason
Cong. Cross-modality program representation learning for electronic design automation with
high-level synthesis. In Proceedings of the 2024 ACM/IEEE International Symposium on Machine
Learning for CAD, pp. 1-12, 2024.

Ladislav RampaSek, Michael Galkin, Vijay Prakash Dwivedi, Anh Tuan Luu, Guy Wolf, and Do-
minique Beaini. Recipe for a general, powerful, scalable graph transformer. Advances in Neural
Information Processing Systems, 35:14501-14515, 2022.

Haoxing Ren, George F Kokai, Walker J Turner, and Ting-Sheng Ku. Paragraph: Layout parasitics
and device parameter prediction using graph neural networks. In 2020 57th ACM/IEEE Design
Automation Conference (DAC), pp. 1-6. IEEE, 2020.

Pengzhen Ren, Yun Xiao, Xiaojun Chang, Po-Yao Huang, Zhihui Li, Xiaojiang Chen, and Xin Wang.
A comprehensive survey of neural architecture search: Challenges and solutions. ACM Computing
Surveys (CSUR), 54(4):1-34, 2021.

Emanuele Rossi, Bertrand Charpentier, Francesco Di Giovanni, Fabrizio Frasca, Stephan Giinnemann,
and Michael M Bronstein. Edge directionality improves learning on heterophilic graphs. In
Learning on Graphs Conference, pp. 25—-1. PMLR, 2024.

Boshen Shi, Yongqing Wang, Fangda Guo, Bingbing Xu, Huawei Shen, and Xueqi Cheng. Graph
domain adaptation: Challenges, progress and prospects. arXiv preprint arXiv:2402.00904, 2024.

Huihong Shi, Haoran You, Yang Zhao, Zhongfeng Wang, and Yingyan Lin. Nasa: Neural architecture
search and acceleration for hardware inspired hybrid networks. In Proceedings of the 41st
IEEE/ACM International Conference on Computer-Aided Design, pp. 1-9, 2022.

Aebel Joe Shibu, Shilpa N, and Pratyush Kumar. Verlpy: Python library for verification of digital
designs with reinforcement learning. In Proceedings of the First International Conference on
AI-ML Systems, pp. 1-7, 2021.

Brett Shook, Prateek Bhansali, Chandramouli Kashyap, Chirayu Amin, and Siddhartha Joshi. MI-
parest: Machine learning based parasitic estimation for custom circuit design. In 2020 57th
ACM/IEEE Design Automation Conference (DAC), pp. 1-6. IEEE, 2020.

MA Shubin. Discrete magnetic laplacian. Communications in mathematical physics, 164(2):259-275,
1994.

Rahul Singh, Abhishek Chakraborty, and BS Manoj. Graph fourier transform based on directed
laplacian. In 2016 International Conference on Signal Processing and Communications (SPCOM),
pp- 1-5. IEEE, 2016.

IEEE Electronics Packaging Society. Heterogeneous integration roadmap. https://eps.ieeel
org/technology/heterogeneous—integration—-roadmap.html.

Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. Automated accelerator optimiza-
tion aided by graph neural networks. In Proceedings of the 59th ACM/IEEE Design Automation
Conference, pp. 55-60, 2022.

17

https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html
https://eps.ieee.org/technology/heterogeneous-integration-roadmap.html

Under review as a conference paper at ICLR 2025

Atefeh Sohrabizadeh, Yunsheng Bai, Yizhou Sun, and Jason Cong. Robust gnn-based representation
learning for hls. In 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD),
pp. 1-9. IEEE, 2023.

Pramod Subramanyan, Nestan Tsiskaridze, Wenchao Li, Adria Gascén, Wei Yang Tan, Ashish Tiwari,
Natarajan Shankar, Sanjit A Seshia, and Sharad Malik. Reverse engineering digital circuits using
structural and functional analyses. IEEE Transactions on Emerging Topics in Computing, 2(1):
63-80, 2013.

Amit Surana, Soundar Kumara*, Mark Greaves, and Usha Nandini Raghavan. Supply-chain networks:
a complex adaptive systems perspective. International Journal of Production Research, 43(20):
4235-4265, 2005.

Ondfej Sykora, Phitchaya Mangpo Phothilimthana, Charith Mendis, and Amir Yazdanbakhsh. Granite:
A graph neural network model for basic block throughput estimation. In 2022 IEEE International
Symposium on Workload Characterization (IISWC), pp. 14-26. IEEE, 2022.

Aysa Fakheri Tabrizi, Logan Rakai, Nima Karimpour Darav, Ismail Bustany, Laleh Behjat, Shuchang
Xu, and Andrew Kennings. A machine learning framework to identify detailed routing short
violations from a placed netlist. In 2018 55th ACM/ESDA/IEEE Design Automation Conference
(DAC), pp. 1-6. IEEE, 2018.

Veronika Thost and Jie Chen. Directed acyclic graph neural networks. In International Conference
on Learning Representations, 2020.

Aviral Kumar Tiwari, Micheal Kofi Boachie, and Rangan Gupta. Network analysis of economic and
financial uncertainties in advanced economies: Evidence from graph-theory. 2021.

Zekun Tong, Yuxuan Liang, Changsheng Sun, Xinke Li, David Rosenblum, and Andrew Lim.
Digraph inception convolutional networks. Advances in neural information processing systems,
33:17907-17918, 2020a.

Zekun Tong, Yuxuan Liang, Changsheng Sun, David S Rosenblum, and Andrew Lim. Directed graph
convolutional network. arXiv preprint arXiv:2004.13970, 2020b.

Ecenur Ustun, Chenhui Deng, Debjit Pal, Zhijing Li, and Zhiru Zhang. Accurate operation delay
prediction for fpga hls using graph neural networks. In Proceedings of the 39th International
Conference on Computer-Aided Design, pp. 1-9, 2020.

Shobha Vasudevan, Wenjie Joe Jiang, David Bieber, Rishabh Singh, C Richard Ho, Charles Sut-
ton, et al. Learning semantic representations to verify hardware designs. Advances in Neural
Information Processing Systems, 34, 2021.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations, 2018.

Andre Vladimirescu. The SPICE book. John Wiley & Sons, Inc., 1994.

Stephan M Wagner and Nikrouz Neshat. Assessing the vulnerability of supply chains using graph
theory. International journal of production economics, 126(1):121-129, 2010.

Hanrui Wang, Kuan Wang, Jiacheng Yang, Linxiao Shen, Nan Sun, Hae-Seung Lee, and Song
Han. Gen-1l circuit designer: Transferable transistor sizing with graph neural networks and
reinforcement learning. In 2020 57th ACM/IEEE Design Automation Conference (DAC), pp. 1-6.
IEEE, 2020.

Haorui Wang, Haoteng Yin, Muhan Zhang, and Pan Li. Equivariant and stable positional encoding
for more powerful graph neural networks. International Conference on Learning Representations,
2022a.

18

Under review as a conference paper at ICLR 2025

Haoyu Peter Wang, Nan Wu, Hang Yang, Cong Hao, and Pan Li. Unsupervised learning for
combinatorial optimization with principled objective relaxation. Advances in Neural Information
Processing Systems, 35:31444-31458, 2022b.

Yue Wang, Weishi Wang, Shafiq Joty, and Steven CH Hoi. Codet5: Identifier-aware unified pre-trained
encoder-decoder models for code understanding and generation. EMNLP, 2021.

Shuhei Watanabe. Tree-structured parzen estimator: Understanding its algorithm components and
their roles for better empirical performance. arXiv preprint arXiv:2304.11127, 2023.

‘Wei Wen, Hanxiao Liu, Yiran Chen, Hai Li, Gabriel Bender, and Pieter-Jan Kindermans. Neural
predictor for neural architecture search. In European conference on computer vision, pp. 660-676.
Springer, 2020.

Steven Euijong Whang, Yuji Roh, Hwanjun Song, and Jae-Gil Lee. Data collection and quality
challenges in deep learning: A data-centric ai perspective. The VLDB Journal, 32(4):791-813,
2023.

Nan Wu and Yuan Xie. A survey of machine learning for computer architecture and systems. ACM
Computing Surveys (CSUR), 55(3):1-39, 2022.

Nan Wu, Yuan Xie, and Cong Hao. Ironman: Gnn-assisted design space exploration in high-level
synthesis via reinforcement learning. In Proceedings of the 2021 on Great Lakes Symposium on
VLSI, pp. 39-44, 2021a.

Nan Wu, Jiwon Lee, Yuan Xie, and Cong Hao. Lostin: Logic optimization via spatio-temporal
information with hybrid graph models. In 2022 IEEE 33rd International Conference on Application-
specific Systems, Architectures and Processors (ASAP), pp. 11-18. IEEE, 2022a.

Nan Wu, Hang Yang, Yuan Xie, Pan Li, and Cong Hao. High-level synthesis performance prediction
using gnns: Benchmarking, modeling, and advancing. In Proceedings of the 59th ACM/IEEE
Design Automation Conference, pp. 49-54, 2022b.

Nan Wu, Yingjie Li, Cong Hao, Steve Dai, Cunxi Yu, and Yuan Xie. Gamora: Graph learning based
symbolic reasoning for large-scale boolean networks. In 2023 60th ACM/IEEE Design Automation
Conference (DAC), pp. 1-6. IEEE, 2023.

Nan Wu, Yingjie Li, Hang Yang, Hanqgiu Chen, Steve Dai, Cong Hao, Cunxi Yu, and Yuan Xie.
Survey of machine learning for software-assisted hardware design verification: Past, present, and
prospect. ACM Transactions on Design Automation of Electronic Systems, 2024.

Renzhi Wu, Sanya Chaba, Saurabh Sawlani, Xu Chu, and Saravanan Thirumuruganathan. Zeroer:
Entity resolution using zero labeled examples. In Proceedings of the 2020 ACM SIGMOD
International Conference on Management of Data, pp. 1149—-1164, 2020.

Renzhi Wu, Prem Sakala, Peng Li, Xu Chu, and Yeye He. Demonstration of panda: a weakly
supervised entity matching system. Proceedings of the VLDB Endowment, 2021b.

Yao Xiao, Yuankun Xue, Shahin Nazarian, and Paul Bogdan. A load balancing inspired optimization
framework for exascale multicore systems: A complex networks approach. In 2017 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), pp. 217-224. IEEE, 2017.

Yao Xiao, Guixiang Ma, Nesreen K Ahmed, Mihai Capoté, Theodore L Willke, Shahin Nazarian,
and Paul Bogdan. End-to-end programmable computing systems. Communications Engineering, 2
(1):84, 2023a.

Yao Xiao, Shahin Nazarian, and Paul Bogdan. Gahls: an optimized graph analytics based high level
synthesis framework. Scientific Reports, 13(1):22655, 2023b.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? International Conference on Learning Representations, 2019.

Xiaoqing Xu, Nishi Shah, Andrew Evans, Saurabh Sinha, Brian Cline, and Greg Yeric. Standard cell
library design and optimization methodology for asap7 pdk. In 2017 IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), pp. 999-1004. IEEE, 2017.

19

Under review as a conference paper at ICLR 2025

Yong Xu, Kaixin Sui, Randolph Yao, Hongyu Zhang, Qingwei Lin, Yingnong Dang, Peng Li, Keceng
Jiang, Wenchi Zhang, Jian-Guang Lou, et al. Improving service availability of cloud systems
by predicting disk error. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pp.
481-494, 2018.

Jiang Xun, Zhuomin Chai, Yuxiang Zhao, Yibo Lin, Runsheng Wang, and Ru Huang. Circuitnet
2.0: An advanced dataset for promoting machine learning innovations in realistic chip design
environment. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=nMFSUJxMI1.

Hanchen Ye, Hyegang Jun, and Deming Chen. Hida: A hierarchical dataflow compiler for high-level
synthesis. In Proceedings of the 29th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 1, pp. 215-230, 2024.

Chengxuan Ying, Tianle Cai, Shengjie Luo, Shuxin Zheng, Guolin Ke, Di He, Yanming Shen, and
Tie-Yan Liu. Do transformers really perform badly for graph representation? Advances in neural
information processing systems, 34:28877-28888, 2021.

Cunxi Yu and Wang Zhou. Decision making in synthesis cross technologies using Istms and transfer
learning. In Proceedings of the 2020 ACM/IEEE Workshop on Machine Learning for CAD, pp.
55-60, 2020.

Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis flows without human
knowledge. In Proceedings of the 55th Annual Design Automation Conference, pp. 1-6, 2018.

Shih-Yuan Yu, Rozhin Yasaei, Qingrong Zhou, Tommy Nguyen, and Mohammad Abdullah
Al Faruque. Hw2vec: A graph learning tool for automating hardware security. In 2027 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST), pp. 13-23. IEEE,
2021.

Guo Zhang, Hao He, and Dina Katabi. Circuit-gnn: Graph neural networks for distributed circuit
design. In International conference on machine learning, pp. 7364-7373. PMLR, 2019a.

Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting Cao, Yuqing Yang, and Yunxin
Liu. Nn-meter: Towards accurate latency prediction of deep-learning model inference on diverse
edge devices. In Proceedings of the 19th Annual International Conference on Mobile Systems,
Applications, and Services, pp. 81-93, 2021a.

Muhan Zhang, Shali Jiang, Zhicheng Cui, Roman Garnett, and Yixin Chen. D-vae: A variational
autoencoder for directed acyclic graphs. Advances in neural information processing systems, 32,
2019b.

Xitong Zhang, Yixuan He, Nathan Brugnone, Michael Perlmutter, and Matthew Hirn. Magnet:
A neural network for directed graphs. Advances in neural information processing systems, 34:
27003-27015, 2021b.

Guangwei Zhao and Kaveh Shamsi. Graph neural network based netlist operator detection under
circuit rewriting. In Proceedings of the Great Lakes Symposium on VLSI 2022, pp. 53-58, 2022.

Jieru Zhao, Liang Feng, Sharad Sinha, Wei Zhang, Yun Liang, and Bingsheng He. Comba: A
comprehensive model-based analysis framework for high level synthesis of real applications. In
2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 430-437.
IEEE, 2017.

Jieru Zhao, Tingyuan Liang, Sharad Sinha, and Wei Zhang. Machine learning based routing con-
gestion prediction in fpga high-level synthesis. In 2019 Design, Automation & Test in Europe
Conference & Exhibition (DATE), pp. 1130-1135. IEEE, 2019.

Xinnian Zheng, Lizy K John, and Andreas Gerstlauer. Accurate phase-level cross-platform power
and performance estimation. In 2016 53nd ACM/EDAC/IEEE Design Automation Conference
(DAC), pp. 1-6. IEEE, 2016.

Yunxing Zuo, Mingde Qin, Chi Chen, Weike Ye, Xiangguo Li, Jian Luo, and Shyue Ping Ong.
Accelerating materials discovery with bayesian optimization and graph deep learning. Materials
Today, 51:126-135, 2021.

20

https://openreview.net/forum?id=nMFSUjxMIl

Under review as a conference paper at ICLR 2025

A MORE RELATED WORK

In this section, we review the extensive previous studies that use ML-based surrogate models.

ML-based surrogate models have been widely used in hardware system design, such as predicting
energy/power consumption, latency, throughput, or reliability on CPUs Lo et al.|(2015); |[Zheng et al.
(2016); Mishra et al.| (2018)); Mendis et al.[| (2019); |[Lin et al.| (2019); |Chen et al.| (2019); [Sykora
et al.[(2022), GPUs Jia et al.| (2012); Baldinmi et al.| (2014); (O’Neal et al.| (2017); [Pattnaik et al.
(2016); Chen et al.|(2018)); |Li et al.| (2020a), tensor processing units (TPUs) |[Kaufman et al.| (2021));
Phothilimthana et al.|(2023)), and data centers Murray et al.|(2005); Mahdisoltani et al.| (2017); | Xu
et al. (2018)). Similar trends are observed in quickly estimating quality-of-results of circuit designs in
EDA flows, spanning high-level synthesis (HLS) Wang et al.|(2022b)); Zhao et al.|(2019); [Makrani
et al.| (2019); |Ustun et al. (2020); Lin et al.| (2020); Wu et al.| (2022b}; 202 1al); Bai et al.| (2023)); |Ye
et al.| (2024), logic synthesis |Yu et al.| (2018)); |Yu & Zhou| (2020); Wu et al.| (2022a; [2023); Zhao
& Shamsi| (2022), physical synthesis [Tabrizi et al.| (2018)); |[Liang et al.| (2020); |(Chen et al.| (2020);
Mirhoseini et al.|(2021); |Guo et al.|(2022); Esmaeilzadeh et al.[(2023)); Lu et al.| (2024; 2020), analog
circuit designs |Wang et al.|(2020); |[Zhang et al.| (2019a); Ren et al.| (2020); |Shook et al.| (2020); |L1
et al.| (2020c)); Dong et al.| (2023)), and design verification Ma et al.[|(2019b)); Hughes et al.| (2019);
Shibu et al.| (2021));[Vasudevan et al.|(2021); [Wu et al.|(2024). As circuits can naturally be represented
as directed graphs, the adoption of GNN-based surrogate models is increasingly prominent. We
discuss several examples for each of the aforementioned tasks as follows.

In CPU throughput estimation, Granite[Sykora et al.|(2022)) adopts a GNN model to predict basic block
throughput on CPUs. Basic blocks are represented as graphs to capture the semantic relationships
between instructions and registers. A GNN model is then trained to learn expressive embeddings for
each basic block, followed by a decoder network to predict the throughput.

In HLS, many studies leverage the IR graphs generated by HLS front-ends. Ustun et al. [Ustun et al.
(2020) employs GNNSs to predict the mapping from arithmetic operations in IR graphs to different
resources on FPGAs. GNN-DSE [Sohrabizadeh et al.| (2022) also apply graph neural network to
learn resource consumption mappings on HLS codes. |Sohrabizadeh et al.| (2023) propose Harp,
a hierarchical abstract of the HLS graph, |Qin et al.| (2024)) apply pre-trained language models
with GNNs to conduct multi-modality prediction on the mapping. IronMan Wu et al.| (2021a)
exploits GNNs to generate graph embeddings of IR graphs, which serve as state representations in
its reinforcement learning (RL-)based search engine to find the Pareto curve between two types of
computing resources on FPGAs. The same problem can also be solved by carefully designing a GNN
surrogate model as a continuous relaxation of the actual cost model, allowing for a soft solution
that can be decoded into the final discrete solution of resource assignments (Wang et al.| (2022b)).
In terms of HLS datasets, Wu et al. Wu et al.| (2022b)) develop an HLS dataset and benchmark
GNNs for predicting resource usage and timing, however, they enhance accuracy with domain-
specific information and do not explore message passing directions or the benefit from positional
encoding. Bai et al. Bai et al.|(2023)) contribute a new HLS dataset and combine pre-trained language
models|[Wang et al.| (2021));|/Guo et al.| (2020) and GNNs to predict the optimization effects of different
directives.

In logic synthesis or logic design, LOSTIN Wu et al.{(2022a)) employs a GNN to encode circuit graphs
and an LSTM to encode logic synthesis sequences, where the two embeddings are concatenated to
predict logic delay and area. To identify functional units from gate-level netlists, different GNN
models can be leveraged to classify sub-circuit functionality Alrahis et al.| (2021a), predict the
functionality of approximate circuits [Biicher et al.| (2022), analyze impacts of circuit rewriting
on functional operator detection Zhao & Shamsi| (2022), and predict boundaries of arithmetic
blocks He et al.| (2021). Gamora Wu et al.|(2023) leverages the message-passing mechanism in GNN
computation to imitate structural shape hashing and functional propagation in conventional symbolic
reasoning, achieving up to six orders of magnitude speedup compared to the logic synthesis tool ABC
in extracting adder trees from multipliers.

In physical synthesis, Mirhoseini et al. Mirhoseini et al.| (2021)) combine GCN with deep RL to place
macros (i.e., memory cells), after which standard cells are placed by a force-directed method. The
GCN model encodes the topological information of chip netlists to generate graph embeddings as the
inputs to the RL agent, as well as to provide proxy rewards to guide the search process. Lu et al.|Lu
et al.[(2020) apply GraphSAGE [Hamilton et al.[(2017) to circuit netlists to learn node representations

21

Under review as a conference paper at ICLR 2025

that capture logical affinity. These representations are grouped by a weighted K-means clustering
to provide placement guidance, informing the placer about which cells should be placed nearby in
actual physical layouts. Guo et al.|Guo et al.| (2022) develop a hierarchical GNN with BI message
passing to estimate post-routing timing behaviors by using circuit placement results.

In hardware design verification, test point insertion is a common technique aimed at enhancing fault
coverage, which modifies target hardware designs by inserting extra control points or observation
points. Ma et al. Ma et al.| (2019b) use GCNs to predict whether a node in hardware designs is
easy or hard to observe, based on which new observation points are inserted. To improve branch
coverage, Vasudevan et al.[Vasudevan et al.|(2021)) exploit IPA-GNN [Bieber et al.| (2020) to predict
the probability of current test parameters covering specific cover points by characterizing RTL
semantics and computation flows; new tests targeting uncovered points are generated by maximizing
the predicted probability with respect to test parameters through gradient-based search.

In analog circuit design, by using circuit schemetics, CktGNN |Dong et al.| (2023) employs a nested
GNN to predict analog circuit properties (i.e., gain, BW, PM) and reconstruct circuit topology. By
using pre-layout information, ParaGraph [Ren et al.| (2020) builds a GNN model to predict layout-
dependent parasitics and physical device parameters; GCN-RL circuit designer|Wang et al.| (2020)
combines RL with GCNs for automatic transistor sizing. By using layout information, GNN surrogate
models can predict the relative placement quality of different designs |Li et al.| (2020c), and other
circuit properties, such as the electromagnetic properties of high-frequency circuits [Zhang et al.
(2019a).

B A BRIEF REVIEW OF MAGNETIC LAPLACIAN AND POSITIONAL
ENCODINGS FOR DIRECTED GRAPHS

Positional encodings (PE) for graphs are vectorized representations that can effectively describe the
global position of nodes (absolute PE) or relative position of node pairs (relative PE). They provide
crucial positional information and thus benefits many backbone models that is position-agnostic. For
instance, on undirected graphs, PE can provably alleviate the limited expressive power of Message
Passing Neural Networks |Xu et al.| (2019); Morris et al.[|(2019);|Li et al.| (2020b); [Lim et al.| (2022);
PE are also widely adopted in many graph transformers to incorporate positional information and
break the identicalness of nodes in attention mechanism Kreuzer et al.| (2021)); Ying et al.| (2021));
Rampasek et al.[(2022);|Chen et al.|(2022)). As a result, the design and use of PE become one of the
most important factors in building powerful graph encoders.

Likely, one can expect that direction-aware PE are also crucial when it comes to directed graph
encoders. “Direction-aware” implies that PE should be able to capture the directedness of graphs. A
notable example is Magnetic Laplacian PE |Geisler et al.|(2023)), which adopts the eigenvectors of
Magnetic Laplacian as PE. Note that Magnetic Laplacian can encode the directedness via the sign
of phase of exp{+i2mq}. Besides, when ¢ = 0, Magnetic Laplacian reduces to normal symmetric
Laplacian. Thus, Magnetic Laplacian PE for directed graphs can be seen as a generalization of Lapla-
cian PE for undirected graphs, and the latter is known to enjoy many nice spectral properties (Chung
(1997) and be capable to capture many undirected graph distances |[Kreuzer et al.[(2021). Therefore,
Magnetic Laplacian appears to be a strong candidate for designing direction-aware PE. The definition
is as follows:

Magnetic Laplacian (MagLap) matrix is a Hermitian complex matrix defined by L, = I —

DY 2AqD*1/ 2 where D is the diagonalized degree matrix counting both in-degree and out-
degree, and A, refers to the complex matrix as follows:

exp{i2mq}, if (u,v) € &,
[Ag]uw = { exp{—i27q}, if (v,u) € &,)
1, if (u,v),(v,u) €€,

with a parameter ¢ € [0, 1) called potential. Hermitian refers to the property that complex conjugate
L:g equals to L. It is also worth noticing that when ¢ = 0, MagLap L ,—, degenerates to the standard

symmetric Laplacian matrix L = I — D~'/2(A + AT)D~'/2 as a special case, where A is the
Adjacency matrix. See Furutani et al.|(2020) for a comprehensive introduction to Magnetic Laplacian.

22

Under review as a conference paper at ICLR 2025

Note that it is worth mentioning that there are also other PE for directed graphs, such as SVD of
Adjacency matrix [Hussain et al.| (2022]) and directed random walk |Geisler et al.|(2023)).

C DATA SPLIT WHEN COMPARING WITH BASELINES IN THE ORIGINAL PAPERS

When comparing with the baselines from original papers, for training and testing the proposed new
methods ‘BI-GINE+EPE’ and ‘BI-GPS+EPE’, we follow the dataset split of the original paper for
fair comparison.

In the AMP dataset, we follow |Dong et al.| (2023) to merge the graphs with 2-stage and 3-stage
Op-Amps together into one dataset, we take the last 1000 graphs for test and the rest for training
and validation. The performance of baseline method cktGNN and the proposed new methods ‘BI-
GINE+EPE’ and ‘BI-GPS+EPE’ are reported on such data split; for the HLS dataset, both the baseline
method and the proposed new methods are trained and tested on control data flow graphs (CDFG)
only, following the same data split ratio that randomly divide the data into training, validation and
testing as described in the original paper Wu et al.| (2022b)); in the SR dataset, both the baseline
and the new methods are trained with 24-bit netlists and tested on 48-bit netlists, note that both the
training and testing data are obtained before technology mapping [Wu et al.| (2023)); for the CG dataset
both the baselines and the proposed methods are tested to predict the runtime of neural networks on
the Cortex A76 CPU platform |Zhang et al.|(2021a); for the TIME dataset, we follow the dataset split
in the original paper|Guo et al.|(2022) and compare the results of the baseline method and the new
methods on the ID designs.

D DATASET SELECTION DETAILS

License for the datasets and codes.

code implementation dataset license

HLS [Wu et al.| (2022b)) MIT License MIT License
AMP Dong et al.| (2023) MIT License MIT License
SR |Wu et al.| (2023) The MIT License The MIT License
CG Zhang et al.{(2021a) MIT License MIT License
our benchmark CC BY-NC --

Table 7: License of the datasets and the toolbox implementation of this benchmark.

For detailed information of the license of each origin dataset, please refer to their original pa-
per/documents, the final interpretation regarding the five dataset’s licensing information rests with
the owner of the original paper. To the best of our knowledge, these hardware datasets contain no
personally identifiable information or offensive content.

D.1 HIGH-LEVEL SYNTHESIS (HLS) DATASET

After HLS front-end compilation, six node features are extracted, as summarized in Table Each
edge has two features, the edge type represented in integers, and a binary value indicating whether
this edge is a back edge. Each graph is labeled based on its post-implementation performance metrics,
which are synthesized by Vitis HLS |vit and implemented by Vivado |viv. Three metrics are used for
regression: DSP, LUT, and CP. The first two are integer numbers indicating the number of resources
used in the final implementation; the last one is CP timing in fractional number, determining the
maximum working frequency of FPGA. The DFG and CDFG datasets consists of 19,120 and 18,570
C programs, respectively. Figure] shows an example C program from the CDFG dataset, with the
corresponding control dataflow graph shown in Figure [5] More information can be found in the
original paper Wu et al.|(2022b).

23

Under review as a conference paper at ICLR 2025

Feature Description Values
Node type General node type operation nodes, blocks, ports,misc
Bitwidth Bitwidth of the node 0~256,misc
Opcode type Opcode categories based on LLVM binary_unary,bitwise, memory, etc.
Opcode Opcode of the node load, add, xor, icmp, etc.
Is start of path ~ Whether the node is the starting node of a path 0,1,misc
Cluster group Cluster number of the node -1~256, misc

Table 8: Node features and their example values.

Figure 4: An example C program Figure 5: Control dataflow graph of the example pro-
from the CDFG dataset. gram in Figure [Zl_f}

D.2 SYMBOLIC REASONING (SR) DATASET

In this dataset, all the circuit designs are represented as and-inverter graphs (AIGs), a concise and
uniform representation of BNs consisting of inverters and two-input AND gates, which allows
rewriting, simulation, technology mapping, placement, and verification to share the same data
structure Mishchenko et al.| (2006)). In an AIG, each node has at most two incoming edges; a node
without incoming edges is a primary input (PI); primary outputs (POs) are denoted by special output
nodes; each internal node represents a two-input AND function. Based on De Morgan’s laws, any
combinational BN can be converted into an AIG Brayton & Mishchenko| (2010)) in a fast and scalable
manner.

For each node, there are three node features represented in binary values denoting node types and
Boolean functionality. The first node feature indicates whether this node is a PI/PO or intermediate
node (i.e., AND gate). The second and the third node features indicate whether each input edge is
inverted or not, such that AIGs can be represented as homogeneous graphs without additional edge
features.

This dataset aims to leverage graph learning based approaches to accelerate the adder tree extraction
in (integer) multiplier verification, which involves two reasoning steps [Li et al.|(2013)); Subramanyan
et al.| (2013): (1) detecting XOR/MAJ functions to construct adders, and then (2) identifying their
boundaries. Thus, there are two sets of node labels, i.e., two node-level classification tasks. One task
provides labels specifying whether a node (i.e., a gate) in the AIG belongs to MAJ, XOR, or is shared
by both MAJ and XOR. The other task provides labels specifying whether a node is the root node of
an adder. These AIGs and ground truth labels are generated by the logic synthesis tool ABC Brayton
& Mishchenko| (2010)). Figure@ shows the AIG of an 8-bit multiplier: the blue and red nodes are the
root nodes of XOR functions, with the red nodes directly connecting to the POs; the green nodes are
the root nodes of MAJ functions. By pairing one XOR function with one MAJ function sharing the
same set of inputs, we can extract the adder tree, which is shown in Figure More information can
be found in the original paper|Wu et al.| (2023)).

24

Under review as a conference paper at ICLR 2025

B Rg

Figure 6: 8-bit multiplier in AIG.

‘-/ C
e =

s

— e

Figure 7: 8-bit multiplier with adders extracted.

D.3 PRE-ROUTING TIMING PREDICTION (TIME) DATASET

Similar to timing analysis tools, circuits in this dataset are represented as heterogeneous graphs
consisting of two types of edges: net edges and cell edges, with edge features shown in Table 9a]
The nodes in graphs denote pins in circuits, with features summarized in Table bl The TIME
dataset collects 21 real-world benchmark circuits from OpenCores |ope| (a) with OpenROAD |ope
(b) on SkyWater 130nm technology [sky| (i.e. blabla, usb_cdc_core, BM64, salsa20, aes128, aes192,

25

Under review as a conference paper at ICLR 2025

Description Size Description Size
(Net edge) Distances along x/y direction 2 Is primary 1/O pin or not 1
(Cell edge) LUT is valid or no 8 Is fan-in or fan-out 1
(Cell) LUT indices 8x (7T+7) Distance to the 4 die area boundaries 4
(Cell) LUT value matrices 8 X (7TxT) Pin capacitance 4 (EL/RF)

(a) Edge features in the TIME dataset. For each cell (b) Pin (i.e., node) features in the TIME dataset.
edge, 8 LUTs are used to model cell delay and slew EL/RF stands for early/late and rise/fall, i.e., the
under four timing corner combinations (EL/RF). four timing corner combinations in STA.

Table 9: Node and edge features for pre-routing timing prediction.

aes256, wbgspiflash, cic_decimator, des, aes_cipher, picorv32a, zipdiv, genericfir, usb, jpeg_encoder,
usbf_device, xtea, spm, y_huff, and synth_ram). More information can be found in the original
paper (Guo et al.[(2022).

We select the slack prediction task in this dataset, including setup slack and hold slack. Slack values
are used by STA tools to identify paths that violate timing constraints, enabling further optimization
of placement and routing. Setup/hold slack is defined as the difference between the required arrival
time (based on setup or hold time) and the actual arrival time of data/signals at timing endpoints,
making it a node-level regression task.

Figure 8] shows the most common timing path, register-to-register path. (1) For setup slack, the signal
should arrive earlier than the required arrival time (i.e., clock period - setup time). Setup time #equp
refers to the time before the clock edge that data must be stable. (2) For hold slack, the signal should
arrive later than the required hold time to ensure no impact on signals for the current clock edge.
Hold time #,,4 refers to the time after the clock edge that data must be stable.

Register R1 Register R2
Module il g

Combo D!
ma —b Q S
timef] /time_

/—> P> Q /—»’—‘> Q
Data launched ’7 Data captured

on this edge on thi? edge
\CLK
Clock period

Waveform
CLK

Data

teetup | Lhold
Figure 8: Register-to-register timing path.

D.3.1 TIME DATASET DISTRIBUTION SHIFT DEFINITION

For training and ID testing, we take the designs ‘blabla’, ‘usb_cdc_core’, ‘wbgspiflash’,
‘cic_decimator’, ‘picorv32a’, ‘zipdiv’, ‘usb’. For OOD testing, we use ‘xtea’, ‘spm’, ‘y_huff’,
‘synth_ram’.

D.4 CoOMPUTATIONAL GRAPH (CG) DATASET

This dataset includes (1) 12 state-of-the-art CNN models for the ImageNet2012 classification task
(i.e., AlexNet, VGG, DenseNet, ResNet, SqueezeNet, GoogleNet, MobileNetvl, MobileNetv2,
MobileNetv3, ShuffleNetv2, MnasNet, and ProxylessNas), each with 2,000 variants that differ in
output channel number and kernel size per layer, and (2) 2,000 models from NASBench201 |[Dong
& Yang| (2019) with the highest test accuracy on CIFAR10, each featuring a unique set of edge
connections. In total, this dataset contains 26,000 models with different operators and configurations.
Figure[9 shows an example of the computational graph of a model in NASBench201.

26

Under review as a conference paper at ICLR 2025

Node features include input shape (5 dimensions), kernel/weight shape (padding to 4 dimensions),
strides (2 dimensions), and output shape (5 dimensions). Each computational graph is labeled with the
inference latency on three edge devices (i.e., Cortex A76 CPU, Adreno 630 GPU, Adreno 640 GPU).
There is no edge feature in this dataset. More information can be found in the original paper|Zhang
et al.|(2021a).

FQ;atchNurm 8‘ []

ConviD Conv2D

Q
Relu™_|
»(»
Add
) @ cortissaBatentiort
Placehblder o£ONV2D% Relu
usedBatehNorm hav2d \
comeon Relu FusedBatthNorm Q \ FusedBatchNorm
onv. '
% Ad [5 Cohyvap RelYAde,
P AvgPool ony: / \. ’ “
@, ruseasarcnnom @ Conv2Q v Conv2D
gov2o @ Relu Y FusedBatchNogiid Qiusedszl(hNnrm
FusedBatchNormRelu™ FusedBatchiNo n’%d’? ‘ y o Rl g
e g O Comad ety @edarcnyshdd)
O,f Add adwsedBatchNorm cunvzmqnsz “é At ConvaD | Aaa Relu
|
Re‘u | F\@EatChNorm Ady Felu Relu coan
Relu » sedBatchNorr
cony20 | e Adsbegargporm ConvaD '“N edBatchNorm
rﬁ’aatnun—b FusedBatchNor
“Add, t—@ Relu '
‘,, 3\ FusedBatchyorad , Conv2o CunvZD
peh O N 20 &\~ FusedBatchNorm
Rdd
/ YRelly o2
Q ’\.v h% FusedBat(th‘ conv2D“E" & -~ @,]
patch add 0 @ B b edetchﬁs%zb Relu
convap Sonv2d B>
Relu Conv2 Relu felu 3
sedBatchNorm s e wd
Conv2b e o
usedBatchNorm } |
§ ' Fusedgaténnorm 3
@ A L0 e Reshape
.' Relu *x" Relu Conv2D é
e - e — “ - FC
Conv2D Add_ AvgPool FusedBatchNorm
B ade com2o A

FusedBatchNorm ¢ Aqd
Fusedgatcnny -
Rt @ RO da o mc@ 5

Conv2D

FusedBatchi
“@"convw ngam orm

Copv2D

Relu

Figure 9: Computational graph of an example NN model from NASBench201 [Dong & Yang|(2019).

D.4.1 CG DATASET DISTRIBUTION SHIFT DEFINITION

For training and ID testing, we take ‘DenseNets’, ‘MnasNets’, ‘MobileNetv2s’, ‘MobileNetv3s’,
‘nasbench201s’. For OOD testing, we select ‘Proxylessass’, ‘ResNets’, and ‘SqueezeNets’.

D.5 MULTI-STAGE AMPLIFIERS (AMP) DATASET

This dataset focuses on predicting circuit specifications (e.g., DC gain, bandwidth (BW), phase
margin (PM)) of 2/3-stage operational amplifiers (Op-Amps), which are simulated by the circuit
simulator Cadence Spectre |spe, A 2/3-stage Op-Amp consists of (1) two/three single-stage Op-Amps
on the main feedforwoard path and (2) several feedback paths, with one example shown in the right
part of Figure[T0] To make multi-stage Op-Amps more stable, feedforward and feedback paths are
used to achieve different compensation schemes, each of which is implemented with a sub-circuit,
e.g., single-stage Op-Amps, resistors, and capacitors. Due to the different topologies of single-stage
Op-Amps and various compensation schemes, each sub-circuit is built as a subgraph. There are 24
potential sub-circuits in the considered 2/3-stage Op-Amps:

« Single R or C (@ in Figure[D3] 2 types).
* R and C connected in parallel or serial (2) in Figure 2 types).

* A single-stage Op-Amp (g,,,) with different polarities (positive, +g,,, or negative, —g,,)
and directions (feedforward or feedback) (3 in Figure 4 types).

* A single-stage Op-Amp (g,,,) with R or C connected in parallel or serial (16 types). Note
that we use the single-stage Op-Amp with feedforward direction and positive polarities as
an example for @ in Figure

Based on aforementioned formulation, node features include (1) subgraph type, (2) node type (e.g.,
R, C, g, with feedforward/feedback, primary input/output), and (3) value of the component. There
is no edge feature. More information can be found in the original paper Dong et al.|(2023).

27

Under review as a conference paper at ICLR 2025

(D —’V:/\l— _ﬁ_ @ C ﬁ Feedback path
: R
R e D

R

Feedforward Backward 3-stage Op-Amp

o

Figure 10: Subgraph basis for operational amplifiers and an example 3-stage Op-Amp.

E BENCHMARK DESIGN DETAILS

E.1 SELECTED BACKBONE FUNCTIONAL

Here we list the functions we implemented for the selected GNN backbone layers, note that here we
show the forms of the backbone on undirected graphs, one may do slight modification by introducing
w(+) on the neighbor message aggregation to consider message passing control for directed graphs.

GIN: x" =MLP [x{*"V 4+ Y Y @)
JEN (i)

is the for graphs without edge features,

GINE: x(" =MLP [x* "V + 3~ ReLU{""" +eli) 3)
JEN ()
is used for graphs with edge features.

(k=1)
k € k—
GON: x(V =97 3 LY 4)
jeN(@u{i} 4/ d;d;
where 0 is the parameter to learn, for graphs with edge features e; ; is the processed edge weight, for
graphs without edge features e; ; is set as 1.

GAT: x{") = ol Vox"V 4+ 3 ol Vo1, 5)
JEN(3)
where 6, 0; are parameters to learn, for graphs without edge features,

k-1 k—1
(h-1) _ exp (LeakyReLU (a;resxg) 4 a;retxg)))

.3

k) (6)
i exp | LeakyReLU aTH‘gx(k_l) + aTHtxg,’f_l)
meN (i)u{si} s i t
and for graphs with edge features,

(h=1) exp (LeakyReLU (azesxgk_l) + a:@txgk_l) + al@eegfj_l))>

@ j

ZmeN(i)u{i} exp (LeakyReLU (azesxgk—l) T a;rﬁtxgﬁ_l) i aZQﬁgfﬂ:U)) (D
where a,, a; are learnable parameterized attention parameters.
Each GPS backbone layer is implemented as follows:
GPS :X{) = MPNN*—1D (X (=1 E(+-1)
X ¥ = Global ATTn(* 1) (X (*~1) (8)

X® = MLP(X D 4 x (1),

28

Under review as a conference paper at ICLR 2025

where X, E denote node/edge features, we use GIN or GINE as the MPNN layer, and we use the
transformer as the global attention reasoning layer.

For DGCN [Tong et al| (2020b) and DiGCN [Tong et al| (2020a), we fol-
low the implementation in PyGSD He et al| (2024), please refer to https://
pytorch—geometric-signed-directed.readthedocs.10/en/latest/index.
html|for backbone implementation details.

Fk—l
MSGNN: x(* =0 | 3 v x* "V 4l || 9)
i=1
where o is a complex version of Rectified Linear Unit defined by:

z —7/2 <arg(z) < m/2
0 otherwise,

o(z) =

where arg(-) is the complex argument of z € C, F(*) denotes the number of channels in the k-th
layer, b is a bias vector with equal real and imaginary parts, Y denotes the convolution matrix defined
in Equation.(4) and (5) in [He et al.| (2022).

E.2 HYPER-PARAMETER SPACE

batch size learning rate dropout rate hidden dimension* # of GNN layers # of MLP layers
DGCN {64, 128,256,512,1024} [Se-4,1e-2] {0,0.1,0.2,0.3} [96, 336] [3.8] [2.,5]
DiGCN {64, 128,256,512, 1024} [Se-4,1e-2] {0,0.1,0.2,0.3} [96, 336] [3.8] [2.5]
MagNet {64, 128,256, 512, 1024} [Se-4, 1e-2] {0, 0.1,0.2,0.3} [96, 336] [3.8] [2.5]
GCN {64, 128, 256,512, 1024} [le-4,1e-2] {0,0.1,0.2,0.3} [96, 336] [3.8] [2.5]
GIN {64,128, 256,512, 1024} [le-4, le-2] {0,0.1,0.2,0.3} [96, 336] [3.8] [2,5]
GAT {64,128, 256,512, 1024} [le-4, le-2] {0,0.1,0.2,0.3} [96, 336] [3.8] [2,5]
GPS-T {64, 128, 256} [le-4,1e-2] {0,0.1,0.2,0.3} [96, 288] [3.6] [2.5]
GPS-P {32, 64, 128, 256, 512} [le-4,1e-2] {0,0.1,0.2,0.3} [96, 288] [3,6] [2,5]

Table 10: Hyper-parameter space for each backbone. *:hidden dimension slightly vary in each task.

F HARDWARE AND PLATFORM

All the experiments run on a server with an AMP EPYC 7763 64-Core Processor and 8 Nvidia
RTX6000 GPU cards. The codes run on frameworks based on PyTorch [Paszke et al.[(2019)), PyTorch
Geometric|Fey & Lenssen| (2019)), PyTorch Geometrc Signed and Directed He et al.[(2024), RAY |Liaw,
et al.| (2018)).

G IMPLEMENTATION DETAILS OF EXPERIMENTS

G.1 RANKING CALCULATION

In Table. @ and Table. [3] we report the average ranking of different combination of methods w.r.t. per
evaluation metrics for each task from each dataset. The calculation of the ranking can be expressed

as:
Mp

1
t,D _ k
rank, "~ = My Z Ry s (10)
m=1
where Rfym denotes the ranking of the DGRL method k on task ¢ w.r.t. the m-th evaluation metric.

M p denotes the number of tasks and metrics on dataset D.

For evaluation metric the larger the better, we adopt the ranking function from pandas jpandas devel+
opment team| (2020) with parameter ascending = Flase and method = ‘max’.

For evaluation metrics the smaller the better, we use ascending = True and method = ‘min’.

29

https://pytorch-geometric-signed-directed.readthedocs.io/en/latest/index.html
https://pytorch-geometric-signed-directed.readthedocs.io/en/latest/index.html
https://pytorch-geometric-signed-directed.readthedocs.io/en/latest/index.html

Under review as a conference paper at ICLR 2025

DETAILED EXPERIMENT RESULTS

MAIN RESULTS: IN-DISTRIBUTION AND OUT-OF-DISTRIBUTION PERFORMANCE

shared

root

Method
accuracy precision recall f1 accuracy precision recall f1
GCN 0.879+£0.013 0.669+0.141 0.653+0.125 0.620+0.119 0.882+0.005 0.860+0.045 0.811+0.131 0.773+0.091
DI-GCN 0.633+0.000 0.376+£0.000 0.377+0.000 0.337£0.000 0.751+0.000 0.250+0.000 0.333+£0.000 0.285+0.000
BI-GCN 0.992+0.005 0.816+0.123 0.820+0.122 0.818+0.123 0.999+0.001 0.999+0.000 0.998+0.003 0.999+0.001
GIN 0.882£0.046 0.787+0.132 0.704:0.191 0.683+0.179 0.909+£0.005 0.900+0.055 0.877+0.101 0.850%0.050
DI-GIN 0.9994£0.000 0.749+0.000 0.749£0.000 0.749+0.000 0.999+0.000 0.999+0.000 0.999+0.000 0.999+0.000
BI-GIN 0.999+0.000 0.937+0.088 0.974+0.079 0.949+0.080 0.999+0.000 0.999+0.000 0.999+0.000 0.999+0.000
GAT 0.881+0.003 0.626+0.074 0.571+0.083 0.539+0.073 0.877+0.007 0.821+0.074 0.825+0.126 0.786+0.090
DI-GAT 0.885+0.060 0.679+0.033 0.682+0.034 0.674+0.036 0.981+0.005 0.985+0.009 0.956+0.012 0.970+0.008
BI-GAT 0.984+0.034 0.941£0.108 0.939+0.108 0.940+0.108 0.998+0.002 0.996+0.006 0.998+0.003 0.997+0.004
GPS-P 0.895+0.002 0.899+0.031 0.845+0.066 0.829+0.051 0.893+0.002 0.888+0.047 0.837+0.121 0.806+0.071
DI-GPS-P 0.999+0.000 0.749+0.000 0.749+0.000 0.749£0.000 0.999+0.000 0.999+0.000 0.999+0.000 0.999+0.000
BI-GPS-P 0.997+0.002 0.747+0.003 0.748+0.001 0.748+0.002 0.994+0.003 0.997+0.001 ~ 0.986+0.008 0.991:x0.005
DGCN 0.975+£0.000 0.734+0.000 0.730+0.000 0.732+0.000 0.991+0.000 0.989+0.003 0.984+0.003 0.987+0.000
DiGCN 0.9950.000 0.747£0.000 0.747+0.000 0.747£0.000 0.994+0.001 0.990+£0.007 0.991+0.004 0.991:£0.004
MagNet 0.999+0.000 1.000£0.000 1.000+0.000 1.000£0.000 0.999+0.000 1.000+0.000 1.000£0.000 1.000+0.000
Table 11: ID performance on the SR dataset.
Method gain PM BW
mse rmse mse rmse mse rmse
GCN 1.262+1.682 0.993+0.554 13.598+30.906 2.618+2.736 35.230+£0.657 5.935+0.055
DI-GCN 0.337+0.002 0.580+0.002 1.243+£0.014 1.115+0.006 36.302+0.245 6.025+0.020
BI-GCN 0.148+0.004 0.385%0.005 63.874£194.025 3.862+7.375 22.947£1.022 4.789+0.105
GIN 0.166£0.029 0.406+0.034 1.266+0.034 1.125+0.015 28.259+£10.648 5.244+0.894
DI-GIN 0.200£0.136 0.433+0.117 1.300+0.024 1.140£0.010 24.091£1.270 4.906+0.130
BI-GIN 0.137+0.012 0.370+0.016 1.251+£0.035 1.118+0.016 19.724+£1.489 4.438+0.170
GAT 0.158+0.008 0.397+0.010 865.339+2684.901 11.663+£28.466 22.770+1.045 4.770+0.111
DI-GAT 0.205+0.006 0.453+0.007 1.562+0.840 1.223+0.268 26.855£2.928 5.175+0.284
BI-GAT 0.138+0.007 0.372+0.010 1.213+0.055 1.101+0.024 30.333+£13.386 5.409+1.088
GPS-T 0.405+0.022 0.636+0.017 1.277+0.072 1.129+0.031 16.758+0.754 4.092+0.093
DI-GPS-T 0.122+0.009 0.349+0.013 1.259+0.044 1.121£0.019 16.600+£0.877 4.073+0.107
BI-GPS-T 0.122+0.007 0.349+0.010 1.212+0.058 1.100+0.026 20.475+8.853 4.456+0.825
DGCN 0.567+0.004 0.753+0.003 1.292+0.000 1.136+0.000 54.256+£0.257 7.365+0.017
DiGCN 0.367£0.009 0.606+0.007 1.294+0.011 1.137+0.005 52.375+0.276 7.237+0.019
MagNet 0.185+0.008 0.431+0.009 1.315+0.082 1.146+0.035 24.800+£2.834 4.972+0.283
Table 12: ID performance on the AMP dataset.
Method DSP LUT CP
mse R2 mse R2 mse R2
GCN 12.700£0.324 0.877+0.004 4.909+0.123 0.647+£0.021 0.713+0.037 0.829+0.012
DI-GCN 12.591+0.312 0.877£0.003 4.998+0.114 0.643+0.013 0.692+0.013 0.837+0.004
BI-GCN 10.285+0.336 0.902+0.004 4.311+0.149 0.732+0.010 0.665+0.025 0.847+0.007
GINE 2.707+0.133 0.975+£0.001 2.172+0.108 0.861+0.008 0.653+£0.014 0.849+0.003
DI-GINE 2.312+0.172 0.979+0.001 2.145+0.158 0.863+£0.011 0.645+0.022 0.851+0.007
BI-GINE 2.137£0.076 0.981+0.000 1.759+0.087 0.892+0.005 0.629+0.020 0.855+0.005
GAT 4.680+£0.264 0.957+£0.002 3.267+0.142 0.778+0.011 0.643+£0.012 0.850+0.004
DI-GAT 7.697+£0.238 0.926+0.002 4.188+0.226 0.685+0.031 0.677+0.051 0.840+0.014
BI-GAT 4.718+0.532 0.957+£0.004 3.028+0.143 0.801+0.016 0.590+0.011 0.863+0.006
GPS 2.444+0.207 0.978+0.002 2.114+0.153 0.872+0.011 0.621+0.028 0.858+0.010
DI-GPS 2.517+0.180 0.977+£0.001 2.306+0.224 0.862+0.015 0.625+£0.028 0.856+0.007
BI-GPS 2.442+0.303 0.979+0.002 2.112+0.216 0.873+0.014 0.621+£0.018 0.859+0.009
DGCN 19.614+1.151 0.816+0.010 7.988+2.512 0.333+0.256 1.127+0.049 0.706+0.014
DiGCN 12.125+0.204 0.885+0.003 5.683+0.638 0.527+0.092 0.704+0.019 0.836+0.004
MagNet 4.375+£0.452 0.961+£0.003 2.381+0.175 0.848+0.015 0.684+0.045 0.843+0.014

Table 13: ID performance on the HLS dataset.

30

Under review as a conference paper at ICLR 2025

shared

root

Method
accuracy precision recall fl accuracy precision recall fl
GCN 0.510+£0.021 0.283+£0.014 0.328+0.018 0.292+0.016 0.569+0.056 0.364+0.069 0.317+0.038 0.321+0.038
DI-GCN 0.553#£0.000 0.318+0.000 0.374+0.000 0.301£0.000 0.741+0.000 0.247+0.000 0.333+£0.000 0.283+0.000
BI-GCN 0.671+0.045 0.489+0.035 0.563+0.045 0.513+£0.037 0.651+0.054 0.512+0.057 0.514+0.064 0.505+0.062
GIN 0.677£0.039 0.414+0.034 0.395+0.064 0.371£0.067 0.743+0.008 0.646+0.084 0.378+0.027 0.367+0.045
DI-GIN 0.621+0.027 0.449+0.047 0.462+0.024 0.441£0.026 0.729+0.010 0.475+0.047 0.390+£0.079 0.371+0.082
BI-GIN 0.712+£0.024 0.514+0.040 0.561+0.071 0.500£0.049 0.773+0.018 0.592+0.070 0.502+0.051 0.515+0.054
GAT 0.583+0.118 0.341+0.062 0.383+0.071 0.343+£0.079 0.633+0.088 0.456+0.065 0.435+0.043 0.408+0.055
DI-GAT 0.547+0.061 0.384+0.032 0.453+0.072 0.394+0.038 0.642£0.041 0.431£0.062 0.474+0.061 0.437+0.058
BI-GAT 0.554+0.078 0.416+0.069 0.450+0.080 0.397+£0.072 0.632+0.046 0.483+0.066 0.477+£0.065 0.461+0.061
GPS-P 0.670+£0.059 0.407£0.055 0.454+0.056 0.404+0.047 0.659+0.040 0.395+0.056 0.410+0.045 0.385+0.037
DI-GPS-P 0.651+0.059 0.421+0.053 0.499+0.056 0.441+0.050 0.665+0.077 0.441£0.059 0.509+0.088 0.450+0.065
BI-GPS-P 0.651+0.057 0.417+0.040 0.482+0.040 0.435+0.045 0.671+0.023 0.491+0.020 0.578+0.049 0.507+0.029
DGCN 0.628+0.009 0.497+0.028 0.391+0.043 0.400£0.045 0.709+0.020 0.511+0.035 0.495+0.024 0.498+0.028
DiGCN 0.470+0.094 0.432+0.031 0.493+0.040 0.396+0.056 0.726+0.016 0.505+0.023 0.501+0.013 0.497+0.017
MagNet 0.703£0.040 0.445+0.047 0.499+0.052 0.463+0.046 0.683+0.032 0.457+0.057 0.413+0.045 0.413+0.043
Table 14: OOD performance on the SR dataset.
Method gain pm bw
mse rmse mse rmse mse rmse
GCN 0.877+1.063 0.856+0.399 101.444+308.123 4.823+9.320 42.921+£0.993 6.551+0.075
DI-GCN 0.451+0.015 0.671+0.011 1.412+£0.012 1.188+0.005 46.374+£0.590 6.809+0.043
BI-GCN 0.270+£0.036 0.519+0.033 21.490+58.748 2.861+£3.844 30.004+2.192 5.474+0.201
GIN 0.337+0.041 0.580+0.034 1.436+0.053 1.198+0.022 34.398+11.114 5.806+0.852
DI-GIN 0.356+0.071 0.594+0.055 1.379+0.015 1.174+£0.006 44.154+12.707 6.584+0.941
BI-GIN 0.293+£0.026 0.541+0.024 1.419+0.046 1.191£0.019 25.822+1.977 5.078+0.190
GAT 0.330+0.032 0.574+0.027 567.911£1750.531 9.859+22.869 30.155+1.879 5.489+0.169
DI-GAT 0.412+0.035 0.641+0.027 1.406+0.078 1.185+0.032 41.750£10.476 6.421+0.753
BI-GAT 0.198+0.012 0.445+0.014 1.348+0.052 1.160+0.022 41.008+13.522 6.336+0.976
GPS-T 0.508+0.059 0.712+0.041 1.415+0.061 1.189+0.025 21.815+1.973 4.666+0.206
DI-GPS-T 0.301£0.012 0.549+0.011 1.447+0.037 1.202+0.015 22.161+1.355 4.705+0.144
BI-GPS-T 0.314+0.030 0.560+0.027 1.315+0.050 1.146+0.021 26.607+10.277 5.087+0.897
DGCN 0.772+0.046 0.878+0.025 1.364+0.000 1.168+0.000 69.019+1.345 8.307+0.081
DIiGCN 0.345+0.014 0.587+0.012 1.377+0.021 1.173£0.009 59.337+0.659 7.703+0.042
MagNet 0.285+0.065 0.531+0.059 1.608+0.127 1.267+0.051 36.505+2.749 6.038+0.227
Table 15: OOD performance on the AMP dataset.
Method DSP LUT CP
mse R2 mse R2 mse R2
GCN 10.81740.284 0.878+0.006 0.440+0.084 0.879+0.022 0.559+0.033 0.784+0.014
DI-GCN 11.101+0.468 0.873+0.006 0.454+0.128 0.863+0.053 0.593+0.009 0.774+0.006
BI-GCN 9.996+0.319 0.884+0.007 0.627+0.158 0.857+0.026 0.514+0.019 0.803+0.013
GINE 3.720£0.154 0.961+0.001 0.129+0.042 0.966+0.009 0.491+0.017 0.809+0.008
DI-GINE 3.194+0.122 0.967+£0.001 0.118+0.022 0.968+0.005 0.513+£0.025 0.804+0.015
BI-GINE 3.244+0.102 0.966+0.001 0.110+£0.029 0.971+0.007 0.476+0.027 0.815+0.011
GAT 5.440+0.271 0.941+0.003 0.368+0.054 0.900+0.015 0.496+0.019 0.809+0.007
DI-GAT 8.927+0.355 0.895+0.005 0.456+0.135 0.856+0.040 0.551+0.034 0.784+0.015
BI-GAT 5.418+0.305 0.942+0.003 0.218+0.054 0.938+0.023 0.466+0.026 0.821+0.013
GPS 3.343+0.147 0.966+0.001 0.145+0.026 0.962+0.007 0.543+0.124 0.793+0.024
DI-GPS 3.210+0.146 0.967+£0.001 0.139+0.032 0.964+0.008 0.461+£0.016 0.820+0.014
BI-GPS 3.209+0.263 0.967+0.001 0.133+0.027 0.968+0.006 0.496+0.017 0.812+0.016
DGCN 20.220+1.474 0.756£0.024 0.647+0.228 0.797£0.095 1.159+0.093 0.519+0.028
DIiGCN 10.922+0.353 0.880+0.004 0.665+0.257 0.758+0.098 0.613+0.022 0.770+0.011
MagNet 5.048+0.499 0.947+0.004 0.168+0.049 0.955+0.012 0.557+0.053 0.793+0.024

Table 16: OOD performance on the HLS dataset.

31

Under review as a conference paper at ICLR 2025

Method blabla usb_cdc_core wbgspiflash cic_decimator picorv32a zipdiv usb average
GCN 9.263+1.994 2.888+0.576 0.382+0.266 0.684+0.151 8.796+1.773 8.796+1.773 0.501+0.076 3.278+0.318
DI-GCN 13.008+5.156 2.764+0.347 0.504+0.245 0.594+0.293 10.166£2.557 10.166+2.557 0.622+0.087 4.058+0.892
BI-GCN 0.731+0.143 1.308+0.559 0.091+0.044 0.069+0.027 1.447+0.198 1.447+0.198 0.093+0.058 0.575+0.108
GINE 0.183+0.023 0.073+0.014 0.027+0.005 0.009+0.003 0.549+0.033 0.549+0.033 0.024+0.005 0.125+0.008
DI-GINE 1.133+0.156 0.166+£0.041 0.147+0.041 0.048+0.024 1.361+0.398 1.361£0.398 0.123+£0.051 0.439+0.048
BI-GINE ~ 0.142+0.014 0.111+0.083 0.023+0.006 0.010+0.005 0.574+0.041 0.574+0.041 0.032+0.013 0.132+0.012
GAT 17.032+16.149 3.128+0.521 0.477+0.603 0.393+0.219 6.910+3.546 6.910+3.546 0.448+0.296 4.204+3.054
DI-GAT 61.647+17.523 3.359+0.563 1.728+0.436 0.756+0.270 14.218+3.930 14.218+3.930 0.746+0.155 12.295+3.179
BI-GAT 1.311+0.435 1.291£0.466 0.213+0.104 0.221+0.059 2.065+0.507 2.065+0.507 0.258+0.078 0.787+0.112
GPS-P 0.415+0.091 1.846+0.170 0.204+0.055 0.140+0.064 2.308+0.084 2.308+0.084 0.078+0.017 0.772+0.036
DI-GPS-P 0.334+0.091 0.283+0.110 0.160+£0.049 0.105+0.029 1.973+0.093 1.973+0.093 0.051+0.011 0.440+0.028
BI-GPS-P 3.469+0.531 1.786+0.606 0.389+0.251 0.283+0.412 3.908+0.344 3.908+0.344 0.172+0.169 1.544+0.294
DGCN 104.383+0.123 4.278+0.152 2.314+0.032 1.262+0.045 19.884+£0.203 19.884+0.203 1.586+0.073 19.933+0.049
DiGCN 47.858+14.097 4.134+0.429 1.725+0.426 1.011+0.324 13.460+1.900 13.460+1.900 1.086+0.306 10.547+2.441
MagNet 12.326£5.494 3.738+0.707 0.576+0.159 0.569+0.302 5.715+1.130 5.715£1.130 0.539+0.239 3.459+0.782

Table 17: ID performance with ‘mse’ metric on the Time dataset to predict hold slack.

Method blabla usb_cdc_core wbgspiflash cic_decimator picorv32a zipdiv usb average
GCN 0.9104£0.019 -0.312+0.262 0.826+0.120 0.358+0.142 0.460£0.108 0.905+£0.029 0.539+0.070 0.526+0.045
DI-GCN 0.873+0.050 -0.255+0.157 0.771+0.110 ~ 0.442+0.275 0.376+0.156 0.835+0.070 0.428+0.079 0.496+0.056
BI-GCN 0.992+0.001 0.405+0.254 0.958+0.020 0.935+0.025 0911£0.012 0.937+0.011 0.914+0.053 0.865+0.047
GINE 0.998+0.000 0.966+0.006 0.987+0.002 0.991+0.003 0.966+0.002 0.997+0.001 0.977+0.004 0.983+0.001
DI-GINE 0.988+0.001 0.924+0.018 0.933+0.018 0.954+£0.022 0.916£0.024 0.978+0.002 0.886+0.047 0.940+0.007
BI-GINE 0.998+0.000 0.949+0.037 0.989+0.002 0.990+£0.005 0.964+0.002 0.993+0.005 0.970+0.012 0.979+0.006
GAT 0.834+0.156 -0.421+0.236 0.784+0.272 0.630£0.205 0.575£0.217 0.7724#0.230 0.588+0.271 0.537+0.168
DI-GAT 0.401£0.170 -0.526+0.255 0.218+0.197 0.290+0.253 0.12740.241 0.209+0.165 0.314+0.142 0.147+0.143
BI-GAT 0.987+0.004 0.413£0.212 0.903+0.047 0.792+0.055 0.873+0.031 0.966+0.017 0.762+0.072 0.814+0.033
GPS-P 0.996+0.000 0.020+0.090 0.881+£0.032 0.907+0.042 0.8394£0.005 0.903+0.024 0.925+0.016 0.782+0.014
DI-GPS-P 0.996+0.000 0.856+0.055 0.941+0.018 0.881+0.033 0.857+0.006 0.951+0.028 0.927+0.016 0.916+0.017
BI-GPS-P 0.968+0.004 0.052+0.321 0.773£0.146 0.814+0.270 0.72740.023 0.812+0.178 0.837+0.159 0.712+0.136
DGCN -0.013+0.001 -0.943+0.069 -0.046+0.014 -0.183£0.042 -0.220+0.012 -0.276+0.026 -0.455+0.067 -0.305+0.029
DiGCN 0.535+0.136 -0.877+0.195 0.219£0.192 0.050+£0.304 0.173+0.116 ~ 0.002+0.239 0.003+0.280 0.015+0.169
MagNet 0.880+£0.053 -0.698+0.321 0.739+0.071 0.465+0.283 0.649+0.069 0.836+0.080 0.505+0.220 0.482+0.055

Timer-inspired GNN 0.9616 0.9751 0.9721 0.9840 0.9688 0.9753 0.9784 0.9736

Table 18: ID performance with ‘R2’ metric on the Time dataset to predict hold slack.

Method blabla usb_cdc_core wbgspiflash cic_decimator picorv32a zipdiv usb average
GCN 127.555+9.301 17.551£1.646 34.125+1.436 1.399+0.128 126.288+10.077 28.960£1.970 17.849+1.509 50.532£1.053
DI-GCN 99.699+13.849 18.302+5.510 30.164+2.874 2.984+4.527 135.526+16.281 26.859+5.355 15.223+4.432 46.965+2.204
BI-GCN 104.062+11.187 12.867+1.746 27.941%1.197 4.693+0.572 102.680+9.184 20.688+1.020 6.033+2.329 39.852+2.405
GINE 24.911+9.848 2.819+0.801 8.012+3.029 1.233+0.360 31.441+2.463 3.379+1.141 2.211+0.517 10.572+2.027
DI-GINE 25.642+6.938 2.207+0.586 7.105+2.835 1.823+0.632 21.690£1.080 4.088+1.363 1.785+0.315 9.191%1.564
BI-GINE 21.108+6.326 1.690+0.510 4.484+1.648 1.079+0.778 23.207+5.134 3.160+2.036 2.695+2.925 8.203£1.720
GAT 105.449+39.675 13.5544£3.935 32.138+2.692 3.416%1.475 116.730+£16.637 25.27442.653 7.188+2.344 43.393+3.497
DI-GAT 94.262+14.843 14.390+2.879 44.365+4.951 2.265+1.418 94.71246.261 25.569+3.563 7.875+3.932 40.491£1.637
BI-GAT 68.198£12.533 1492942209 21.334+2.564 3.263+0.779 76.571£9.852 19.570£1.516 4.016x1.470 29.697+2.690
GPS-P 71.180£7.296 6.017+0.951 19.114+3.978 2.786+0.931 40.21942.599 21.28045.284 1.974+0.394 23.224+2.482
DI-GPS-P 76.600£6.188 6.559+2.542 22.725+1.503 15.52949.577 39.556+2.732 23.995+3.420 4.789+1.457 27.107+0.881
BI-GPS-P 79.395+9.864 6.205+1.437 21.067+5.043 4.882£1.370 39.426+3.651 26.285+4.810 3.748+0.912 25.858+2.168
DGCN 84.413+11.949 5.364+1.023 21.575£3.178 4.393£2.014 40.810+£3.904 27.617+4.680 3.125%1.675 26.757+1.564
DiGCN 1790.553+1159.661 68.846+51.069 86.761+47.732 33.962+17.288 546.052+1206.931 73.563+40.920 52.554+32.869 378.899+320.555
MagNet 106.479+18.775 7.917+0.623 25.831£1.098 11.47420.993 131.028+12.043 15.074+0.966 4.877+0.662 43.240£2.216

Table 19: ID performance with ‘MSE’ metric on the Time dataset to predict setup slack.

Method blabla usb_cdc_core whbgspiflash cic_decimator picorv32a zipdiv usb average
GCN -1.030+0.148 -4.397+0.506 -0.21940.051 0.180+0.075 -2.489+0.278 -0.971+0.134 -4.43740.459 -1.909+0.150
DI-GCN -0.586+0.220 -4.628+1.694 -0.077+0.102 -0.747+2.650 -2.744+0.449 -0.828+0.364 -3.637+1.350 -1.892+0.254
BI-GCN -0.656+0.178 -2.956+0.537 0.001£0.042 -1.747+0.335 -1.837£0.253 -0.408+0.069 -0.837x0.709 -1.206+0.144
GINE 0.603+0.156 0.132+0.246 0.713+0.108 0.278+0.211 0.131+0.068 0.769+0.077 0.326+0.157 0.422+0.078
DI-GINE 0.5910.110 0.32120.180 0.7460.101 -0.067+0.370 0.400+0.029 0.72120.092 0.456+0.096 0.452+0.055
BI-GINE 0.664+0.100 0.480+0.157 0.839+0.058 0.367+0.455 0.358+0.141 0.784+0.138 0.178+0.891 0.524+0.183
GAT -0.678+0.631 -3.168+1.210 -0.148+0.096 -1.000+0.863 -2.22540.459 -0.720+0.180 -1.189+0.714 -1.304+0.175
DI-GAT -0.500+0.236 -3.425+0.885 -0.585+0.176 -0.326+0.830 -1.617+0.173 -0.740£0.242 -1.399£1.197 -1.227£0.120
BI-GAT -0.085+0.199 -3.591+0.679 0.237+0.091 -0.910+0.456 -1.115£0.272 -0.332+0.103 -0.223+0.447 -0.860+0.174
GPS-P -0.091£0.111 -0.121+0.177 0.010£0.205 -0.313+0.439 0.034+0.062 -0.056+0.262 0.207+0.158 -0.047+0.151
DI-GPS-P -0.071+0.086 -0.339+0.519 -0.076+0.071 -6.422+4.577 -0.052+0.072 -0.208+0.172 -0.591+0.484 -1.108+0.654
BI-GPS-P -0.217+0.151 -0.156+0.267 -0.090+0.261 -1.302+0.645 0.053+0.087 -0.304+0.238 -0.504+0.366 -0.360+0.168
DGCN -0.294+0.183 0.000£0.190 -0.116+0.164 -1.071+0.949 0.020+0.093 -0.370+0.232 -0.254+0.672 -0.298+0.243
DiiGCN ~ -27.500£18.458 -20.171x15.704 -2.100£1.705 -18.882+10.121 -14.088+33.349 -4.007+2.785 -15.008£10.012 -14.537+8.681
MagNet -0.694+0.298 -1.434+0.191 0.076+0.039 -5.717+0.581 -2.620+0.332 -0.026+0.065 -0.485+0.201 -1.557+0.090

Table 20: ID performance with ‘R2’ metric on the Time dataset to predict setup slack.

hold setup
N Xtea synth_ram Xtea synth_ram
Method mse 2 mse 2 mse 2 mse 2
GCN 6.745+0.853 -0.062+0.134 7.511%1.387 -1.030£0.375 117.599+4.681 -2.963£0.157 509.769+16.052 -984.202+31.023
DI-GCN 7.010£0.592 -0.104£0.093 9.764+£2.355 -1.640£0.636 116.332£16.048 -2.920+0.540 418.819+24.262 -808.427+46.890
BI-GCN 5.675+0.784 0.105+0.123 2.446+0.255 0.338+0.069 100.915+4.158 -2.401+0.140 371.644+10.433 -717.255+20.164
GINE 4.446+1.623 0.299£0.255 2.482+1.650 0.328+0.446 62.927+28.904 -1.120£0.974 1341.500+430.261 -2591.639+831.541
DI-GINE 3.075+0.887 0.515+0.139 9.545+4.222 -1.581%1.141 61.694+6.981 -1.079£0.235 612.807£101.175 -1183.337+195.535
BI-GINE 2.116+0.486 0.666x0.076 ~ 1.314+1.197 0.644£0.323 83.775£17.953 -1.823+0.605 498.357+239.343 -962.146+462.565
GAT 7.446x1.012 -0.173%0.159 7.741£1.932 -1.093+0.522 96.486+7.970 -2.251+0.268 347.589+30.441 -670.765+58.833
DI-GAT 10.106£0.961 -0.592+0.151 11.260£1.237 -2.044+0.334 122.242+411.986 -3.120+0.403 375.266+18.144 -724.255+35.066
BI-GAT 5.699+1.155 0.101x0.181 2.683£0.927 0.274+0.250 78.499+6.022 -1.645£0.202 463.886£29.786 -895.527+57.565
GPS-P 7.241x0.520 -0.140£0.082 5.487+1.351 -0.483+0.365 124.375£114.416 -3.191+3.856 82.559+46.321 -158.557+89.522
DI-GPS-P 6.847+0.879 -0.078+0.138 6.704£5.834 -0.812+1.577 412.567£168.322 -12.905+5.673 72.483+66.727 -139.085+128.960
BI-GPS-P 7.284+0.676 -0.14740.106 4.192+1.584 -0.133£0.428 69.680+21.461 -1.34840.723 572.724492.117 -1105.870£178.030
DGCN 13.362+0.281 -1.105£0.044 13.303+0.332 -2.597+0.089 66.196+22.392 -1.231+0.754 539.409+140.777 -1041.484+272.073
DiGCN 11.603£1.166 -0.828+0.183 10.983+1.244 -1.969+0.336 250.774+175.035 -7.452+£5.899 889.065+290.158 -1717.245+560.771
MagNet 8.757+1.044 -0.379+0.164 5.321+1.637 -0.439+0.442 93.389+2.734 -2.147£0.092 425.460£18.451 -821.263+35.659
Timer-inspired GNN - 0.9135 - 0.8656 - - - -

Table 21: OOD performance on the TIME dataset.

32

Under review as a conference paper at ICLR 2025

Method densenets mnasnets mobilenetv2s mobilenetv3s nasbench201s average

GCN 43.04241.663 7.764+0.775 30.222+0.817 5.981x1.454 2.134+0.772 17.828+0.802
DI-GCN 41.241+0.336 6.704+0.183 29.457+0.389 5.275+£0.262 1.129+0.426 16.761+0.151
BI-GCN 41.271+1.729 8.054+0.399 29.473+0.399 5.365+0.159 2.114+0.731 17.256+0.238

GIN 7.694+0.442 1.833£0.187 3.535£0.343 1.491x0.343 0.617+0.216 3.034+0.172
DI-GIN 9.894+0.450 1.943#£0.116 3.395+£0.293 1.157+0.118 0.748+0.118 3.427+0.129
BI-GIN 7.615£0.247 1.901£0.151 3.339£0.172 1.177%0.160 0.493+0.069 2.905+0.098

GAT 1427244836 4.160+0.460 8.733+0.936 3.2274#0.456 0.577£0.071 6.194+1.242
DI-GAT 21.7414£2.897 3.850+0.418 11.801+1.780 3.640+0.582 1.820+0.159 8.571£0.900
BI-GAT 9.322+0.535 2.371+x0.469 4.957+0.497 1.723+0.481 0.498+0.086 3.774+0.262

GPS-P 7.080+£0.302 2.125+0.294 3.951+0.289 1.692+0.395 0.723+£0.197 3.114+0.132
DI-GPS-P 6.821+0.223 2.016+0.226 3.265+0.494 1.337+£0.618 0.620+£0.372 2.812+0.257
BI-GPS-P 6.863+0.265 1.971+0.222 3.794+0.311 1.399+0.361 0.618+0.260 2.929+0.149

DGCN 41.386+0.878 6.651+0.253 30.312+0.307 4.591+0.310 2.101+0.211 17.008+0.152
DiGCN 42.506+0.745 7.203+0.137 30.941+0.426 5.263+0.468 1.879+0.558 17.558+0.169
MagNet 7.368+0.189 1.910£0.152 3.015£0.280 1.290+0.315 0.514+0.166 ~ 2.819+0.177

nn-meter 7.1 3.19 3.25 2.03 0.44 3.20

Table 22: ID performance on the CG dataset on device ‘Cortex A76 CPU’ with ‘rmse’ metric.

Method densenets mnasnets mobilenetv3s mobilenetv4s nasbench202s average

GCN 0.217£0.034 0.267+0.033 0.118+0.026 ~ 0.239+0.090 0.290+0.183 0.226+0.037
DI-GCN 0.222+0.010 0.289+0.022 0.101+0.014 0.264+0.023 0.530+0.184 0.281+0.037
BI-GCN 0.245+0.038 0.269+0.012 0.111+0.022 0.287+£0.010 0.272+0.152 0.236+0.031

GIN 0.876+0.028 0.863+0.054 0.680+0.050 0.723+0.078 0.716+0.190 0.771+0.052
DI-GIN 0.764+0.025 0.835+0.040 0.693£0.050 0.805+0.060 0.626+0.114 0.744+0.021

BI-GIN 0.892+0.020 0.842+0.047 0.681+0.033 0.861+0.053 0.858+0.059 0.826+0.024

GAT 0.662+0.107 0.456+0.067 0.359+0.032 0.476+0.060 0.786+0.056 0.547+0.050
DI-GAT 0.466+0.053 0.540+0.062 0.273+0.046 0.375+0.046 0.343+£0.077 0.399+0.029
BI-GAT 0.808+0.034 0.746+0.077 0.511+0.065 0.689+0.116 0.844+0.091 0.719+0.051

GPS-P 0.904£0.019 0.809+0.051 0.650+0.041 0.666+0.126 ~ 0.697+0.173 0.745+0.057
DI-GPS-P 0.933+0.018 0.831+0.071 0.735+0.038 0.796+0.234 0.750+0.271 0.808+0.104
BI-GPS-P 0.922+0.020 0.836+0.048 0.666+0.051 0.738+0.141 0.750£0.215 0.782+0.072

DGCN 0.188+0.017 0.320+0.019 0.105+0.022 0.294+0.042 0.269+0.042 0.235+0.009
DiGCN 0.199+0.025 0.289+0.035 0.085+0.014 0.288+0.042 0.309+0.111 0.233+0.017
MagNet 0.896+0.012 0.835+0.060 0.730+0.048 0.830+0.113 0.851+0.108 0.828+0.062

nn-meter 0.931 0.824 0.676 0.738 0.824 0.798

Table 23: ID performance on the CG dataset on device ‘Cortex A76 CPU’ with ‘acc5’ metric.

Method densenets mnasnets mobilenetv4s mobilenetvSs nasbench203s average

GCN 0.434+0.041 0.511+0.042 0.222+0.031 0.453+0.122 0.515+0.233 0.426+0.053
DI-GCN 0.446+0.023 0.571+0.023 0.193+0.021 0.476+0.032 0.818+0.158 0.501+0.031
BI-GCN 0.481+0.025 0.483+0.026 0.243+0.018 0.536+0.029 0.517+0.199 0.451+0.037

GIN 0.998+£0.004 0.997+0.004 0.936+0.024 0.941+0.044 0.972+0.035 0.968+0.016
DI-GIN 0.984+0.013 0.999+0.003 0.965£0.019 0.982+0.018 0.956+0.025 0.977£0.008

BI-GIN 1.000+0.000 0.996+0.005 0.952+0.018 0.991+£0.017 0.994+0.012 0.986+0.007

GAT 0.924+0.091 0.808+0.039 0.645+0.063 0.730+0.060 0.973+0.017 0.816+0.036
DI-GAT 0.757£0.055 0.828+0.054 0.532+0.050 0.650+0.075 0.625+0.071 0.678+0.036
BI-GAT 0.993+£0.009 0.977+0.034 0.821+0.057 0.937+0.081 0.994+0.007 0.944+0.026

GPS-P 1.000£0.000 0.996+0.006 0.918+0.033 0.901+0.080 0.928+0.085 0.949+0.034
DI-GPS-P 0.999£0.003 0.997+0.004 0.974+0.018 0.949+0.117 0.940+0.154 0.971+0.055
BI-GPS-P 0.999+0.003 0.998+0.004 0.938+0.021 0.922+0.085 0.953£0.078 0.962+0.030

DGCN 0.409+0.015 0.568+0.021 0.204+0.020 0.538+0.027 0.504+0.076 0.444+0.010
DiGCN 0.390+0.017 0.543+0.017 0.186+0.022 0.522+0.044 0.582+0.156 0.444+0.029
MagNet 1.000£0.000 0.996+0.005 0.973+0.028 0.983+0.031 0.988+0.019 0.988+0.015

nn-meter 0.999 0.992 0.977 0.990 0.999 0.991
Table 24: ID performance on the CG dataset on device ‘Cortex A76 CPU’ with ‘acc10’ metric.

Method proxylessnass resnets

rmse acc5 accl0 rmse acc5 accl0

GCN 38.016£9.318 0.130+0.018 0.237£0.040 529.239£19.212 0.012+0.007 0.017+0.009
DI-GCN 33.581+1.016 0.143+0.019 0.264+0.016 517.553+4.419 0.010+0.002 0.020+0.003
BI-GCN 38.612+2.911 0.112+0.010 0.224+0.007 524.188+11.204 0.008+0.009 0.016+0.011

GIN 18.768+4.710 0.156+0.069 0.333+0.123 326.443+37.550 0.059+0.024 0.112+0.038
DI-GIN 10.742+0.876 0.306+0.021 0.566+0.051 455.235%£16.044 0.032+0.010 0.073+0.012
BI-GIN 11.097+2.002 0.329+0.061 0.589+0.096 362.930+29.676 0.046+0.015 0.087+0.013

GAT 20.289+4.934 0.208+0.059 0.396+0.090 467.151+29.254 0.012+0.017 0.025+0.026
DI-GAT 19.306£3.641 0.192+0.043 0.386+0.063 386.181+44.349 0.033+0.023 0.069+0.030
BI-GAT 14.833+4.066 0.237+0.070 0.471+0.132 472.310£24.953 0.019+£0.011 0.036+0.014

GPS-P 11.952+2.043 0.275%0.078 0.5274£0.104 473.207+15.942 0.013+0.007 0.023£0.011
DI-GPS-P 10.122+0.911 0.293#0.038 0.588+0.075 490.252+11.336 0.005+0.005 0.012+0.009
BI-GPS-P 12.188+1.565 0.249+0.054 0.506+£0.074 475.745£14.259 0.005+0.009 0.015+0.012

DGCN 28.038+1.707 0.123+0.016 0.274+0.015 535.961£5.274 0.003+0.005 0.007+0.007

DiGCN 26.308+1.739 0.138+0.017 0.287+£0.022 542.416£5.718 0.001x0.002 0.005£0.004

MagNet 9.282+1.321 0.433£0.069 0.725+0.055 483.296+9.749 0.015+0.010 0.024+0.017

nn-meter 3.18 0.846 1.00 7.19 0.845 0.999
Table 25: OOD performance on the CG dataset on device ‘Cortex A76 CPU’.

33

Under review as a conference paper at ICLR 2025

Method densenets mnasnets mobilenetvds mobilenetvds nasbench202s average
GCN 6.330£0.099 1.192+0.035 5.075+0.054 0.811+0.034 0.110+0.029 2.704+0.016
DI-GCN 6.226+0.061 1.165+0.029 5.088+0.035 0.795+0.032 0.128+0.036 2.681+0.013
BI-GCN 6.233+0.140 1.173£0.094 4.091£0.158 0.867+£0.098 0.411+0.118 2.555+0.052
GIN 0.514+0.056 0.133+0.021 0.322+0.064 0.110£0.017 0.079+£0.020 0.231+0.025
DI-GIN 0.909+0.064 0.176+£0.017 0.385+0.036 0.156+0.029 0.250+0.022 0.375+0.019
BI-GIN 0.554+0.038 0.158+0.016 0.357+0.037 0.142+0.021 0.116+0.033 0.265+0.013
GAT 1.74240.302 0.446+0.079 1.329+0.245 0.349+0.081 0.132+0.050 0.800+0.102
DI-GAT 1.90440.173 0.531+0.087 1.810+0.414 0.481+£0.068 0.497+0.022 1.044+0.133
BI-GAT 0.854+0.057 0.192+0.048 0.510+£0.094 0.169+0.035 0.080+0.020 0.361+0.039
GPS-P 0.313+0.021 0.131+0.015 0.286+0.035 0.104+0.013 0.069+0.025 0.181+0.009
DI-GPS-P 0.320+0.020 0.149+0.019 0.321+0.081 0.147+0.029 0.186+0.134 0.225+0.032
BI-GPS-P 0.486+0.062 0.197+0.039 0.508+0.117 0.174+0.047 0.124+0.072 0.298+0.054
DGCN 6.695+0.428 1.267+0.101 5.396+0.050 0.817+0.200 0.614+0.079 2.958+0.074
DiiGCN 6.298+0.165 1.344+0.106 5.508+0.185 0.919+0.107 0.549+0.174 2.924+0.083
MagNet 0.478+0.032 0.120+0.015 0.230+0.017 0.106+0.008 0.060+0.008 0.199+0.008

Table 26: ID performance on the CG dataset on device ‘Adreno 630 GPU’ with ‘rmse’ metric.

Method densenets mnasnets mobilenetv3ds mobilenetvds nasbench202s average
GCN 0.325+0.032 0.383£0.019 0.119£0.015 0.410£0.035 0.943%0.052 0.435+0.013
DI-GCN 0.351x0.014 0.404+0.023 0.127£0.031 0.442+0.047 0.910+0.076 0.447+0.020
BI-GCN 0.354+0.030 0.410£0.040 0.164+0.031 0.424+0.038 0.485+£0.100 0.367+0.028
GIN 1.000£0.000 1.000£0.000 0.956£0.032 1.000£0.000 0.994+0.009 0.990+0.007
DI-GIN 0.986£0.014 1.000+0.000 0.916£0.023 0.997£0.006 0.703+0.062 0.920+0.009
BI-GIN 1.000£0.000 1.000£0.000 0.917£0.016 0.991£0.012 0.945+0.057 0.970+0.012
GAT 0.872+0.054 0.864+0.068 0.515+£0.070 0.862+0.065 0.907£0.131 0.804+0.050
DI-GAT 0.839+£0.049 0.790£0.073 0.344+0.085 0.768+0.047 0.466+0.052 0.641+0.046
BI-GAT 0.989+0.005 0.992+0.013 0.829+0.049 0.993+0.012 0.994+0.009 0.959+0.011
GPS-P 1.000£0.000 1.000£0.000 0.966+0.021 1.000£0.000 0.994+0.015 0.992+0.005
DI-GPS-P 1.000+0.000 1.000+0.000 0.927+0.064 0.976+0.049 0.749+0.351 0.930+0.068
BI-GPS-P 1.000£0.000 0.995+0.005 0.861+0.043 0.972+0.043 0.892+0.156 0.944+0.045
DGCN 0.290+0.019 0.403+0.037 0.114+£0.020 0.471£0.113 0.302£0.074 0.316+0.038
DiiGCN 0.302+0.028 0.432+0.042 0.118+£0.022 0.441£0.054 0.363%0.146 0.331+0.031
MagNet 1.000£0.000 1.000£0.000 0.978+0.011 1.000£0.000 0.9994£0.003 0.995+0.002

Table 27: ID performance on the CG dataset on device ‘Adreno 630 GPU’ with ‘acc5’ metric.

Method densenets mnasnets mobilenetv3s mobilenetvds nasbench202s average
GCN 0.608+0.017 0.716+0.022 0.227+0.018 0.780£0.048 0.998+0.004 0.665+0.009
DI-GCN 0.614+0.014 0.741+0.021 0.225+0.015 0.792+0.048 0.992+0.013 0.672+0.013
BI-GCN 0.629+0.028 0.772+0.048 0.312+0.029 0.747+0.086 0.789+0.088 0.650+0.037
GIN 1.000£0.000 1.000+0.000 0.994+0.007 1.000+0.000 1.000+0.000 0.999+0.001
DI-GIN 1.000£0.000 1.000+0.000 0.994+0.005 1.000+£0.000 0.904+0.010 0.979+0.002
BI-GIN 1.000£0.000 1.000+0.000 0.993+0.006 1.000+0.000 0.980+0.024 0.994+0.004
GAT 0.989+0.017 0.992+0.013 0.802+£0.079 0.989+0.018 0.993+0.018 0.953+0.024
DI-GAT 0.991£0.005 0.980+0.020 0.630+0.106 0.962+0.014 0.715+0.033 0.855+0.029
BI-GAT 1.000+0.000 1.000+0.000 0.985+0.012 1.000+0.000 1.000+0.000 0.997+0.002
GPS-P 1.000£0.000 1.000+0.000 0.998+0.006 1.000+0.000 1.000+0.000 0.999+0.001
DI-GPS-P 1.000£0.000 1.000+0.000 0.988+0.021 1.000+0.000 0.947+0.157 0.986+0.030
BI-GPS-P 1.000£0.000 1.000£0.000 0.990£0.010 0.998+0.003 0.961+0.059 0.990+0.012
DGCN 0.564+0.022 0.708+0.031 0.200£0.016 ~ 0.781£0.103 0.611+0.099 0.573+0.041
DiiGCN 0.597+0.017 0.721£0.031 0.220+0.033 0.724+0.088 0.613£0.197 0.575+0.054
MagNet 1.000£0.000 1.000+0.000 1.000£0.000 1.000+0.000 1.000+0.000 1.000£0.000

Table 28: ID performance on the CG dataset on device ‘Adreno 630 GPU’ with ‘acc10’ metric.

proxylessnass resnets
Method rmse accS accl0 rmse accS accl0
GCN 6.517£0.386 0.150+0.019 0.275+0.017 111.019£1.367 0.006+£0.005 0.015+0.007
DI-GCN 6.135+£0.149 0.154+0.021 0.305+0.014 111.631+£1.095 0.007+0.005 0.012+0.006
BI-GCN 5.314+0.297 0.150+0.013 0.294+0.023 98.142+2.642 0.002+0.004 0.006+0.003
GIN 3.252+40.272 0.279+0.046 0.512+0.024 90.353+£5.675 0.030+£0.012 0.066+0.017
DI-GIN 3.121+0.549 0.271+0.076 0.514+0.079 109.263+£2.076 0.028+0.013 0.057+0.011
BI-GIN 3.307+0.184 0.306+£0.044 0.538+0.020 99.362+2.257 0.030+0.017 0.053+0.020
GAT 3.082+0.419 0.252+0.065 0.479+0.084 95.114+£5.394 0.011£0.014 0.025+0.030
DI-GAT 3.982+0.341 0.172+0.019 0.355+0.027 92.21249.020 0.035+0.019 0.072+0.029
BI-GAT 3.461+0.376 0.265+0.038 0.476+0.059 109.787+1.405 0.003+0.005 0.005+0.009
GPS-P 2.554+0.146 0.304+0.068 0.639+0.022 104.410+1.863 0.010+£0.005 0.019+0.006
DI-GPS-P 2.515+0.148 0.270+£0.070 0.614+0.061 105.275+2.238 0.006+0.010 0.009+0.013
BI-GPS-P 2.793+0.261 0.281+£0.064 0.542+0.091 104.383+3.367 0.009+0.007 0.018+0.011
DGCN 5.794+£0.249 0.160+0.012 0.293+0.026 116.229+1.179 0.006+0.006 0.017+0.010
DiGCN 6.04240.906 0.140+0.023 0.271+0.043 117.250+1.149 0.006+0.005 0.013+0.008
MagNet 3.120£0.409 0.434+0.077 0.599+0.070 109.707+2.288 0.001+0.002 0.003+0.003

Table 29: OOD performance on the CG dataset on device ‘Adreno 630 GPU’.

34

Under review as a conference paper at ICLR 2025

Method densenets mnasnets mobilenetv3s mobilenetv4s nasbench202s average

GCN 4.754+0.087 1.141+0.032 4.717+0.039 0.820+0.042 0.184+0.075 2.323+0.026
DI-GCN 4.899+0.188 1.159+0.064 4.869+0.179 0.834+0.070 0.162+0.102 2.385+0.084
BI-GCN 4.712+0.095 1.150+0.061 3.834+0.104 0.887+0.142 0.364+0.116 2.190+0.042

GIN 0.847£0.089 0.249+0.176 0.518+0.161 0.216+0.076 ~ 0.539+0.511 0.474+0.103
DI-GIN 0.639+0.034 0.119+0.013 0.303%£0.019 0.102+0.023 0.050+0.010 0.243+0.011
BI-GIN 0.310£0.022 0.100+0.011 0.231+0.015 0.099+0.028 0.039+0.013 0.156+0.011

GAT 1.630+£0.299 0.441+0.088 1.585+0.311 0.388+0.052 0.131+£0.081 0.835+0.127
DI-GAT 1.763#0.174 0.576+0.097 1.589+0.162 0.513+0.087 0.429+0.049 0.974+0.077
BI-GAT 0.830+0.082 0.269+0.026 0.834+0.114 0.264+0.030 0.062+£0.020 0.452+0.032

GPS-P 0.303£0.035 0.132+0.020 0.335+0.043 0.112+0.026 0.106+0.062 0.197+0.015
DI-GPS-P 0.316£0.030 0.145+0.020 0.332+0.042 0.110£0.009 0.060+0.032 0.193+0.018
BI-GPS-P 0.296+0.012 0.118+0.016 0.303+0.049 0.083+£0.011 0.108+£0.071 0.182+0.026

DGCN 4.903£0.105 1.162+0.047 5.048+0.030 0.756+0.060 0.409+0.045 2.456+0.032
DiiGCN 4.807+£0.174 1.274+0.118 5.139+0.174 0.834+0.091 0.470+0.075 2.505+0.094
MagNet 0.583£0.051 0.155+0.019 0.337+0.042 0.150+£0.029 0.074£0.031 0.260+0.019

Table 30: ID performance on the CG dataset on device ‘Adreno 640 GPU’ with ‘rmse’ metric.

Method densenets mnasnets mobilenetv3s mobilenetv4s nasbench202s average

GCN 0.367+£0.014 0.381+0.024 0.133+0.020 0.422+0.034 0.678+0.320 0.396+0.066
DI-GCN 0.357+0.016 0.416+0.035 0.139+0.029 0.450+0.047 0.782+0.272 0.429+0.059
BI-GCN 0.412+0.040 0.447+0.038 0.178+0.024 0.422+0.084 0.383+0.180 0.368+0.050

GIN 0.986+0.009 0.951+0.124 0.806+0.103 0.943+0.081 0.515+0.409 0.840+0.095
DI-GIN 0.999+0.003 1.000£0.000 0.962£0.023 1.000£0.000 0.997+0.006 0.991+0.004
BI-GIN 1.000£0.000 1.000£0.000 0.983+0.006 ~ 0.999+0.003 1.000£0.000 0.996+0.001

GAT 0.846+0.057 0.861+0.075 0.427+0.064 0.821+0.069 0.830+0.287 0.757+0.078
DI-GAT 0.836+0.042 0.744+0.080 0.373+0.053 0.674+0.101 0.424+0.058 0.610+0.047
BI-GAT 0.990+0.006 0.981+0.015 0.671+0.047 0.926+0.038 0.989+0.009 0.911+0.014

GPS-P 1.000£0.000 1.000+0.000 0.938+0.038 1.000+0.000 0.890+0.234 0.965+0.049
DI-GPS-P 1.000£0.000 1.000£0.000 0.950£0.032 0.998+0.006 0.994+0.018 0.988+0.009
BI-GPS-P 1.000£0.000 1.000£0.000 0.960+0.043 1.000£0.000 0.876£0.196 0.967+0.047

DGCN 0.343£0.020 0.409+0.028 0.122+0.022 0.510+0.077 0.441+0.088 0.365+0.017
DiiGCN 0.343+0.031 0.415+0.036 0.116+0.017 0.456+0.080 0.383+0.092 0.342+0.028
MagNet 0.999+£0.003 0.999+0.003 0.922+0.028 0.990+0.014 0.966£0.054 0.975+0.016

Table 31: ID performance on the CG dataset on device ‘Adreno 640 GPU’ with ‘acc5’ metric.

Method densenets mnasnets mobilenetv3s mobilenetv4s nasbench202s average

GCN 0.694£0.011 0.747+0.018 0.249+0.013 0.768+0.061 0.957+0.090 0.683+0.024
DI-GCN 0.684+0.027 0.717+0.023 0.257+0.037 0.728+0.068 0.941+0.128 0.665+0.032
BI-GCN 0.704+0.022 0.757£0.047 0.346+0.031 0.715%0.107 0.712+0.178 0.646+0.054

GIN 1.000£0.000 1.000+0.000 0.959+0.048 0.997+0.006 0.635+0.396 0.918+0.076
DI-GIN 1.000£0.000 1.000£0.000 0.999+0.003 1.000£0.000 1.000£0.000 0.999+0.000

BI-GIN 1.000£0.000 1.000£0.000 1.000£0.000 1.000£0.000 1.000+0.000 1.000+0.000

GAT 0.992+0.010 0.991+0.014 0.701+0.104 0.985+0.009 0.985+0.038 0.930+0.026
DI-GAT 0.984+0.015 0.956+0.032 0.669+0.051 0.949+0.043 0.675+0.055 0.846+0.028
BI-GAT 1.000+0.000 1.000£0.000 0.926+0.020 0.999+0.003 1.000£0.000 0.985+0.004

GPS-P 1.000£0.000 1.000+0.000 0.998+0.004 1.000+0.000 0.990+0.022 0.997+0.005
DI-GPS-P 1.000£0.000 1.000+0.000 0.999+0.003 1.000+0.000 1.000+0.000 0.999+0.000
BI-GPS-P 1.000£0.000 1.000+£0.000 1.000+0.000 1.000+£0.000 0.986£0.023 0.997+0.004

DGCN 0.664+0.024 0.722+0.024 0.231+0.022 0.800+0.061 0.699+0.082 0.623+0.026
DiiGCN 0.662+0.031 0.703+£0.027 0.218+0.030 0.745+0.067 0.617+0.114 0.589+0.031
MagNet 1.000£0.000 1.000£0.000 0.994+0.007 1.000+0.000 0.999+0.003 0.998+0.001

Table 32: ID performance on the CG dataset on device ‘Adreno 640 GPU’ with ‘acc10’ metric.

proxylessnass resnets

Method

rmse acc5 accl0 rmse acc5 accl0

GCN 5.600+0.162 0.169+0.018 0.303+0.018 82.509+1.149 0.006£0.004 0.011x0.004
DI-GCN 6.163£0.463 0.145+£0.013 0.283+0.022 82.785%1.409 0.007+0.004 0.015+0.004
BI-GCN 5.039+0.203 0.147+0.012 0.279+0.021 70.904+1.024 0.001£0.002 0.003+0.004

GIN 3.704+0.383 0.267+0.057 0.488+0.069 65.961£7.773 0.029+£0.014 0.067+0.027
DI-GIN 3.672+0.328 0.249+0.028 0.461+0.044 62.820+4.603 0.038+0.008 0.078+0.017
BI-GIN 3.326+0.218 0.285%0.031 0.535%0.042 69.651£5.469 0.037+0.010 0.067+0.016

GAT 3.646+0.751 0.212+0.058 0.408+0.089 66.092+7.723 0.018+0.012 0.039+0.029
DI-GAT 4.893+0.580 0.155+0.031 0.312+0.048 69.358+4.897 0.022+0.012 0.047+0.022
BI-GAT 3.666+0.544 0.246+0.057 0.453+0.080 76.832+4.857 0.000+0.001 0.001+0.003

GPS-P 2.789+0.093 0.293+0.086 0.627+0.021 74.002+1.594 0.006+0.005 0.011+0.006
DI-GPS-P 2.883+0.134 0.303%0.053 0.605+0.038 76.163+2.222 0.006+0.004 0.016+0.011
BI-GPS-P 2.747+0.101 0.283+0.063 0.653+0.020 72.210+0.404 0.011+0.002 0.020+0.005
DGCN 4.985+0.157 0.160+0.016 0.300+0.018 85.713+1.394 0.007+£0.007 0.011+0.009
DiGCN 5.362+0.645 0.148+0.012 0.299+0.020 86.605+0.664 0.003+0.003 0.004+0.005
MagNet 3.309+0.187 0.431£0.030 0.594+0.043 77.379+1.987 0.004+0.006 0.005+0.008

Table 33: OOD performance on the CG dataset on device ‘Adreno 640 GPU’.

35

Under review as a conference paper at ICLR 2025

H.2 CoMPARISON BETWEEN NPE AND EPE

gain PM BW
mse rmse mse rmse mse rmse

BI-GIN+NPE 0.135+0.009 0.367+£0.012 1.296+0.024 1.138+0.010 19.215+1.044 4.382+0.117
BI-GINE4+EPE 0.149+0.009 0.386+0.012 1.283+0.033 1.132+0.014 17.399+0.644 4.170+0.076

BI-GPS+NPE 0.122+0.007 0.349+0.010 1.212+#0.058 1.100+0.026 20.475+8.853 4.456+0.825
BI-GPS+EPE 0.115+0.008 0.339+0.011 1.206+0.090 1.097+0.040 18.153%+2.235 4.253+0.256

Method

Table 34: NPE v.s. EPE on ID data on the AMP dataset.
dsp lut cp

method mse 12 mse 2 mse 12

BI-GINE+NPE 2.508+0.183 0.977+0.001 1.983+0.078 0.879+0.006 0.617+0.026 0.858+0.004
BI-GINE+EPE 2.127+0.085 0.981+0.000 1.729+0.096 0.895+0.007 0.607+0.022 0.857+0.007

BI-GPS+NPE 2.442+0.303 0.979+0.002 2.112+0.216 0.873+0.014 0.621+0.018 0.859+0.009
BI-GPS+EPE 2.133+£0.148 0.981+0.001 1.957+0.125 0.883+0.011 0.602+0.017 0.861+0.007

Table 35: NPE v.s. EPE on ID data on the HLS dataset.

shared root
accuracy precision recall f1 accuracy precision recall f1
BI-GIN+NPE 0.999+0.000 0.987£0.039 0.999£0.000 0.991£0.026 0.999+0.000 0.999+0.000 0.999+0.000 0.999+0.000
BI-GIN+EPE 0.999+0.001 0.974+0.079 0.974+0.078 0.974+0.079 0.999£0.000 0.999+0.000 0.999+0.000 0.999+0.000

Table 36: NPE v.s. EPE on ID data on the SR dataset.

method blabla usb_cdc_core wbgspiflash cic_decimator picorv32a zipdiv usb average
BI-GINE+NPE 0.449£0.106 0.327#0.161 0.162+0.051 0.063£0.025 2.006+0.115 0.107£0.080 0.049+0.018 0.452+0.040

hold rmse BI-GINE+EPE 0.181+0.059 0.021+0.008 0.031+0.006 0.010+0.003 0.652+0.070 0.026+0.011 0.014+0.002 0.134+0.012
hold R2 BI-GINE+NPE 0.995+0.001 0.834+0.081 0.940+0.018 0.928+0.028 0.855+0.008 0.970+£0.022 0.928+0.026 0.921+0.018
BI-GINE+EPE 0.998+0.000 0.988+0.004 0.981+0.003 0.993+0.002 0.954+0.004 0.993+0.002 0.986+0.002 0.985+0.001
. BI-GINE+NPE 55.889+2.928 5.481+1.416 13.006+2.716 2.438+0.606 34.429+2.865 12.805+4.583 1.728+0.331 17.968+1.206
SCWPIMSe p1 GINE+EPE 15.13d%2.195 132740747 2.718:1.297 0.966+0.877 17.996:3.227 6.436:5.416 0.885:0.317 6.494+1.449
. R2 BI-GINE+NPE 0.142+0.044 -0.021+£0.264 0.326+0.140 -0.149+0.285 0.173+0.068 0.364+0.227 0.306+0.132 0.163+0.093
setup BI-GINE+EPE 0.767+0.033 0.752+0.139 0.859+0.067 0.544+0.413 0.567+0.077 0.680+0.268 0.644+0.127 0.688+0.091
Table 37: NPE v.s. EPE on ID data on the TIME dataset.

Method densenets mnasnets mobilenetv2s mobilenetv3s nasbench201s average
BI-GIN+NPE 7.734£0.602 2.053+0.235 3.788+0.424 1.590£0.371 0.725+0.173 3.178+0.168
CPUTMSE BIGINE+EPE 7.550£0.291 1.728+0.224 3.064£0.326 1.17620.155 0.4190.033 2.788+0.147
acs BI-GIN+NPE 0.893+0.014 0.821+0.056 0.653+0.052 0.705+0.153 0.545+0.351 0.723+0.104
cpuace BIGINE+EPE 0.907+0.017 0.87320.042 0.76620.041 0.861+0.036 0.901+0.029 0.861+0.019
acclo BIGIN4NPE 0.999:0.003 0.994x0.006 ~0.940£0.025 ~ 0.9070.066 0.940+0.060 0.9560.028
cpu ace BIGINE+EPE 1.000£0.000 0.999+0.003 0.969+0.023 0.994+0.009 0.999:0.003 0.992:+0.006
4630 mse BIFGIN+NPE 0.440£0.020 0.112£0.009 0.254x0.019 0.099:0.014 0.056£0.006 0.192+0.006
gp ¢ BIGINE+EPE 0.293+0.024 0.109+0.020 0.27220.035 0.092+0.021 0.07320.027 0.1680.009
1630 aces BIGINNPE 1.000+0.000 1.0000.000 0.974x0.015 1.000+0.000 1.000+0.000 0.994:0.003
&p BIGINE+EPE 1.000+0.000 1.000£0.000 0.968+0.026 1.000£0.000 0.978+0.052 0.989+0.010
1630 ace]o BIGIN®NPE 1.000+0.000 1.000+0.000 1.000:0.000 1.000+0.000 1.000+0.000 1.000+0.000
&p BIGINE+EPE 1.000+0.000 1.000£0.000 0.999+0.003 1.000£0.000 1.000£0.000 0.999+0.000
1640 rmse BIFGIN+NPE 0.355:0.031 0.146x0.017 0.289£0.024 0.15740.031 0.071£0.018 0.2040.009
ep BIGINE+EPE 0.343+0.028 0.089+0.011 0.245+0.027 0.093+0.016 0.04620.018 0.1630.010
1640 accs BI-GIN®NPE 10000000 1.000£0.000 09710015 0.949:0.081 ~ 0.986£0.012 0.981%0.016
&p BIGINE+EPE 1.000+0.000 1.000£0.000 0.987+0.013 1.000+0.000 1.000+0.000 0.997+0.002
BI-GIN+NPE 1.000£0.000 1.000+0.000 0.996+0.005 1.000£0.000 0.999+0.003 0.999+0.001

gpu640 accl0

BIGINE+EPE 1.000+£0.000 1.000+£0.000 1.000+0.000 1.000£0.000 1.000+0.000 1.000+0.000

Table 38: NPE v.s. EPE on ID data on the CG dataset.

36

Under review as a conference paper at ICLR 2025

Method gain PM BW
mse rmse mse rmse mse rmse
BI-GIN+NPE 0.303+0.046 0.549+0.042 1.379+£0.027 1.174+0.011 25.967+1.646 5.093+0.161
BI-GINE+EPE 0.302+0.037 0.549+0.033 1.373+0.005 1.171+0.002 22.339+1.413 4.724+0.150
BI-GPS+NPE 0.314+0.030 0.560+0.027 1.315+0.050 1.146+0.021 26.607£10.277 5.087+0.897
BI-GPS+EPE 0.302+0.071 0.546+0.060 1.314+0.143 1.126+0.060 21.815+1.973 4.666+0.206

Table 39: NPE v.s. EPE on OOD data on the AMP dataset.

dsp lut cp

method mse 12 mse 2 mse 12

BI-GINE+NPE 3.434+0.238 0.964+0.002 0.113+0.019 0.971+0.004 0.450+0.013 0.830+0.008
BI-GINE+EPE 3.243+0.098 0.966+0.000 0.102+0.019 0.973+£0.005 0.452+0.022 0.823+0.011

BI-GPS+NPE 3.209+0.263 0.967+0.001 0.133+0.027 0.968+0.006 0.496+0.017 0.812+0.016
BI-GPS+EPE 3.205+0.026 0.968+0.001 0.102+0.017 0.972+0.003 0.474+0.017 0.830+0.006

Table 40: NPE v.s. EPE on OOD data on the HLS dataset.

shared root

accuracy precision recall f1 accuracy precision recall f1

BI-GIN+NPE 0.712+#0.027 0.510+0.103 0.591+0.021 0.502+0.032 0.696+0.057 0.556+0.066 0.616+0.072 0.567+0.068
BI-GINE+EPE 0.725£0.037 0.510+0.059 0.604+0.030 0.530+0.038 0.747+0.035 0.569+0.113 0.508+0.080 0.520+0.090

Table 41: NPE v.s. EPE on OOD data on the SR dataset.

Method xtea synth_ram
mse 2 mse r2
hold BI-GINE+NPE 6.936+£0.914 -0.092+0.144 0.743+0.313 0.798+0.084
BI-GINE+-EPE 2.074+0.474 0.673+0.074 0.617+0.906 0.832+0.245
sefup BI-GINE+NPE 98.690+55.964 -2.326+£1.886 629.630+£107.437 -1215.849+207.638

BI-GINE+-EPE 59.401+13.573 -1.002+0.457 619.030+136.176 -1195.363+263.179

Table 42: NPE v.s. EPE on OOD data on the TIME dataset.

Method proxylessnass resnets

rmse accS accl0 rmse accS acclO

cpu BI-GIN+NPE 15.045+£5.642 0.264+0.138 0.487+0.199 388.079+36.250 0.041+0.014 0.073+0.024
BI-GINE+EPE 11.049+0.909 0.310+0.024 0.588+0.049 381.432+28.102 0.036+0.009 0.072+0.016

gpu630 BI-GIN+NPE 2.843+0.289 0.277+0.031 0.538+0.055 97.056+7.138 0.034+0.012 0.065+0.020
BI-GINE+EPE = 2.947+0.239 0.370£0.082 0.595+0.051 108.959+2.594 0.020+0.011 0.033+0.018

gpu640 BI-GIN+NPE 3.591+£0.286 0.303+0.062 0.549+0.050 76.590+4.263 0.024+0.009 0.048+0.011
BI-GINE+EPE 3.419+0.266 0.295+0.034 0.525+0.050 68.530+3.603 0.037+0.020 0.065+0.023

Table 43: NPE v.s. EPE on OOD data on the CG dataset.

37

	Introduction
	Related Work
	Datasets and Tasks
	Benchmark Design
	Design Space for Directed Graph Representation Learning
	Stable Direction-aware Positional Encodings
	Hyer-Parameter Space and Tuning

	Modular Toolbox
	Experiments
	Main Results
	Summary: The Recipe for DGRL

	Conclusions and Limitations
	More Related Work
	A Brief Review of Magnetic Laplacian and Positional Encodings for Directed Graphs
	Data split when comparing with baselines in the original papers
	Dataset Selection Details
	High-Level Synthesis (HLS) Dataset
	Symbolic Reasoning (SR) Dataset
	Pre-routing Timing Prediction (TIME) Dataset
	TIME Dataset Distribution Shift Definition

	Computational Graph (CG) Dataset
	CG Dataset Distribution Shift Definition

	Multi-Stage Amplifiers (AMP) Dataset

	Benchmark Design Details
	Selected Backbone Functional
	Hyper-Parameter Space

	Hardware and Platform
	Implementation Details of Experiments
	Ranking Calculation

	Detailed Experiment Results
	Main Results: In-distribution and Out-of-distribution Performance
	Comparison between NPE and EPE

