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Abstract
The rapid advancement of Vision-Language001
Models (VLMs) has driven researchers to in-002
crease image token counts through dynamic003
high-resolution strategies to enhance the ca-004
pabilities of VLMs, typically involving image005
upscaling, grid-based cropping, and joint en-006
coding of multi-resolution patches. Although007
this approach enriches visual detail, it inadver-008
tently introduces challenges due to the long-009
range decay characteristics of Rotary Position010
Embedding (RoPE). Specifically, excessive po-011
sitional gaps between high- and low-resolution012
tokens disrupt their spatial correspondence, lim-013
iting the model’s fine-grained perception capa-014
bilities. To address this issue, we introduce015
ID-Align, an innovative positional encoding016
strategy designed to preserve hierarchical re-017
lationships focusing on the alignment of im-018
age token position IDs across varying reso-019
lutions. In this method, high-resolution to-020
kens inherit IDs from their corresponding low-021
resolution counterparts while constraining the022
overexpansion of positional indices. Our ex-023
periments conducted within the LLaVA-Next024
framework demonstrate that ID-Align achieves025
significant improvements, including a 6.07%026
enhancement on MMBench’s cross-instance027
fine-grained perception tasks and notable gains028
across multiple benchmarks.029

1 Introduction030

The swift advancement in large language models031

(Achiam et al., 2023; Cai et al., 2024; Yang et al.,032

2024; Liu et al., 2024a), has not only revolution-033

ized the field of natural language processing but034

also catalyzed the emergence of vision-language035

models (Liu et al., 2024d; Wu et al., 2024; Chen036

et al., 2024c; Li et al., 2023a; Wang et al., 2024).037

In the architecture of these advanced VLMs, vi-038

sual encoders like CLIP (Radford et al., 2021) ViT039

(Dosovitskiy, 2020) or SigLip (Zhai et al., 2023)040

ViT are primarily utilized to encode images. Fol-041

lowing this, mechanisms—such as MLP (Liu et al.,042

2024d) or Q-former (Li et al., 2023a) —are em- 043

ployed to fuse the encoded visual information with 044

textual data. This multimodal information is then 045

processed by LLMs, enabling comprehensive un- 046

derstanding and generation of contextually relevant 047

responses across both visual and textual domains 048

(Yin et al., 2023). 049

In pursuit of developing more effective VLMs, 050

researchers undertake multifaceted efforts, includ- 051

ing curating higher-quality training datasets (Bai 052

et al., 2024) and refining model architectures (Cha 053

et al., 2024). Beyond these strategies, researchers 054

have discovered that one efficient approach to boost 055

the performance of VLMs involves increasing the 056

number of image tokens generated through image 057

encoding (Dai et al., 2024; Deitke et al., 2024; Wu 058

et al., 2024; Chen et al., 2024b; Liu et al., 2024b). 059

Since the majority of ViTs are limited to processing 060

images of specific, fixed resolutions, many current 061

models, including those mentioned before, adopt 062

a two-step strategy: initially resizing images to 063

higher resolutions followed by cropping these im- 064

ages into manageable patches compatible with ViT 065

requirements. Subsequently, the encoded image 066

embeddings will be processed in the manner de- 067

scribed previously. 068

Despite being straightforward and effective, this 069

method exhibits several critical shortcomings. Fol- 070

lowing the initial step, the processed image embed- 071

dings are treated identically to text embeddings and 072

are directly input into the LLM. However, the appli- 073

cation of Rotary Position Embedding (RoPE) (Su 074

et al., 2024), the most widely used method for posi- 075

tion encoding, may pose specific challenges owing 076

to its characteristic of long-range decay. This char- 077

acteristic can result in the following problems: 078

• Interaction Issues between Image Embed- 079

ding and Text Embedding: Implementing a 080

high-resolution strategy leads to an overpro- 081

duction of image embeddings. This surplus 082
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can adversely impact the interaction between083

text embeddings and those image embeddings084

that occur earlier in the sequence.085

• The Loss of Correspondence between Low-086

Resolution and High-Resolution Images:087

Given that there inherently exists a corre-088

spondence between high-resolution and low-089

resolution images, it is preferable to main-090

tain this relationship when processing image091

embeddings. However, the long-range decay092

characteristic of RoPE can weaken this corre-093

spondence.094

Neglecting this correspondence weakens the ef-095

fectiveness of the high-resolution strategy, as it pre-096

vents high-resolution image embeddings from ef-097

fectively interacting with their corresponding low-098

resolution image embeddings. This is particularly099

detrimental to the model’s performance on multi-100

modal tasks that require fine-grained perception,101

such as handling tasks involving multiple instances102

or rich text tasks like those including charts or other103

detailed elements.104

To address this issue, we propose ID-Align: by105

rearranging the position IDs of embeddings, we pre-106

serve the correspondence between high-resolution107

image embeddings and their low-resolution coun-108

terparts by assigning identical positional encod-109

ings to both. This method not only maintains110

the relationship between high-resolution and low-111

resolution image embeddings but also mitigates the112

problem of excessive growth in position IDs caused113

by a large number of image embeddings. We114

conducted experiments on the LLaVA-Next (Liu115

et al., 2024c) architecture, and the results demon-116

strate that our approach significantly enhances the117

model’s capabilities, particularly in aspects related118

to fine-grained perception of global information.119

Our contributions can be summarized into the fol-120

lowing two points:121

• We first analyzed the adverse effects of122

the long-range attenuation characteristics of123

RoPE when increasing the number of image124

embeddings using the aforementioned super-125

resolution methods.126

• On this basis, we introduce ID-Align, a tech-127

nique for reorganizing position IDs. This128

method is aimed at maintaining the correspon-129

dence between image embeddings across dif-130

ferent resolutions and mitigating the excessive131

growth of position IDs caused by dynamic 132

adjustments to higher resolutions. Our ex- 133

periments on the architecture and datasets of 134

LLaVA-Next confirm the effectiveness of ID- 135

Align. 136

2 Background & Related Work 137

2.1 Vision Language Model 138

LLMs have exhibited outstanding cognitive and 139

reasoning capabilities. This has naturally prompted 140

the idea of utilizing these models as a foundational 141

basis for processing visual information. A com- 142

mon practice is to employ a projector to connect 143

a pre-trained LLM with a visual encoder, thereby 144

enabling the LLM to interpret visual information 145

(Zhang et al., 2024a). For image inputs Iimage, it 146

is usual to first encode them using vision encoders 147

such as SigLIP (Zhai et al., 2023) or CLIP (Radford 148

et al., 2021) ViT (Dosovitskiy, 2020): 149

Fimage = V E(Iimage) (1) 150

Subsequently, the projector processes the encoded 151

image features Fimage: 152

Pimage = Projector(Fimage, Itext) (2) 153

where Itext represents the text input. In certain ar- 154

chitectures, such as BLIP-2 (Li et al., 2023a), Itext 155

also interacts with Fimage at this stage. Following 156

this, the LLM backbone processes Itext alongside 157

Pimage, generating the corresponding output: 158

Output = LLM(Itext, Pimage) (3) 159

The architecture of the projector has many possible 160

designs, and currently, a mainstream choice is to 161

use a two-layer Multilayer Perceptron (MLP) to 162

process Fimage independently of Itext, as exempli- 163

fied by the LLaVA architecture (Liu et al., 2024d): 164

Pimage = MLP (Fimage) (4) 165

2.2 Dynamic High-resolution 166

The performance of VLMs can be influenced by 167

a variety of factors, with the resolution of input 168

images and the number of image tokens playing a 169

crucial role (Li et al., 2024a). 170

Therefore, a reasonable approach is to use 171

higher-resolution image inputs to obtain a greater 172

number of image embeddings. However, ViTs 173

are designed to handle images of a fixed resolu- 174

tion only. Currently, a mainstream approach is to 175
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Figure 1: Intuitive presentation of the original high-resolution method and ID-Align.

upsample the original image to a higher resolu-176

tion and then divide the high-resolution image into177

crops that are suitable for processing by ViTs. Sub-178

sequently, both the original image and the crops179

are processed separately. This approach has been180

widely embraced by a multitude of leading VLMs181

(Dai et al., 2024; Deitke et al., 2024; Wu et al.,182

2024; Chen et al., 2024b; Liu et al., 2024b).183

For an input image of dimensions (H0,W0), the184

process involves resizing it into a lower-resolution185

image, denoted as Ilow with dimensions (Hv,Wv),186

where (Hv,Wv) refer to the height and width di-187

mensions that the ViT can process, and also upscal-188

ing it to a higher resolution based on its aspect ratio,189

resulting in Ihigh with dimensions (m∗Hv, n∗Wv).190

For the Ilow, a ViT directly encodes it. In contrast,191

for the Ihigh, it is cropped into m · n segments,192

each of size (Hv,Wv), which are encoded sepa-193

rately. Since m and n are typically selected from a194

set of preset values based on the aspect ratio of the195

image, this method is referred to as "dynamic".196

The visual embeddings obtained from the high-197

resolution image are then rearranged, flattened,198

and combined with the embedding from the low-199

resolution image. This combined representation is200

processed by a projector before being fed into the201

LLM. The procedure is illustrated by Figure 1a. 202

This strategy allows for more detailed image in- 203

formation to be captured and processed. Notably, 204

while some models such as Qwen2-VL (Wang 205

et al., 2024) have integrated modified ViTs, such 206

as NaViT (Dehghani et al., 2024), capable of han- 207

dling varied input sizes directly, this remains an 208

exception rather than the norm. 209

2.3 RoPE 210

The sequential nature of natural language is pivotal 211

for understanding its semantics. However, the at- 212

tention mechanism employed in the Transformer 213

(Vaswani, 2017) architecture does not inherently 214

capture this sequential information. Consequently, 215

it is essential to incorporate positional encoding 216

within the Transformer model to enable the pro- 217

cessing of sequence-dependent information. For 218

the query q with the position ID m and key k with 219

the position ID n, positional encoding is applied to 220

incorporate positional information into them: 221

q̂ = PE(q,m), k̂ = PE(k, n) (5) 222

Positional encoding can be implemented in var- 223

ious ways (Gehring et al., 2017; Liu et al., 2020; 224

Shaw et al., 2018; Dai, 2019; Raffel et al., 2020; 225

3



He et al., 2020; Wang et al., 2019). Nowadays, in226

the choice of positional encoding methods, Rotary227

Position Embedding (RoPE) (Su et al., 2024) has228

become a prevalent encoding method. The imple-229

mentation of RoPE is as follows:230

RoPE(q,m) = Rmq (6)231

where:232

Rm =


A0 0 · · · 0
0 A1 · · · 0
...

...
. . .

...
0 0 · · · Ad/2−1

 (7)233

234

Ai =

(
cosmθi − sinmθi
sinmθi cosmθi

)
(8)235

236

θi = θ−
2i
d (9)237

Where d is the dimensionality of q, θ is a hyperpa-238

rameter, typically taking values ranging from 104239

to 107.240

RoPE exhibits several key characteristics:241

• RoPE can be described as a form of absolute242

positional encoding because it uses the abso-243

lute positions of tokens during the encoding244

process. However, it also exhibits properties245

of relative positional encoding due to its math-246

ematical property:247

(Rmq)T (Rnk) = qTRT
mRnk

= qTRn−mk
(10)248

• RoPE exhibits a characteristic of long-range249

decay: for a query q at position m and a key250

k at position n, after encoding with RoPE,251

the dot product (Rmq)T (Rnk) generally de-252

creases as the absolute value of |m − n| in-253

creases.254

• The value of θ controls the positional encod-255

ing’s sensitivity to positional differences. A256

smaller θ makes the model more sensitive257

to position changes, whereas a larger one fa-258

cilitates the capture of long-range dependen-259

cies. Generally, the value of θ should increase260

as the training length increases (Men et al.,261

2024).262

In the domain of VLMs, researchers are explor-263

ing modifications to RoPE to better accommodate264

multimodal features. Approaches such as CCA 265

(Xing et al., 2025) and PyPE (Chen et al., 2025) 266

aim to reconfigure position IDs from distinct an- 267

gles, whereas V2PE (Ge et al., 2024) narrows the 268

incremental scale of positional encodings specif- 269

ically for image embeddings. Despite these ad- 270

vancements, none of these proposed methods suffi- 271

ciently consider the prevalent application of super- 272

resolution techniques—a critical aspect of the cur- 273

rent technological landscape. 274

3 Motivation 275

Let’s first review the mainstream methods. Assum- 276

ing an image input with the shape of (H0,W0), 277

with H0 ≥ W0, it is first resized to dimensions 278

(Hv,Wv) to be suitable for processing the ViT. Sub- 279

sequently, this image is super-resolved to dimen- 280

sions (mHv, nWv) to obtain a greater number of 281

visual tokens. Employing a ViT with patch size p 282

to encode the input image, we derive a sequence of 283

(HvWv)/p
2 + (mnHvWv)/p

2 image embeddings. 284

After adding new-line tokens, we get (HvWv)/p
2+ 285

(mnHvWv)/p
2 + nWv/p image embeddings Fol- 286

lowing the conventional processing method, we 287

treat image embeddings in the same manner as text 288

embeddings. Assuming the position ID of the first 289

image embedding in the entire image-text sequence 290

is i , according to this approach, the position IDs 291

of this image token sequence will range from i to 292

i + (HvWv)/p
2 + (mnHvWv)/p

2 + nWv/p − 1 293

. Based on these position IDs, RoPE is applied to 294

the image tokens. 295

Due to the long-distance decay characteristic of 296

RoPE, this method encounters the following issues. 297

3.1 Long-Distance Decay Issue 298

Taking a CLIP ViT with a patch size of 14 and 299

a resolution of 336 × 336 as an example, if the 300

input image is first resized to 336× 336 and then 301

upsampled to 672 × 672, followed by cropping 302

into four 336 × 336 sections. Encoding both the 303

low-resolution image and the four crops results 304

in 24 × 24 × 5 + 24 × 2 = 2928 image tokens. 305

If we adopt a ViT that generates an even greater 306

number of image tokens or upscale the image to 307

an even higher resolution, this issue becomes more 308

pronounced. Considering the long-distance decay 309

characteristic of RoPE, this abundance of image 310

tokens leads to the model’s inability to effectively 311

handle interactions between image tokens and text 312

tokens. 313
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3.2 Neglect of Correspondence314

The ViT trained with CLIP or SigLIP demonstrates315

shortcomings in terms of fine-grained perception316

(Tong et al., 2024). The dynamic super-resolution317

method employs a ViT to encode particular seg-318

ments of the source image, facilitating the ex-319

traction of finer details. This technique relies on320

high-resolution embeddings to capture detailed,321

fine-grained features, while low-resolution embed-322

dings encapsulate broader, more generalized at-323

tributes. There exists a correspondence between324

these two types of embeddings; if this relation-325

ship is effectively leveraged, it can better integrate326

local and global information, thus enhancing fine-327

grained perception, and multi-instance perception.328

For example, in the mini-Gemini model (Li et al.,329

2024c), the mechanism is designed such that dur-330

ing cross-attention calculations, low-resolution em-331

beddings engage solely with their corresponding332

high-resolution embeddings. However, the current333

method of assigning position IDs overlooks this334

relationship. This issue manifests in two key areas.335

On one hand, when the embedding of high-336

resolution images interacts with their correspond-337

ing low-resolution counterparts, this correspon-338

dence is not effectively preserved. In the compu-339

tation of the dot product of query and key values340

within the attention mechanism for high-resolution341

image crops and the low-resolution image, long-342

distance decay reduces the correlation between343

these tokens. This effect is particularly pronounced344

for tokens located in the bottom-right corner of the345

high-resolution image, which are the farthest from346

their corresponding regions in the low-resolution347

image. Concerning the tokens located at the lower348

right corner, it is observed that, compared to their349

corresponding low-resolution tokens, numerous350

high-resolution tokens exhibit closer proximity in351

terms of their position IDs. Conversely, the cor-352

responding low-resolution tokens are situated at353

a noticeable distance. This spatial arrangement354

poses a challenge in differentiating the associated355

low-resolution tokens from other low-resolution356

tokens.357

Another critical aspect lies in the interaction358

between image embeddings and text embeddings.359

In the calculation of the dot product of query and360

key values between text embeddings and image361

embeddings, significant differences in position IDs362

between high-resolution image embeddings and363

their corresponding low-resolution image embed-364

dings can hinder the model’s ability to capture 365

the correspondence between low-resolution and 366

high-resolution regions. 367

368

The dynamic characteristics of the aforemen- 369

tioned upsampling approach additionally serve to 370

obscure these correspondences. The variability 371

in the number of high-resolution embeddings re- 372

sults in discrepancies in the distances between 373

high-resolution embeddings and their correspond- 374

ing low-resolution counterparts across images with 375

differing aspect ratios. 376

Consequently, it is necessary to explore and im- 377

plement additional methodologies that can effec- 378

tively preserve such correspondences. 379

4 Methods 380

Considering the operational mechanism of a casual 381

language model and the implementation form of 382

RoPE (Rotary Position Embedding), it is the rel- 383

ative positional relationship that dictates whether 384

attention computation occurs. The difference in 385

position IDs between entities represents the true 386

distance, rather than the distance based on embed- 387

dings within the sequence. Therefore, without al- 388

tering the order of embeddings, one viable method 389

to modify the interaction patterns among embed- 390

dings involves adjusting their position IDs. By 391

assigning closer position IDs to corresponding im- 392

age embeddings, it becomes possible to enhance 393

their attention score during the computation pro- 394

cess. Adopting this viewpoint, we have reorganized 395

the position IDs assigned to image embeddings, 396

meticulously aligning the embeddings derived from 397

high-resolution images with their corresponding 398

counterparts in low-resolution images. This align- 399

ment is aimed at boosting their attention scores. 400

We denote this strategy as ID-Align. Our approach 401

is as follows: 402

• For the embeddings of low-resolution images, 403

we adopt the same position IDs as those used 404

in the previously established approach. 405

• For the embeddings of high-resolution images, 406

we adjust their embeddings to match the posi- 407

tion IDs of their corresponding low-resolution 408

embeddings. 409

The algorithm is presented in Algorithm 1. We 410

provide an illustrative example in Figure 1b. 411

Through the reorganization of position IDs, the 412

"distance" between low-resolution embeddings and 413
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their corresponding high-resolution embeddings is414

reduced. This adjustment not only brings related415

embeddings closer in terms of positional encoding416

but also effectively restricts the growth of position417

IDs. Consequently, this approach prevents the is-418

sue of position IDs increasing by thousands when419

processing a single image, which could otherwise420

lead to exceeding the maximum position ID values421

encountered during training.

Algorithm 1 ID-Align with RoPE

Require:
1: Etext: Sequence of text embeddings
2: Elow: Sequence of low-resolution image em-

beddings
3: Ehigh: Sequence of high-resolution image em-

beddings
4: M : Ehigh → Elow : Return the Elow corre-

sponding to Ehigh
Ensure:

5: max_pid← 0
6: Emerged ← Concat(Etext, Elow, Ehigh)
7: for each embedding ei ∈ Emerged do
8: if ei ∈ Etext ∪ Elow then
9: pos_id(ei)← max_pid

10: max_pid← max_pid + 1
11: else if ei ∈ Ehigh then
12: pos_id(ei)← pos_id(M(ei))
13: max_pid ← max(max_pid,M(ei) +

1)
14: end if
15: end for

16: function APPLYROTARYENCODING(Emerged)
17: for each ei ∈ Emerged do
18: ei ← RoPE(ei, pos_id(ei))
19: end for
20: return Emerged
21: end function

422

5 Experiments and Results423

5.1 Experiments Setup424

We adopted the LLaVA-Next architecture (Liu425

et al., 2024c), utilizing Vicuna-1.5 7B (Zheng et al.,426

2023) as the base model and CLIP ViT-L/14 (336)427

(Radford et al., 2021) as the visual encoder. For428

training data, we used the dataset provided by429

LLaVA-Next (Liu et al., 2024c). As for the hy-430

perparameter settings, we adopted the configura-431

tions from Open-LLaVA-Next (Chen and Xing,432

2024). We will also list these hyperparameters 433

in Appendix A. 434

The Vicuna model employs a RoPE θ value of 435

104, indicating it is relatively sensitive to positional 436

changes. Given this characteristic, we opted for the 437

Qwen-2.5-7B-Instruct (Yang et al., 2024) model 438

with a θ value of 107 , alongside using SigLip 439

400M (Zhai et al., 2023) as the visual encoder. 440

Compared to the Vicuna and CLIP models, these 441

selections offer enhanced capabilities. 442

All experiments were conducted using eight 443

A800 GPUs. 444

5.2 Benchmarks 445

Focusing on the overall and various hierarchical 446

capabilities of models, we primarily adopted three 447

benchmarks—MMBench (Liu et al., 2024e), MME 448

(Yin et al., 2023), and MMStar (Chen et al., 2024a). 449

Additionally, SeedBench-2-Plus (Li et al., 2024b) 450

and AI2D (Kembhavi et al., 2016) were utilized 451

to assess the models’ capability in processing rich 452

text images such as charts, maps, and web pages. 453

RealWorldQA was employed to evaluate the mod- 454

els’ effectiveness in handling real-world images, 455

whereas POPE (Li et al., 2023b) was used to exam- 456

ine the phenomenon of model hallucinations. To 457

evaluate the model’s performance on QA tasks, we 458

will utilize the VQAv2 (Goyal et al., 2017) and 459

ScienceQA (Lu et al., 2022) datasets. We utilized 460

LMMS-Eval (Zhang et al., 2024b) for the evalua- 461

tion of our model. 462

5.3 Results and Analysis 463

The primary experimental results are shown in Ta- 464

ble 1. As can be observed from the table, the 465

adoption of ID-Align has led to improvements in 466

the model’s performance metrics across various 467

benchmarks. When using Vicuna and CLIP as 468

pre-training models, there was a notable improve- 469

ment across all benchmarks, with the exception of 470

the perception subcategory in MME. However, the 471

overall score for MME still showed an increase. 472

These benchmarks cover a broad spectrum of ca- 473

pabilities, indicating the effectiveness of our ap- 474

proach. When employing Qwen2.5, which has 475

a RoPE θ value of 107, and SigLIP as the base 476

models, the performance gains were observed to 477

decrease, and there was a decline in performance 478

on several benchmarks. This observation aligns 479

with our analysis, which suggests that these models 480

are relatively insensitive to changes in positional 481

encoding. However, after adopting ID-Align, the 482
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(a) Query from the bottom right corner.

(b) Query from the central of the image.

Figure 2: The layer-wise attention visualization from the first to the thirty-second layer, with a stride of four, under
conditions with and without ID-Align. Each subplot’s first row represents the scenario without ID-Align, whereas
the second row shows the results with ID-Align applied. Specifically, 2a refers to a query from an embedding
located at the bottom right corner of the high-resolution image, while 2b corresponds to a query from the central
embedding of the high-resolution image. The original image is sourced from the mmbench-test and depicts a map
of Europe.

overall performance of the model showed an in-483

creasing trend.484

In the appendix B, we also plot the learning485

curve. From these curves, it can be observed that486

after applying ID-Align, the training loss is slightly487

lower during the latter half of the training phase488

compared to when not using ID-Align. Addition-489

ally, the gradient norm is notably lower, indicating490

that the model is closer to achieving convergence.491

This effect is especially pronounced on Vinuca.492

To further investigate which specific capabilities493

contributed most to the observed growth in bench-494

mark performance, we have detailed the changes495

in various sub-metrics of MMbench, as shown in496

Table 2. We have also listed the subtasks of MM-497

Bench in Appendix C. As can be observed, when498

using vinca as the LLM base, although all sub-499

indicators showed improvement, the most signifi-500

cant growth was seen in the FP-S, FP-C, and RR501

metrics. Meanwhile, when employing qwen as502

the LLM backbone, it was the FP-C, RR, and LR503

metrics that maintained their growth. These sub-504

indicators are all related to fine-grained perception,505

with FP-C and RR also involving scenarios with 506

multiple instances. 507

We also evaluated the performance of ID-Align 508

in a training-free scenario on MMBench, where ID- 509

Align was not employed during the training phase 510

but was applied during inference. The results are 511

shown in Table 2. It can be observed from the table 512

that, in the training-free setting, the model’s ca- 513

pability for fine-grained cross-instance perception 514

and reasoning still improves, albeit with a smaller 515

margin. However, its performance regarding single- 516

instance tasks declines. 517

To better understand the reasons behind the 518

changes, we also generated attention visualization 519

images, as shown in Figure 2. The figure demon- 520

strates that, relative to the baseline, the utiliza- 521

tion of ID-Align increases the attention weights as- 522

signed to high-resolution image embeddings when 523

mapped onto their corresponding low-resolution 524

areas. This effect is especially pronounced for em- 525

beddings derived from the bottom right corner of 526

the image. These findings are consistent with our 527

previous analytical predictions. 528
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Model MMBenchtest MMStar RealWorldQA SEEDB2-Plus POPE@ACC

Vicuna
w/o ID-Align 64.46 36.65 58.69 52.04 87.49
w/ ID-Align 67.79 (+3.33) 38.12 (+1.47) 59.18 (+0.49) 53.27 (+1.23) 87.61 (+0.12)

Qwen
w/o ID-Align 78.14 50.53 64.18 61.00 89.17
w/ ID-Align 78.48 +0.34 50.14 (-0.39) 63.79 (-0.39) 62.06 (+1.06) 89.16 (-0.01)

MME AI2D VQAV2val SQAimg

cognition perception

Vicuna
w/o ID-Align 248.93 1502.72 64.77 76.86 69.11
w/ ID-Align 298.57 (+49.64) 1482.52 (-20.2) 65.84 (+1.07) 79.88 (+3.02) 70.10 (+0.99)

Qwen
w/o ID-Align 348.93 1530.18 74.84 79.88 80.61
w ID-Align 349.64 (+0.71) 1560.51 (+30.33) 75.13 (+0.29) 80.25 (+0.37) 81.06 (+0.45)

Table 1: Performance on Different Benchmarks with and without ID-Align

Model MMBench Test

CP FP-S FP-C AR RR LR

Vicuna
w/o ID-Align 76.02 66.33 57.09 76.39 52.13 34.68
w/ ID-Align 77.73 (+1.71) 71.11 (+4.78) 63.16 (+6.07) 78.13 (+1.74) 57.35 (+5.22) 37.57 (+2.89)

Training-Free 77.09 (+1.07) 65.33 (-1.00 57.89 (+0.80) 78.12 (+1.73) 54.98 (+2.85) 38.15 (+3.47)

Qwen
w/o ID-Align 83.73 81.91 71.26 84.38 75.83 56.65
w/ ID-Align 82.87 (-0.86) 81.91 (+0.00) 72.87 (+1.61) 83.33 (-1.05) 77.72 (+1.89) 59.54 (+2.89)

Training-Free 83.94 (+0.21) 81.66 (-0.25) 72.47 (+1.21) 85.07 (+0.69) 75.83 +0.00 58.38 (+1.73)

Table 2: The table presents the results on sub-metrics from the MMBench-Test. Specifically, CP stands for Coarse
Perception, FP-C represents Fine-grained Perception (cross-instance), FP-S denotes Fine-grained Perception
(single-instance), AR refers to Attribute Reasoning, LR indicates Logical Reasoning, RR represents Relation
Reasoning.

6 Conclusion529

In this paper, we analyze the potential issues of530

the dynamic high-resolution strategies adopted by531

current VLMs. Based on our analysis, we propose532

ID-Align: a method that aligns the position IDs of533

high-resolution embeddings with their correspond-534

ing low-resolution embeddings, preserving their535

relationship and constraining excessive growth in536

position IDs. We conducted experiments on the537

LLaVA-Next architecture, demonstrating the effec-538

tiveness of our approach—even when employing539

models with very large RoPE θ values, which are540

not sensitive to changes in position IDs.541

7 Limitation 542

Our study is subject to two primary limitations. 543

Firstly, we have not explored the performance 544

of our approach at larger resolutions involving a 545

higher number of image tokens. Given that certain 546

contemporary models are designed to process ultra- 547

high-resolution images resulting in tens of thou- 548

sands of image tokens, these extended sequence 549

lengths present significant challenges. Secondly, 550

our experimental design focused exclusively on 551

single-image datasets, neglecting both multi-image 552

scenarios and the opportunity to integrate with 553

prevalent token reduction strategies. 554
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A Training Scripts788

The decision to utilize ID-Align can be controlled789

by setting the value of use-id-align.790

In our experiment, we selected the most suitable791

high resolution based on the aspect ratio of the792

images. However, during upsampling, we did not793

maintain the aspect ratios nor did we perform any794

padding.795

Listing 1: The script for the LLaVA-Next pretrain phase,
using Vicuna and CLIP as the LLM backbone and visual
encoder, respectively.

796
1 nnodes =1797
2 num_gpus =8798
3 deepspeed --num_nodes ${nnodes} --799

num_gpus ${num_gpus} --master_port800
=10270 llava/train/train_mem.py \801

4 --deepspeed ./ scripts/zero2.json \802
5 --model_name_or_path ${MODEL_PATH} \803
6 --version plain \804
7 --data_path ${DATA_PATH} \805
8 --image_folder ${IMAGE_FOLDER} \806
9 --vision_tower ${VISION_TOWER} \807

10 --mm_projector_type mlp2x_gelu \808
11 --tune_mm_mlp_adapter True \809
12 --unfreeze_mm_vision_tower False \810
13 --mm_vision_select_layer -2 \811
14 --mm_use_im_start_end False \812
15 --mm_use_im_patch_token False \813
16 --mm_patch_merge_type spatial_unpad814

\815
17 --image_aspect_ratio anyres \816
18 --group_by_modality_length False \817
19 --bf16 True \818
20 --output_dir ./ checkpoints/${819

RUN_NAME} \820
21 --num_train_epochs 1 \821
22 --per_device_train_batch_size 8 \822
23 --per_device_eval_batch_size 4 \823
24 --gradient_accumulation_steps 4 \824
25 --evaluation_strategy "no" \825
26 --image_grid_pinpoints "[(336, 672),826

(672, 336), (672, 672), (1008,827
336), (336, 1008)]" \828

27 --use_id_align True \829

28 --save_strategy "steps" \ 830
29 --save_steps 24000 \ 831
30 --save_total_limit 1 \ 832
31 --learning_rate 1e-3 \ 833
32 --weight_decay 0. \ 834
33 --warmup_ratio 0.03 \ 835
34 --lr_scheduler_type "cosine" \ 836
35 --logging_steps 1 \ 837
36 --tf32 True \ 838
37 --model_max_length 4096 \ 839
38 --gradient_checkpointing True \ 840
39 --dataloader_num_workers 4 \ 841
40 --lazy_preprocess True \ 842
41 --report_to None \ 843
42 --run_name ${RUN_NAME} 844845

Listing 2: The script for the LLaVA-Next finetune phase,
using Vicuna and CLIP as the LLM backbone and visual
encoder, respectively.

846
1 nnodes =1 847
2 num_gpus =8 848
3 849
4 deepspeed --num_nodes ${nnodes} -- 850

num_gpus ${num_gpus} --master_port 851
=10271 llava/train/train_mem.py \ 852

5 --deepspeed ./ scripts/zero3.json \ 853
6 --model_name_or_path ${MODEL_PATH} \ 854
7 --version v1 \ 855
8 --data_path ${DATA_PATH} \ 856
9 --image_folder ${IMAGE_FOLDER} \ 857

10 --pretrain_mm_mlp_adapter ./ 858
checkpoints/${BASE_RUN_NAME }/ 859
mm_projector.bin \ 860

11 --unfreeze_mm_vision_tower True \ 861
12 --mm_vision_tower_lr 2e-6 \ 862
13 --vision_tower ${VISION_TOWER} \ 863
14 --mm_projector_type mlp2x_gelu \ 864
15 --mm_vision_select_layer -2 \ 865
16 --mm_use_im_start_end False \ 866
17 --use_id_align True \ 867
18 --mm_use_im_patch_token False \ 868
19 --group_by_modality_length True \ 869
20 --image_aspect_ratio anyres \ 870
21 --mm_patch_merge_type spatial_unpad 871

\ 872
22 --bf16 True \ 873
23 --image_grid_pinpoints "[(336, 672), 874

(672, 336), (672, 672), (1008, 875
336), (336, 1008)]" \ 876

24 --output_dir ./ checkpoints/${ 877
RUN_NAME} \ 878

25 --num_train_epochs 1 \ 879
26 --per_device_train_batch_size 8 \ 880
27 --per_device_eval_batch_size 4 \ 881
28 --gradient_accumulation_steps 2 \ 882
29 --evaluation_strategy "no" \ 883
30 --save_strategy "steps" \ 884
31 --save_steps 1000 \ 885
32 --save_total_limit 1 \ 886
33 --learning_rate 2e-5 \ 887
34 --weight_decay 0. \ 888
35 --warmup_ratio 0.03 \ 889
36 --lr_scheduler_type "cosine" \ 890
37 --logging_steps 1 \ 891
38 --tf32 True \ 892
39 --model_max_length 4096 \ 893
40 --gradient_checkpointing True \ 894
41 --dataloader_num_workers 4 \ 895
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42 --lazy_preprocess True \896
43 --report_to none \897
44 --run_name ${RUN_NAME}898899

Listing 3: The script for the LLaVA-Next pre-train
phase, using Qwen and SigLIP as the LLM backbone
and visual encoder, respectively.

900
1 nnodes =1901
2 num_gpus =8902
3 deepspeed --num_nodes ${nnodes} --903

num_gpus ${num_gpus} --master_port904
=10270 llava/train/train_mem.py \905

4 --deepspeed ./ scripts/zero2.json \906
5 --model_name_or_path ${MODEL_PATH} \907
6 --version plain \908
7 --data_path ${DATA_PATH} \909
8 --image_folder ${IMAGE_FOLDER} \910
9 --vision_tower ${VISION_TOWER} \911

10 --mm_projector_type mlp2x_gelu \912
11 --tune_mm_mlp_adapter True \913
12 --unfreeze_mm_vision_tower False \914
13 --mm_vision_select_layer -2 \915
14 --mm_use_im_start_end False \916
15 --mm_use_im_patch_token False \917
16 --mm_patch_merge_type spatial_unpad918

\919
17 --image_aspect_ratio anyres \920
18 --group_by_modality_length False \921
19 --bf16 True \922
20 --output_dir ./ checkpoints/${923

RUN_NAME} \924
21 --num_train_epochs 1 \925
22 --per_device_train_batch_size 8 \926
23 --per_device_eval_batch_size 4 \927
24 --gradient_accumulation_steps 4 \928
25 --evaluation_strategy "no" \929
26 --image_grid_pinpoints "[(384, 768),930

(768, 384), (768, 768), (1152,931
384), (384, 1152)]" \932

27 --use_id_align True \933
28 --save_strategy "steps" \934
29 --save_steps 24000 \935
30 --save_total_limit 1 \936
31 --learning_rate 1e-3 \937
32 --weight_decay 0. \938
33 --warmup_ratio 0.03 \939
34 --lr_scheduler_type "cosine" \940
35 --logging_steps 1 \941
36 --tf32 True \942
37 --model_max_length 32768 \943
38 --gradient_checkpointing True \944
39 --dataloader_num_workers 4 \945
40 --lazy_preprocess True \946
41 --report_to none \947
42 --run_name ${RUN_NAME}948949

Listing 4: The script for the LLaVA-Next finetune phase,
using Qwen and SigLIP as the LLM backbone and vi-
sual encoder, respectively

950
1 nnodes =1951
2 num_gpus =8952
3 deepspeed --num_nodes ${nnodes} --953

num_gpus ${num_gpus} --master_port954
=10271 llava/train/train_mem.py \955

4 --deepspeed ./ scripts/zero3.json \956
5 --model_name_or_path ${MODEL_PATH} \957
6 --version ${PROMPT_VERSION} \958

7 --data_path ${DATA_PATH} \ 959
8 --image_folder ${IMAGE_FOLDER} \ 960
9 --pretrain_mm_mlp_adapter ./ 961

checkpoints/${BASE_RUN_NAME }/ 962
mm_projector.bin \ 963

10 --unfreeze_mm_vision_tower True \ 964
11 --mm_vision_tower_lr 2e-6 \ 965
12 --vision_tower ${VISION_TOWER} \ 966
13 --mm_projector_type mlp2x_gelu \ 967
14 --mm_vision_select_layer -2 \ 968
15 --mm_use_im_start_end False \ 969
16 --use_id_align True \ 970
17 --mm_use_im_patch_token False \ 971
18 --group_by_modality_length True \ 972
19 --image_aspect_ratio anyres \ 973
20 --mm_patch_merge_type spatial_unpad 974

\ 975
21 --bf16 True \ 976
22 --image_grid_pinpoints "[(384, 768), 977

(768, 384), (768, 768), (1152, 978
384), (384, 1152)]" \ 979

23 --output_dir ./ checkpoints/${ 980
RUN_NAME} \ 981

24 --num_train_epochs 1 \ 982
25 --per_device_train_batch_size 8 \ 983
26 --per_device_eval_batch_size 4 \ 984
27 --gradient_accumulation_steps 2 \ 985
28 --evaluation_strategy "no" \ 986
29 --save_strategy "steps" \ 987
30 --save_steps 1000 \ 988
31 --save_total_limit 1 \ 989
32 --learning_rate 2e-5 \ 990
33 --weight_decay 0. \ 991
34 --warmup_ratio 0.03 \ 992
35 --lr_scheduler_type "cosine" \ 993
36 --logging_steps 1 \ 994
37 --tf32 True \ 995
38 --model_max_length 32768 \ 996
39 --gradient_checkpointing True \ 997
40 --dataloader_num_workers 4 \ 998
41 --lazy_preprocess True \ 999
42 --report_to none \ 1000
43 --run_name ${RUN_NAME} 10011002

B Learning Curve 1003

These plots were generated using a sliding average 1004

window with a window length of 100. 1005
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Figure 3: Pretrain Loss
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Figure 4: Pretrain Grad Norm
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Figure 5: Finetune Loss
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Figure 6: Finetune Grad Norm

B.2 Qwen1007
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Figure 7: Pretrain Loss
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Figure 8: Pretrain Grad Norm
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Figure 9: Finetune Loss
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Figure 10: Finetune Grad Norm

C MMBench Leaf Tasks 1008

Coarse Perception: 1009

• Image Style 1010

• Image Topic 1011

• Image Scene 1012

• Image Mood 1013

• Image Quality 1014

Fine-grained Perception (Single-instance): 1015

• Attribute Recognition 1016

• Celebrity Recognition 1017

• Object Localization 1018

13



• OCR1019

Fine-grained Perception (Cross-instance):1020

• Spatial Relationship1021

• Attribute Comparison1022

• Action Recognition1023

Attribute Reasoning:1024

• Physical Property Reasoning1025

• Function Reasoning1026

• Identity Reasoning1027

Relation Reasoning:1028

• Social Relation1029

• Nature Relation1030

• Physical Relation1031

Logic Reasoning:1032

• Future Prediction1033

• Structuralized Image-text Understanding1034
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