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Abstract

Training large language models (LLMs) in full precision (FP32) is increasingly constrained by
memory, compute, and energy demands. Low-precision formats such as BF16, which modern ac-
celerators are optimized for, offer substantial gains, reducing memory footprint, improving through-
put, and lowering energy consumption. However, when training is performed entirely in low preci-
sion, without FP32 master weights or optimizer states, it typically underperforms compared to full-
precision training. Standard additive optimizers like Adam often diverge in this regime, as small
updates vanish below the mantissa resolution while large ones overflow the representable range.
We introduce M+ADAM, an optimizer that enables stable, fully low-precision training by jointly
applying additive and multiplicative updates. Each weight is represented as a mantissa—exponent
pair, where Adam refines the mantissa and Madam adjusts the exponent. This dual-path update
aligns the optimizer dynamics with floating-point structure: additive updates provide fine intra-bin
control, while multiplicative updates traverse quantization bins. Theoretically, we prove mono-
tone descent under standard smoothness assumptions. Empirically, M+ ADAM trains LLaMA-style
models in pure BF16 (no FP32 copies) and matches the perplexity of full-precision Adam across
60M-350M parameter scales, providing a practical step toward end-to-end low-precision optimiza-
tion.

1. Introduction

Training large language models (LLMs) in full precision (FP32) incurs substantial memory, com-
pute, and energy costs. Modern accelerators are optimized for reduced-precision formats such as
BF16 and FP8, which provide higher throughput and lower energy per FLOP. Consequently, most
large-scale training systems adopt mixed-precision pipelines [1-3], running forward and backward
passes in BF16 while maintaining full-precision (FP32) master weights. Training in pure low preci-
sion, where both arithmetic and optimizer states are stored in BF16, promises even greater efficiency
gains in speed, memory, and energy consumption, but remains challenging in practice.
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Figure 1: Overview of M+Adam.

Pure low-precision training is often unstable. Standard additive optimizers such as Adam are not
well aligned with the spacing of BF16 arithmetic: small updates fall below the mantissa resolution
and vanish leading to stagnation. This leads to degraded convergence and, in many cases, diverges
from full-precision training [4]

Several strategies have been proposed to stabilize training under low-precision arithmetic, yet none
fully resolve the problem. Mixed-precision pipelines alleviate instability by retaining FP32 mas-
ter weights and optimizer states, but this reintroduces significant memory overhead and frequent
FP32-BF16 casts. Multiplicative or scale-aware optimizers such as Madam [5] and its log-domain
variant LNS-Madam [6] achieve robust low-precision behavior by operating directly in logarithmic
space, but require arithmetic not natively supported on current hardware. Stochastic rounding of-
fers another way to mitigate rounding bias. However, our experiments indicate that it does not fully
match the performance of full-precision Adam especially in higher data to parameter regimes. Over-
all, existing approaches either depend on high-precision storage, specialized hardware, or incur a
performance gap relative to full-precision training. Consequently, fully low-precision optimization
remain an open challenge.

A floating-point parameter w can be written as w = m 2°, where the mantissa m encodes fine-
grained variation within a quantization bin, and the exponent e sets the overall scale. In low-
precision formats such as BF16, the mantissa has limited precision (7 bits), making small addi-
tive updates likely to round away, whereas the exponent, though more expressive (8 bits), changes
too coarsely to handle small-scale refinements. This asymmetry motivates separating m and e and
updating them with rules suited to their respective roles. Prior work has partially explored this di-
rection: Madam [6] proposes a multiplicative variant of Adam that achieves stable learning rates by
performing weight updates on a logarithmic scale, although arithmetic operations remain in FP32.
LNS-MADAM [6] expands on this concept by fully converting weights, activations, and matrix
multiplications into a specialized logarithmic number system (LNS), enabling entirely multiplica-
tive updates to exponents. While this approach achieves stable low-bit training and FP32-level
accuracy, it relies on custom log-domain arithmetic and specialized hardware support.

We introduce M+ADAM, that combines Madam and Adam updates to enable low-precision train-
ing without the need for retaining full-precision master weights (see Fig. 1). Each weight is stored
directly in BF16 and decomposed into an exponent-mantissa pair w = m 2° only temporarily and
layerwise during the update step. Crucially, unlike LNS-Madam, our approach operates entirely
within standard floating-point arithmetic using BF16 and thus requires no specialized hardware or
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custom number system. The update applies Adam-style additive steps to the mantissa and addi-
tive updates to the exponent, which similar to Madam translates into multiplicative changes in the
weight through its 2¢ scaling. This preserves Madam’s low-precision training property while adding
Adam-like control over the mantissa within each bin, providing fine alignment where multiplicative
changes alone are coarse and yielding superior validation perplexity in our experiments.

We theoretically show that M+ ADAM is a valid descent method under standard smoothness assump-
tions. By analyzing the loss function in terms of separate exponent and mantissa parameters, we
demonstrate that performing sequential exponent and mantissa updates guarantees a one-step de-
crease in loss under suitable step sizes. Empirically, we validate that M+ADAM enables stable and
accurate training entirely in BF16, eliminating the need for FP32 master weights or optimizer states.
M+ADAM matches FP32 Adam performance and consistently outperforms BF16 Adam variants in
validation loss. Together, our results confirm that combining Adam-style mantissa refinement with
Madam-style exponent updates yields a principled, practical solution for fully low-precision opti-
mization, reducing memory without sacrificing accuracy.

2. Method

2.1. Mantissa—Exponent Updates

Let w € R? denote a parameter vector. We represent each element w; in floating-point form as:
w; = my - 27, (1

where m; is the mantissa and e; is the exponent. Instead of updating w; directly, we maintain and
optimize the two components (m;, ¢;) separately.

In our M+Adam optimizer, the mantissa is updated using Adam [7]:

m{T Adam(m(t), ,(72), ()

7 %
while the exponent is updated using Madam [8]:
el(-tﬂ) — Madam(egt), g)), 3)

where g,,, and g., are the projected gradients for the mantissa and exponent, respectively. Both
updates are applied within each optimization step, and the parameters are recombined as:

(t+1)
w§t+1) _ mZ(tH) cge T 4)
2.2. Mathematical Model

To analyze parallel mantissa—exponent updates, we absorb the sign into the mantissa and write

w = m2°, m € [—1,—%]U[%,1), e€Z,

and optimize the reparameterized objective F'(e,m) = ¢(m2¢). By the chain rule, with g,, =
ol /0w,
Vi F = guw2°, VeF = gywlog2, Q)
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Algorithm 1: M+ADAM

Numerical representation: weights w with mantissa—exponent form w = ldexp(e, m); max weight

wIIlaX'
Optimisation parameters: step sizes 7,,, 7.; max perturbations 7}, , n’; averages 31, 82; small e.
Initial state: v,,, (i, Ve, fte < 0 > v: second-moment; p: first-moment.
repeat
g < STOCHASTICGRADIENT() > gradient in weight space

(e,m) < frexp(w)

Im < 2°9; ge + (wlog2)g

Um = (1= B2) g3 + B2V fim < B1 i + (1 = B1) gm > moment updates
Ve <= (1= PB2) g2 + Bave e < B1pre + (1 — 1) ge

// Adam update on the mantissa (additive in m)

m<—m — N, clampmn /nm(”m /(\/Vm + e)) > clamp mantissa update between 1, /1,
// Madam update on the exponent (additive in e)

e e — 1 clamp, . /m(“e /(\/Ve + 6)) > clamp exponent update between £ /7,
w < clamp,, (ldexp(e, m)) > clamp weights between wy,ax

until converged

showing how a single weight gradient splits across the two blocks.

Let w = m © 2° (elementwise). For any weight gradient g,,, define the linear maps
Dp(e,m)[gu] = guw © 2°, De(e,m)[gw] = guw ® (m 2¢log 2)7

and let gl(l?) = Vul(w) evaluated at (e, m).

Theorem 1 Assume: (i) ¢ has an L.,-Lipschitz continuous gradient on a compact set W C R%;
(ii) the reparameterization is confined to

a§2e§67 Hm®2€HooSM7

so that w = m © 2° € W. Then there exist finite constants Ly,, Le, Lyme > 0 (depending only on
Ly, a, B, M) such that the one—step parallel update

m' = m — am Dm(e,m)[g], ¢ = e—acDe(e,m)[g¥]

satisfies
F(e,m') < F(e,m)

whenever the step sizes obey
max{amLm, elLe, amaeLme} <n

for some universal n € (0, 1).

Full constants and proofs are deferred to App. B, where we quantify L,,, Le, Ly, from Ly, o, 8, M
and give the detailed inequality.
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3. Experiments

We now evaluate M+ADAM on large-scale language modeling tasks to assess its optimization ef-
ficiency under fully BF16 training. This section outlines our experimental setup, hyperparameter
tuning protocol, and fairness controls applied across all baselines. Section 3.1 describes the shared
environment and datasets, while Appendix E provides full hyperparameter grids and coordinate-
descent results. We follow the fair-comparison guidelines of [9] to ensure reproducible and unbi-
ased optimizer evaluations.

3.1. General Experimental Setup

All pretraining runs use the English portion of the C4 corpus [10]. Text is tokenized using a T5-
compatible SentencePiece tokenizer and packed into fixed-length sequences of L = 512. We train
LLaMA-style decoder-only Transformers [11], initialized from scratch and report results for three
model sizes that are approximately 60M, 130M, and 350M. All experiments use a global batch size
of 131K tokens with warmup, and a maximum sequence length of 512 tokens. Warmup lengths vary
between 5% and 15% of the total training steps. In our results we report validation loss on C4.

Data budgets and evaluation. For a model with P trainable parameters (in millions), the 1x
Chinchilla token budget is defined as

Ty« ~ 20 P x 10° tokens.

Full optimizer and training hyperparameters are listed in Appendix E.

Optimization and baselines. Our primary optimizer is M+ADAM, applied in pure BF16 preci-
sion for both parameters and activations. Baselines include Adam, AdamW, and their stochastic
rounding (SR) variants, all trained under identical precision settings; FP32 Adam and AdamW runs
are included for comparison. We apply global gradient-norm clipping, use decoupled weight decay
for AdamW-style methods, and keep all other settings identical across optimizers.

3.2. Fine-grained Hyperparameter Coordinate Descent

Fixed or lightly tuned baselines can mask an optimizer’s true capability and inflate apparent speedups [9].
To make optimizer comparisons fair and reproducible, we perform a systematic, one—coordinate—at—a—time
search that identifies near—optimal settings in each training regime.

For each regime the effective global batch is held fixed and the training horizon is set by the tar-
get token budget; evaluation is performed on the C4 validation split at regular intervals. For every
optimizer under study we define a discrete grid for each exposed hyperparameter. Across all meth-
ods, we tune the learning rate, warmup length, 51, (2, €, gradient-norm clipping, and total batch
size. For Adam and AdamW, we additionally vary the decoupled weight decay. For M+ADAM, we
include mantissa and exponent learning rates, exponent scheduling, and the possibility of applying
decoupled weight decay separately in mantissa and exponent spaces.

The coordinate-descent procedure follows a coarse-to-fine refinement strategy. Each search be-
gins from a well-performing base configuration and proceeds by selecting one hyperparameter to
sweep while holding the others fixed. After completing the sweep, we update the hyperparame-
ter to the best-performing grid value only if it yields an improvement in validation loss of at least
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Table 1: Validation loss at 1 x Chinchilla for LLaMA-60M/130M. Lower is better.

Model Regime Optimizer Loss |
M+Adam 3.343

BF16 (no SR) AdamW 3.399

Adam 3.410

60M 16+ SR Adam 3.365
AdamW 3.401

AdamW 3.333

Fp32 Adam 3.346

M+Adam 3.059

BF16 (no SR) Adam 3.226

AdamW 3.238

130M BEI16 + SR Adam 3.099
AdamW 3.168

AdamW 3.042

Fp32 Adam 3.082

SR = stochastic rounding. All BF16 rows use BF16 parameters & activations; FP32 rows use FP32 throughout.

Ajoss > 5 x 1073, This iterative process produces tuned configurations that are both performant
and comparable across optimizers, ensuring that the observed differences in validation loss reflect
the optimization algorithm itself rather than hyperparameter sensitivity. The concrete grids used for
coordinate descent for each method are provided in Appendix E.

4. Conclusion

We presented M+ADAM, an optimizer that combines additive (Adam-style) and multiplicative
(Madam-style) updates by operating directly on the mantissa—exponent decomposition of floating-
point parameters. This formulation aligns optimizer dynamics with floating-point structure: additive
updates refine values within quantization bins, while multiplicative updates adjust scale across bins.
We proved monotone descent under standard smoothness assumptions and showed empirically that
M+ADAM enables stable, fully low-precision training in BF16 matching the performance of FP32
Adam while outperforming BF16 Adam and AdamW across 60M—-350M parameter LLaMA mod-
els. Although M+ADAM does not yet reduce optimizer-state memory, it removes the need for FP32
master weights and provides a principled foundation for future low-precision optimizers. We see
this as a first step toward end-to-end low-precision training, with natural next directions including
billion-scale models, adaptive mantissa—exponent coordination, and integration with compressed
optimizer states such as 8-bit or low-rank Adam variants.
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Appendix A. Background

Multiplicative weight updates Multiplicative update rules have a long history in learning and
optimization, including Winnow for linear classification [12], the Exponentiated Gradient method
(EG) [13], and the Hedge algorithm underlying AdaBoost [14]. These methods perform updates that
are relative to the current parameter values, often working well when model layers differ by orders
of magnitude. The mirror-descent viewpoint formalizes this: with a KL/relative-entropy Bregman
divergence, multiplicative rules arise as mirror steps in the log domain [15]. Recent work by Bern-
stein et al. proves a descent lemma tailored to compositional networks and introduces Madam, a
multiplicative variant of Adam that substantially reduces LR tuning [8]. This line motivates optimiz-
ers that control relative (rather than absolute) step sizes—exactly the knob our mantissa—exponent
formulation exposes.

Adaptive relative update rules Layer-wise relative scaling is central to stabilizing large-batch
and low-precision training. LARS rescales per-layer updates by the ratio ||g||/||w]|| to equalize
effective step sizes across layers at scale [16]; LAMB extends this idea to Transformer-style lan-
guage models [17]. FROMAGE gives a geometric rationale—“deep relative trust”—and shows that
constraining relative changes in weights improves robustness across tasks [5]. Our method inherits
the same philosophy but acts at a finer granularity: we set and coordinate relative steps separately
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for mantissas and exponents, which empirically lowers update variance while preserving descent
guarantees.

Low-precision training and number systems Quantization-aware and post-training quantization
make 8—16-bit models practical with minimal accuracy loss [18-20]. However, many pipelines still
keep FP32 master weights and apply additive optimizers, which can be brittle when formats change.
Logarithmic number systems (LNS) offer an alternative arithmetic where multiplication/division be-
come additions/subtractions in log space, aligning naturally with multiplicative updates [21]. LNS-
MADAM co-designs LNS with a multiplicative optimizer to perform updates directly in the log
domain, showing stable low-bit training and hardware benefits [6]. Our approach is complemen-
tary: without committing to a pure-LNS stack, we explicitly factor parameters into mantissa and
exponent and update both with coordinated multiplicative rules; this keeps the benefits of relative
control while remaining compatible with mainstream FP formats and AMP.

Mixed-precision frameworks Mixed-precision training via FP16/BF16 (AMP) is now standard,
using loss scaling and FP32 master copies to maintain stability [22]. NVIDIA’s Transformer Engine
adds FP8 (EAM3/E5M2) kernels and runtime calibration, further shrinking memory and boosting
throughput [23, 24]. PyTorch’s AMP/TorchAO simplify adoption and quantization workflows in
practice [3, 25]. Yet these frameworks are largely orthogonal to optimizer design: they accelerate
math but do not directly solve the hyperparameter sensitivity that arises when absolute step sizes
collide with reduced dynamic range. Our factorized optimizer addresses this by operating with
explicit, relative controls on mantissa and exponent—plug-and-play with AMP/FP8 stacks. Con-
currently, DeepSeek’s open-source DeepGEMM library provides optimized FP8§ GEMMs for dense
and MoE/grouped layouts with SM90/SM100 backends, including a packed UESMO scaling path
on SM100 [26].

Mantissa—Exponent parameterizations and biophysical foundations Parameter factorizations
that separate direction from scale (e.g., weight normalization) can stabilize optimization; writing
w = m © 2° likewise exposes two complementary levers for controlling relative change. The re-
sulting composite step mixes additive and multiplicative behaviors—allowing fine-grained shape
changes with coordinated gain control. This design is motivated by biophysics: neurons combine
fast Hebbian plasticity with slower homeostatic mechanisms. In homeostatic synaptic scaling, pro-
longed activity drives near-multiplicative rescaling of all excitatory synapses while preserving rel-
ative ratios [27-29]; weight-dependent STDP uses update sizes that depend on the current weight,
preventing runaway growth [30]. Theory and reviews argue that rapid Hebbian changes must be
counterbalanced by slower, often multiplicative, homeostasis for stability [31, 32]. Our optimizer
operationalizes this division of labor: the mantissa rule (plasticity) adjusts local directions additively
with low variance, while the exponent rule (homeostasis) multiplicatively adapts effective scales to
keep activity in a safe dynamic range.

Appendix B. Proof

Assumption 1 (Smoothness of F)) The reparameterized objective F' : R?> — R has an L-Lipschitz
continuous gradient, i.e.

IVF(z) = VF@)| < Lllz—yl Va,y € R®.
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Lemma 2 (Lipschitz-continuous partial gradients) Suppose ¢(w) has an L.,-Lipschitz continu-
ous gradient on a compact set W, and reparameterize w = m 2° with (e, m) confined so that

2¢ € o, ], |m 2¢| < M.

Then for F(e,m) = ¢(m2°) with partials g,, = OF/0m, g. = OF/0e, there exist constants
L.y, Le > 0 such that

lgm (e, m)=gm(e',m")|| < Lin (Im—m/|+le—€']),  llge(e,m)—ge(e’,m)|| < Le(Im—m/|+|e—€']).

Remark (equivalence to a separate sign bit). If one instead writes w = sm2¢ with s € {1}
and m € [, 1), the correct chain rule gives g—fr; = 5 gy 2¢ and %—f = guw (s m2°) log 2. Absorbing
s into m yields (5) and avoids carrying s explicitly.

Proof Let s > 0 be fixed and set F'(e, m) = ¢(w) withw = sm 2¢. Assume V/{ is L,,-Lipschitz on
the compact set W = {sm2°: 2¢ € [o, 8], |m 2¢| < M}. By continuity of V¢ and compactness
of W, the quantity

Gmax = Ssup va(u)H
ueW

is finite. From 2¢ € [, 5] and |m 2¢| < M we also have
Im| < M/a, Im/| < M/a.
For later use we record two auxiliary bounds. First, by the mean-value theorem,
126 —2¢| = (log2)2¢|e —¢/| < Blog2le—¢/| forsome ¢ between e and €.
Second, writing w = sm 2¢ and w’ = s m/ 2¢'
lw — /|| = 5 [m2° —m' 2|
= s||(m —m')2¢ +m (2 — 2|
< sBlm—m/|+s|m||2¢ — 2¢
<sB|m—m/|+s(M/a)Blog2le — €. (A)

Lipschitz bound for g,,. Since g,,(e, m) = 0, F'(e,m) = s2° V{(w), we obtain
lgm(e.m) = gm(e',m")|| = 5 [12° Ve(w) — 2¢ Vi)

= 5]|2° [Ve(w) — VE(w')] + (2¢ — 2°) Ve(u') |

< 58| Ve(w) = VEw')|| + 527 = 27| VL(w')]|

< 8B Ly ||lw—w + sBlog2 Gmax e — €|

< sBLy[sB|m—m/|+s(M/a)Blog2|e — €[] + 5 8log2 Gmax |e — €.
Thus

Hgm(ea m) - gm(elvm/)n S Am |m - m/| + Bm ‘e - 6,‘7

where
A,, = s*8°Ly,, B, = s°8?Ly, (M/a)log2 + s31og2Guax.

Taking L,, = max{A,,, By} yields

lgm(e;m) = gm(esm)| < Lon(jm —m'| + e — €']).

10
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Lipschitz bound for g.. Since g.(e,m) = 0. F(e,m) = sm (log2) 2¢ V{(w), we have
ge(e,m) — ge(e,m')|| = slog 2[|m 2° Ve(w) — m/ 2¢ Ve(w')|
= slog 2 ||(m2° —m'2¢) Ve(w') + m2¢ [Vl(w) — VE(w')]]|
< slog2 (jm2° — m’ 27| | V()| + [m] 2 [ Ve(w) — Ve(u')])
< slog2 ((Blm —m/| + (M/) Blog2|e — €|) Gmax
+ (M/a) B Ly |lw — w'|])
< slog2 ((Blm —m/| + (M/a) Blog2|e — €|) Grmax
+ (M/a) B L [s Bm —m'| + s (M/a) Blog 2|e — €']]).
Hence
lge(e,m) = ge(e',m/)|| < Aclm —m'| + Bele — €],

where

Ae = 5log2 (B Gmax+s (M/a) f*Ly,), B, = slog2 ((M/a) Blog 2 Gmax+s (M/a)? 3%log 2 Ly,).

Taking L. = max{A., B.} gives
lge(erm) — ge(e'.m)| < Le(jm — | + e — &]).

Lemma 3 (Madam’s Layerwise descent decomposition) Ler £ : R™ — R be continuously dif-
ferentiable and partition the parameter tensor by layers W = (Wy,..., W) with gr(W) =
Vw, L(W). For any perturbation AW = (AWy,..., AWTp), let 0, be the Frobenius-angle be-
tween AWy, and the negative layer gradient —gi,(W):

(AW}, — gr(W))

cos b = €l-11].
AW [lgx (W)l S
Then
| gi(WHAW) — gi(W) ||
L(W+AW < — AW, |:C089 — max
( )—L ZHgk e [AW] g K t€[0,1] 96 (W)l

(6)

Proof Define the straight path W (t) = W +t AW, ¢ € [0,1]. By the fundamental theorem of
calculus and the chain rule,

LIWHAW) — L(W) = / 1 (VLW (1)), AW) dt = Z / ge(W (1)), AW}, dt
0

1
= Z( g (W), AWy) + /O (ge(W () — g(W), AWy) dt).

The first term equals — ||gx(W)||  [|AW}|| = cos 8k by the cosine formula for the Frobenius inner
product. For the integral term, Cauchy—Schwarz and a pointwise maximum over ¢ € [0, 1] give

1
| (oW 0) — (W) AW e < AWy s | (W(E) = g6 (W) -

11
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Summing over k and factoring ||g;,(W)|| - inside the bracket yields (6). [

Under Lemma 2 (Lipschitz-continuous partial gradients), we can show that each of our four update
regimes yields a strict decrease in the objective, provided the step-sizes are chosen sufficiently small.

Theorem 4 (Unified Descent) Ler F' : RP x R? — R be continuously differentiable with block-
Lipschitz gradients: there exist Ly, Le, Lye >0 such that, for all (e, m) and (&, m),

IVmE(e,m) = Vi F(e,m)|| < Linllm —mll,  [[VeF(e,m) = VeF(é,m)|| < Le[le — €],

and ||VF(e,m) — VF(é,m)| < Lyel/(e — € m —m)|. At (e, m) define w := m © 2° and the
(stale) weight gradient
gg]) = Vo F(w).

For elementwise w = m © 2° the block directions obtained from any weight gradient g,, are
Dy(e;m)[gw] = guw © 2°, De(e,m)[gu] = guw ® (m 2%log 2)’

i.e. Voo F' = Dy,(e,m)[gw| and V. F = D.(e,m)[gw] by the chain rule. There exists n > 0 such
that for any oy, e > 0 with

maX{amLm, aeLeu amaeLme} <,

each scheme below yields descent in the sense that the updated pair (¢, m') satisfies F(e/,m') <
F(e,m).

(i) Simultaneous (stale g,,):

m' = m — am D (e, m)[gV)], ¢ = e — ae De(e, m)[gfl?)],
then F (e, m') < F(e,m).
(ii) Mantissa-first, no recompute (reuse gz(l? ) ):
m' =m —am Dp(e,;m)[gy))], € =e—acDe(e,m)[g)],
and F(e,m’) < F(e,m) as well as F(e',m") < F(e,m’), hence F(e’,m") < F(e,m).
(iii) Exponent-first, no recompute (reuse gz(l? ) ):
¢ =e—aeDe(e,m)[gV], m' =m — am Dm(e',m)[gV],

and F(e',m) < F(e,m) as well as F(e',m’) < F(e’,m), hence F(e',m') < F(e,m).

(iv) Alternating two-step with recompute for the second block:

' = m—am D(e,m)[?)], et g) = V, F(me2), ¢ = e—a, Doe,m)[g)

w w

then F(e,m’) < F(e,m) and F(e¢’,m') < F(e,m'), hence F(¢’,m') < F(e,m).

l,
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Implementation note. Items (ii)—(iii) correspond to using a single backward pass to obtain gq(l? )

and applying it to both blocks via D,,, D.; item (iv) performs a second backward after the first
block update to obtain gq(u1 ) for the second block.

Proof Write the block gradients

gm(e,m) =V, F(e,m), (7
ge(e,m) =V F(e,m). )

Assume m +— F'(e, m) has L,,-Lipschitz gradient (for each fixed €), e — F'(e, m) has L.-Lipschitz
gradient (for each fixed m), and the full gradient VF' (e, m) is Lye-Lipschitz.

Scalar versions. We will use the one—dimensional descent lemma: if ¢ has L-Lipschitz derivative,
then
L A2
p(x+A)—¢(x) < ¢(x) A+ 5 A% (S1)

(i) Simultaneous update Consider the simultaneous step

Am = —au, gm(e,m), 9
Ae = —ae ge(e,m). (10)

By joint Ly.-smoothness,

F(e+Ae,m+Am) — F(e,m) < gm(e,m) Am + ge(e,m) Ae + Lme (Am? + Ae?).  (11)

Mantissa contribution. Using (S1) with L = Ly, for the m-direction,

gm(e,m) Am + %Anf < —(am - Lg‘eafn) gm(e,m)?.

Exponent contribution via Madam. The exponent substep induces a multiplicative perturbation of
the weights w = m 2°:

wh = m2etAe = . 28¢ = w - exp((log 2) Ae),

hence elementwise § := “’+wa — 22¢ _ 1 and p := ||§|| controls the relative layerwise size in the
Madam lemma. For |t| < 1, the scalar bound |2¢—1| < (log 2) [t| e8It gives |22¢—1| < C, | Ae]
with C, := (log 2) e(°82) Therefore, at each layer k,

_ [[AWi[[r

pp =t = [|28% — 1||p < Ce|Aellr = Ceaellger(e,m)]r.
Wkl F

Choose o, > 0 small enough so that Hle(l + pr) < 1+ cos B for all k& (where 0y, is the angle
between AW}, and —Vyy, £ as in the Madam lemma). Then by the Madam multiplicative descent
result,

gelem) Ae + Lg=A? < — pelac) gele,m)?,

for some pe(ae) = ce e (1 — O(ae)) > 0 (small ).

13



M+ADAM FOR LOW-PRECISION TRAINING

Combine. Substituting both bounds into (11) yields

Fle+Ae,m+-Am) — Fe,m) < —(am — 5202 )gm(e,m)? — pelae) gele,m)®. (12)

Hence F'(e+Ae, m+Am) < F(e,m) whenever o, € (0,2/Lne) and c. is chosen small enough
to satisfy the Madam condition (3). Strict inequality holds if at least one of g,,,, ge is nonzero.

(ii) Mantissa-first sequential update Set the two substeps
m' :m_amgm(€7m)7 (13)

¢ =e— aegele,m). (14)

Mantissa contribution (Euclidean smoothness). Applying (S1) in the m—direction with L = L,,
gives
F(e,m') — F(e,m) < —(am - LTmoz?n) gm(e,m)>. (15)

Exponent contribution (Madam multiplicative descent, fix m’). Write the elementwise weights w’ =
m’ 2¢. The exponent move induces

w o= W ©297¢ = W' e exp((log2) (¢' — e)),
50 § := 2¢7¢ — 1 is the multiplicative change and pj, := [|[AW.|#/|Wilr = [2¢7¢ — 1||r
is the relative size at layer k. Using |2¢ — 1| < (log?2)|t| e8!l < C.|t| for |t| < 1 with
C, := (log2)e(*&2) we obtain

pr < Celle’ —ellpr = Ceaellger(e,m)|F. (16)

Let 0, be the angle between AW} and —Vyy, £, and define n*(6) := (1+cos 6)*/F—1. A sufficient
global stepsize condition ensuring the Madam descent condition at all layers is

Ce e max |ger(e;m)p < n*(0), 0 = mgx@k. (17)
Under (17), Lemma 3 yields

F(e,m') — F(e,m') < — pelae) ge(e,m')?, pel(ae) = ceae (1 — O(ae)) > 0 for small c.
(18)

Combine. Adding (15) and (18),
F(e/7m,) - F(evm) < _<am - LT’”OZ?n) gm(eam)Q - pe(ae) ge(eam/)Q' (19)

Therefore F'(¢/,m') < F(e,m) whenever a,,, € (0,2/L,,) and « satisfies (17); strict if at least
one of g,,(e,m), ge(e, m’) is nonzero.

14



M+ADAM FOR LOW-PRECISION TRAINING

(iii) Exponent-first sequential update Set

e =e—aegele,m), (20)

m' =m — ay, gm(e',m). 21

Exponent contribution (Madam multiplicative descent, fix m). With w = m 2°, the exponent move
isw i w© 297 50 pp, = [1297¢ — 1||p < Ceatel|ger(e,m)|F as above. Let 6y, be the angle
between AW}, and —Vyy, £ and define n* as before. A sufficient stepsize condition is

C. ae mkax llgek(e,m)||F < n*(9), 0= ml?xek. (22)
Under (22), Lemma 3 implies

F(€/7m) - F(e,m) < _Pe(ae) ge(e’m)2v pe(ae) = Ce Qe (1 - O(ae)) > 0. (23)

Mantissa contribution (Euclidean smoothness, fix €'). Applying (S1) at (¢/,m) with L = L,,,,

Fe,m') - F(e,m) < —(am — LQ’” afn> gm(e’,m)2. 24)

Combine. Summing (23) and (24),
F(e',m') = Fe,m) < — pe(ae) ge(e, m)Q - (am - LTmO%Qn) gm(€, m)Q- (25)

Thus F(e/,m') < F(e,m) for a,. obeying (22) and vy, € (0,2/L,y,), provided the respective block
gradients at their evaluation points are nonzero.

(iv) Alternating two-step update Set

m' =m — Om gm(e’ m)7 (26)

' =e—aegele,m). 27
First substep (mantissa, Euclidean smoothness).

F(e,m') — F(e,m) < —(am - LTmafn) gm(e,m)?. (28)

Second substep (exponent via Madam, fix m’).
As in (16), the relative sizes satisfy p, < Ce c ||ge,x (e, m')|| . A sufficient stepsize condition is

C. ae mI?X Il ge.x (€, m)||r < n*(0"), 0" = ml?x O, (29)

which ensures the Madam condition at all layers for this substep. Then

Fe",m')—F(e,m') < — pe(ae) gele, m/)2, pe(e) = ceae (1 —O(ae)) >0.  (30)

15
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Combine. From (28)—(30),

F(',m')— F(e,m) < —(am — %’”‘a%) gm(e,m)2 — pelae) ge(e,m’)Q. 3D
Therefore F'(e”,m’) < F(e,m) whenever a,, € (0,2/L,,) and a satisfies (29); strict if the
corresponding block gradients are nonzero.

Vector/matrix versions. Let m € R? and e € RY, and write
gm(ea m) = va<ea m>7 (32)
ge(e,m) = VeF(e,m). (33)

If the parameterization uses elementwise structure (e.g. w = m © 2¢), all componentwise multi-
plications are written with ® and the power 2€ is taken elementwise. Block-smoothness yields, for
any increments Am, Ae,

F(e,m+ Am) < F(e,m) + (gm(e,m))Am + % HAmH2 VD)
F(e+ Ae,m) < F(e,m) + (g.(e,m))Ae + & | Aelf? (V2)
F(e+ Ae,m+ Am) < F(e,m) + (VF(e,m))(Ae, Am) + Lze (| Am||* + || Ae|/?). (V3)

(i) Simultaneous update Set
Am = —Qpm gm(ea m)a (34)
Ae = —ae.g.(e,m). (35)
Using (V3),
F(e+Ae,m+Am) — Fle,m) < (gn)Am + (g.)Ae + L= (|| Am|P + [Ae]?) . (36)
Mantissa contribution (Euclidean smoothness).
(gm)Am -+ Lg=l|Am]2 < (e — L5202, ) [gm(e,m)]* (37)

Exponent contribution (Madam multiplicative descent). For each layer k, the exponent move pro-
duces the multiplicative perturbation Wy, — Wy ® 248€k - Let ) be the angle between AW}

and —Vyy, L (as in Lemma 3), and let p; := [|2¢* — 1| denote the relative size. Using
128 — 1] < (log 2) [t| eo8 DI < C.|t| for |t] < 1 with C, := (log 2)e1o8?),
pr < CelAeg|lr = Ceaellger(e,m)|r. (38)

A sufficient global condition to ensure the Madam descent condition for all layers is
Ce e mkax||ge’k(e, m)||p < (1+cosf)YL -1, 0 = m}gx@k. (39)
Under (39), Lemma 3 yields
(ge)Ae + Fg=]Ael® < —pe(ac) llge(e,m)|*, pe(ae) = ceae (1= O(ac)) > 0. (40)
Combine. Substituting (37) and (40) into (36),

F(e+Ae,m+Am) — F(e,m) < —(am - Lg“eafn> lgml? = pelae)llgel®. 1)

Thus F(e+Ae, m+Am) < F(e, m) whenever ,, € (0,2/Ly,e) and v, satisfies (39), with strict
descent if (g, g.) # (0,0).

16
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(ii) Mantissa-first sequential update Set

m' =m — a;, gm(e,m), (42)

e =e—a.g.(e,m). (43)
Mantissa contribution (Euclidean smoothness). By (V1),

F(e,m') — F(e,m) < —<am — LT"‘afn) Hgm(e,m)H2. (44)

Exponent contribution (Madam, fix m’). As above, the step e — €’ induces Wj, — W, © 2€ €.
With pi, < Ceae||ge i (€, m')| r, a sufficient condition is

C. ae mI?Xng,k(e,m’)HF < (1 + cos 9’)1/L -1, 0 = m]?XGk, 45)
which guarantees (by Lemma 3)
Fle'.m') — Fle,m!) < — pe(ae) |ge(e,m)|. 46)
Combine. Adding (44) and (46),
e/ m') = Fle,m) < —(an = 5al, ) lgn(e,m) = pe(ae) lge(e.m)|.

Hence F(e/,m') < F(e,m) whenever o, € (0,2/L,,) and o, satisfies (45).

(iii) Exponent-first sequential update Set

e =e— Qe 96(67 m)a 47)

m' =m — a;, gm(e',m). (48)
Exponent contribution (Madam, fix m). With p, < Ceae||ge (e, m)]| , a sufficient condition is
Ce e max||ge(e;m)|lp < (L+cosf)YE—1, 0= maxéy, (49)

under which

F(e/,m) — F(e,m) < — pe(ac) ge(e, m)]. (50)

Mantissa contribution (Euclidean smoothness, fix €'). By (V1),
F(e,m) = F(e'm) < —(am—02,) lgn(e’,m)|” 1)
Combine. Summing (50) and (51),
F(e/,m!) = Fle,m) < = pe(a) lge(e.m)|* = (am — a2, ) llgn(e’,m)]|*

Thus F(e/,m’) < F(e,m) whenever a,,, € (0,2/L,,) and a satisfies (49).

17
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(iv) Alternating two-step update Set

m' =m — o, gn(e,m), (52)
e =e—a.g.(e,m). (53)

First substep (mantissa, Euclidean smoothness). By (V1),

Flem') = Fle,m) < —(am— 402, ) [gm(e.m)|”. (54)

Second substep (exponent via Madam, fix m/). With py, < Ceoe||ge 1 (€, m')| r, a sufficient condi-

tion is

Ce e max|ge (e, m) | < (1+cosf)/E =1, 8= maxy, (55)

which guarantees
F(e",m') = F(e,m/) < —pe(ac) ge(e, m)|*. (56)

Combine. From (54)—(56),
F(e',m') - Fle,m) < —(am — 4202 ) lgm(em)|? = pe(ac) llge(e,m) %

Therefore F(e’,m') < F(e,m) whenever o, € (0,2/L,,) and «. satisfies (55); strict if the
corresponding block gradients are nonzero.

Appendix C. Algorithmic Variants for the M+Adam Optimizer

C.1. Subroutines: ADAMMANTISSA and MADAMEXPONENT

Algorithm 2: Subroutines shared by all strategies (state fiy,, Uy, fie, Ve 1S persistent)

Input: time step ¢; current (e, m); gradients (g, ge)

AdamMantissa(m, g, t) fim < B1ptm + (1 — 51)gm;
Up < BZVm + (1 - BQ)Q%L;

fim 4 pm /(1= B1)s D <= v /(1 = B3);

Am <+ ﬂm/(\/ﬁ + E);

m < m — Ny, Clampn:n/nm(Am)

return m

MadamEXponent(e’ Ge, t) He < ﬁl,ue + (1 - 61)95;

Ve ¢ Pave + (1 = B2)g2;

fre < pre/(1 = B1): e = ve/(1 = B5);

Ae  fic/(VDe +€);

e < e — 1 clamp,. ,, (Ae) > w o< 277 clamp(Ae) (multiplicative effect)
return e

C.2. Schedules for non-parallel strategies

Let m(strategy, t) be the sequence of substeps at iteration ¢, where M denotes a call to ADAMMAN-
TISSA and E denotes a call to MADAMEXPONENT. As in the main text, g, and g. are computed
once per iteration from (e, m) before any substep.

18
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Strategy 7 (strategy, t)
MantissaFirst [M, E]

ExponentFirst [E, M|
Alternating [M] if t even; [E]if t odd

Table 2: Schedules for the three non-parallel M+Adam variants.

Notes. (1) With shared gradients per iteration, MantissaFirst and ExponentFirst differ only by

substep order; numerical differences are at roundoff level.

(2) Alternating halves the frequency of each sub-update and is useful for stress-testing stability.
(3) A “recompute” mode may refresh g, or g. after the first substep to make the first two schedules

behaviorally distinct; our experiments use the shared-gradient default.

C.3. Wrapper for the three non-parallel variants

Algorithm 3: Schedule-driven wrapper for M+Adam variants (reuses Alg. 2)

Input: w, step t, strategy € {MantissaFirst, ExponentFirst, Alternating};
STOCHASTICGRADIENT()
Output: updated w

g < STOCHASTICGRADIENT() > gradient in weight space
(e,m) < (w)
Im < 2°¢g; ge+ (wln2)g
foreach s € n(strategy,t) do
if s = M then
| m < AdamMantissa(m, g, t)
else
| e <+ MadamExponent(e, g, t)
end
end
w < clamp,, ((e,m)) > clamp weights between +w,, ax
return w

C.4. Variant-specific descriptions (delta to Simultaneous)

* MantissaFirst: sequentially apply M then E within the iteration (Table 2). State and hyper-

parameters match Alg. 1.

» ExponentFirst: sequentially apply E then M. Identical state/hyperparameters; only the order

differs.

» Alternating: apply exactly one substep per iteration, alternating by the parity of ¢; this re-
duces the effective update frequency per block by 1/2 and often exposes stability differences

(see ablations).

Appendix D. Model architectures
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Model Params Seq Len Hidden Dim Inter Dim # Layers # Heads
LLaMA-60M 60M 512 512 1376 8 8
LLaMA-130M 130M 512 768 2048 12 12
LLaMA-350M 350M 512 1024 2736 24 16

Table 3: Detailed architecture hyperparameters for each model size we studied.

Appendix E. Hyperparameter Ablation

We reported the results for the optimizers we swept main text. The result is formulated as follows:
the first row shows the approximately best configuration found and the following rows show the
results for the 1-dimensional ablations centered around the found configuration. The loss presented
here is the final loss on the C4/EN validation set. We employ two different schemes: parameters in
bf16 and activations in bf16 and parameters in fp32 and activations in fp32.

Table 4: Hyperparameter ablation for M+Adam on LLaMA-60M (1x Chinchilla data). Parameters
in bf16 and activations in bf16.

€ Nm Ne warmupm warmupe Qe Am Ae EXP schedule 51 B2 Loss
1e-9 0.0040 1.2e-4 800 800 3.0 0.100 0.010 logcosine 0.87 0.99 3.343

le-8 — — — — — — — — — — 3.347
le-10 — — — — — — — — — — 3.347

— 0.0036 — — — — — — — — — 3.349
- 0.0046 - - - — - - — - - 3.347

— — 7.5¢-5 — — — — — — — — 3.347
— — 1.9¢-4 — — — — — — — — 3.347

— — — 600 — — — — — — — 3.350
— — — 1200 — — — — — — — 3.347

— — — — 600 — — — — — — 3.346
— — — — 1200 — — — — — — 3.348

— — — — — 2.0 — — — — — 3.347
— — — — — 40 — — — — — 3347

— — — — — — 0.050 — — — — 3.350
— — — — — — 0.150 — — — — 3.350

— — — — — — — 0.000 — — — 3.347
— — — — — — — 0.020 — — — 3.348

— — — — — — — — cosine — — 3.347
— — — — — — — — linear — — 3.347

— — — — — — — — — 0.85 — 3.347
— — — — — — — — — 0.92 — 3.362

_ — — — — — — — — — 0.96 3.350
_ — — — — — — — — — 0.97 3.343
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Table 5: Hyperparameter ablation for M+Adam on LLaMA-130M (1 x Chinchilla data). Parameters
in bf16 and activations in bf16.

€

Nm

Ne

warmupm

warmupe

Qe

Am

Ae

EXP schedule

B1

B2

Loss

le-9

0.0040

1.2e-4

800

800

3.0

0.100

0.010

logcosine

0.87

0.99

3.059

le-8
le-10

3.060
3.060

0.0036
0.0046

3.063
3.061

7.5e-5
1.9e-4

3.059
3.062

600
1200

3.064
3.058

600
1200

3.060
3.060

3.059
3.059

3.066
3.064

3.058
3.058

cosine
linear

3.059
3.059

0.85
0.92

3.062
3.080

0.96
0.97

3.071
3.065
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Table 6: Hyperparameter ablation for M+Adam on LLaMA-350M (1 x Chinchilla data). Parameters
in bf16 and activations in bf16.

€

Nm

Ne

warmupm

warmupe

Qe

Am

Ae

EXP schedule

B

B2

Loss

le-9

0.0036

1.2e-4

5000

5000

3.0

0.100

0.010

logcosine

0.87

0.99

2.771

le-8
le-10

2.776
2.785

2.778
2.791

2.781
2.776

2.779
2.775

2.774
2782

2777
2.780

3.213
2.773

2.780
2.780

cosine
linear

2.779
2.778

0.85
0.92

2.772
2.803

0.96
0.97

2.779
2.778
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Table 7: Hyperparameter ablation for AdamW on 60M (1x Chinchilla Data). Parameters in bf16
and activations in bf16.

n 61 B2 € warmup max-grad-norm weight_decay Final loss

0.0050 0.90 0.98 le-9 1000 1.0 0.10 3.399

0.0035 — — — — — — 3.413
0.0075 — — — — — — 3.467

— 0.95 — — — — — 3.443
— 0.98 — — — — — 3.643

— — 0.95 — — — — 3.455
— — 0.999 — — — — 3.456

— - — le-10 — — — 3.444
— — — le-8 — — — 3.441

— — — — 500 — — 3.502
— — — — 2000 — — 3.410

— — — — — 0.0 — 3.438
— — — — — 2.0 — 3.442

— — — — — — 0.00 3.443
— — — — — — 0.20 3.443

Table 8: Hyperparameter ablation for AdamW SR on 60M (1x Chinchilla Data). Parameters in
bf16 and activations in bf16.

n 61 B2 € warmup max_grad_norm weight_decay Final loss

0.0050 0.95 0.98 le-8 2000 1.0 0.10 3.401

0.0035 — — — — — — 3.420
0.0075 — — — — — — 3.448

— 0.90 — — — — — 3.403
— 0.98 — — — — — 3.547

— — 0.95 — — — — 3.445
— — 0.999 — — — — 3.419

— — — le-10 — — — 3.426
— — — 1e-9 — — — 3.425

— — — — 500 — — 3.470
— — — — 1000 — — 3.425

— — — — — 0.0 — 3.429
— — — — — 2.0 — 3.427

— — — — — — 0.00 3.425
— — — — — — 0.20 3.425
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Table 9: Hyperparameter ablation for Adam with Stochastic Rounding on 60M (1x Chinchilla
Data). Parameters in bf16 and activations in bf16.

B1

B2

€

warmup

max_grad-norm

weight_decay

Final loss

0.0050

0.90

0.95

le-8

1000

1.0

0.10

3.365

0.0035
0.0075

3.385
3.389

3.383
3.458

3.383
3.384

3.381
3.383

3.409
3.369

0.0
2.0

3.384
3.384

0.00
0.20

3.425
3.383

Table 10: Hyperparameter ablation for Adam on 60M (1x Chinchilla Data). Parameters in bf16
and activations in bf16.

n

B1

warmup

max_grad-norm

Final loss

0.0050

0.90

2000

1.0

3.410

0.0035
0.0075

3.413
3.467

0.95
0.98

3.443
3.643

0.98
0.999

3.443
3.456

le-10
le-9

3.444
3.443

3.502
3.443

0.0
2.0

3.438
3.442
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Table 11: Hyperparameter ablation for AdamW on 60M (1 x Chinchilla Data). Parameters in fp32
and activations in fp32.

n 61 B2 € warmup max_grad_norm weight_decay Final loss

0.0050 0.90 0.95 le-9 2000 1.0 0.10 3.333

0.0035 — — — — — — 3.340
0.0075 — — — — — — 3.358

— 0.95 — — — — — 3.344
— 0.98 — — — — — 3.426

— — 0.98 — — — — 3344
— — 0.999 — — — — 3.349

— — — le-10 — — — 3.345
— — — le-8 — — — 3.345

— — — — 500 — — 3371
— — — — 1000 — — 3.344

— — — — — 0.0 — 3.348
— — — — — 2.0 — 3.348

— — — — — — 0.00 3.367
— — — — — — 0.20 3.351

Table 12: Hyperparameter ablation for Adam on 60M (1x Chinchilla Data). Parameters in fp32
and activations in fp32.

n B1 B2 € warmup max_grad-norm Final loss

0.0050 0.90 0.95 le-8 2000 1.0 3.346

0.0035 — — — — — 3.358
0.0075 — — — — — 3.395

— 0.95 — — — — 3.368
— 0.98 — — — — 3.493

— — 0.98 — — — 3.368
— — 0.999 — — — 3.367

— — — le-10 — — 3.370
— — — le-9 — — 3.368

— — — — 500 — 3414
— — — — 1000 — 3.368

— — — — — 0.0 3.374
— — — — — 2.0 3.348
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Table 13: Hyperparameter ablation for AdamW on 130M (1 x Chinchilla Data). Parameters in fp32
and activations in fp32.

n 61 B2 € warmup max_grad_norm weight_decay Final loss

0.0035 0.90 0.95 le-9 2000 1.0 0.10 3.042

0.0050 — — — — — — 3.091
0.0075 — — — — — — 4.992

— 0.95 — — — — — 3.159
— 0.98 — — — — — 3.134

— — 0.98 — — — — 3.098
— — 0.999 — — — — 3.222

— — — le-10 — — — 3.091
— — — le-8 — — — 3.090

— — — — 500 — — 3.137
— — — — 1000 — — 3.159

— — — — — 0.0 — 3.092
— — — — — 2.0 — 3.097

— — — — — — 0.00 3.134
— — — — — — 0.20 3.099

Table 14: Hyperparameter ablation for Adam on 130M (1 x Chinchilla Data). Parameters in fp32
and activations in fp32.

n B1 B2 € warmup max_grad-norm Final loss

0.0050 0.95 0.98 le-9 2000 1.0 3.082

0.0035 — — — — — 3.106
0.0075 — — — — — 5.020

— 0.90 — — — — 4.753
— 0.98 — — — — 4.732

— — 0.95 — — — 3.138
— — 0.999 — — — 5.408

— — — le-10 — — 3.136
— — — le-8 — — 3.134

— — — — 500 — 4.627
— — — — 1000 — 3.135

— — — — — 0.0 3.138
— — — — — 2.0 3.144
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Table 15: Hyperparameter ablation for AdamW on 130M (1 x Chinchilla Data). Parameters in bf16
and activations in bf16.

n 61 B2 € warmup max-grad-norm weight_decay Final loss

0.0035 0.95 0.98 le-9 1000 1.0 0.10 3.238

0.0035 — — — — — — 3.238
0.0075 — — — — — — 5.144

— 0.90 — — — — — 5.019
— 0.98 — — — — — 4.697

— — 0.95 — — — — 3.305
— — 0.999 — — — — 4.400

— — — le-10 — — — 3.272
— — — le-8 — — — 3.280

— — — — 500 — — 4.618
— — — — 2000 — — 4.010

— — — — — 0.0 — 3.309
— — — — — 2.0 — 3.302

— — — — — — 0.00 3.275
— — — — — — 0.20 3.275

Table 16: Hyperparameter ablation for AdamW SR on 130M (1 x Chinchilla Data). Parameters in
bf16 and activations in bf16.

n 61 B2 € warmup max_grad_norm weight_decay Final loss

0.0050 0.95 0.98 le-9 2000 1.0 0.10 3.168

0.0035 — — — — — — 3.194
0.0075 — — — — — — 5.060

— 0.90 — — — — — 3.213
— 0.98 — — — — — 4.775

— — 0.95 — — — — 3.226
— — 0.999 — — — — 5.236

— — — le-10 — — — 3.214
— — — le-8 — — — 3.213

— — — — 500 — — 4.607
— — — — 1000 — — 3.213

— — — — — 0.0 — 3.220
— — — — — 2.0 — 3.227

— — — — — — 0.00 3.213
— — — — — — 0.20 3.213
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Table 17: Hyperparameter ablation for Adam with Stochastic Rounding on 130M (1x Chinchilla
Data). Parameters in bf16 and activations in bf16.

B1

B2

€

warmup

max_grad-norm

weight_decay

Final loss

0.0050

0.90

0.95

le-8

2000

1.0

0.10

3.099

0.0035
0.0075

3.114
3.148

3.120
3.182

3.120
3.143

3.120
3.120

3.177
3.120

0.0
2.0

3.122
3.130

0.00
0.20

3.215
3.123

Table 18: Hyperparameter ablation for Adam on 130M (1 x Chinchilla Data). Parameters in bf16
and activations in bf16.

n

B1

warmup

max_grad-norm

Final loss

0.0050

0.95

1000

1.0

3.226

0.0035
0.0075

3.238
5.144

0.90
0.98

5.019
4.697

0.98
0.999

3.275
4.400

le-10
le-9

3.272
3.275

4.618
4.010

0.0
2.0

3.305
3.302
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