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Abstract

The rapid advancement of Vision-Language
Models (VLMs) has driven researchers to in-
crease image token counts through dynamic
high-resolution strategies to enhance the ca-
pabilities of VLMs, typically involving image
upscaling, grid-based cropping, and joint en-
coding of multi-resolution patches. Although
this approach enriches visual detail, it inadver-
tently introduces challenges due to the long-
range decay characteristics of Rotary Position
Embedding (RoPE). Specifically, excessive po-
sitional gaps between high- and low-resolution
tokens disrupt their spatial correspondence, lim-
iting the model’s fine-grained perception capa-
bilities. To address this issue, we introduce
ID-Align, an innovative positional encoding
strategy designed to preserve hierarchical re-
lationships focusing on the alignment of im-
age token position IDs across varying reso-
lutions. In this method, high-resolution to-
kens inherit IDs from their corresponding low-
resolution counterparts while constraining the
overexpansion of positional indices. Our ex-
periments conducted within the LLaVA-Next
framework demonstrate that ID-Align achieves
significant improvements, including a 6.07%
enhancement on MMBench’s cross-instance
fine-grained perception tasks and notable gains
across multiple benchmarks.

1 Introduction

The swift advancement in large language models
(Achiam et al., 2023; Cai et al., 2024; Yang et al.,
2024; Liu et al., 2024a), has not only revolution-
ized the field of natural language processing but
also catalyzed the emergence of vision-language
models (Liu et al., 2024d; Wu et al., 2024; Chen
et al., 2024c; Li et al., 2023a; Wang et al., 2024).
In the architecture of these advanced VLMs, vi-
sual encoders like CLIP (Radford et al., 2021) ViT
(Dosovitskiy, 2020) or SigLip (Zhai et al., 2023)
ViT are primarily utilized to encode images. Fol-
lowing this, mechanisms—such as MLP (Liu et al.,

2024d) or Q-former (Li et al., 2023a) —are em-
ployed to fuse the encoded visual information with
textual data. This multimodal information is then
processed by LL.Ms, enabling comprehensive un-
derstanding and generation of contextually relevant
responses across both visual and textual domains
(Yin et al., 2023).

In pursuit of developing more effective VLMs,
researchers undertake multifaceted efforts, includ-
ing curating higher-quality training datasets (Bai
et al., 2024) and refining model architectures (Cha
et al., 2024). Beyond these strategies, researchers
have discovered that one efficient approach to boost
the performance of VLMs involves increasing the
number of image tokens generated through image
encoding (Dai et al., 2024; Deitke et al., 2024; Wu
et al., 2024; Chen et al., 2024b; Liu et al., 2024b).
Since the majority of ViTs are limited to processing
images of specific, fixed resolutions, many current
models, including those mentioned before, adopt
a two-step strategy: initially resizing images to
higher resolutions followed by cropping these im-
ages into manageable patches compatible with ViT
requirements. Subsequently, the encoded image
embeddings will be processed in the manner de-
scribed previously.

Despite being straightforward and effective, this
method exhibits several critical shortcomings. Fol-
lowing the initial step, the processed image embed-
dings are treated identically to text embeddings and
are directly input into the LLM. However, the appli-
cation of Rotary Position Embedding (RoPE) (Su
et al., 2024), the most widely used method for posi-
tion encoding, may pose specific challenges owing
to its characteristic of long-range decay. This char-
acteristic can result in the following problems:

* Interaction Issues between Image Embed-
ding and Text Embedding: Implementing a
high-resolution strategy leads to an overpro-
duction of image embeddings. This surplus



can adversely impact the interaction between
text embeddings and those image embeddings
that occur earlier in the sequence.

* The Loss of Correspondence between Low-
Resolution and High-Resolution Images:
Given that there inherently exists a corre-
spondence between high-resolution and low-
resolution images, it is preferable to main-
tain this relationship when processing image
embeddings. However, the long-range decay
characteristic of RoPE can weaken this corre-
spondence.

Neglecting this correspondence weakens the ef-
fectiveness of the high-resolution strategy, as it pre-
vents high-resolution image embeddings from ef-
fectively interacting with their corresponding low-
resolution image embeddings. This is particularly
detrimental to the model’s performance on multi-
modal tasks that require fine-grained perception,
such as handling tasks involving multiple instances
or rich text tasks like those including charts or other
detailed elements.

To address this issue, we propose ID-Align: by
rearranging the position IDs of embeddings, we pre-
serve the correspondence between high-resolution
image embeddings and their low-resolution coun-
terparts by assigning identical positional encod-
ings to both. This method not only maintains
the relationship between high-resolution and low-
resolution image embeddings but also mitigates the
problem of excessive growth in position IDs caused
by a large number of image embeddings. We
conducted experiments on the LLaVA-Next (Liu
et al., 2024c) architecture, and the results demon-
strate that our approach significantly enhances the
model’s capabilities, particularly in aspects related
to fine-grained perception of global information.
Our contributions can be summarized into the fol-
lowing two points:

* We first analyzed the adverse effects of
the long-range attenuation characteristics of
RoPE when increasing the number of image
embeddings using the aforementioned super-
resolution methods.

* On this basis, we introduce ID-Align, a tech-
nique for reorganizing position IDs. This
method is aimed at maintaining the correspon-
dence between image embeddings across dif-
ferent resolutions and mitigating the excessive

growth of position IDs caused by dynamic
adjustments to higher resolutions. Our ex-
periments on the architecture and datasets of
LLaVA-Next confirm the effectiveness of ID-
Align.

2 Background & Related Work
2.1 Vision Language Model

LLMs have exhibited outstanding cognitive and
reasoning capabilities. This has naturally prompted
the idea of utilizing these models as a foundational
basis for processing visual information. A com-
mon practice is to employ a projector to connect
a pre-trained LLM with a visual encoder, thereby
enabling the LLM to interpret visual information
(Zhang et al., 2024a). For image inputs I;pqge, it
is usual to first encode them using vision encoders
such as SigLIP (Zhai et al., 2023) or CLIP (Radford
et al., 2021) ViT (Dosovitskiy, 2020):

Fimage = VE(Iimage) (1)

Subsequently, the projector processes the encoded
image features Fip,qge:

Bmage = ProjeCtOT(Fimagea Itext) (2)

where I, represents the text input. In certain ar-
chitectures, such as BLIP-2 (Li et al., 2023a), l;c.t
also interacts with Fj;, 4. at this stage. Following
this, the LLM backbone processes ;.. alongside
Piage» generating the corresponding output:

OUtPUt = LLM(Itemta Pimage) (3)

The architecture of the projector has many possible
designs, and currently, a mainstream choice is to
use a two-layer Multilayer Perceptron (MLP) to
process Fiqge independently of e, as exempli-
fied by the LLaVA architecture (Liu et al., 2024d):

Pimage - MLP(Fimage) (4)

2.2 Dynamic High-resolution

The performance of VLMs can be influenced by
a variety of factors, with the resolution of input
images and the number of image tokens playing a
crucial role (Li et al., 2024a).

Therefore, a reasonable approach is to use
higher-resolution image inputs to obtain a greater
number of image embeddings. However, ViTs
are designed to handle images of a fixed resolu-
tion only. Currently, a mainstream approach is to
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Figure 1: Intuitive presentation of the original high-resolution method and ID-Align.

upsample the original image to a higher resolu-
tion and then divide the high-resolution image into
crops that are suitable for processing by ViTs. Sub-
sequently, both the original image and the crops
are processed separately. This approach has been
widely embraced by a multitude of leading VLMs
(Dai et al., 2024; Deitke et al., 2024; Wu et al.,
2024; Chen et al., 2024b; Liu et al., 2024b).

For an input image of dimensions (Ho, W), the
process involves resizing it into a lower-resolution
image, denoted as I;,,, with dimensions (H,, W),
where (H,, W,) refer to the height and width di-
mensions that the ViT can process, and also upscal-
ing it to a higher resolution based on its aspect ratio,
resulting in I},;4p, with dimensions (mx*H,, nxW,).
For the I;,,,, a ViT directly encodes it. In contrast,
for the Ip;gp, it is cropped into m - n segments,
each of size (H,, W, ), which are encoded sepa-
rately. Since m and n are typically selected from a
set of preset values based on the aspect ratio of the
image, this method is referred to as "dynamic".

The visual embeddings obtained from the high-
resolution image are then rearranged, flattened,
and combined with the embedding from the low-
resolution image. This combined representation is
processed by a projector before being fed into the

LLM. The procedure is illustrated by Figure 1a.

This strategy allows for more detailed image in-
formation to be captured and processed. Notably,
while some models such as Qwen2-VL (Wang
et al., 2024) have integrated modified ViTs, such
as NaViT (Dehghani et al., 2024), capable of han-
dling varied input sizes directly, this remains an
exception rather than the norm.

2.3 RoPE

The sequential nature of natural language is pivotal
for understanding its semantics. However, the at-
tention mechanism employed in the Transformer
(Vaswani, 2017) architecture does not inherently
capture this sequential information. Consequently,
it is essential to incorporate positional encoding
within the Transformer model to enable the pro-
cessing of sequence-dependent information. For
the query g with the position ID m and key k with
the position ID n, positional encoding is applied to
incorporate positional information into them:

~

g = PE(q,m),k = PE(k,n) (5)

Positional encoding can be implemented in var-
ious ways (Gehring et al., 2017; Liu et al., 2020;
Shaw et al., 2018; Dai, 2019; Raffel et al., 2020;



He et al., 2020; Wang et al., 2019). Nowadays, in
the choice of positional encoding methods, Rotary
Position Embedding (RoPE) (Su et al., 2024) has
become a prevalent encoding method. The imple-
mentation of RoPE is as follows:

RoPE(q,m) = Ring ©)
where:

Ay 0 0
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Where d is the dimensionality of q, 6 is a hyperpa-
rameter, typically taking values ranging from 10*
to 107,

ROoPE exhibits several key characteristics:

* ROoPE can be described as a form of absolute
positional encoding because it uses the abso-
lute positions of tokens during the encoding
process. However, it also exhibits properties
of relative positional encoding due to its math-
ematical property:

(Rma)" (R:k) = @' RL R,k

= qTRn—mk 10

* ROPE exhibits a characteristic of long-range

decay: for a query q at position m and a key

k at position n, after encoding with RoPE,

the dot product (R,,q)” (R, k) generally de-

creases as the absolute value of |m — n| in-
creases.

¢ The value of 6 controls the positional encod-
ing’s sensitivity to positional differences. A
smaller § makes the model more sensitive
to position changes, whereas a larger one fa-
cilitates the capture of long-range dependen-
cies. Generally, the value of 6 should increase
as the training length increases (Men et al.,
2024).

In the domain of VLMs, researchers are explor-
ing modifications to RoPE to better accommodate

multimodal features. Approaches such as CCA
(Xing et al., 2025) and PyPE (Chen et al., 2025)
aim to reconfigure position IDs from distinct an-
gles, whereas V2PE (Ge et al., 2024) narrows the
incremental scale of positional encodings specif-
ically for image embeddings. Despite these ad-
vancements, none of these proposed methods suffi-
ciently consider the prevalent application of super-
resolution techniques—a critical aspect of the cur-
rent technological landscape.

3 Motivation

Let’s first review the mainstream methods. Assum-
ing an image input with the shape of (Hy, Wp),
with Hy > W), it is first resized to dimensions
(H,, W,) to be suitable for processing the ViT. Sub-
sequently, this image is super-resolved to dimen-
sions (mH,,nW,) to obtain a greater number of
visual tokens. Employing a ViT with patch size p
to encode the input image, we derive a sequence of
(H,W,)/p? + (mnH,W,)/p? image embeddings.
After adding new-line tokens, we get (H,W,)/p?+
(mnH,W,)/p? + nW,/p image embeddings Fol-
lowing the conventional processing method, we
treat image embeddings in the same manner as text
embeddings. Assuming the position ID of the first
image embedding in the entire image-text sequence
is 7 , according to this approach, the position IDs
of this image token sequence will range from i to
i+ (H,W,)/p* + (mnH,W,) /p? + nW,/p — 1
. Based on these position IDs, RoPE is applied to
the image tokens.

Due to the long-distance decay characteristic of
ROPE, this method encounters the following issues.

3.1 Long-Distance Decay Issue

Taking a CLIP ViT with a patch size of 14 and
a resolution of 336 x 336 as an example, if the
input image is first resized to 336 x 336 and then
upsampled to 672 x 672, followed by cropping
into four 336 x 336 sections. Encoding both the
low-resolution image and the four crops results
in 24 x 24 X 5 + 24 x 2 = 2928 image tokens.
If we adopt a ViT that generates an even greater
number of image tokens or upscale the image to
an even higher resolution, this issue becomes more
pronounced. Considering the long-distance decay
characteristic of RoPE, this abundance of image
tokens leads to the model’s inability to effectively
handle interactions between image tokens and text
tokens.



3.2 Neglect of Correspondence

The ViT trained with CLIP or SigL.IP demonstrates
shortcomings in terms of fine-grained perception
(Tong et al., 2024). The dynamic super-resolution
method employs a ViT to encode particular seg-
ments of the source image, facilitating the ex-
traction of finer details. This technique relies on
high-resolution embeddings to capture detailed,
fine-grained features, while low-resolution embed-
dings encapsulate broader, more generalized at-
tributes. There exists a correspondence between
these two types of embeddings; if this relation-
ship is effectively leveraged, it can better integrate
local and global information, thus enhancing fine-
grained perception, and multi-instance perception.
For example, in the mini-Gemini model (Li et al.,
2024c), the mechanism is designed such that dur-
ing cross-attention calculations, low-resolution em-
beddings engage solely with their corresponding
high-resolution embeddings. However, the current
method of assigning position IDs overlooks this
relationship. This issue manifests in two key areas.

On one hand, when the embedding of high-
resolution images interacts with their correspond-
ing low-resolution counterparts, this correspon-
dence is not effectively preserved. In the compu-
tation of the dot product of query and key values
within the attention mechanism for high-resolution
image crops and the low-resolution image, long-
distance decay reduces the correlation between
these tokens. This effect is particularly pronounced
for tokens located in the bottom-right corner of the
high-resolution image, which are the farthest from
their corresponding regions in the low-resolution
image. Concerning the tokens located at the lower
right corner, it is observed that, compared to their
corresponding low-resolution tokens, numerous
high-resolution tokens exhibit closer proximity in
terms of their position IDs. Conversely, the cor-
responding low-resolution tokens are situated at
a noticeable distance. This spatial arrangement
poses a challenge in differentiating the associated
low-resolution tokens from other low-resolution
tokens.

Another critical aspect lies in the interaction
between image embeddings and text embeddings.
In the calculation of the dot product of query and
key values between text embeddings and image
embeddings, significant differences in position IDs
between high-resolution image embeddings and
their corresponding low-resolution image embed-

dings can hinder the model’s ability to capture
the correspondence between low-resolution and
high-resolution regions.

The dynamic characteristics of the aforemen-
tioned upsampling approach additionally serve to
obscure these correspondences. The variability
in the number of high-resolution embeddings re-
sults in discrepancies in the distances between
high-resolution embeddings and their correspond-
ing low-resolution counterparts across images with
differing aspect ratios.

Consequently, it is necessary to explore and im-
plement additional methodologies that can effec-
tively preserve such correspondences.

4 Methods

Considering the operational mechanism of a casual
language model and the implementation form of
RoPE (Rotary Position Embedding), it is the rel-
ative positional relationship that dictates whether
attention computation occurs. The difference in
position IDs between entities represents the true
distance, rather than the distance based on embed-
dings within the sequence. Therefore, without al-
tering the order of embeddings, one viable method
to modify the interaction patterns among embed-
dings involves adjusting their position IDs. By
assigning closer position IDs to corresponding im-
age embeddings, it becomes possible to enhance
their attention score during the computation pro-
cess. Adopting this viewpoint, we have reorganized
the position IDs assigned to image embeddings,
meticulously aligning the embeddings derived from
high-resolution images with their corresponding
counterparts in low-resolution images. This align-
ment is aimed at boosting their attention scores.
We denote this strategy as ID-Align. Our approach
is as follows:

* For the embeddings of low-resolution images,
we adopt the same position IDs as those used
in the previously established approach.

* For the embeddings of high-resolution images,
we adjust their embeddings to match the posi-
tion IDs of their corresponding low-resolution
embeddings.

The algorithm is presented in Algorithm 1. We

provide an illustrative example in Figure 1b.
Through the reorganization of position IDs, the

"distance" between low-resolution embeddings and



their corresponding high-resolution embeddings is
reduced. This adjustment not only brings related
embeddings closer in terms of positional encoding
but also effectively restricts the growth of position
IDs. Consequently, this approach prevents the is-
sue of position IDs increasing by thousands when
processing a single image, which could otherwise
lead to exceeding the maximum position ID values
encountered during training.

Algorithm 1 ID-Align with RoPE
Require:
1: Fiext: Sequence of text embeddings
2: Ejow: Sequence of low-resolution image em-
beddings
3: Ehign: Sequence of high-resolution image em-
beddings
4: M : Ehigh — Elow : Return the Ejoy corre-
sponding to Ehgp
Ensure:
5: max_pid < 0
6: Emerged — Concat(Etexh Eiow, Ehigh)
7: for each embedding ¢; € Eperged do
8: if e; € Fiext U Elow then

9: pos_id(e;) < max_pid

10 max_pid < max_pid + 1

11: else if e; € Eyjgn then

12: pos_id(e;) + pos_id(M(e;))

13: max_pid < max(max_pid, M(e;) +
)

14: end if

15: end for

16: function APPLYROTARYENCODING(Eperged)

17: for each e; € Eyerged do

18: e; < ROPE(e;, pos_id(e;))
19: end for

20: return Fyerged

21: end function

5 Experiments and Results

5.1 Experiments Setup

We adopted the LLaVA-Next architecture (Liu
et al., 2024c), utilizing Vicuna-1.5 7B (Zheng et al.,
2023) as the base model and CLIP ViT-L/14 (336)
(Radford et al., 2021) as the visual encoder. For
training data, we used the dataset provided by
LLaVA-Next (Liu et al., 2024c). As for the hy-
perparameter settings, we adopted the configura-
tions from Open-LLaVA-Next (Chen and Xing,

2024). We will also list these hyperparameters
in Appendix A.

The Vicuna model employs a RoPE @ value of
10*, indicating it is relatively sensitive to positional
changes. Given this characteristic, we opted for the
Qwen-2.5-7B-Instruct (Yang et al., 2024) model
with a 6 value of 107 , alongside using SigLip
400M (Zhai et al., 2023) as the visual encoder.
Compared to the Vicuna and CLIP models, these
selections offer enhanced capabilities.

All experiments were conducted using eight
A800 GPUs.

5.2 Benchmarks

Focusing on the overall and various hierarchical
capabilities of models, we primarily adopted three
benchmarks—MMBench (Liu et al., 2024e), MME
(Yin et al., 2023), and MMStar (Chen et al., 2024a).
Additionally, SeedBench-2-Plus (Li et al., 2024b)
and AI2D (Kembhavi et al., 2016) were utilized
to assess the models’ capability in processing rich
text images such as charts, maps, and web pages.
RealWorldQA was employed to evaluate the mod-
els’ effectiveness in handling real-world images,
whereas POPE (Li et al., 2023b) was used to exam-
ine the phenomenon of model hallucinations. To
evaluate the model’s performance on QA tasks, we
will utilize the VQAV2 (Goyal et al., 2017) and
ScienceQA (Lu et al., 2022) datasets. We utilized
LMMS-Eval (Zhang et al., 2024b) for the evalua-
tion of our model.

5.3 Results and Analysis

The primary experimental results are shown in Ta-
ble 1. As can be observed from the table, the
adoption of ID-Align has led to improvements in
the model’s performance metrics across various
benchmarks. When using Vicuna and CLIP as
pre-training models, there was a notable improve-
ment across all benchmarks, with the exception of
the perception subcategory in MME. However, the
overall score for MME still showed an increase.
These benchmarks cover a broad spectrum of ca-
pabilities, indicating the effectiveness of our ap-
proach. When employing Qwen2.5, which has
a RoPE 6 value of 107, and SigLIP as the base
models, the performance gains were observed to
decrease, and there was a decline in performance
on several benchmarks. This observation aligns
with our analysis, which suggests that these models
are relatively insensitive to changes in positional
encoding. However, after adopting ID-Align, the
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Figure 2: The layer-wise attention visualization from the first to the thirty-second layer, with a stride of four, under
conditions with and without ID-Align. Each subplot’s first row represents the scenario without ID-Align, whereas
the second row shows the results with ID-Align applied. Specifically, 2a refers to a query from an embedding
located at the bottom right corner of the high-resolution image, while 2b corresponds to a query from the central
embedding of the high-resolution image. The original image is sourced from the mmbench-test and depicts a map

of Europe.

overall performance of the model showed an in-
creasing trend.

In the appendix B, we also plot the learning
curve. From these curves, it can be observed that
after applying ID-Align, the training loss is slightly
lower during the latter half of the training phase
compared to when not using ID-Align. Addition-
ally, the gradient norm is notably lower, indicating
that the model is closer to achieving convergence.
This effect is especially pronounced on Vinuca.

To further investigate which specific capabilities
contributed most to the observed growth in bench-
mark performance, we have detailed the changes
in various sub-metrics of MMbench, as shown in
Table 2. We have also listed the subtasks of MM-
Bench in Appendix C. As can be observed, when
using vinca as the LLM base, although all sub-
indicators showed improvement, the most signifi-
cant growth was seen in the FP-S, FP-C, and RR
metrics. Meanwhile, when employing qwen as
the LLM backbone, it was the FP-C, RR, and LR
metrics that maintained their growth. These sub-
indicators are all related to fine-grained perception,

with FP-C and RR also involving scenarios with
multiple instances.

We also evaluated the performance of ID-Align
in a training-free scenario on MMBench, where ID-
Align was not employed during the training phase
but was applied during inference. The results are
shown in Table 2. It can be observed from the table
that, in the training-free setting, the model’s ca-
pability for fine-grained cross-instance perception
and reasoning still improves, albeit with a smaller
margin. However, its performance regarding single-
instance tasks declines.

To better understand the reasons behind the
changes, we also generated attention visualization
images, as shown in Figure 2. The figure demon-
strates that, relative to the baseline, the utiliza-
tion of ID-Align increases the attention weights as-
signed to high-resolution image embeddings when
mapped onto their corresponding low-resolution
areas. This effect is especially pronounced for em-
beddings derived from the bottom right corner of
the image. These findings are consistent with our
previous analytical predictions.



Model MMBench,; MMStar RealWorldQA SEEDB2-Plus POPE@ACC
Vicuna
w/o ID-Align  64.46 36.65 58.69 52.04 87.49
w/ ID-Align 67.79 (+333) 38.12 +1477  59.18 (+0.49) 53.27 +1.23) 87.61 (+0.12)
Qwen
w/o ID-Align  78.14 50.53 64.18 61.00 89.17
w/ ID-Align 78.48 +0.34 50.14 039 63.79 -0.39) 62.06 (+1.06) 89.16 (0.01)
MME AI2D VQAV2,. SQA;g
cognition perception
Vicuna
w/o ID-Align  248.93 1502.72 64.77 76.86 69.11
w/ ID-Align  298.57 +49.64) 1482.52 202y  65.84 (+1.07) 79.88 (+3.02) 70.10 (+0.99)
Qwen
w/o ID-Align  348.93 1530.18 74.84 79.88 80.61
w ID-Align  349.64 071 1560.51 +3033) 75.13 (+0.29) 80.25 +0.37) 81.06 (+0.45)
Table 1: Performance on Different Benchmarks with and without ID-Align
Model MMBench Test
CP FP-S FP-C AR RR LR
Vicuna
w/o ID-Align  76.02 66.33 57.09 76.39 52.13 34.68
w/ ID-Align  77.73 171y 7111478 63.16 w607y 7813 +1.74) 57.35¢s522)  37.57 (+2.89)
Training-Free  77.09 +1.07  65.33 100 57.89 +080) 78.12+1.73) 54.98 285  38.15 (+3.47)
Qwen
w/o ID-Align  83.73 81.91 71.26 84.38 75.83 56.65
w/ ID-Align  82.87 086) 81.91000) 72.87 +161) 83.33¢105) 77.72¢189) 59.54 (+2.89)
Training-Free  83.94 w021y 81.66 025 72.47 +121) 85.07 +069) 75.83+000  58.38 (+1.73)

Table 2: The table presents the results on sub-metrics from the MMBench-Test. Specifically, CP stands for Coarse
Perception, FP-C represents Fine-grained Perception (cross-instance), FP-S denotes Fine-grained Perception
(single-instance), AR refers to Attribute Reasoning, LR indicates Logical Reasoning, RR represents Relation

Reasoning.

6 Conclusion

In this paper, we analyze the potential issues of
the dynamic high-resolution strategies adopted by
current VLMs. Based on our analysis, we propose
ID-Align: a method that aligns the position IDs of
high-resolution embeddings with their correspond-
ing low-resolution embeddings, preserving their
relationship and constraining excessive growth in
position IDs. We conducted experiments on the
LLaVA-Next architecture, demonstrating the effec-
tiveness of our approach—even when employing
models with very large RoPE 6 values, which are
not sensitive to changes in position IDs.

7 Limitation

Our study is subject to two primary limitations.
Firstly, we have not explored the performance
of our approach at larger resolutions involving a
higher number of image tokens. Given that certain
contemporary models are designed to process ultra-
high-resolution images resulting in tens of thou-
sands of image tokens, these extended sequence
lengths present significant challenges. Secondly,
our experimental design focused exclusively on
single-image datasets, neglecting both multi-image
scenarios and the opportunity to integrate with
prevalent token reduction strategies.
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A Training Scripts

The decision to utilize ID-Align can be controlled
by setting the value of use-id-align. 4
In our experiment, we selected the most suitable
high resolution based on the aspect ratio of the s
images. However, during upsampling, we did not °
maintain the aspect ratios nor did we perform any \/
padding. 9

10
Listing 1: The script for the LLaVA-Next pretrain phase,
using Vicuna and CLIP as the LLM backbone and v1sual
encoder, respectively.

nnodes=1 1
num_gpus=8 1
deepspeed --num_nodes ${nnodes} -- 1
num_gpus ${num_gpus} --master_port 16
=10270 llava/train/train_mem.py \
--deepspeed ./scripts/zero2.json \ I
--model_name_or_path ${MODEL_PATH} \ |
--version plain \ 10
--data_path ${DATA_PATH} \ 11
--image_folder ${IMAGE_FOLDERZ} \
--vision_tower ${VISION_TOWER} \ 1
--mm_projector_type mlp2x_gelu \ 3
--tune_mm_mlp_adapter True \
--unfreeze_mm_vision_tower False \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \ 15
--mm_patch_merge_type spatial_unpad 4
\ 17
--image_aspect_ratio anyres \ 18
--group_by_modality_length False \ 19
--bf16 True \ 0
--output_dir ./checkpoints/${ 1
RUN_NAME } \ 2
--num_train_epochs 1 \ 3
--per_device_train_batch_size 8 \ 4
--per_device_eval_batch_size 4 \ 5
--gradient_accumulation_steps 4 \ 6
--evaluation_strategy "no” \ 7

--image_grid_pinpoints "[(336, 672), ®
(672, 336), (672, 672), (1008, 1o
336), (336, 1008)1" \ 40
--use_id_align True \ 41

--save_strategy "steps"” \
--save_steps 24000 \
--save_total_limit 1 \
--learning_rate 1e-3 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--1lr_scheduler_type "cosine” \
--logging_steps 1 \

--tf32 True \
--model_max_length 4096 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--lazy_preprocess True \
--report_to None \

--run_name ${RUN_NAME}

Listing 2: The script for the LLaVA-Next finetune phase,
using Vicuna and CLIP as the LLM backbone and visual
encoder, respectively.

nnodes=1
num_gpus=8

deepspeed --num_nodes ${nnodes} --
num_gpus ${num_gpus} --master_port
=10271 llava/train/train_mem.py \
--deepspeed ./scripts/zero3.json \
--model_name_or_path ${MODEL_PATH} \
--version v1 \
--data_path ${DATA_PATH} \
--image_folder ${IMAGE_FOLDER} \
--pretrain_mm_mlp_adapter ./

checkpoints/${BASE_RUN_NAME}/
mm_projector.bin \

--unfreeze_mm_vision_tower True \
--mm_vision_tower_1lr 2e-6 \
--vision_tower ${VISION_TOWER} \
--mm_projector_type mlp2x_gelu \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--use_id_align True \
--mm_use_im_patch_token False \
--group_by_modality_length True \
--image_aspect_ratio anyres \
--mm_patch_merge_type spatial_unpad

\
--bf16 True \
--image_grid_pinpoints "[(336, 672),
(672, 336), (672, 672), (1008,
336), (336, 1008)1" \
--output_dir ./checkpoints/${
RUN_NAME} \

--num_train_epochs 1 \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 2 \
--evaluation_strategy "no” \
--save_strategy "steps” \
--save_steps 1000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--1lr_scheduler_type "cosine” \
--logging_steps 1 \

--tf32 True \

--model_max_length 4096 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
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4

--lazy_preprocess True \ 7
--report_to none \ 3
--run_name ${RUN_NAME?} 9

Listing 3: The script for the LLaVA-Next pre-train
phase, using Qwen and SigLIP as the LLM backbone i1
and visual encoder, respectively. 2

nnodes=1 |

num_gpus=8 |

deepspeed --num_nodes ${nnodes} -- |
num_gpus ${num_gpus} --master_port |
=10270 llava/train/train_mem.py \
--deepspeed ./scripts/zero2.json \ |
--model_name_or_path ${MODEL_PATH} \
--version plain \ |
--data_path ${DATA_PATH} \
--image_folder ${IMAGE_FOLDER} \
--vision_tower ${VISION_TOWERZ} \
--mm_projector_type mlp2x_gelu \
--tune_mm_mlp_adapter True \
--unfreeze_mm_vision_tower False \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--mm_use_im_patch_token False \
--mm_patch_merge_type spatial_unpad |

\

--image_aspect_ratio anyres \
--group_by_modality_length False \

--bf16 True \
--output_dir ./checkpoints/${ ,
RUN_NAME} \ I
--num_train_epochs 1 \ N
--per_device_train_batch_size 8 \ <
--per_device_eval_batch_size 4 \ 1
--gradient_accumulation_steps 4 \ B
--evaluation_strategy "no"” \ 1
--image_grid_pinpoints "[(384, 768), |
(768, 384), (768, 768), (1152, 0
384), (384, 1152)1" \ J;
--use_id_align True \ )
--save_strategy "steps” \ 5

--save_steps 24000 \
--save_total_limit 1 \
--learning_rate 1e-3 \
--weight_decay 0. \
--warmup_ratio ©0.03 \
--lr_scheduler_type "cosine” \
--logging_steps 1 \

--tf32 True \
--model_max_length 32768 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--lazy_preprocess True \
--report_to none \

--run_name ${RUN_NAME?}

Listing 4: The script for the LLaVA-Next finetune phase,
using Qwen and SigLIP as the LLM backbone and vi-
sual encoder, respectively

nnodes=1

num_gpus=8

deepspeed --num_nodes ${nnodes} --
num_gpus ${num_gpus} --master_port
=10271 llava/train/train_mem.py \
--deepspeed ./scripts/zero3.json \
--model_name_or_path ${MODEL_PATH} \
--version ${PROMPT_VERSIONZ} \
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--data_path ${DATA_PATH} \
--image_folder ${IMAGE_FOLDERZ} \
--pretrain_mm_mlp_adapter ./
checkpoints/${BASE_RUN_NAME }/
mm_projector.bin \
--unfreeze_mm_vision_tower True \
--mm_vision_tower_1lr 2e-6 \
--vision_tower ${VISION_TOWER} \
--mm_projector_type mlp2x_gelu \
--mm_vision_select_layer -2 \
--mm_use_im_start_end False \
--use_id_align True \
--mm_use_im_patch_token False \
--group_by_modality_length True \
--image_aspect_ratio anyres \
--mm_patch_merge_type spatial_unpad

\
--bf16 True \
--image_grid_pinpoints "[(384, 768),
(768, 384), (768, 768), (1152,
384), (384, 1152)1" \
--output_dir ./checkpoints/${
RUN_NAME } \

--num_train_epochs 1 \
--per_device_train_batch_size 8 \
--per_device_eval_batch_size 4 \
--gradient_accumulation_steps 2 \
--evaluation_strategy "no” \
--save_strategy "steps” \
--save_steps 1000 \
--save_total_limit 1 \
--learning_rate 2e-5 \
--weight_decay 0. \
--warmup_ratio 0.03 \
--1lr_scheduler_type "cosine" \
--logging_steps 1 \

--tf32 True \

--model_max_length 32768 \
--gradient_checkpointing True \
--dataloader_num_workers 4 \
--lazy_preprocess True \
--report_to none \

--run_name ${RUN_NAME}

B Learning Curve

These plots were generated using a sliding average
window with a window length of 100.
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C MDMBench Leaf Tasks

Coarse Perception:
* Image Style
* Image Topic
* Image Scene
* Image Mood

* Image Quality

Fine-grained Perception (Single-instance):

* Attribute Recognition
* Celebrity Recognition

* Object Localization




* OCR

Fine-grained Perception (Cross-instance):

» Spatial Relationship

* Attribute Comparison
* Action Recognition
Attribute Reasoning:

* Physical Property Reasoning
* Function Reasoning

e Identity Reasoning
Relation Reasoning:

* Social Relation

* Nature Relation

* Physical Relation
Logic Reasoning:

* Future Prediction

e Structuralized Image-text Understanding
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