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Abstract001

Effective disaster management requires timely002
access to accurate and contextually relevant in-003
formation. Existing Information Retrieval (IR)004
benchmarks, however, focus primarily on gen-005
eral or specialized domains, such as medicine006
or finance, neglecting the unique linguistic com-007
plexity and diverse information needs encoun-008
tered in disaster management scenarios. To009
bridge this gap, we introduce DisastIR, the010
first comprehensive IR evaluation benchmark011
specifically tailored for disaster management.012
DisastIR comprises 9,600 diverse user queries013
and more than 1.3 million labeled query-014
passage pairs, covering 48 distinct retrieval015
tasks derived from six search intents and eight016
general disaster categories that include 301 spe-017
cific event types. Our evaluations of 30 state-of-018
the-art retrieval models demonstrate significant019
performance variances across tasks, with no sin-020
gle model excelling universally. Furthermore,021
comparative analyses reveal significant perfor-022
mance gaps between general-domain and dis-023
aster management-specific tasks, highlighting024
the necessity of disaster management-specific025
benchmarks for guiding IR model selection to026
support effective decision-making in disaster027
management scenarios. All source codes and028
DisastIR are available at this repository.029

1 Introduction030

Natural disasters and technological crises cause031

severe threats to human lives, infrastructure, and032

the environment, necessitating timely and effec-033

tive management responses (Dong et al., 2020; Yin034

et al., 2023; Liu et al., 2024). In such critical sce-035

narios, stakeholders, including emergency respon-036

ders, government agencies, and the general public,037

require rapid access to reliable and contextually038

relevant information to make informed decisions039

(Jayawardene et al., 2021; Abbas and Miller, 2025).040

Information Retrieval (IR) systems thus play a criti-041

cal role in disaster management, where rapid, accu-042

rate access to relevant information can significantly043
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Figure 1: Examples of user queries across diverse search
intents and event types during disaster management.

impact emergency response outcomes and decision- 044

making efficacy (Basu and Das, 2020; Kumar et al., 045

2023; Langford and Gulla, 2024). 046

Information needs during real-world disasters 047

are highly diverse (Figure 1), including intents such 048

as question answering, rumor verification, social 049

media monitoring, and evidence retrieval (Puro- 050

hit et al., 2014; Imran et al., 2015; Zubiaga et al., 051

2018). These varied intents require tailored re- 052

trieval behavior (Asai et al., 2022; Su et al., 2022; 053

Lee et al., 2024b) and understanding of “relevance” 054

(Dai et al., 2022). In addition, different types of 055

disasters (Figure 1), such as geohazards, biologi- 056

cal threats, and technological failures, differ sig- 057

nificantly in terminology, phrasing, and discourse 058

styles (Andharia, 2020; UNDRR, 2020; Bromhead, 059

2021). This complexity presents significant chal- 060

lenges for retrieval systems aiming to serve real- 061

world disaster response scenarios. 062

However, existing retrieval benchmarks primar- 063

ily target general-domain tasks, such as BEIR 064

(Thakur et al., 2021), or focus on specific domains 065

like medicine (Wang et al., 2024a) and finance 066

(Tang et al., 2024). They are not designed to re- 067
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Figure 2: Proposed framework to develop DisastIR from scratch.

flect the search task diversity and domain-specific068

demands of disaster management scenarios. As069

a result, current IR evaluation benchmarks offer070

limited guidance for selecting retrieval models in071

disaster management applications.072

To address this gap, we present DisastIR, the first073

comprehensive IR benchmark tailored to disaster074

management. DisastIR evaluates retrieval models075

across 48 distinct tasks, defined by combinations076

of six real-world search intents and eight general077

disaster event types, covering a total of 301 specific078

event types (see Section 3.2).079

DisastIR is built on a systematically constructed080

disaster management-specific corpus, developed081

through extensive web crawling, semantic chunk-082

ing, and deduplication (Section 3.3). To simulate083

realistic information needs, we use a large language084

model (LLM)1 to generate diverse, contextually085

grounded user queries (Section 3.4). Candidate pas-086

sages are aggregated from multiple state-of-the-art087

(SOTA) retrieval models (Section 3.5), and query-088

passage pairs are annotated using LLMs with three089

different designed prompts whose outputs are en-090

sembled for robust relevance labeling (Section 3.6).091

To ensure annotation quality and evaluation re-092

liability, we validate LLM-generated relevance la-093

bels against human annotations, observing substan-094

tial agreement (average Cohen’s kappa = 0.77; see095

Section 4.2). We also compare LLM-generated096

1The LLM used in this work is GPT-4o-mini.

and human-written queries across all 48 tasks (Sec- 097

tion 4.3) and find highly consistent evaluation re- 098

sults (Kendall’s τ = 0.93), supporting the use of 099

synthetic queries and relevance labels in DisastIR. 100

Using DisastIR, we benchmark 30 open-source 101

retrieval models of varying sizes, architectures, and 102

backbones under both exact and approximate near- 103

est neighbor (ANN) search settings (Section 5). 104

Our results show that no single model consistently 105

outperforms others across all disaster management- 106

related retrieval tasks (Section 6.2). We also 107

observe substantial performance gaps between 108

general-domain benchmarks (e.g., MTEB (Muen- 109

nighoff et al., 2022)) and DisastIR (Section 6.3), 110

highlighting the need for a domain-specific bench- 111

mark to guide reliable and effective retrieval model 112

selection in disaster management scenarios. 113

The contributions of this work are as follows: 114

(1) We release DisastIR, the first IR benchmark 115

tailored to disaster management. It includes a 116

systematically constructed evaluation corpus 117

of 239,704 passages and 9,600 user queries, 118

with over 1.3 million annotated query-passage 119

pairs across 48 retrieval tasks spanning diverse 120

search intents and disaster event types. 121

(2) We conduct a comprehensive evaluation of 30 122

open-source retrieval models under both exact 123

and ANN search settings, offering practical 124

guidance for model selection based on task 125

requirements and computational constraints 126
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in disaster management scenarios.127

(3) We empirically demonstrate substantial per-128

formance gaps between general-domain and129

disaster management-specific retrieval, under-130

scoring the necessity of disaster management-131

specific IR evaluation benchmarks.132

2 Related work133

Existing IR benchmarks target mainly general-134

purpose or specialized domains, such as medicine135

and finance. BEIR (Thakur et al., 2021) evaluates136

zero-shot retrieval models across 18 tasks, such as137

fact verification, QA, and scientific document rank-138

ing. Instruction-based benchmarks like FollowIR139

(Weller et al., 2024), InstructIR (Oh et al., 2023),140

and MAIR (Zhang et al., 2024b) reformulate IR141

tasks using natural language instructions. Some142

domain-specific IR benchmarks, such as MIRAGE143

(Wang et al., 2024a) and FinMTEB (Tang et al.,144

2024), focus on biomedical and financial domains.145

While effective in their respective domains, they146

fail to capture the linguistic and contextual patterns147

in disaster management areas.148

Despite the critical role of information retrieval149

in disaster management, existing benchmarks are150

limited in scope, scale, and task diversity. Prior151

datasets—such as the FIRE IRMiDis track (Basu152

et al., 2017) and event-specific corpora from dis-153

asters in Nepal, Italy, and Indonesia (Khosla154

et al., 2017; Basu and Das, 2019; Kumar et al.,155

2023)—primarily focus on Twitter microblogs, tar-156

geting short-text retrieval or keyword matching157

with narrow task coverage. Case-based systems158

like Langford and Gulla (2024) use proprietary159

data for concept-based retrieval in search and res-160

cue planning. These benchmarks typically rely on161

single-source or scenario-specific data and lack sup-162

port for realistic, multi-intent retrieval. In contrast,163

DisastIR provides a large-scale, multi-intent, and164

multi-source benchmark covering diverse disaster165

types and information needs, enabling comprehen-166

sive evaluation in real-world contexts.167

3 DisastIR: Disaster Management168

Information Retrieval Benchmark169

3.1 Overview170

The construction of DisastIR follows a four-stage171

pipeline, as illustrated in Figure 2: (1) disaster172

management corpus construction, (2) user query173

generation, (3) candidate pool development, and (4)174

relevance labeling. DisastIR is built upon a large- 175

scale, high-quality corpus of disaster management- 176

related passages covering diverse event types. User 177

queries are generated by prompting an LLM with 178

these domain passages as context, targeting dif- 179

ferent search intents. Relevance scores for each 180

query-passage pair are then assigned by the LLM. 181

3.2 Evaluation Task 182

To evaluate how well retrieval models address di- 183

verse user intents and disaster contexts, DisastIR 184

defines six search intents and eight general disaster 185

event types, resulting in 48 distinct retrieval tasks. 186

Specifically, 301 specific event types are identi- 187

fied spanning eight general categories: Biological 188

(Bio), Chemical (Chem), Environmental (Env), Ex- 189

traterrestrial (Extra), Geohazard (Geo), Meteoro- 190

logical & Hydrological (MH), Societal (Soc), and 191

Technological (Tech) (UNDRR, 2020). See Figure 192

1 for examples of specific event types belonging to 193

each general disaster event type. 194

Six distinct search intents are included, in- 195

spired by prior benchmarks such as BEIR (Thakur 196

et al., 2021), BERRI (Asai et al., 2022), MEDI 197

(Su et al., 2022), and MAIR (Sun et al., 2024): 198

question-answer (QA) retrieval, Twitter retrieval, 199

Fact Checking (FC) retrieval, Natural Language 200

Inference (NLI) retrieval, and Semantic Textual 201

Similarity (STS) Retrieval. For QA, we further dis- 202

tinguish between retrieving relevant passages (QA) 203

and retrieving relevant documents (QAdoc), follow- 204

ing common practice in prior work (Kwiatkowski 205

et al., 2019; Khashabi et al., 2021; Xu et al., 2024).2 206

Due to token limitations in many retrieval models – 207

especially encoder-based ones – it is often infeasi- 208

ble to encode full documents directly. To address 209

this, we prompt an LLM to summarize each docu- 210

ment and include the summary in the corpus as a 211

proxy for the original document. 212

3.3 Domain knowledge corpus construction 213

To construct the domain knowledge corpus, we per- 214

form a large-scale web crawling using 301 disaster 215

event types as search queries, collecting domain- 216

specific PDF documents from publicly available 217

sources. A structured pipeline is then applied to 218

convert raw PDFs into clean, retrieval-ready pas- 219

sages: (1) exact-URL deduplication, (2) text extrac- 220

tion and preprocessing, (3) document-level near- 221

2A passage refers to a single chunk with limited token
length, while a document denotes a full source file, which may
be segmented into multiple passages.
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duplicate removal using locality-sensitive hashing222

(LSH), (4) semantic chunking, and (5) embedding-223

based near-duplicate filtering. The full pipeline is224

described in Appendix A.225

3.4 User Query Generation226

A key challenge in constructing domain-specific227

IR evaluation datasets is generating user queries228

that reflect real information needs (Rahmani et al.,229

2024a). With the advent of LLMs, it is now feasible230

to synthesize high-quality, diverse, and contextu-231

ally grounded queries by prompting models with232

domain-specific passages (Alaofi et al., 2023; Ra-233

japakse and de Rijke, 2023; Rahmani et al., 2024a).234

In this work, we propose a two-stage few-shot235

prompting strategy to generate user queries based236

on disaster management passages. In the first stage,237

an LLM is prompted to brainstorm diverse infor-238

mation need statements grounded in the content239

of the given passage. In the second stage, given a240

randomly selected information need and the associ-241

ated passage, the LLM generates a user query and242

a directly relevant passage as shown below:243

LLMquery

(
LLMinfo(PIN , Pseed)︸ ︷︷ ︸

information need

, PQG, Pseed

)
−→ (q, psg) (1)

244

where LLMinfo and LLMquery are LLMs245

prompted to generate retrieval information needs246

statements and the query-passage pair respectively,247

PIN and PQG are prompts for information needs248

and query generation, Pseed is the domain passage,249

q is the synthesized user query, and psg is the cor-250

responding relevant passage.251

To ensure generated queries align with the core252

characteristics and objectives of each search intent,253

we design intent-specific prompts for both stages254

of query generation. The full prompt templates for255

each intent are provided in Appendix B.256

For each search task, we generate 200 unique257

user queries by prompting an LLM with randomly258

sampled domain-specific passages, resulting in259

9,600 queries. The final corpus combines disas-260

ter management-related passages from Section 3.3261

with generated passages to reflect various search262

intents. Some tasks, such as Twitter, NLI, and FC263

retrieval, require passage types with distinct styles264

and semantics. Including generated passages en-265

sures the corpus can support realistic evaluation266

across diverse retrieval scenarios.3267
3Relevance scores of query-generated passage pairs are

3.5 Assessment Candidate Pool Development 268

Given the large size of the corpus, annotating 269

all possible (query, passage) pairs is impossible 270

(Thakur et al., 2021). Following prior work, we 271

construct a candidate pool for each query using 272

existing retrieval models. Inspired by TREC’s stan- 273

dard practice, where top-ranked passages from mul- 274

tiple systems are aggregated to form the candidate 275

set, we adopt a similar strategy in DisastIR. 276

Specifically, for each query, we collect the top 277

10 retrieved passages from 30 retrieval models un- 278

der two retrieval settings: exact and ANN search 279

settings (detailed in Section 5). These models also 280

serve as baselines for performance evaluation, fol- 281

lowing practices in recent work (Rahmani et al., 282

2024b; Wang et al., 2024b). The candidate pool 283

for each query is formed by taking the union of 284

passages retrieved under both settings. 285

3.6 Relevance Labeling 286

Once query-passage pairs are prepared, we an- 287

notate them using an LLM. Recent studies have 288

shown that LLMs can reliably produce relevance 289

judgments that align closely with human annota- 290

tions (Rahmani et al., 2024a,b, 2025; Wang et al., 291

2024b). Furthermore, Wang et al. (2024b); Rah- 292

mani et al. (2024c) demonstrate that ensembling 293

relevance scores from multiple prompts or LLMs 294

yields more robust and calibrated annotations. 295

To this end, we design three diverse prompts 296

for each search intent and use a single LLM to 297

generate relevance scores. The prompts, inspired 298

by Thomas et al. (2024); Farzi and Dietz (2024); 299

Rahmani et al. (2025), are: (1) zero-shot direct scor- 300

ing—a single-pass judgment; (2) chain-of-thought 301

reasoning—a multi-step prompt mimicking human- 302

style reasoning; and (3) multi-dimensional attribute 303

scoring—relevance decomposed into interpretable 304

sub-criteria. For each search intent, relevance is de- 305

fined to align with its specific objectives, reflecting 306

the varying interpretations of “relevance” across 307

different task types (Dai et al., 2022). Full prompt 308

templates are provided in Appendix C. 309

Relevance scores are assigned on a 4-point scale 310

(0 to 3) for all intents, except STS, which follows 311

a 6-level scale as in Agirre et al. (2013); Cer et al. 312

(2017). The final score for each pair is computed 313

by averaging scores from three prompts. 314

also evaluated instead of directly giving them the highest
relevance score.
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QA QAdoc Twitter FC NLI STS
Bio 26651 (133.3) 25335 (126.7) 35182 (175.9) 23987 (119.9) 25896 (129.5) 27065 (135.3)
Chem 26885 (134.4) 26032 (130.2) 34186 (170.9) 24592 (123.0) 27856 (139.3) 26787 (133.9)
Env 26685 (133.4) 25930 (129.7) 33243 (166.2) 25805 (129.0) 25207 (126.0) 27048 (135.2)
Extra 26807 (134.0) 25598 (128.0) 33202 (166.0) 24363 (121.8) 26399 (132.0) 27313 (136.6)
Geo 27140 (135.7) 26573 (132.9) 35503 (177.5) 27864 (139.3) 28210 (141.1) 29816 (149.1)
MH 28422 (142.1) 27256 (136.3) 33924 (169.6) 26670 (133.4) 27052 (135.3) 28702 (143.5)
Soc 27116 (135.6) 23353 (116.8) 33834 (169.2) 27850 (139.3) 26997 (135.0) 27074 (135.4)
Tech 28044 (140.2) 27071 (135.4) 33388 (166.9) 26759 (133.8) 28394 (142.0) 26920 (134.6)

Table 1: Number of labeled query-passage pairs and pairs per query (in parentheses) of each search task in DisastIR.

Count Avg Median Min Max
Query 9,600 33.75 19 2 281
Passage 239,704 197.17 224 6 2,536

Table 2: Statistics of number of query and passage
and their token lengths. Tokenization is based on the
cl100k_base tokenizer (used in GPT-4 / GPT-3.5).

4 DisastIR Benchmark Analysis315

4.1 Query and Passage Characteristics316

Query and Passage Lengths. As shown in Ta-317

ble 2, the average query length is 33.75 tokens,318

with a median of 19, and a long tail extending to319

281 tokens. This variation reflects the diversity320

of search intents, from short entity-style queries321

to detailed information needs typical in real-world322

disaster management scenarios. Passages are much323

longer on average (197.17 tokens), with a median324

of 224, and some exceeding 2,500 tokens. This325

wide distribution captures the diversity of disas-326

ter management-related texts, including both brief327

updates and detailed descriptions like event sum-328

maries or emergency protocols.329

Labeled Query-Passage Pairs. Table 1 summa-330

rizes the distribution of labeled query-passage pairs.331

In total, we obtained 1,341,986 labeled pairs, with332

each query linked to an average of 140 passages.333

As shown in Table 1, Twitter-related search tasks334

tend to have a higher average number of query-335

passage pairs per query. The candidate pool for336

each query is built by merging the top 10 pas-337

sages retrieved by 30 different models. This larger338

pool in Twitter tasks suggests greater divergence in339

model outputs, indicating lower agreement among340

retrieval models when ranking passages in social341

media contexts within disaster management scenar-342

ios. Additional analyses of labeled query-passage343

pairs are provided in Appendix D.344

4.2 LLM-based vs. Human Labeling 345

Since relevance scores in DisastIR are judged by 346

LLM, it is vital to evaluate their consistency with 347

human annotations. Thus, we construct the LVHL 348

dataset (LLM-based Vs. Human Labeling) by sam- 349

pling disaster management-related query-passage 350

pairs with human-labeled relevance scores from 351

several open-source datasets. MS MARCO (Bajaj 352

et al., 2016) and TriviaQA (Joshi et al., 2017) are 353

for QA, ALLNLI (sentence-transformers, 2021) 354

and XNLI (Conneau et al., 2018) for NLI, Climate- 355

Fever (Diggelmann et al., 2021) for FC, and STSB 356

(Cer et al., 2017) for STS. Appendix E provides 357

details on the construction of LVHL. 358

The LLM-based relevance scores for each query- 359

passage pair in LVHL are computed as described 360

in Section 3.6. Since most human-annotated rele- 361

vance scores in LVHL are binary, we follow Wang 362

et al. (2024b) and binarize the LLM scores into two 363

levels: relevant (score > 0) and not relevant (score 364

= 0), to enable meaningful comparison. 365

To assess agreement between LLM-based and 366

human relevance labeling, we compute Cohen’s 367

kappa for each search intent. All datasets yield 368

kappa scores above 0.6 (Figure 6), with an average 369

of 0.77, indicating substantial agreement. These 370

suggest that LLM-generated relevance scores align 371

well with human judgments and can reliably sub- 372

stitute for manual annotation in DisastIR. 373

4.3 LLM vs. Human-generated User Query 374

To evaluate whether LLM-generated queries can 375

serve as a reliable alternative to human-authored 376

ones for retrieval benchmarking, we construct 377

LVHQ (LLM Vs. Human-generated Query), a 378

comparison set spanning all 48 retrieval tasks. For 379

each task, both an LLM-generated and a human- 380

written query are created based on the same domain 381

passage. All query-passage pairs are annotated us- 382

ing the same method as in DisastIR. Appendix F 383

provides full details on the construction of LVHQ. 384
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Model Param Size Exact ↑ Ex. ANN Drop
Name Size Bin QA QAdoc TW FC NLI STS Avg Avg (%)
inf-retriever-v1 7B XL 74.23 67.82 69.33 68.91 53.10 77.70 68.52 66.90 2.36
SFR-Embedding-Mistral 7B XL 71.76 67.58 70.42 70.62 50.86 73.61 67.47 66.75 1.08
inf-retriever-v1-1.5b 1.5B XL 70.64 64.42 66.11 66.53 53.86 76.19 66.29 65.54 1.13
NV-Embed-v2 7B XL 74.77 69.74 43.18 68.64 58.73 77.01 65.34 64.45 1.36
multilingual-e5-large 560M Large 67.29 64.25 63.75 60.26 51.02 75.06 63.61 62.08 2.41
multilingual-e5-large-instruct 560M Large 68.39 64.90 63.24 67.21 49.38 64.31 62.91 62.06 1.34
e5-small-v2 33M Small 65.87 63.00 60.89 62.04 47.09 74.83 62.29 60.91 2.22
e5-base-v2 109M Medium 65.77 63.07 58.37 62.28 45.54 74.64 61.61 60.23 2.25
e5-large-v2 335M Large 60.15 63.42 56.20 62.29 50.96 74.99 61.34 60.20 1.85
NV-Embed-v1 7B XL 68.36 63.02 56.84 60.04 48.31 67.86 60.74 59.24 2.47
granite-embedding-125m 125M Medium 64.90 61.04 47.14 62.78 48.04 71.94 59.31 58.67 1.06
llmrails-ember-v1 335M Large 64.82 63.34 45.93 61.06 44.56 73.99 58.95 58.35 1.02
arctic-embed-m-v2.0 305M Medium 61.44 62.50 47.80 58.04 42.34 65.28 56.23 54.75 2.64
mxbai-embed-large-v1 335M Large 64.57 62.96 40.58 58.47 40.22 68.81 55.93 55.42 0.92
gte-base-en-v1.5 137M Medium 60.66 56.06 47.06 52.49 39.88 71.27 54.57 53.71 1.57
gte-large-en-v1.5 434M Large 67.70 58.55 40.31 53.09 34.81 67.30 53.63 53.09 1.01
snowflake-arctic-embed-l-v2.0 568M Large 55.34 59.43 38.75 60.42 41.19 63.38 53.09 51.90 2.23
bge-base-en-v1.5 109M Medium 49.67 53.97 47.03 58.47 35.58 64.43 51.52 50.71 1.57
bge-large-en-v1.5 335M Large 57.02 54.72 32.71 55.22 35.19 65.14 50.00 48.99 2.03
gte-Qwen2-7B-instruct 7B XL 62.47 39.12 41.40 29.98 47.28 70.98 48.54 47.07 3.03
bge-small-en-v1.5 33M Small 47.38 45.51 27.82 52.13 27.20 56.86 42.82 42.07 1.75
snowflake-arctic-embed-m-v1.5 109M Medium 25.73 30.56 18.31 48.24 43.04 64.95 38.47 36.25 5.79
snowflake-arctic-embed-s 33M Small 36.05 27.46 18.17 42.52 37.27 66.59 38.01 33.59 11.63
snowflake-arctic-embed-l 335M Large 40.82 30.41 15.32 32.70 34.62 56.82 35.11 31.35 10.72
Linq-Embed-Mistral 7B XL 35.61 31.41 26.55 39.46 27.30 45.69 34.34 33.52 2.38
thenlper-gte-base 109M Medium 9.22 5.35 38.54 60.80 42.85 46.64 33.90 31.78 6.24
snowflake-arctic-embed-m 109M Medium 33.35 14.25 8.64 35.30 38.93 56.88 31.23 28.83 7.67
all-mpnet-base-v2 109M Medium 15.06 9.77 16.17 46.30 27.38 37.23 25.32 25.05 1.08
e5-mistral-7b-instruct 7B XL 21.65 19.51 19.48 31.04 20.39 39.57 25.27 24.05 4.82
gte-Qwen2-1.5B-instruct 1.5B XL 13.98 22.21 19.61 23.90 18.00 31.20 21.48 21.27 0.98

Table 3: Performances of 30 evaluated IR models in DisastIR. Models are ranked by their overall performance
under exact search (highest to lowest) in DisastIR. “Size Bin” indicates its model parameter size bin category
(small, medium, large, and extra large as defined in Appendix G). “TW” represents Twitter. Overall performance
across all queries under exact and ANN search are in “Ex. Avg” and “ANN Avg” columns. “Drop” shows the
percentage decrease from exact to ANN average scores. Bold indicates the highest value, and underline indicates
the second-highest.

We evaluate all selected baseline models using385

LVHQ under exact search for both human- and386

LLM-generated queries (see Section 5 for evalua-387

tion setup up). Model performance, measured by388

NDCG@10, shows highly consistent results across389

the two query types, with a Kendall’s τ of 0.9264,390

indicating strong agreement in model evaluations.391

5 Experimental Setup392

5.1 Models393

DisastIR is adopted to comprehensively evaluate394

open-source IR models and support the selection395

of suitable IR models for real-world disaster man-396

agement applications. Models are chosen based397

on three criteria: (1) strong performance on the398

MTEB retrieval benchmark; (2) inclusion in widely399

adopted embedding families such as BGE (Chen400

et al., 2024; Xiao et al., 2024), E5 (Wang et al., 401

2022, 2023), Snowflake Arctic (Merrick, 2024), 402

and GTE (Li et al., 2023; Zhang et al., 2024a), which 403

are commonly used as baselines and in downstream 404

IR tasks (Sun et al., 2024; Xu et al., 2024; Lee et al., 405

2024b,a; Cao, 2025; Park et al., 2025); and (3) cov- 406

erage of different types of search tasks adapted 407

from Wang et al. (2024b). 408

We select 30 models with parameter sizes rang- 409

ing from 33 million to 7 billion. Detailed descrip- 410

tions of these models and their implementations 411

are provided in Appendix G. 412

5.2 Evaluation 413

We evaluate model performance under two retrieval 414

settings – exact and ANN – using Normalized Dis- 415

counted Cumulative Gain at rank 10 (NDCG@10) 416
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Figure 3: Distribution of evaluated models’ performances across all 48 tasks. The full name of each model in the X
axis is listed in Model Name column in Table 3.

as the primary metric, consistent with prior works.417

(1) Exact Brute-force Retrieval. Following418

prior work such as BEIR (Thakur et al., 2021), In-419

structIR (Oh et al., 2023), FollowIR (Weller et al.,420

2024), and MAIR (Zhang et al., 2024b), we com-421

pute similarity scores between each user query and422

all passages in the corpus, retrieving the top k most423

similar ones. This setting reflects model perfor-424

mance under ideal retrieval conditions.425

(2) Approximate Nearest Neighbor (ANN) Re-426

trieval. For large-scale corpora, brute-force re-427

trieval is computationally infeasible. A common428

solution is a multi-stage architecture, where an429

ANN search retrieves a candidate set of passages,430

which are then re-ranked for final output (Tu et al.,431

2020; Macdonald and Tonellotto, 2021). To reflect432

real-world large-scale disaster information retrieval433

scenarios, we also evaluate model performance434

during the candidate generation stage using ANN435

search. We adopt Usearch (Vardanian, 2023), a436

high-performance, memory-efficient library based437

on the HNSW (hierarchical navigable small world)438

algorithm (Malkov and Yashunin, 2018), to retrieve439

top k passages per query using precomputed em-440

beddings. For fair comparison, k is set to match441

the value used in exact search.442

6 Evaluation Results443

6.1 Overall Performance444

Table 3 summarizes the overall performance445

of all 30 evaluated models across all queries446

in DisastIR, with detailed results for each447

search task provided in Appendix H. The448

inf-retriever-v1 model ranks highest in both449

exact and ANN search settings, followed closely 450

by SFR-Embedding-Mistral (1.52% and 0.22% 451

lower, respectively). Among non-XL models, 452

multilingual-e5-large performs best, reaching 453

92.83% and 92.79% of the top model’s perfor- 454

mance. Notably, the lightweight e5-small-v2 455

model (33M parameters) achieves 90.91% and 456

91.05% of the top model’s performance, despite 457

being 212 times smaller in size. 458

The Snowflake-arctic-embed-s model shows 459

the largest performance drop (11.63%) under ANN 460

search compared to exact search (Table 3). Most 461

models exhibit drops within 5%; only five ex- 462

ceeded this margin, four of which belong to 463

snowflake family, indicating strong robustness 464

when switching from exact to ANN search in Disa- 465

stIR. Among the top-performing models analyzed 466

above, SFR-Embedding-Mistral has the smallest 467

drop (1.08%), while multilingual-e5-large has 468

the largest (2.41%). All subsequent analyses are 469

based on exact search; analyses under ANN search 470

can be conducted similarly. 471

6.2 Performance across all 48 Tasks 472

Figure 3 presents the performance distribution of 473

all evaluated models across all 48 search tasks. 474

While inf-retriever-v1 achieves the highest av- 475

erage NDCG@10, its median performance is lower 476

than that of SFR-Embedding-Mistral, and it ex- 477

hibits greater variability across tasks, as reflected 478

by a larger interquartile range (IQR). This suggests 479

that inf-retriever-v1 is less stable across di- 480

verse search tasks in DisastIR. 481

As shown in Figure 5, no single model 482

consistently outperforms others across all 48 483

tasks. Instead, top performance is distributed 484
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among three models: inf-retriever-v1,485

SFR-Embedding-Mistral, and NV-Embed-v2.486

inf-retriever-v1 achieves the best results in487

only nine tasks, primarily in STS. This high-488

lights the complexity and diversity of disaster489

management-related retrieval tasks and rein-490

forces the need for domain-specific IR models491

in real-world disaster management scenarios.492

Appendix I provides additional analyses of model493

performance across 48 tasks.494

6.3 Comparison with General Domain495

Figure 4 compares model rankings in DisastIR496

and MTEB. Ranking value of each model is based497

on overall performance in DisastIR and official498

retrieval scores from the MTEB English leader-499

board. The Spearman correlation between the500

two rankings is 0.225 (p = 0.251), indicating501

no significant correlation. This suggests that502

strong performance on general-domain bench-503

marks does not guarantee effectiveness in dis-504

aster management-related retrieval. For ex-505

ample, models like Linq-Embed-Mistral and 506

snowflake-arctic-embed-l perform well in 507

MTEB but poorly in DisastIR, while models from 508

the E5 family show the opposite trend. 509

Although inf-retriever-v1 ranks highest in 510

both DisastIR and MTEB, detailed analysis in Sec- 511

tion 6.2 show that it achieves top performance 512

in fewer than 20% of DisastIR tasks, mostly 513

those related to STS. Furthermore, when com- 514

putational resources are limited and large mod- 515

els are impractical to serve, relying solely on 516

MTEB rankings for model selection, such as choos- 517

ing snowflake-arctic-embed-l, may fail to re- 518

trieve critical or relevant content. These discrep- 519

ancies underscore the necessity of a domain- 520

specific benchmark like DisastIR to guide re- 521

trieval model selection across different disaster 522

management-related search tasks. 523

7 Conclusion 524

In this work, we introduce and publicly release Dis- 525

astIR, the first comprehensive retrieval benchmark 526

for evaluating model performance in disaster man- 527

agement contexts. DisastIR consists of 9,600 user 528

queries and more than 1.3 million labeled query- 529

passage pairs, spanning 48 retrieval tasks defined 530

by six search intents and eight general disaster 531

event types, covering 301 specific event types. 532

Using DisastIR, we evaluate 30 SOTA open- 533

source retrieval models under both exact and ANN 534

search settings. Our findings provide practical guid- 535

ance for selecting appropriate IR models based on 536

task type and computational constraints, supporting 537

timely and effective access to critical information 538

in disaster management scenarios. 539
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Limitations540

While DisastIR represents a significant step toward541

domain-specific evaluation in disaster information542

retrieval, several aspects merit further enhancement.543

DisastIR currently focuses on English-language re-544

sources. Expanding DisastIR to multilingual set-545

tings would enable broader applicability. Further-546

more, tables and figures in domain-specific PDF547

files may contain useful domain knowledge. Fur-548

ther study could consider extracting this critical549

information for evaluation set development.550

Ethics Statement551

DisastIR is designed to support disaster manage-552

ment by improving the evaluation and selection of553

retrieval models. All data used in the benchmark554

are sourced from publicly available materials, and555

no personally identifiable information is included.556

All contents generated by LLMs are evaluated by557

a human expert to ensure no offensive content is558

included in the DisastIR. We recognize potential559

risks associated with the misuse of retrieval models560

in disaster contexts, such as the spread of disin-561

formation during crises. To mitigate these risks,562

DisastIR is intended solely for evaluation purposes563

and is released for research use only.564
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Figure 6: Cohen’s kappa scores between LLM-based
and human-annotated relevance labels across all LVHL
datasets, as described in Section 4.2

All disaster management-related data (in PDF 892

format) is obtained from publicly available sources 893

with no personally identifiable information. Hence, 894

explicit consent was not required. PDF files are col- 895

lected using googlesearch-python (v1.3.0) and 896

processed with PyMuPDF (v1.24.10) for content ex- 897

traction. The extracted PDFs are then processed 898

into text chunks through the following steps: 899

(1) Exact-URL Deduplication. The URL of 900

each downloaded PDF is recorded, and duplicate 901

documents are removed by identifying identical 902

download links. 903

(2) Text Extraction and Preprocessing. Each 904

PDF file is converted into plain text, where tables 905

and figures are removed following the work of 906

(Wen et al., 2023). 907

(3) Locality-Sensitive Hashing (LSH) Deduplica- 908

tion. After cleaning, we apply LSH-based near- 909

duplicate detection to identify and remove docu- 910

ments with highly overlapping content. 911

(4) Semantic Chunking. Cleaned documents are 912

segmented into semantically coherent text chunks. 913

Each chunk is constrained to fewer than 256 to- 914

kens to optimize retrievability while maintaining 915

semantic integrity. 916

(5) Embedding-based Near Deduplication. To 917

further eliminate redundancy at the passage level, 918

dense embeddings are computed for all chunks. An 919

ANN index is built to retrieve the top-k nearest 920

chunks, and pairs with cosine similarity above 0.9 921

are removed. 922
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B Prompt Templates for Query923

Generation924

Prompts for query generation based on disaster925

management-related passage under different search926

intents for QA, QAdoc, Twitter, FC, NLI, STS are927

in Tables 4, 5, 6, 7, 8, and 9.928

C Prompt Templates for Relevance929

Labeling930

This section presents the prompt templates used931

for LLM-based relevance judgments across six932

search intents, employing three prompting strate-933

gies: Zero-shot Direct Scoring, Chain-of-Thought934

Decomposed Reasoning, and Multi-Dimensional935

Attribute Scoring. For QA, QAdoc, and Twit-936

ter tasks, we adapt templates from Thomas et al.937

(2024); Farzi and Dietz (2024), as shown in Ta-938

ble 10. Based on these templates, we design rele-939

vance prompts for FC, NLI, and STS tasks, shown940

in Tables 11, 12, and 13, respectively. For STS, we941

adopt only Zero-shot Direct Scoring, as our prelim-942

inary experiments show it yields higher agreement943

with human labels (Cohen’s kappa). The estimated944

cost of generating 9,600 user queries and labeling945

over 1.3 million query-passage using GPT-4o-mini946

API is about $1,400.947

D Additional Analyses of Labeled948

query-passage pairs949

As shown in Table 14, in certain retrieval tasks,950

such as NLI_Bio, NLI_Geo, the number of query-951

passage pairs assigned the highest relevance score952

is smaller than the number of user queries. This953

indicates that some queries do not have any pas-954

sage in their candidate pool that is judged as fully955

relevant. For each query, we prompt an LLM to956

generate a directly relevant passage based on the957

associated domain passage and include it in the958

labeling pool (Section 3.4). However, the labeling959

results in Table 15 show that not all generated pas-960

sages are considered fully relevant. This suggests961

that, even when guided by task-specific prompts,962

LLMs may produce passages that only partially963

address the query or fail to capture its key intent.964

Many recent works have tried to employ LLM to965

generate synthetic training data to improve the qual-966

ity of retrievers (Wang et al., 2023; Rajapakse and967

de Rijke, 2023; Xu et al., 2024; Lee et al., 2024b).968

This finding underscores the importance of con-969

sistency filtering (Alberti et al., 2019) to improve970

retrieval models’ performance, as LLM will gener- 971

ate irrelevant pairs. This aligns with prior research 972

highlighting the need for consistency filtering when 973

leveraging LLM-generated data to train retrievers 974

(Dai et al., 2022; Xu et al., 2024; Lee et al., 2024b). 975

E LVHL Dataset Construction 976

We use the names of 301 specific disaster event 977

types as queries to search for disaster management- 978

related user queries within each selected open- 979

source dataset listed in Table 16. For each dataset, 980

we first filter queries by keyword matching and 981

then prompt an LLM to further remove queries that 982

are irrelevant to disaster management. From the 983

remaining queries, we randomly select up to 400 984

queries per dataset. The corresponding passage 985

and relevance score in each source dataset are also 986

included. This process results in the final query- 987

passage pairs along with the human-annotated rel- 988

evance scores used in the LVHL dataset for eval- 989

uating the agreement of LLM-based and human- 990

annotated relevance scores. 4 991

F LVHQ Dataset Construction 992

We sample 48 domain passages developed in Sec- 993

tion 3.3, ensuring one passage per retrieval task 994

and keeping all sampled passages different from 995

those used in developing DisastIR. For each pas- 996

sage, a domain expert in the disaster management 997

field is asked to read the passage and write a realis- 998

tic user query that reflects a practical information 999

need based on the content, resulting in 48 human- 1000

authored queries. The Human expert is given the 1001

same instructions for the query written (shown in 1002

Tables 4, 5, 6, 7, 8, 9) as those given to LLM to 1003

ensure fair comparison. In parallel, for the same 1004

set of passages, we also generate 48 queries using 1005

LLM in the same way as described in Section 3.4. 1006

Each query, both human-authored and LLM- 1007

generated, is used to retrieve relevant passages 1008

from DisastIR corpus. As we have validated the 1009

agreement of LLM-based and Human-annotated 1010

relevance score in Section 4.2, all query-passage 1011

pairs are labeled in the same way as described in 1012

Section 3.5 and Section 3.6. 1013

4LVHL is used solely to evaluate agreement between LLM
and human annotations. It is not suitable for benchmarking
retrieval models in the disaster management area, as most
queries are drawn from training sets of the source datasets.
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G Information of Evaluated Models and1014

Model Implementation1015

Detailed information on all selected models is sum-1016

marized in Table 17. The HuggingFace links and1017

licenses of these models are in Table 18. The model1018

parameter size is categorized as four levels: small1019

(<109M), medium (109M - 305M), large (305M-1020

1B), and extra large (XL) (> 1B).1021

For each model, we follow official implementa-1022

tion guidelines to generate normalized query and1023

passage embeddings. All evaluations are conducted1024

in a zero-shot setting, with input sequences trun-1025

cated to 512 tokens and a task-specific instruction1026

prepended to each query. All models are run on a1027

single NVIDIA A6000 GPU using HuggingFace1028

Transformers, following the configurations speci-1029

fied in the official implementations.1030

H Performance of Evaluated Models1031

Performance of all evaluated models in all 481032

search tasks in DisastIR is shown in Tables 19,1033

20, 21, 22, and 23.1034

I Additional Analyses of Model 1035

Performance across 48 Tasks 1036

NV-Embed-v2 achieves the best performance on all 1037

QAdoc and NLI-related tasks (See Table 3 and Fig- 1038

ure 5 in the main content). However, as shown in 1039

Figure 7, its poor results on Twitter-related tasks 1040

significantly lower its overall performance in Dis- 1041

astIR. This reflects its limitation in handling the 1042

informal, noisy, and contextually ambiguous na- 1043

ture of social media content. Given the importance 1044

of Twitter as a real-time, crowd-sourced informa- 1045

tion source during disasters (Alam et al., 2021; Yin 1046

et al., 2024; Lei et al., 2025), this weakness raises 1047

concerns about its reliability in real-world disaster 1048

response scenarios. 1049

All three models perform poorly on NLI-related 1050

tasks, with the best achieving only an average score 1051

of 58.73 (Figure 7). Further analysis of outliers in 1052

the box plot (See Figure 3 in the main content) 1053

reveals that tasks causing significant performance 1054

drops consistently involve NLI search intents (Fig- 1055

ure 8). This reveals a key limitation of current open- 1056

source SOTA retrievers, that they struggle with the 1057

complex reasoning required for NLI tasks in disas- 1058

ter contexts. Such limitations may lead to incorrect 1059

results or failure to retrieve critical information, 1060

which can negatively impact decision-making in 1061

disaster situations. 1062
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Information Need Generation Stage
"Brainstorm a list of useful text retrieval tasks where the goal is: Given a user question, retrieve passages that directly answer the
question. Here are a few examples: Given a question about evacuation procedures during a flood, retrieve a passage that explains
the steps involved. Given a question about the cause of infrastructure failure in a disaster, retrieve a passage identifying the cause.
Given a question about relief funding timelines, retrieve a passage providing the relevant information. Guidelines: Each task
description should be one sentence that clearly describes the user question and the kind of answer passages to be retrieved. Focus
on real-world domains like disaster planning, relief logistics, early warning systems, community impact, government response,
etc. Your output should be a JSON list of 3 strings, each describing a distinct and useful text retrieval task. Only output the list.
Be creative. No explanations or additional content."
User Query Generation Stage
"You have been assigned a retrieval task: {task}. Your mission is to write one text retrieval example for this task in JSON
format. The JSON object must contain the following keys:

- user_query: a string, a random user search query specified by the retrieval task.
- positive_document: a string, a relevant document for the user query.

Please adhere to the following guidelines:
- The user_query should be {query_length}, {clarity}.
- All documents must be created independent of the query. Avoid copying the query verbatim. It is acceptable if some parts of

the positive_document are not topically related to the query.
- All documents should be {num_words} long.
- Do not provide any explanation in any document on why it is relevant or not relevant to the query. The query and documents

must be realistic and inspired by real-world content (e.g., disaster management). All generated content should be in English no
matter the provided content language is.

- Both the query and documents require {difficulty} level education to understand.
Your output must always be a JSON object only, do not explain yourself or output anything else. Be creative!"

Table 4: Prompt templates for user query generation in QA-related tasks. The clarity placeholder takes values:
clear, understandable with some effort, and ambiguous. The difficulty placeholder includes: elementary school,
high school, college, and PhD. For query_length, possible values are: less than 10 words, 5 to 20 words, less than
20 words, at least 50 words, and at least 150 words. The num_words placeholder takes values such as: at least 100
words, at least 200 words, at most 50 words, and 50 to 150 words.

Information Need Generation Stage
"Brainstorm a list of document retrieval tasks, where the goal is: Given a user query, retrieve documents that provide useful and
relevant answers. Here are a few examples to get you started: Given a query about emergency evacuation procedures, retrieve a
document that outlines the proper steps. Given a query asking how heatwaves affect public health, retrieve a document discussing
the medical or environmental impacts. Given a query about funding for post-disaster recovery, retrieve a document describing
the financial aid process. Given a query on how early warning systems reduce disaster risk, retrieve a document explaining
their function and benefits. Guidelines: Each task should be a single sentence describing what the query is and what kind of
document should be retrieved in response. Tasks should span a broad range of information needs, from facts to procedures to
causal relationships. Focus on disaster management-related themes such as risk mitigation, emergency logistics, climate impact,
institutional roles, and infrastructure damage. Your output should be a JSON list of 20 strings, each describing a distinct and
useful text retrieval task. Only output the list. No explanations."
User Query Generation Stage
"You have been assigned a document retrieval task: {task}. Your mission is to write one example for this task in JSON format.
The JSON object must include:

- user_query: a single, well-formed, natural language query that clearly asks for information based on the assigned task.
Guidelines: The query can be answered by the content provided in the following given paragraph. The query should reflect a
realistic information need in the disaster management domain. Avoid generic or overly broad questions—make the query specific
and grounded in actual scenarios (e.g., logistics, policies, actions). Use language inspired by real-world usage, such as what a
policymaker, journalist, or emergency planner might ask. Output only a single JSON object with a user_query field. No extra
formatting, documents, or explanations. Be clear, informative, and realistic!"

Table 5: Prompt templates for the user query generation for QAdoc-related search task. The clarity placeholder
takes values: clear, understandable with some effort, and ambiguous. The difficulty placeholder includes:
elementary school, high school, college, and PhD. For query_length, possible values are: less than 10 words, 5 to
20 words, less than 20 words, at least 50 words, and at least 150 words. The num_words placeholder takes values
such as: at least 100 words, at least 200 words, at most 50 words, and 50 to 150 words.
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Information Need Generation Stage
"Brainstorm a list of entity retrieval tasks where the goal is to retrieve tweets that mention or provide relevant information
about one or more entities (e.g., organizations, people, locations, events) found in the query. Here are a few examples to inspire
your thinking: Given a query referencing “UNICEF,” retrieve tweets about their emergency relief efforts. Given a query about
“Cyclone Mocha,” retrieve tweets reporting its impact or aftermath. Given a query that mentions “World Health Organization,”
retrieve tweets that discuss their role in disaster health responses. Given a query with “Manila,” retrieve tweets about disaster
conditions or relief actions in that location. Guidelines: Each task should be a single sentence describing a situation where an
entity is referenced and tweets related to that entity should be retrieved. Focus on disaster management-related entities such
as emergency response agencies, international organizations, locations, events, or key figures. Encourage diversity in topics:
ground response, aid distribution, weather events, infrastructure failure, etc. Your output should be a JSON list of about 3 strings,
each describing a different NER Twitter retrieval task. No explanations or extra formatting. Be concise, diverse, and realistic."
User Query Generation Stage
"You have been assigned an entity-tweet retrieval task: {task}. Your mission is to write one example for this task in JSON
format. The JSON object must include:

- query: a sentence that mentions one or more disaster management-related entities.
- positive_tweet: a tweet that provides relevant and informative content about the mentioned entity or entities.

Guidelines: The query should clearly mention a recognizable entity tied to the disaster domain. The positive_tweet should be
informal, observational, or emotional—realistic Twitter-style language providing relevant details about the entity. All content
should be inspired by disaster management-related themes such as rescue missions, weather events, humanitarian aid, response
coordination, etc. Your output must be a single JSON object only. No explanation, no formatting beyond JSON. Keep it realistic
and natural in tone."

Table 6: Prompt templates for the user query generation for Twitter-related search task. The clarity placeholder
takes values: clear, understandable with some effort, and ambiguous. The difficulty placeholder includes:
elementary school, high school, college, and PhD. For query_length, possible values are: less than 10 words, 5 to
20 words, less than 20 words, at least 50 words, and at least 150 words. The num_words placeholder takes values
such as: at least 100 words, at least 200 words, at most 50 words, and 50 to 150 words.

Information Need Generation Stage
"Brainstorm a list of fact-checking retrieval tasks where the goal is: Given a claim, retrieve documents that either support or
refute the claim, while distinguishing them from topically similar documents that do not address the claim’s veracity. Here
are a few examples to guide your ideas: Given a claim about the effectiveness of early warning systems during floods, retrieve
documents that either support or refute the claim. Given a claim about the number of people displaced by a recent earthquake,
retrieve evidence that verifies or challenges it. Given a claim about the government’s relief distribution timeline, retrieve
text that affirms or contradicts the stated timeline. Given a claim about the relationship between climate change and disaster
frequency, retrieve relevant supporting or refuting content. Guidelines: Each task should be one sentence and describe what
the claim is about and what kind of evidence is needed (support or refute). Base the topics on real-world domains such as
disaster management, humanitarian aid, policy, climate, health impacts, etc. The tasks should vary in specificity and format (e.g.,
statistical claim, causal claim, factual assertion). Your output should be a JSON list of about 3 strings, each string representing a
distinct fact-checking retrieval task. Output only the list. No explanations. Be creative and diverse in topic!"
User Query Generation Stage
"You have been assigned a fact-checking retrieval task: {task}. Your mission is to write one fact-checking retrieval instance in
JSON format. The JSON object must contain:

- claim: a short, factual or semi-factual statement (assertion) related to the task.
- positive_document: a paragraph that supports or refutes the claim.

Guidelines: The claim should be {query_length}, {clarity}. The positive document must clearly support or refute the
claim—either is acceptable. The claim should be clear, concise, and specific—not overly vague or too broad. Use examples from
realistic disaster management-related content: climate events, emergency response, humanitarian relief, damage estimates, etc.
All positive documents should be {num_words} long. All generated content should be in English no matter the provided content
language is. Both the claim and documents must be understandable with {difficulty} level education. Output only a single
JSON object. No additional text. Be precise and creative!"

Table 7: Prompt templates for the user query generation for fact-checking related search task. The clarity
placeholder takes the values: clear, understandable with some effort, and ambiguous. The difficulty placeholder
includes: elementary school, high school, college, and PhD. The query_length placeholder accepts values such
as: less than 10 words, 5 to 20 words, at least 10 words, at least 20 words, and at least 50 words. The num_words
placeholder includes: at most 15 words, at most 50 words, 50 to 150 words, at most 100 words, and at least 100
words.
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Information Need Generation Stage
"Brainstorm a list of Natural Language Inference (NLI) retrieval tasks. In these tasks, the objective is: Given a premise sentence
from a paragraph (e.g., about disaster management), retrieve a hypothesis sentence that is logically entailed by the premise.
Here are a few examples to inspire your creativity: Given a sentence describing a government emergency response, retrieve a
hypothesis that reflects an outcome or implication of that action. Given a statement about climate-induced hazards, retrieve a
hypothesis summarizing the likely impact. Given a factual description of infrastructure damage, retrieve a hypothesis about the
services affected. Given a claim about disaster preparedness strategies, retrieve a hypothesis that is logically supported by it.
Guidelines: Each task description should be one sentence and should clearly specify the type of premise and the nature of the
entailed hypothesis. Tasks should be generalizable across topics but inspired by domains such as climate, crisis response, risk,
logistics, etc. Be diverse in topic and formality: from news-like to academic to conversational. Your output should be a JSON list
of about 3 strings, each describing a different NLI retrieval task. Output only the list of task descriptions, no explanations."
User Query Generation Stage
"You have been assigned an NLI retrieval task: {task}. Your mission is to write one example for this task in JSON format. The
JSON object must include:

- premise: a sentence drawn or inspired from a paragraph (e.g., about disaster management).
- entailed_hypothesis: a sentence that must logically follow from the premise.

Guidelines: The premise should be {query_length}, {clarity}. Use realistic examples from domains like climate risk,
emergency response, infrastructure, health, or logistics, etc. Ensure the entailed hypothesis is non-trivial and clearly follows from
the premise. Avoid word-for-word overlap between the sentences unless necessary for clarity. entailed_hypothesis should be
{num_words} long. All generated content should be in English no matter the provided content language is. All contents require
{difficulty} level education to understand and should be diverse in terms of topic and length. Output a single JSON object
only. Do not explain yourself or add anything else. Be creative and accurate!"

Table 8: Prompt templates for the user query generation for NLI-related search task. The clarity placeholder takes
values: clear, understandable with some effort, and ambiguous. The difficulty placeholder includes: elementary
school, high school, college, and PhD. The query_length placeholder accepts values such as: less than 10 words,
5 to 20 words, at least 20 words, at least 50 words, and at least 150 words. The num_words placeholder includes:
less than 10 words, 5 to 20 words, at least 20 words, at least 50 words, and at most 50 words.

Information Need Generation Stage
"Brainstorm a list of similar sentence retrieval tasks where the goal is: Given a sentence, retrieve other sentences that express
the same or very similar meaning (paraphrases or semantically equivalent expressions). Here are a few examples to inspire
your ideas: Given a sentence describing the impact of a flood, retrieve other sentences that paraphrase or closely restate the
same impact. Given a sentence about the steps taken during emergency evacuation, retrieve sentences that express the same
process using different wording. Given a sentence about climate-related disasters increasing in frequency, retrieve other sentences
conveying the same trend. Given a factual statement about relief distribution, retrieve sentences that express the same fact using
alternate phrasing. Guidelines: Each task should be written in one sentence and describe the kind of sentence (source) and what
type of similar sentences should be retrieved. Focus on disaster management-related themes such as risk, policy, action, climate,
or aid—but vary topics for diversity. Your output should be a JSON list of about 3 strings, each one describing a distinct similar
sentence retrieval task. Output the list only. No explanations. Be creative and precise."
User Query Generation Stage
"You have been assigned a similar sentence retrieval task: {task}. Your mission is to write one example for this task in JSON
format. The JSON object must contain:

- query: a single sentence that expresses a specific idea.
- positive: a sentence that expresses the same meaning as the query (semantic equivalence or high similarity).

Guidelines: The query should be {query_length}, {clarity}. The query and positive should be semantically equivalent,
possibly using different wording or structure. Avoid copy-paste or trivial rewordings—be realistic and diverse. Use examples
inspired by real-world disaster management-related content: emergency protocols, environmental impact, infrastructure, humani-
tarian response, etc. All positive documents should be {num_words} long. All generated content should be in English no matter
the provided content language is. Both the query and documents must be understandable with {difficulty} level education.
Output only a single JSON object. No explanation. Make it high-quality and realistic!"

Table 9: Prompt templates for the user query generation for STS-related search task. The clarity placeholder takes
values: clear, understandable with some effort, and ambiguous. The difficulty placeholder includes: elementary
school, high school, college, and PhD. The query_length placeholder accepts values such as: less than 10 words,
5 to 20 words, at least 50 words, and at most 50 words. The num_words placeholder includes: less than 10 words, 5
to 20 words, at least 50 words, and at most 50 words.
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[1] Zero-shot Direct Scoring
You are a search quality rater evaluating passage relevance based on detailed instructions and outputting JSON.

Given a query and a passage, provide a score (0–3): 0 = Irrelevant, 1 = Related, 2 = Highly relevant, 3 = Perfectly relevant.

Important: 1 if somewhat related but not completely, 2 if important info + extra, 3 if only refers to topic.

Query: {query}, Passage: {passage}. Consider intent, content match (M), trustworthiness (T), then decide final score (O).
Output MUST be JSON: {"final_score": <0-3>}

[2] Chain-of-Thought Decomposed Reasoning
PHASE 1 – Answer Presence Prediction:
Instruction: Given a passage and a query, predict whether the passage includes an answer to the query by producing either “Yes”
or “No”. Query: {query}, Passage: {passage}, Answer:
Output your prediction as JSON: {"has_answer": "Yes"} or {"has_answer": "No"}

PHASE 2 – Fine-grained Criterion Scoring:
System prompt: Please assess how well the provided passage meets specific criteria in relation to the query. Use the following
scoring scale (0–3) for evaluation: 0: Not relevant at all / No information provided. 1: Marginally relevant / Partially addresses
the criterion. 2: Fairly relevant / Adequately addresses the criterion. 3: Highly relevant / Fully satisfies the criterion.
Your output MUST be JSON: {"criterion_score": <0-3>}

User prompt: Please rate how well the given passage meets the {criterion_name} criterion in relation to the query. The output
should be a single score (0–3) indicating {criterion_definition}. Query: {Query}, Passage: {Passage}, Output JSON:
{"criterion_score": <integer_score_0_to_3>}

Note: placeholders for {criterion_name} and {criterion_definition} are:
{Exactness: "how precisely the passage answers the query", Coverage: "proportion of content discussing
the query"}.
PHASE 3 – Final Relevance Scoring:
System prompt when Phase 1 = "Yes": You are a search quality rater. Provide a final relevance score (2 or 3):
2 = Highly relevant, 3 = Perfectly relevant. Your output MUST be JSON: {"relevance_score": <2_or_3>}

System prompt when Phase 1 = "No": You are a search quality rater. Provide a final relevance score (0 or 1).
0 = Irrelevant, 1 = Related. Your output MUST be JSON: {"relevance_score": <0_or_1>}

User prompt when Phase 1 = "Yes": The passage is relevant. Rate how relevant (2 or 3). Query: {Query}, Passage: {Passage},
Output JSON: {"relevance_score": <2_or_3>}

User prompt when Phase 1 = "No": The passage is irrelevant. Rate how irrelevant (0 or 1).Query: {Query}, Passage:
{Passage}, Output JSON: {"relevance_score": <0_or_1>}

[3] Multi-Dimensional Attribute Scoring
PHASE 1 – Sub-criterion Scoring:
System prompt: Please assess how well the provided passage meets specific criteria in relation to the query. Use the following
scoring scale (0–3): 0 = Not relevant at all / No information provided. 1 = Marginally relevant / Partially addresses the criterion.
2 = Fairly relevant / Adequately addresses the criterion. 3 = Highly relevant / Fully satisfies the criterion.
Your output MUST be JSON: {"criterion_score": <0-3>}

User prompt: Please rate how well the given passage meets the {criterion_name} criterion in relation to the query. The output
should be a single score (0–3) indicating {criterion_definition}.
Query: {query}, Passage: {passage}, Output JSON: {"criterion_score": <integer_score_0_to_3>}

Note: placeholders for {criterion_name} and {criterion_definition} are:
{Exactness: "how precisely the passage answers the query", Coverage: "proportion of content discussing
the query", Topicality: "subject alignment between passage and query", Contextual Fit: "presence of
relevant background information"}.
PHASE 2 – Final Relevance Aggregation:
System prompt: You are a search quality rater evaluating overall relevance. Given a query, passage, and sub-scores, provide
a final score (0–3): 3 = Perfectly relevant, 2 = Highly relevant, 1 = Related, 0 = Irrelevant. Your output MUST be JSON:
{"final_relevance_score": <0-3>}

User prompt: Please rate how relevant the passage is based on the given sub-scores.Query: {query}, Passage: {passage},
Exactness: LLM score, Coverage: LLM score, Topicality: LLM score, Contextual Fit: LLM score.
Output your final rating as JSON: {"final_relevance_score": <integer_score_0_to_3>}

Table 10: LLM relevance judgment prompt templates for QA, QAdoc, and Twitter-related search tasks.
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[1] Zero-shot Direct Scoring
System prompt: You are a search quality rater evaluating evidence for fact-checking and outputting JSON.

User prompt: Given a claim and a passage, score relevance (0–3): 0 = Irrelevant, 1 = Related (no help), 2 = Relevant
(unclear/mixed), 3 = Direct support/refutation.
Important: 1 if related but no help, 2 if important info + noise, 3 if clearly supports/refutes.

Claim: {Query}, Passage: {Passage}. Consider intent, support/refutation (M ), trustworthiness (T ), then decide final score
(O). Output MUST be JSON: {"final_score": <0_to_3>}

[2] Chain-of-Thought Decomposed Reasoning
PHASE 1 – Answer Presence Prediction:
Instruction: Given a passage and a claim, predict whether the passage includes information that supports or refutes the claim by
producing either “Yes” or “No”.
Claim: {Query}, Passage: {Passage}. Output JSON: {"has_answer": "Yes"} or {"has_answer": "No"}

PHASE 2 – Fine-grained Criterion Scoring:
System prompt: Please assess how well the provided passage serves as evidence for evaluating the claim. Use the following
scoring scale (0–3): 0 = Not relevant at all / No information provided. 1 = Marginally relevant / Partially addresses the criterion.2
= Fairly relevant / Adequately addresses the criterion. 3 = Highly relevant / Fully satisfies the criterion. Your output MUST be
JSON: {"criterion_score": <0_to_3>}

User prompt: Please rate how well the given passage meets the {criterion_name} criterion in relation to the claim. The output
should be a single score (0–3) indicating {criterion_definition}.
Claim: {Query}, Passage: {Passage}. Output JSON: {"criterion_score": <integer_score_0_to_3>}

Note: placeholders for {criterion_name} and {criterion_definition} are:
{Exactness: "how precisely the passage supports or refutes the claim", Coverage: "the extent to which
the passage discusses content directly relevant to the claim",. Each criterion evaluated independently.
PHASE 3 – Final Relevance Scoring:
System prompt when Phase 1 = "Yes": You are a rater evaluating evidence for fact-checking. Score (2 or 3): 2 = Highly relevant
(some support/refutation), 3 = Perfectly relevant (direct support/refutation). Your output MUST be JSON: {"relevance_score":
<2_or_3>} System prompt when Phase 1 = "No": You are a rater evaluating evidence for fact-checking. Score (0 or 1): 0 =
Irrelevant, 1 = Related (no support/refutation). Your output MUST be JSON: {"relevance_score": <0_or_1>}

User prompt when Phase 1 = "Yes": Passage is relevant. Rate its relevance (2 or 3). Claim: {Query}, Passage: {Passage}.
Output JSON: {"relevance_score": <2_or_3>}

User prompt when Phase 1 = "No":
Passage irrelevant for evidence. Rate its relevance (0 or 1). Claim: {Query}, Passage: {Passage}. Output JSON:
{"relevance_score": <0_or_1>}

[3] Multi-Dimensional Attribute Scoring
PHASE 1 – Sub-criterion Scoring:
System prompt: Please assess how well the provided passage serves as evidence for evaluating the claim according to the
following criteria. Use a score (0–3): 0 = Not relevant at all / No information provided. 1 = Marginally relevant / Partially
addresses the criterion. 2 = Fairly relevant / Adequately addresses the criterion. 3 = Highly relevant / Fully satisfies the criterion.
Your output MUST be JSON: {"criterion_score": <0_to_3>}

User prompt: Please rate how well the given passage meets the {criterion_name} criterion in relation to the claim. The output
should be a single score (0–3) indicating {criterion_definition}.
Claim: {Query}, Passage: {Passage}. Output JSON: {"criterion_score": <0_to_3>}

Note: placeholders for {criterion_name} and {criterion_definition} are:
{Exactness: "how precisely the passage supports or refutes the claim", Coverage: "the extent to which
the passage discusses content directly relevant to the claim", Topicality: "how closely the subject
matter aligns with the claim topic", Contextual Fit: "how much relevant background/context is provided
to verify the claim"}.
PHASE 2 – Final Relevance Aggregation:
System prompt: You are a search quality rater evaluating evidence relevance for fact-checking. Given a claim, passage, and
sub-scores, provide a final score (0–3): 3 = Perfectly relevant (direct support/refutation), 2 = Highly relevant (helps verification),
1 = Related (topic match, no verification aid), 0 = Irrelevant. Your output MUST be JSON: {"final_relevance_score":
<0_to_3>}

User prompt: Please rate how relevant the given passage is to the claim based on the given scores.

Claim: {Query}, Passage: {Passage}, Exactness: LLM score, Coverage: LLM score, Topicality: LLM score, Contextual Fit:
LLM score. Output JSON: {"final_relevance_score": <0_to_3>}

Table 11: LLM relevance judgment prompt templates for FC-related search tasks.
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[1] Zero-shot Direct Scoring
System prompt: You are a rater evaluating entailment. Output only the final score in JSON.

User prompt: Given a premise and hypothesis, score entailment (0–3): 0 = Not entailed/Contradicted, 1 = Related not entailed, 2
= Mostly entailed, 3 = Perfectly entailed.
Important: 1 if related but not inferable, 2 if captures important implied content but not fully, 3 if clearly/fully supported.

Premise: {Query}, Hypothesis: {Passage}. Consider premise implications, logical following (E), info gaps, then decide final
score (O). Output MUST be JSON: {"final_score": <0_to_3>}

[2] Chain-of-Thought Decomposed Reasoning
PHASE 1 – Answer Presence Prediction:
Instruction: Given a hypothesis and a premise, predict whether the hypothesis is entailed by the premise by producing either
“Yes” or “No”.
Premise: {Query}, Hypothesis: {Passage}.Output JSON: {"has_answer": "Yes"} or {"has_answer": "No"}

PHASE 2 – Fine-grained Criterion Scoring:
System prompt: Please assess how well the given hypothesis meets the {criterion_name} criterion in relation to the premise.
Use a single score (0–3) indicating {criterion_definition}.

Premise: {Query}, Hypothesis: {Passage}. Output JSON: {"criterion_score": <0_to_3>}

Note: placeholders for {criterion_name} and {criterion_definition} are: {Exactness: "how precisely the
hypothesis is entailed by the premise", Coverage: "the extent to which the hypothesis reflects core
information from the premise".
PHASE 3 – Final Relevance Scoring:
System prompt when Phase 1 = "Yes": You are a rater evaluating entailment. Provide a final score (2 or 3): 2 = Mostly entailed,
3 = Perfectly entailed. Your output MUST be JSON: {"relevance_score": <2_or_3>}

System prompt when Phase 1 = "No": You are a rater evaluating entailment. Provide a final score (0 or 1): 0 = Not en-
tailed/Contradicted, 1 = Related but not entailed. Your output MUST be JSON: {"relevance_score": <0_or_1>}

User prompt when Phase 1 = "Yes": Hypothesis is entailed. Rate how well (2 or 3). Premise: {Query}, Hypothesis: {Passage}.
Output JSON: {"relevance_score": <2_or_3>}

User prompt when Phase 1 = "No": Hypothesis is not entailed. Rate how (0 or 1). Premise: {Query}, Hypothesis: {Passage}.
Output JSON: {"relevance_score": <0_or_1>}

[3] Multi-Dimensional Attribute Scoring
PHASE 1 – Sub-criterion Scoring:
System prompt: Please assess how well the hypothesis is entailed by the premise according to the following criteria. Use a score
(0–3): 0 = Not relevant at all / No information provided. 1 = Marginally relevant / Partially addresses the criterion. 2 = Fairly
relevant / Adequately addresses the criterion. 3 = Highly relevant / Fully satisfies the criterion. Your output MUST be JSON:
{"criterion_score": <0_to_3>}

User prompt: Please rate how well the given hypothesis meets the {criterion_name} criterion in relation to the premise. The
output should be a single score (0–3) indicating {criterion_definition}.
Premise: {Query}, Hypothesis: {Passage}. Output JSON: {"criterion_score": <0_to_3>}

Note: placeholders for {criterion_name} and {criterion_definition} are: {Exactness: "how precisely the
hypothesis is entailed by the premise", Coverage: "the extent to which the hypothesis reflects core
information from the premise", Topicality: "how closely the subject matter of the hypothesis aligns with
that of the premise", Contextual Fit: "how well the hypothesis fits within the context or background
established by the premise"}.
PHASE 2 – Final Relevance Aggregation:
System prompt: You are a search quality rater evaluating entailment. Given a premise, hypothesis, and sub-scores, provide a final
score (0–3): 3 = Perfectly entailed, 2 = Mostly entailed, 1 = Related but not entailed, 0 = Not entailed/Contradicted. Your output
MUST be JSON: {"final_relevance_score": <0_to_3>}

User prompt: Please rate how well the hypothesis is entailed by the premise based on the given scores.

Premise: {Query}, Hypothesis: {Passage}, Exactness: LLM score, Coverage: LLM score, Topicality: LLM score, Contextual
Fit: LLM score. Output JSON: {"final_relevance_score": <0_to_3>}

Table 12: LLM relevance judgment prompt templates for NLI-related search tasks.

[1] Zero-shot Direct Scoring for STS
System prompt: You are a semantic-similarity rater. Output JSON with a score (0–5) where 0 = unrelated, 5 = semantically
equivalent.
User prompt: Rate the semantic similarity 0–5: 0 = unrelated | 1 = slight | 2 = partial | 3 = moderate | 4 = high | 5 = equivalent

Sentence A: {input1} Sentence B: {input2}
Output JSON: {"final_similarity_score": <0_to_5>}

Table 13: LLM relevance judgment prompt templates for STS-related search tasks.
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Search Intent Event Type rel=0 rel=1 rel=2 rel=3 rel=4 rel=5

FC

Bio 17987 3034 1952 1014 0 0
Chem 16345 3845 2746 1656 0 0
Env 16739 4243 3235 1588 0 0
Extra 16867 3748 2436 1312 0 0
Geo 20151 4126 2549 1038 0 0
MH 18671 4283 2601 1115 0 0
Soc 20757 3287 2707 1099 0 0
Tech 18651 3905 2958 1245 0 0

NLI

Bio 19031 5388 1284 193 0 0
Chem 19391 5981 2151 333 0 0
Env 16130 6823 2041 213 0 0
Extra 19372 5437 1378 212 0 0
Geo 20557 6098 1404 151 0 0
MH 19151 6100 1587 214 0 0
Soc 19597 5570 1612 218 0 0
Tech 21240 5540 1430 184 0 0

QA

Bio 19843 3073 3099 636 0 0
Chem 18823 3411 3662 989 0 0
Env 18073 3838 4036 738 0 0
Extra 19293 3480 3300 734 0 0
Geo 19478 3699 3373 590 0 0
MH 20241 3819 3689 673 0 0
Soc 19832 3206 3551 527 0 0
Tech 19803 4005 3731 505 0 0

QAdoc

Bio 18615 4424 2112 184 0 0
Chem 18254 4871 2604 303 0 0
Env 16710 5900 3125 195 0 0
Extra 17120 5394 2749 335 0 0
Geo 19182 5157 2075 159 0 0
MH 19610 4898 2537 211 0 0
Soc 15153 4981 2937 282 0 0
Tech 19247 5042 2569 213 0 0

STS

Bio 9189 8880 5229 2303 1350 114
Chem 8201 8400 5780 2670 1605 131
Env 7276 8600 6381 2938 1744 109
Extra 9625 8639 5151 2459 1322 117
Geo 8815 10232 6709 2771 1182 107
MH 8590 8809 6436 3072 1680 115
Soc 9402 8349 5114 2575 1520 114
Tech 7846 9316 5606 2686 1345 121

Twitter

Bio 29385 3650 1904 243 0 0
Chem 27326 4259 2312 289 0 0
Env 24757 5062 3058 366 0 0
Extra 26604 4168 2084 346 0 0
Geo 28491 4482 2257 273 0 0
MH 27086 4255 2252 331 0 0
Soc 28238 3472 1861 263 0 0
Tech 26349 4457 2219 363 0 0

Table 14: Distribution of qrels scores rel=0 through rel=5 for each search task in DisastIR. “rel” represents relevance
score. Only STS-related search task is labeled in 6 levels, with others labeled in 4 levels.
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Search Intent Event Type rel=0 rel=1 rel=2 rel=3 rel=4 rel=5

FC

Bio 1 11 19 169 0 0
Chem 0 5 15 180 0 0
Env 0 2 14 184 0 0
Extra 1 6 24 169 0 0
Geo 1 9 21 169 0 0
MH 0 4 26 170 0 0
Soc 1 2 17 180 0 0
Tech 0 6 16 178 0 0

NLI

Bio 8 33 78 81 0 0
Chem 7 39 81 73 0 0
Env 10 29 96 65 0 0
Extra 20 40 79 61 0 0
Geo 6 51 89 54 0 0
MH 10 44 67 79 0 0
Soc 5 52 77 66 0 0
Tech 13 39 84 64 0 0

QA

Bio 1 3 33 163 0 0
Chem 0 3 30 167 0 0
Env 0 2 36 162 0 0
Extra 0 4 27 169 0 0
Geo 2 1 38 159 0 0
MH 0 2 38 160 0 0
Soc 0 5 30 165 0 0
Tech 0 2 48 150 0 0

QAdoc

Bio 3 38 96 63 0 0
Chem 6 45 85 64 0 0
Env 1 35 102 62 0 0
Extra 4 34 77 85 0 0
Geo 2 44 81 73 0 0
MH 4 36 74 86 0 0
Soc 2 19 95 84 0 0
Tech 3 28 79 90 0 0

STS

Bio 0 0 4 8 79 109
Chem 0 0 1 3 80 116
Env 0 0 1 7 88 104
Extra 0 0 0 5 85 110
Geo 0 0 0 4 94 102
MH 0 0 0 6 88 106
Soc 0 0 0 11 87 102
Tech 0 0 2 8 83 107

Twitter

Bio 0 10 94 96 0 0
Chem 1 19 98 82 0 0
Env 0 12 103 85 0 0
Extra 0 14 101 85 0 0
Geo 0 9 95 96 0 0
MH 4 9 74 113 0 0
Soc 0 16 104 80 0 0
Tech 0 19 94 87 0 0

Table 15: Distribution of query-generated relevant document relevance scores rel-0 through rel-5

Name Intent Link #
MS Macro QA https://huggingface.co/datasets/microsoft/ms_marco 400
TriviaQA QA https://huggingface.co/datasets/sentence-transformers/trivia-qa-triplet 400
ALLNLI NLI https://huggingface.co/datasets/sentence-transformers/all-nli 400
XNLI NLI https://huggingface.co/datasets/mteb/xnli/viewer/en 400
STSB STS https://huggingface.co/datasets/sentence-transformers/stsb 400
ClimateFever FC https://huggingface.co/datasets/tdiggelm/climate_fever 400

Table 16: Overview of selected open-source datasets in LVHL. “#” represents the number of selected queries in the
corresponding dataset.
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Model Param Size Base Embed. MTEB Arch.
Name Size Bin Model Size Rank
inf-retriever-v1 7B XL gte-Qwen2-7B-instruct 3584 1 decoder
NV-Embed-v2 7B XL Mistral-7B-v0.1 4096 2 decoder
inf-retriever-v1-1.5b 1.5B XL gte-Qwen2-1.5B-instruct 1536 3 decoder
Linq-Embed-Mistral 7B XL E5-mistral-7b-instruct 4096 4 decoder
NV-Embed-v1 7B XL Mistral-7B-v0.1 4096 5 decoder
SFR-Embedding-Mistral 7B XL E5-mistral-7b-instruct 4096 6 decoder
snowflake-arctic-embed-l 335M Large e5-large-unsupervised 1024 7 encoder
snowflake-arctic-embed-l-v2.0 568M Large gte-multilingual-mlm-base 1024 8 encoder
snowflake-arctic-embed-m-v2.0 305M Medium bge-m3-retromae 768 9 encoder
gte-Qwen2-7B-instruct 7B XL Qwen2-7B 3584 10 decoder
snowflake-arctic-embed-m-v1.5 109M Medium BERT-base-uncased 768 11 encoder
e5-mistral-7b-instruct 7B XL Mistral-7b 4096 12 decoder
snowflake-arctic-embed-m 109M Medium e5-unsupervised-base 764 13 encoder
granite-embedding-125m-english 125M Medium RoBERTa 768 14 encoder
bge-large-en-v1.5 335M Large – 1024 15 encoder
mxbai-embed-large-v1 335M Large – 1024 16 encoder
snowflake-arctic-embed-s 33M Small e5-unsupervised-small 384 17 encoder
bge-base-en-v1.5 109M Medium – 768 18 encoder
bge-small-en-v1.5 33M Small – 384 19 encoder
multilingual-e5-large-instruct 560M Large xlm-roberta-large 1024 20 encoder
thenlper-gte-base 109M Medium EBRT-base 768 21 encoder
multilingual-e5-large 560M Large xlm-roberta-large 1024 22 encoder
gte-Qwen2-1.5B-instruct 1.5B XL Qwen2-1.5B 1536 23 decoder
e5-base-v2 109M Medium bert-large-uncased 1024 24 encoder
e5-large-v2 335M Large bert-base-uncased 768 25 encoder
e5-small-v2 33M Small MiniLM 384 26 encoder
all-mpnet-base-v2 109M Medium microsoft/mpnet-base 768 27 encoder
gte-base-en-v1.5 137M Medium EBRT-base 768 28 encoder
gte-large-en-v1.5 434M Large EBRT-large 1024 – encoder
llmrails-ember-v1 335M Large – 1024 – encoder

Table 17: Information of all evaluated models. “–” means no publicly available information is available.
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Model Name Link License
inf-retriever-v1 https://huggingface.co/infly/inf-retriever-v1 apache-2.0
NV-Embed-v2 https://huggingface.co/nvidia/NV-Embed-v2 cc-by-nc-4.0
inf-retriever-v1-1.5b https://huggingface.co/infly/

inf-retriever-v1-1.5b
apache-2.0

Linq-Embed-Mistral https://huggingface.co/Linq-AI-Research/
Linq-Embed-Mistral

cc-by-nc-4.0

NV-Embed-v1 https://huggingface.co/nvidia/NV-Embed-v1 cc-by-nc-4.0
SFR-Embedding-Mistral https://huggingface.co/Salesforce/

SFR-Embedding-Mistral
cc-by-nc-4.0

snowflake-arctic-embed-l https://huggingface.co/Snowflake/
snowflake-arctic-embed-l

apache-2.0

snowflake-arctic-embed-l-v2.0 https://huggingface.co/Snowflake/
snowflake-arctic-embed-l-v2.0

apache-2.0

snowflake-arctic-embed-m-v2.0 https://huggingface.co/Snowflake/
snowflake-arctic-embed-m-v2.0

apache-2.0

gte-Qwen2-7B-instruct https://huggingface.co/Alibaba-NLP/
gte-Qwen2-7B-instruct

apache-2.0

snowflake-arctic-embed-m-v1.5 https://huggingface.co/Snowflake/
snowflake-arctic-embed-m-v1.5

apache-2.0

e5-mistral-7b-instruct https://huggingface.co/intfloat/
e5-mistral-7b-instruct

mit

snowflake-arctic-embed-m https://huggingface.co/Snowflake/
snowflake-arctic-embed-m

apache-2.0

granite-embedding-125m-english https://huggingface.co/ibm-granite/
granite-embedding-125m-english

mit

bge-large-en-v1.5 https://huggingface.co/BAAI/bge-large-en-v1.5 apache-2.0
mxbai-embed-large-v1 https://huggingface.co/mixedbread-ai/

mxbai-embed-large-v1
apache-2.0

snowflake-arctic-embed-s https://huggingface.co/Snowflake/
snowflake-arctic-embed-s

mit

bge-base-en-v1.5 https://huggingface.co/BAAI/bge-base-en-v1.5 mit
bge-small-en-v1.5 https://huggingface.co/BAAI/bge-small-en-v1.5 mit
multilingual-e5-large-instruct https://huggingface.co/intfloat/

multilingual-e5-large-instruct
mit

thenlper-gte-base https://huggingface.co/thenlper/gte-base mit
multilingual-e5-large https://huggingface.co/intfloat/

multilingual-e5-large-instructt
apache-2.0

gte-Qwen2-1.5B-instruct https://huggingface.co/Alibaba-NLP/
gte-Qwen2-1.5B-instruct

mit

e5-base-v2 https://huggingface.co/intfloat/e5-base-v2 mit
e5-large-v2 https://huggingface.co/intfloat/e5-large-v2 mit
e5-small-v2 https://huggingface.co/intfloat/e5-small-v2 apache-2.0
all-mpnet-base-v2 https://huggingface.co/sentence-transformers/

all-mpnet-base-v2
apache-2.0

gte-base-en-v1.5 https://huggingface.co/Alibaba-NLP/
gte-base-en-v1.5

apache-2.0

gte-large-en-v1.5 https://huggingface.co/Alibaba-NLP/
gte-large-en-v1.5

mit

llmrails-ember-v1 https://huggingface.co/llmrails/ember-v1 mit

Table 18: HuggingFace model links and licenses for all evaluated models.
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Alibaba-NLP-gte-Qwen2-1.5B-instruct
Biological 12.93 19.75 19.16 25.18 18.82 34.19 21.67
Chemical 14.74 20.20 19.57 25.92 15.82 26.73 20.50
Environmental 14.03 26.03 23.66 21.48 19.75 34.39 23.23
Extraterrestrial 13.13 21.89 15.62 27.12 17.38 30.09 20.87
Geohazard 14.68 17.35 18.51 21.79 15.51 34.44 20.38
Meteorological&hydrological 12.63 19.33 23.63 22.10 19.47 30.22 21.23
Societal 14.51 29.00 17.56 24.04 18.59 22.57 21.05
Technological 15.20 24.16 19.15 23.58 18.63 37.00 22.95
Avg. 13.98 22.21 19.61 23.90 18.00 31.20 21.48
Alibaba-NLP-gte-Qwen2-7B-instruct
Biological 62.58 37.35 43.67 27.64 45.76 71.38 48.06
Chemical 64.42 38.19 41.06 31.31 46.84 70.43 48.71
Environmental 62.58 38.36 41.83 29.77 48.23 71.06 48.64
Extraterrestrial 58.55 34.42 37.55 31.45 46.54 73.40 46.99
Geohazard 61.12 36.31 40.13 28.31 47.12 68.06 46.84
Meteorological&hydrological 62.22 39.15 42.08 26.14 45.62 70.57 47.63
Societal 66.77 47.63 43.10 31.95 51.06 72.05 52.09
Technological 61.51 41.51 41.80 33.27 47.08 70.86 49.34
Avg. 62.47 39.12 41.40 29.98 47.28 70.98 48.54
Alibaba-NLP-gte-base-en-v1.5
Biological 60.86 54.84 46.25 53.77 42.53 70.95 54.87
Chemical 60.99 55.23 43.96 53.63 37.30 70.23 53.56
Environmental 62.02 55.77 47.11 51.32 43.30 71.72 55.21
Extraterrestrial 59.48 53.38 49.06 53.30 37.65 72.35 54.20
Geohazard 60.10 54.26 45.96 49.82 36.83 70.45 52.90
Meteorological&hydrological 59.98 58.31 47.26 51.44 39.13 70.93 54.51
Societal 61.99 59.05 48.04 53.11 42.88 71.83 56.15
Technological 59.83 57.66 48.85 53.55 39.39 71.68 55.16
Avg. 60.66 56.06 47.06 52.49 39.88 71.27 54.57
Alibaba-NLP-gte-large-en-v1.5
Biological 68.22 59.69 43.28 56.01 36.94 67.79 55.32
Chemical 70.28 59.30 38.93 56.44 33.85 68.50 54.55
Environmental 67.62 57.23 41.34 52.00 38.74 66.61 53.92
Extraterrestrial 65.28 56.57 42.45 51.24 32.11 68.85 52.75
Geohazard 65.65 52.61 35.16 49.45 30.81 64.75 49.74
Meteorological&hydrological 67.20 59.98 38.81 51.14 33.15 66.41 52.78
Societal 69.23 62.26 41.72 53.73 38.01 68.27 55.54
Technological 68.15 60.74 40.77 54.70 34.90 67.23 54.41
Avg. 67.70 58.55 40.31 53.09 34.81 67.30 53.63
BAAI-bge-base-en-v1.5
Biological 51.58 53.85 50.86 58.41 37.78 65.45 52.99
Chemical 47.97 50.77 48.75 58.64 34.71 67.10 51.32
Environmental 50.63 51.44 47.75 60.93 41.00 63.61 52.56
Extraterrestrial 50.50 57.93 45.21 59.49 33.18 65.59 51.98
Geohazard 47.81 52.76 44.28 56.91 33.09 62.52 49.56
Meteorological&hydrological 49.27 53.06 47.10 59.05 34.13 62.09 50.78
Societal 50.00 59.17 45.32 55.97 36.82 62.81 51.68
Technological 49.56 52.77 46.99 58.39 33.90 66.24 51.31
Avg. 49.67 53.97 47.03 58.47 35.58 64.43 51.52
BAAI-bge-large-en-v1.5
Biological 56.35 55.10 36.71 55.50 35.62 66.83 51.02
Chemical 56.24 51.49 33.57 56.73 34.65 66.02 49.78
Environmental 57.20 51.53 33.76 54.54 38.85 65.74 50.27
Extraterrestrial 58.77 57.02 33.03 58.30 32.68 66.38 51.03
Geohazard 55.15 53.62 30.65 53.17 35.16 63.51 48.54
Meteorological&hydrological 56.45 54.24 31.36 53.73 33.20 62.50 48.58
Societal 58.61 58.52 32.33 54.25 35.96 63.75 50.57
Technological 57.39 56.25 30.28 55.56 35.44 66.37 50.21
Avg. 57.02 54.72 32.71 55.22 35.19 65.14 50.00

Table 19: Performance of the first six evaluated models under six search intents and eight event types under the
exact search setting. Part I
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BAAI-bge-small-en-v1.5
Biological 47.81 47.68 31.38 53.01 28.93 60.77 44.93
Chemical 45.25 42.32 30.68 55.45 27.44 57.61 43.12
Environmental 51.27 45.90 28.36 52.48 31.09 53.90 43.83
Extraterrestrial 48.32 45.50 26.64 53.35 25.57 58.43 42.97
Geohazard 46.74 42.91 25.79 50.88 25.91 55.30 41.25
Meteorological&hydrological 46.89 46.96 26.52 52.61 28.11 55.46 42.76
Societal 47.90 47.18 26.05 45.50 25.78 54.76 41.20
Technological 44.82 45.61 27.12 53.74 24.75 58.68 42.45
Avg. 47.38 45.51 27.82 52.13 27.20 56.86 42.82
Linq-AI-Research-Linq-Embed-Mistral
Biological 35.16 31.88 27.70 43.16 28.81 50.09 36.13
Chemical 39.05 28.91 27.52 44.70 20.32 39.50 33.33
Environmental 42.55 33.30 30.97 36.88 30.97 50.49 37.53
Extraterrestrial 33.98 33.26 25.64 44.49 28.29 42.68 34.72
Geohazard 35.77 28.05 23.63 33.08 27.89 47.75 32.70
Meteorological&hydrological 33.17 28.16 28.04 32.61 28.43 44.46 32.48
Societal 35.09 36.96 23.60 38.97 30.61 39.84 34.18
Technological 30.12 30.78 25.34 41.78 23.06 50.72 33.63
Avg. 35.61 31.41 26.55 39.46 27.30 45.69 34.34
Salesforce-SFR-Embedding-Mistral
Biological 72.89 67.94 72.41 69.18 51.66 74.32 68.07
Chemical 72.03 66.49 69.62 72.05 49.51 72.65 67.06
Environmental 72.25 66.24 72.43 73.16 52.99 73.20 68.38
Extraterrestrial 70.01 68.71 67.85 70.71 47.73 75.48 66.75
Geohazard 70.77 65.41 69.06 69.21 49.01 70.81 65.71
Meteorological&hydrological 72.44 67.29 70.11 70.49 50.84 73.12 67.38
Societal 72.78 70.13 71.38 69.38 53.92 74.26 68.64
Technological 70.89 68.42 70.48 70.80 51.20 75.08 67.81
Avg. 71.76 67.58 70.42 70.62 50.86 73.61 67.47
Snowflake-snowflake-arctic-embed-l
Biological 41.34 30.98 16.73 33.28 35.21 54.92 35.41
Chemical 40.77 30.26 16.39 34.55 33.24 56.39 35.27
Environmental 43.56 34.71 17.68 34.42 40.28 56.81 37.91
Extraterrestrial 41.09 27.96 14.48 31.93 32.31 58.93 34.45
Geohazard 36.34 28.20 12.92 33.83 31.08 53.90 32.71
Meteorological&hydrological 37.75 25.59 14.99 33.70 34.90 57.75 34.11
Societal 42.99 35.02 16.49 28.39 36.37 57.69 36.16
Technological 42.70 30.53 12.85 31.51 33.57 58.20 34.89
Avg. 40.82 30.41 15.32 32.70 34.62 56.82 35.11
Snowflake-snowflake-arctic-embed-l-v2.0
Biological 53.33 58.87 38.42 60.63 41.22 62.01 52.41
Chemical 56.40 57.57 40.62 61.11 39.01 63.87 53.10
Environmental 57.52 59.91 45.04 62.53 45.87 63.73 55.77
Extraterrestrial 54.74 56.70 36.38 60.14 37.86 62.82 51.44
Geohazard 54.21 57.26 34.76 59.82 39.80 60.19 51.01
Meteorological&hydrological 51.69 59.76 36.28 61.42 40.67 62.49 52.05
Societal 57.78 63.46 41.87 57.77 44.56 64.80 55.04
Technological 57.02 61.94 36.67 59.97 40.49 67.14 53.87
Avg. 55.34 59.43 38.75 60.42 41.19 63.38 53.09
Snowflake-snowflake-arctic-embed-m
Biological 31.68 13.54 8.09 38.04 39.39 54.55 30.88
Chemical 33.35 14.43 9.76 35.38 36.26 58.17 31.23
Environmental 35.53 14.87 9.18 35.83 43.61 57.19 32.70
Extraterrestrial 33.40 14.31 8.29 35.18 39.67 58.59 31.57
Geohazard 31.14 14.32 6.15 35.78 36.75 54.06 29.70
Meteorological&hydrological 30.96 14.49 9.29 35.75 39.04 56.34 30.98
Societal 35.17 14.34 10.72 31.87 40.57 57.82 31.75
Technological 35.55 13.70 7.63 34.58 36.14 58.32 30.99
Avg. 33.35 14.25 8.64 35.30 38.93 56.88 31.23

Table 20: Performance of evaluated models under six search intents and eight event types under the exact search
setting. Part II
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Snowflake-snowflake-arctic-embed-m-v1.5
Biological 20.41 30.10 17.56 48.74 42.93 63.69 37.24
Chemical 23.39 29.15 20.20 48.55 41.74 65.45 38.08
Environmental 28.64 33.80 21.74 51.30 49.00 65.53 41.67
Extraterrestrial 25.43 24.07 17.35 46.65 41.79 66.04 36.89
Geohazard 26.06 30.31 17.01 46.63 42.02 63.49 37.59
Meteorological&hydrological 22.61 28.98 17.43 48.37 42.51 64.42 37.39
Societal 29.55 35.48 17.74 47.59 42.61 64.06 39.51
Technological 29.77 32.56 17.47 48.12 41.71 66.91 39.42
Avg. 25.73 30.56 18.31 48.24 43.04 64.95 38.47
Snowflake-snowflake-arctic-embed-m-v2.0
Biological 60.58 62.53 48.09 57.58 42.68 64.84 56.05
Chemical 61.22 61.01 47.12 59.78 40.78 64.72 55.77
Environmental 63.96 62.03 49.99 60.78 47.75 65.53 58.34
Extraterrestrial 60.83 61.17 46.86 58.68 39.05 65.74 55.39
Geohazard 60.38 60.30 47.90 57.05 43.33 63.02 55.33
Meteorological&hydrological 60.47 63.37 46.95 58.29 40.69 63.79 55.59
Societal 62.72 65.79 47.63 54.61 43.17 66.73 56.78
Technological 61.34 63.79 47.86 57.56 41.24 67.88 56.61
Avg. 61.44 62.50 47.80 58.04 42.34 65.28 56.23
Snowflake-snowflake-arctic-embed-s
Biological 34.80 26.88 18.93 44.11 36.25 66.25 37.87
Chemical 33.78 28.03 20.01 45.40 35.16 66.72 38.18
Environmental 39.09 30.43 23.33 42.75 43.67 68.17 41.24
Extraterrestrial 35.15 21.60 16.03 41.94 34.80 66.06 35.93
Geohazard 35.78 25.98 16.63 41.53 36.37 63.31 36.60
Meteorological&hydrological 34.13 28.33 16.74 43.00 38.08 66.33 37.77
Societal 37.91 30.80 17.34 39.73 38.71 67.63 38.69
Technological 37.77 27.63 16.34 41.68 35.15 68.29 37.81
Avg. 36.05 27.46 18.17 42.52 37.27 66.59 38.01
ibm-granite-granite-embedding-125m-english
Biological 65.94 61.42 50.92 62.06 46.86 71.23 59.74
Chemical 64.39 57.94 52.68 63.52 46.68 71.24 59.41
Environmental 65.87 60.32 47.60 64.84 52.70 73.30 60.77
Extraterrestrial 63.75 58.73 44.83 62.05 47.34 72.81 58.25
Geohazard 63.08 59.78 44.29 60.60 46.28 70.89 57.49
Meteorological&hydrological 65.83 61.04 45.60 62.71 45.98 71.02 58.70
Societal 66.36 65.53 44.21 62.98 50.31 71.93 60.22
Technological 63.95 63.52 47.03 63.49 48.21 73.06 59.88
Avg. 64.90 61.04 47.14 62.78 48.04 71.94 59.31
infly-inf-retriever-v1
Biological 76.15 68.85 71.20 68.79 52.90 78.79 69.45
Chemical 74.65 65.12 68.88 70.95 52.85 76.74 68.20
Environmental 73.45 66.91 69.84 70.05 56.45 77.55 69.04
Extraterrestrial 72.61 68.14 66.38 68.78 48.90 79.31 67.35
Geohazard 74.22 65.10 68.63 67.46 51.55 75.86 67.14
Meteorological&hydrological 74.21 69.31 70.86 68.37 52.17 76.76 68.61
Societal 75.49 70.65 69.64 68.07 57.23 78.49 69.93
Technological 73.03 68.48 69.23 68.84 52.73 78.12 68.41
Avg. 74.23 67.82 69.33 68.91 53.10 77.70 68.52
infly-inf-retriever-v1-1.5b
Biological 72.23 65.55 67.42 65.01 53.59 76.99 66.80
Chemical 71.18 63.09 65.04 67.03 51.93 75.97 65.71
Environmental 70.06 63.56 65.57 68.21 57.26 76.07 66.79
Extraterrestrial 67.37 61.83 63.32 65.93 51.12 77.02 64.43
Geohazard 71.49 62.52 65.70 65.56 52.29 75.73 65.55
Meteorological&hydrological 70.52 65.69 67.86 67.18 52.54 75.66 66.58
Societal 71.90 66.62 66.65 66.51 57.99 76.24 67.65
Technological 70.39 66.48 67.29 66.79 54.18 75.83 66.83
Avg. 70.64 64.42 66.11 66.53 53.86 76.19 66.29

Table 21: Performance of evaluated models under six search intents and eight event types under the exact search
setting. Part III

27



QA QAdoc Twitter FC NLI STS Avg.
intfloat-e5-base-v2
Biological 67.85 62.93 58.90 62.08 47.03 74.82 62.27
Chemical 66.55 59.44 58.58 63.27 45.05 74.71 61.27
Environmental 67.45 63.11 60.69 64.54 49.66 74.99 63.41
Extraterrestrial 63.48 63.63 55.96 63.26 43.63 75.01 60.83
Geohazard 65.17 60.34 56.01 60.72 43.17 74.34 59.96
Meteorological&hydrological 66.14 62.64 59.13 62.21 44.88 74.08 61.52
Societal 64.92 67.05 59.00 60.68 46.63 74.02 62.05
Technological 64.58 65.38 58.65 61.44 44.27 75.15 61.58
Avg. 65.77 63.07 58.37 62.28 45.54 74.64 61.61
intfloat-e5-large-v2
Biological 59.31 63.11 56.68 62.40 51.02 75.08 61.27
Chemical 59.77 59.78 54.60 63.05 49.49 75.10 60.30
Environmental 62.61 63.25 57.49 64.79 54.51 75.21 62.98
Extraterrestrial 58.42 63.93 54.57 61.76 48.29 75.67 60.44
Geohazard 59.25 62.26 54.94 60.25 50.44 74.02 60.19
Meteorological&hydrological 60.07 63.55 57.59 62.98 49.77 75.12 61.51
Societal 60.04 66.56 56.92 60.85 53.09 74.75 62.04
Technological 61.74 64.95 56.80 62.20 51.07 74.97 61.95
Avg. 60.15 63.42 56.20 62.29 50.96 74.99 61.34
intfloat-e5-mistral-7b-instruct
Biological 18.64 19.90 22.40 32.79 22.57 43.06 26.56
Chemical 25.67 19.23 19.34 36.47 16.04 35.54 25.38
Environmental 24.96 17.65 21.97 28.46 22.05 41.30 26.06
Extraterrestrial 21.42 21.71 18.92 34.04 21.21 37.67 25.83
Geohazard 21.45 17.30 16.98 25.16 19.57 41.11 23.59
Meteorological&hydrological 20.67 15.84 20.54 24.92 20.85 37.62 23.41
Societal 21.53 24.83 16.94 31.62 23.46 35.64 25.67
Technological 18.86 19.62 18.73 34.85 17.34 44.61 25.67
Avg. 21.65 19.51 19.48 31.04 20.39 39.57 25.27
intfloat-e5-small-v2
Biological 66.38 63.19 61.91 61.38 48.09 75.04 62.67
Chemical 66.99 60.81 61.30 63.53 47.24 75.17 62.51
Environmental 67.61 64.30 62.38 65.73 50.80 75.57 64.40
Extraterrestrial 63.65 60.90 57.98 60.98 45.13 74.96 60.60
Geohazard 65.73 61.10 59.06 60.21 43.82 74.60 60.75
Meteorological&hydrological 66.89 63.88 61.80 62.53 46.50 74.76 62.73
Societal 64.53 65.51 61.41 60.10 47.63 74.69 62.31
Technological 65.19 64.31 61.32 61.88 47.51 73.84 62.34
Avg. 65.87 63.00 60.89 62.04 47.09 74.83 62.29
intfloat-multilingual-e5-large
Biological 68.63 62.63 64.36 60.27 49.91 74.90 63.45
Chemical 66.87 62.82 63.95 61.04 49.49 74.90 63.18
Environmental 66.74 63.98 64.06 62.20 54.65 74.76 64.40
Extraterrestrial 65.81 63.71 60.26 59.62 49.28 75.41 62.35
Geohazard 66.65 62.97 63.71 58.47 49.68 75.10 62.76
Meteorological&hydrological 68.57 63.87 63.41 60.45 50.40 74.53 63.54
Societal 67.61 67.61 64.44 58.97 54.07 74.86 64.59
Technological 67.47 66.39 65.80 61.08 50.71 76.02 64.58
Avg. 67.29 64.25 63.75 60.26 51.02 75.06 63.61
intfloat-multilingual-e5-large-instruct
Biological 70.03 63.24 64.67 66.51 50.24 64.07 63.13
Chemical 67.34 63.58 61.41 68.56 48.65 63.33 62.15
Environmental 68.93 64.34 63.38 69.14 50.64 62.96 63.23
Extraterrestrial 66.19 65.08 61.14 68.44 49.74 66.73 62.89
Geohazard 68.16 62.03 62.75 64.45 46.34 62.08 60.97
Meteorological&hydrological 68.59 66.05 63.42 66.52 50.51 64.22 63.22
Societal 69.62 68.27 63.92 66.58 51.19 65.31 64.15
Technological 68.25 66.61 65.26 67.51 47.72 65.81 63.53
Avg. 68.39 64.90 63.24 67.21 49.38 64.31 62.91

Table 22: Performance of evaluated models under six search intents and eight event types under the exact search
setting. Part IV
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llmrails-ember-v1
Biological 64.90 62.60 49.37 60.23 45.66 74.47 59.54
Chemical 65.00 60.86 47.16 62.76 43.98 75.04 59.14
Environmental 65.68 61.87 47.82 62.25 48.17 74.18 59.99
Extraterrestrial 65.52 65.06 44.55 62.47 42.29 74.28 59.03
Geohazard 63.42 60.96 44.08 59.80 43.70 72.78 57.46
Meteorological&hydrological 64.02 64.12 45.55 60.74 42.42 72.11 58.16
Societal 65.11 66.53 43.32 59.41 46.03 74.16 59.09
Technological 64.87 64.73 45.61 60.78 44.23 74.90 59.19
Avg. 64.82 63.34 45.93 61.06 44.56 73.99 58.95
mixedbread-ai-mxbai-embed-large-v1
Biological 64.38 62.94 43.89 57.80 40.49 69.47 56.50
Chemical 64.29 60.87 42.16 59.77 39.28 70.09 56.08
Environmental 65.73 60.71 42.67 59.05 43.81 69.91 56.98
Extraterrestrial 65.50 65.11 38.38 60.94 38.15 69.16 56.21
Geohazard 62.01 60.48 40.11 56.35 40.05 67.06 54.34
Meteorological&hydrological 64.65 62.91 39.82 57.32 38.05 67.04 54.97
Societal 65.72 65.82 39.30 58.65 41.65 68.60 56.62
Technological 64.26 64.83 38.31 57.85 40.30 69.16 55.78
Avg. 64.57 62.96 40.58 58.47 40.22 68.81 55.93
nvidia-NV-Embed-v1
Biological 69.88 63.74 57.69 62.45 47.40 68.75 61.65
Chemical 69.31 56.86 57.02 59.12 45.99 66.66 59.16
Environmental 69.14 63.86 57.85 61.98 52.46 68.36 62.28
Extraterrestrial 65.64 62.43 53.94 57.93 45.98 69.16 59.18
Geohazard 66.26 62.29 55.90 58.56 48.33 65.33 59.44
Meteorological&hydrological 69.42 63.50 58.28 61.66 47.69 68.60 61.52
Societal 68.68 66.72 57.45 58.88 50.42 67.42 61.59
Technological 68.59 64.78 56.57 59.77 48.24 68.62 61.10
Avg. 68.36 63.02 56.84 60.04 48.31 67.86 60.74
nvidia-NV-Embed-v2
Biological 76.42 69.25 42.42 69.75 58.26 77.86 65.66
Chemical 74.82 69.52 42.07 68.68 57.96 76.22 64.88
Environmental 75.31 68.66 43.82 69.63 61.09 77.21 65.95
Extraterrestrial 73.06 70.08 44.88 68.30 56.31 78.18 65.14
Geohazard 73.91 67.35 41.35 66.72 57.88 75.91 63.85
Meteorological&hydrological 75.33 69.91 43.11 68.37 58.88 76.85 65.41
Societal 75.38 72.11 44.57 68.78 61.06 76.54 66.41
Technological 73.91 71.01 43.18 68.85 58.42 77.31 65.45
Avg. 74.77 69.74 43.18 68.64 58.73 77.01 65.34
sentence-transformers-all-mpnet-base-v2
Biological 14.00 7.64 17.18 43.65 27.58 35.38 24.24
Chemical 13.09 9.93 14.53 48.81 24.14 35.84 24.39
Environmental 12.45 10.01 18.17 47.32 30.32 35.48 25.62
Extraterrestrial 16.24 8.11 14.82 48.79 27.48 42.02 26.24
Geohazard 14.96 7.75 13.30 43.82 27.70 36.33 23.98
Meteorological&hydrological 16.52 7.84 16.39 44.34 28.07 36.99 25.02
Societal 20.10 14.49 18.41 45.98 27.31 39.06 27.56
Technological 13.16 12.41 16.55 47.68 26.44 36.75 25.50
Avg. 15.06 9.77 16.17 46.30 27.38 37.23 25.32
thenlper-gte-base
Biological 10.09 5.90 45.04 61.49 44.70 49.42 36.11
Chemical 9.73 5.62 40.67 62.27 41.06 53.75 35.52
Environmental 6.03 4.75 38.62 63.00 48.95 40.21 33.59
Extraterrestrial 10.42 4.54 33.58 59.45 41.39 44.64 32.34
Geohazard 7.96 3.33 34.20 58.54 41.68 43.00 31.45
Meteorological&hydrological 9.16 5.31 38.46 60.76 40.55 43.60 32.97
Societal 10.00 7.88 39.76 60.39 44.40 48.17 35.10
Technological 10.39 5.44 38.00 60.50 40.08 50.33 34.13
Avg. 9.22 5.35 38.54 60.80 42.85 46.64 33.90

Table 23: Performance of evaluated models under six search intents and eight event types under the exact search
setting. Part V

29


	Introduction
	Related work
	DisastIR: Disaster Management Information Retrieval Benchmark
	Overview
	Evaluation Task
	Domain knowledge corpus construction
	User Query Generation
	Assessment Candidate Pool Development
	Relevance Labeling

	DisastIR Benchmark Analysis
	Query and Passage Characteristics
	LLM-based vs. Human Labeling
	LLM vs. Human-generated User Query

	Experimental Setup
	Models
	Evaluation

	Evaluation Results
	Overall Performance
	Performance across all 48 Tasks
	Comparison with General Domain

	Conclusion
	Structural PDF File Processing Pipeline
	Prompt Templates for Query Generation
	Prompt Templates for Relevance Labeling
	Additional Analyses of Labeled query-passage pairs
	LVHL Dataset Construction
	LVHQ Dataset Construction
	Information of Evaluated Models and Model Implementation
	Performance of Evaluated Models
	Additional Analyses of Model Performance across 48 Tasks

