
GraphSPNs: Sum-Product Networks Benefit From Canonical Orderings

Milan Papež1 Martin Rektoris1 Václav Šmídl1 Tomáš Pevný1

1Artificial Intelligence Center, Czech Technical University, Prague, Czech Republic

Abstract

Deep generative models have recently made re-
markable progress in capturing complex probabil-
ity distributions over graphs. However, they are
intractable and thus unable to answer even the
most basic probabilistic inference queries without
resorting to approximations. Therefore, we pro-
pose graph sum-product networks (GraphSPNs), a
tractable deep generative model that provides ex-
act and efficient inference over (arbitrary parts of)
graphs. We investigate different principles to make
SPNs permutation invariant. We demonstrate that
GraphSPNs can (conditionally) generate novel and
chemically valid molecular graphs, being compet-
itive to, and sometimes even better than, existing
intractable models. We find out that (Graph)SPNs
benefit from ensuring the permutation invariance
via canonical ordering.

1 INTRODUCTION

Graphs are a fundamental framework for representing real
or abstract objects and their hierarchical interactions in a
diverse range of scientific and engineering applications,
such as discovering new materials [Choudhary et al., 2022],
developing personalized diagnostic strategies [Chandak
et al., 2023], and estimating time of arrival [Derrow-Pinion
et al., 2021]. Nonetheless, designing probabilistic models for
graphs is challenging. Graphs can exhibit highly complex
and combinatorial structures, making it difficult to capture
their probabilistic behavior effectively. While traditional
approaches struggle to handle this problem, deep generative
models—which rely on expressive graph neural networks
[Wu et al., 2020, Zhang et al., 2020]—have recently made
significant progress in this direction [You et al., 2018, Si-
monovsky and Komodakis, 2018, De Cao and Kipf, 2018,
Shi et al., 2020, Jo et al., 2022].

The complication with these models is their limited abil-
ity to carry out probabilistic inference tasks beyond mere
sampling and, typically, exact likelihood evaluation. For ex-
ample, arbitrary conditioning with an already trained model
allows us to sample conditionally on an existing (part of
a) graph. The conditioning significantly reduces the space
of possible solutions, which is enormous in some domains
[Reymond et al., 2012]. Other inference mechanisms, in-
cluding marginalization, maximum a posteriori estimation,
and expectation, have great potential in designing graphs
with desired profiles.

Sum-product networks (SPNs) [Poon and Domingos, 2011]
are deep generative models for fixed-size tensor data. Their
essential feature is that they are tractable, which means
that—under certain assumptions—they guarantee to answer
a large family of complex probabilistic queries exactly and
efficiently [Vergari et al., 2021, Choi et al., 2020]. The ex-
isting work on SPNs for graphs is limited to representation
learning [Zheng et al., 2018, Errica and Niepert, 2023].
Therefore, we propose GraphSPNs, deep (one-shot) genera-
tive models for tractable probabilistic inference on graphs.
There are two main challenges in designing such models.
(i) SPNs are probability distributions defined on a fixed-
dimensional space. Hence, we have to deal with the fact that
each instance of a graph has a different number of nodes and
edges. (ii) Graphs are permutation invariant objects [Veitch
and Roy, 2015]. Consequently, our models must be agnostic
to re-ordering the nodes in a graph. In other words, the prob-
ability of a graph has to remain unchanged when permuting
the nodes (we want to recognize the same graph up to all
its permutations). We address (i) in a pragmatic way, using
virtual nodes. This principle is frequently adopted in deep
generative models for graphs [Madhawa et al., 2019]. How-
ever, the real difficulty is to deal with (ii). Indeed, learning
a permutation invariant distribution is hard since the num-
ber of modes of the target data distribution is much higher
than a non-invariant, canonical distribution. Therefore, this
paper investigates different techniques to make GraphSPNs
permutation invariant.

Accepted for the 7th Workshop on Tractable Probabilistic Modeling at UAI (TPM 2024).

mailto:<papezmil@fel.cvut.cz>?Subject=GraphSPNs: Sum-Product Networks Benefit From Canonical Orderings

(a) Graph representation

X

.

.

.

.

.

.

1

n

n+1

m

A

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

. . .

. . .

. . .

.

. . .

. . .

. . .
. . .

. . .
.
.
.

.

.

.

. . .

. . .

. . .

1

n

n+1

m
1 nn+1 m

(b) Virtual node-padding

X1
. . .

A1
.

Xn
. . .

An
.

Xn+1
. . .

An+1
.

Xm
. . .

Am
. . .

p
spn
m,n

1 2

. .

m(m+1)

Figure 1: Graph representation. (a) Let G be a graph represented by a feature matrix, X ∈ Xn, and an adjacency tensor, A ∈ An×n. We
consider each instance of G (highlighted in green and blue) to have a random number of nodes, n ∈ (0, 1, . . . ,m), but we expect it to
have at most m nodes. The remaining places (white) are empty and are not included in the training data. (b) Virtual node-padding fills in
the empty places with virtual nodes (grey), which requires us to extend X by an extra category, X := (0, 1)q+1.

2 BACKGROUND

Sum-product networks. A tensorized SPN [Peharz et al.,
2020a,b, Loconte et al., 2024] is a deep learning model of
a probability distribution, p(X), over a fixed-size tensor,
X ∈ X . The network contains several layers of compu-
tational units (similar to neural networks [Vergari et al.,
2019]). Each layer is defined over its scope, ψ ⊆ X , i.e., a
subset of the input. There are three types of layers, depend-
ing on the units they encapsulate: sum layer LS, product
layer LP, and input layer LI. The units of input layers are
user-defined probability distributions, pi(ψ). For nI units,
an input layer computes pi(ψ) for i ∈ (1, . . . , nI) and out-
puts an nI -dimensional vector of probabilities l. The units
of product layers are factored distributions, applying con-
ditional independence over a pair-wise disjoint partition of
their scope. A product layer receives outputs from n lay-
ers, (l1, . . . , ln), and computes either an Hadamard product,
l = ⊙n

i=1li, or Kronecker product, l = ⊗n
i=1li. The units

of sum layers are mixture distributions. For nS units, a sum
layer receives an n-dimensional input, l, from a previous
layer and computes Wl, where W is an nS × n matrix of
row-normalized weights. The output (layer) of a tensorized
SPN is typically a sum layer.

The key benefit of SPNs is that they provide tractable in-
ference over arbitrary subsets of X . However, to this end,
the sum units have to satisfy smoothness, the product units
have to satisfy decomposability, and the input units have to
be tractable [Choi et al., 2020, Vergari et al., 2021].

Permutation invariance. Exchangeable data structures,
including sets, graphs, partitions, and arrays [Orbanz and
Roy, 2014], have a factorial number of possible config-
urations (orderings). Permutation invariance says that no
matter a selected configuration, the probability of an ex-
changeable data structure has to remain the same. To de-
fine the permutation invariance of a probability distribu-
tion, let Sn be a finite symmetric group of a set of n
elements. This is a set of all n! permutations of [n] :=
(1, . . . , n), where any of its members, π ∈ Sn, permutes
an n-dimensional vector, X := (X1, . . . , Xn), as follows:
πX = (Xπ(1), . . . , Xπ(n)). The probability distribution p
is permutation invariant iff p(X) = p(πX) for all π ∈ Sn.

X is permutation invariant if p(X) is.

SPNs are only partially permutation invariant [Papež
et al., 2024], and so, for this paper, we consider SPNs as
permutation-sensitive distributions.

Problem definition. LetG := (X,A) be an n-node graph
characterized by a feature matrix, X ∈ Xn, and an adja-
cency tensor, A ∈ An×n. For example, to express G with q
types of nodes and r types of edges, we use one-hot encod-
ing to define X := (0, 1)q and A := (0, 1)r+1, where the
extra category (+1) in A is to reflect the fact that there can be
no connections between two nodes. Our objective is to learn
a tractable probability distribution over graphs, p(G), given
a collection of observed graphs, (G1, . . . , GN), where each
Gi has a different number of nodes and edges. We would
like our GraphSPNs to inherit the ability to tractably answer
the same inference quires as the conventional SPNs.

3 GRAPH SUM-PRODUCT NETWORKS

A graph sum-product network (GraphSPN) is a probabil-
ity distribution over a graph, p(G), where G is random in
its values and size. We conveniently use the fact that G is
represented by the feature matrix and the adjacency tensor,
G := (X,A), and design the GraphSPN as a joint probabil-
ity distribution of X and A,

p(G) := gn(p
spn
m,n(X,A)), (1)

where gn is an operator ensuring the permutation invariance,
and pspn

m,n is a permutation-sensitive SPN, as described in
the next paragraph. The joint support of pspn

m,n leaves us with
many choices to reorganize the elements of X and A. We
first concatenate X and A to form an n by n+1 matrix and
then vectorize this matrix in a row-wise manner (Figure 1).
In this way, there is always a node followed by its associated
edges, (X,A) := (X1, A1, . . . , Xn, An), where Xi ∈ X
and Ai ∈ An are the ith slice of X and A along the first
dimension, respectively.

Virtual node-padding. SPNs assume fixed-size inputs
(Section 2). To deal with the varying size ofG, we design the
SPN in (1) as pspn

m,n(X,A) := pspn
m (paddingm,n(X,A)).

2

It is a composition of a padding operator, paddingm,n, and
a permutation-sensitive SPN, pspn

m , whose support (the root
scope) has the size m(m+ 1). paddingm,n extends X by
an extra category to express that there is no node at a specific
position in the graph. Consequently, each n-node instance
of G is filled in with virtual nodes (and associated virtual
edges) to match the maximal number of nodes, m, which
we expect in the training data (Figure 1b). This technique—
which we refer to as virtual node-padding—is often used in
deep generative models for graphs [Madhawa et al., 2019].

Exact permutation invariance. The general way to de-
sign permutation invariant p(G) is to make gn in (1) an
average over all permutations π ∈ Sn of (X,A),

p(G) :=
1

n!

∑
π∈Sn

pspn
m,n(πX, πA), (2)

where πA := (πAπ1 , . . . , πAπn). This approach can be
seen as artificially extending each instance of (X,A) to n!
of its permutations. All the components pspn

m,n of the mixture
(2) are an identical SPN, i.e., the components share the same
parameterization. This approach is computationally costly,
as it requires n! passes through pspn

m,n, the scope of which
has m(m+1) entries. Note that (2) is known as the Janossy
distribution [Daley and Vere-Jones, 2003].

Sorting. Any graph G has up to n! equivalent permuta-
tions, πG, π ∈ Sn. If we ensure that pspn

m,n always sees the
same, user-defined, canonical representation of G, then the
permutation invariance of (1) is guaranteed. One way to find
such a representation is to sort each instance of G before
entering pspn

m,n. Then, composing a sorting function, sort,
with pspn

m,n avoids the summation over n! terms in (2), and
thus circumvents the use of gn, as follows:

p(G) := pspn
m,n(sort(X,A)), (3)

where it holds that sort(πX, πA) =sort(X,A) for all
π ∈ Sn. The computational complexity of (3) depends on a
specific sorting algorithm, e.g., O(n log n). After the sort-
ing, there is the need for only a single forward pass through
pspn
m,n, a significant reduction compared to (2). However, cer-

tain orderings are more suitable than others [Montavon et al.,
2012, Niepert et al., 2016, Defferrard et al., 2016], and the
right ordering often depends on domain knowledge.

Approximate permutation invariance. The exact invari-
ance (2) is computationally infeasible for all but small
graphs. Indeed, even for G with, say, 8 nodes, we have
to perform 8! (40320) passes through pspn

m,n, which is pro-
hibitive when pspn

m,n is large. This permutation mechanism
will slow down the inference as well. For example, marginal-
izing out certain node(s) has to be done 8! times. Therefore,
we consider different ways to relax the exact permutation
invariance, which have been used to design approximately

permutation invariant neural networks, i.e., transformations
Ru → Rv [Murphy et al., 2019b,a, Wagstaff et al., 2022].
We cast them into their probabilistic interpretation, such that
they are probability distributions Ru → R+.

k-ary sub-graphs. The k-ary permutation invariance re-
duces the complexity of (2) by averaging over all k-node
induced sub-graphs of G,

p(G) :≈ (n− k)!

n!

∑
t∈Tk

n

pspn
k,n(Xt, Att). (4)

The k-node induced sub-graphs are represented by the fea-
ture sub-matrix, Xt := (Xt1 , . . . , Xtk) ∈ X k, and the adja-
cency sub-tensor,Att := (At1t1 , . . . , Atktk) ∈ Ak×k. They
are selected by a set of k indices, t := (t1, . . . , tk) ∈ Tk

n,
where Tk

n is the set of all ways to choose k elements out of
n unique elements (i.e., the set of all k-tuples of [n]). The
main benefit of this method is that (i) the scope of pspn

k,n has
a fixed size, k(k + 1), which also reduces the overall size
of pspn

k,n, and (ii) the number of passes through pspn
k,n is lower,

n!/(n− k)! < n!. The expressivity of this approach grows
with k. For k = 1, we obtain a probabilistic version of Deep
Sets [Zaheer et al., 2017], whereas for k = n, we recover (2).
For high k, we capture more dependencies among the nodes,
whereas for low k, we sacrifice some of them.

Random sampling. The exact invariance (2) is a marginal
distribution, p(G) :=

∑
π∈Sn p(π)p

spn
m,n(πX, πA), where

the permutation π is the latent variable, and p(π) := 1/n! is
the uniform distribution on Sn. This interpretation suggests
to reduce the complexity of the full permutation invariance
by approximating (2) with the random average,

p(G) :≈ 1

N

∑
π∈SNn

pspn
m,n(πX, πA). (5)

Here, SNn is a subset of N < n! random permutations from
the full set Sn, which are sampled without repetition. The
expressivity of (5) depends on N . Even for N = 1, we can
still achieve sufficient approximate permutation invariance,
assuming we draw a new sample at each training step and
perform the training sufficiently long. For N = n!, we
recover (2). In the inference regime, it is important to use
N ≫ 1. However, we can suffer from the risk of drawing
less meaningful permutations for a given graph.

4 EXPERIMENTS

We evaluate GraphSPNs in terms of their capacity to capture
the underlying data distribution and their ability to generate
realistic and novel graphs. We perform the experiments
in the context of the computational design of molecular
graphs. We provide the code at https://github.com/
mlnpapez/GraphSPN.

3

https://github.com/mlnpapez/GraphSPN
https://github.com/mlnpapez/GraphSPN

Figure 2: Conditional molecule generation on the QM9 dataset.
The blue area highlights the known part of the molecule. There is
one such known part per row. Each column corresponds to a new
molecule that is generated conditionally on the known part.

Molecule generation. Deep generative models for molec-
ular graphs have recently gained significant attention. They
hold great potential in important applications, such as dis-
covering drugs and materials with desired chemical proper-
ties. Given a dataset of molecular graphs, the task is to learn
a probability distribution of chemically valid molecules,
p(G). This is an intricate combinatorial problem, where not
all combinations of atoms and bonds can be connected, but
the connections must satisfy chemical valency constraints.
We want p(G) to generate molecules that were not seen
during the training and satisfy the chemical valency rules.

Dataset. We test GraphSPNs on QM9 [Ramakrishnan
et al., 2014] dataset, a standard benchmark often used to
assess deep generative models for molecular design. QM9
contains around 134k stable, small organic molecules with
at most 9 atoms of 4 different types.

Metrics. We adopt the standard metrics for the molecule
generation task. Validity (V) and Validity w/o check (V w/o
check) are the percentages of chemically valid molecules
(i.e., those not violating the chemical valency rules) in all
generated molecules with and without any correction mech-
anisms, respectively. Uniqueness (U) is the percentage of
all generated molecules that are valid and unique (i.e., not a
duplicate of some other generated molecule). Novelty (N) is
the percentage of valid molecules not in the training data.

GraphSPN variants. We consider the following Graph-
SPN variants: sort, k-ary, and rand that implement (3), (4),
and (5), respectively, and the none variant with no invari-
ance properties (gn in (1) is identity).

Results. Table 1 shows that all the GraphSPN variants
achieve 100% validity. This is because we use the posthoc
validity correction mechanism from [Zang and Wang, 2020]
to satisfy the valency rules. However, the effectiveness of
this correction depends on the validity w/o check. Naturally,
if we have to correct more (possibly large) molecules, this
quickly becomes computationally expensive. From this per-
spective, the sort variant delivers the best results, as its valid-

Model V V w/o check U N

GraphVAE 55.70 n/a 76.00 61.60
GVAE 60.20 n/a 9.30 80.90
CVAE 10.20 n/a 67.50 90.00
RVAE 96.60 n/a n/a 95.50
GraphNVP 83.10 n/a 99.20 58.20
GRF 84.50 n/a 66.00 58.60
GraphAF 100.00 67.00 94.20 88.80
GraphDF 100.00 82.70 97.60 98.10
MoFlow 100.00 89.00 98.50 96.40
ModFlow n/a 99.10 99.30 100.00
GraphSPN: none 100.00 19.75 100.00 99.49
GraphSPN: rand 100.00 15.38 100.00 99.67
GraphSPN: sort 100.00 81.62 98.65 69.08
GraphSPN: k-ary 100.00 2.10 100.00 98.30

Table 1: Unconditional molecule generation on the QM9 dataset.
The percentage of valid, valid w/o check, unique, and novel
molecules for intractable, permutation-sensitive models that all
rely on the canonical ordering of atoms (above) and the tractable
GraphSPNs with various forms of permutation invariance (below).

ity w/o check is highest. This result is because sort imposes
the canonical ordering of atoms in each molecule, which
is not satisfied by the other GraphSPN variants. pspn

m,n of
the none, rand, and sort variants has the same architecture.
Still, it is hard for the none and rand variants to capture the
underlying data distribution. This result leads us to conclude
that departing from the canonical ordering yields a more
complicated distribution (with more modes), which is harder
to capture sufficiently well, as evidenced by the poor ability
to learn the essence of this problem, i.e., the valency rules. In
the top of Table 1, we show baseline models (see Section C).
They are permutation-sensitive and also rely on the canoni-
cal ordering. We can see that the sort variant is competitive
to—and sometimes even outperforms—these baselines.

To illustrate that GraphSPNs provide tractable probabilistic
inference, Figure 2 displays conditional molecule generation
for the sort variant. Here, it can be seen that each molecule’s
newly generated part varies in size and composition.

5 CONCLUSION

The study of permutation invariance in the SPN community
has received limited attention. This paper has the ambition
to make a few steps towards improving upon this state. We
have investigated different ways of ensuring the permuta-
tion invariance of SPNs and proposed GraphSPNs, a novel
class of tractable deep generative models for exact and ef-
ficient probabilistic inference over graphs. We show that
GraphSPNs are competitive with existing deep generative
models for graphs. Among the proposed GraphSPN variants,
the best performance was achieved with the one based on
canonical ordering. This shows that the canonical ordering
simplifies the target data distribution and makes it easier for
an SPN—which is less densely connected than the models
based on neural networks—to be trained successfully.

4

Acknowledgements

The authors acknowledge the support of the GAČR grant
no. GA22-32620S and the OP VVV funded project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for
Informatics”.

References

Ole Barndorff-Nielsen. Information and exponential fami-
lies: In statistical theory. John Wiley & Sons, 1978.

Payal Chandak, Kexin Huang, and Marinka Zitnik. Building
a knowledge graph to enable precision medicine. Scien-
tific Data, 10(1):67, 2023.

Y Choi, Antonio Vergari, and Guy Van den Broeck. Proba-
bilistic circuits: A unifying framework for tractable prob-
abilistic models. UCLA. URL: http://starai. cs. ucla.
edu/papers/ProbCirc20. pdf, 2020.

Kamal Choudhary, Brian DeCost, Chi Chen, Anubhav Jain,
Francesca Tavazza, Ryan Cohn, Cheol Woo Park, Alok
Choudhary, Ankit Agrawal, Simon JL Billinge, et al. Re-
cent advances and applications of deep learning methods
in materials science. npj Computational Materials, 8(1):
59, 2022.

Daryl J Daley and David Vere-Jones. An introduction to the
theory of point processes: volume I: elementary theory
and methods. Springer, 2003.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit
generative model for small molecular graphs. arXiv
preprint arXiv:1805.11973, 2018.

Michaël Defferrard, Xavier Bresson, and Pierre Van-
dergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. Advances in neural
information processing systems, 29, 2016.

Austin Derrow-Pinion, Jennifer She, David Wong, Oliver
Lange, Todd Hester, Luis Perez, Marc Nunkesser, Seong-
jae Lee, Xueying Guo, Brett Wiltshire, et al. ETA pre-
diction with graph neural networks in Google maps. In
Proceedings of the 30th ACM International Conference
on Information & Knowledge Management, pages 3767–
3776, 2021.

Federico Errica and Mathias Niepert. Tractable proba-
bilistic graph representation learning with graph-induced
sum-product networks. arXiv preprint arXiv:2305.10544,
2023.

Rafael Gómez-Bombarelli, Jennifer N Wei, David Duve-
naud, José Miguel Hernández-Lobato, Benjamín Sánchez-
Lengeling, Dennis Sheberla, Jorge Aguilera-Iparraguirre,

Timothy D Hirzel, Ryan P Adams, and Alán Aspuru-
Guzik. Automatic chemical design using a data-driven
continuous representation of molecules. ACS central
science, 4(2):268–276, 2018.

Shion Honda, Hirotaka Akita, Katsuhiko Ishiguro, Toshiki
Nakanishi, and Kenta Oono. Graph residual flow
for molecular graph generation. arXiv preprint
arXiv:1909.13521, 2019.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Junc-
tion tree variational autoencoder for molecular graph gen-
eration. In International conference on machine learning,
pages 2323–2332. PMLR, 2018.

Jaehyeong Jo, Seul Lee, and Sung Ju Hwang. Score-based
generative modeling of graphs via the system of stochas-
tic differential equations. In International Conference on
Machine Learning, pages 10362–10383. PMLR, 2022.

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Matt J Kusner, Brooks Paige, and José Miguel Hernández-
Lobato. Grammar variational autoencoder. In Interna-
tional conference on machine learning, pages 1945–1954.
PMLR, 2017.

Greg Landrum et al. Rdkit: Open-source cheminformatics,
2006.

Lorenzo Loconte, Aleksanteri M Sladek, Stefan Mengel,
Martin Trapp, Arno Solin, Nicolas Gillis, and Antonio
Vergari. Subtractive mixture models via squaring: Repre-
sentation and learning. In The 12th International Confer-
ence on Learning Representations, 2024.

Youzhi Luo, Keqiang Yan, and Shuiwang Ji. GraphDF:
A discrete flow model for molecular graph generation.
In International conference on machine learning, pages
7192–7203. PMLR, 2021.

Tengfei Ma, Jie Chen, and Cao Xiao. Constrained gener-
ation of semantically valid graphs via regularizing vari-
ational autoencoders. Advances in Neural Information
Processing Systems, 31, 2018.

Kaushalya Madhawa, Katushiko Ishiguro, Kosuke Nak-
ago, and Motoki Abe. Graphnvp: An invertible flow
model for generating molecular graphs. arXiv preprint
arXiv:1905.11600, 2019.

Grégoire Montavon, Katja Hansen, Siamac Fazli, Matthias
Rupp, Franziska Biegler, Andreas Ziehe, Alexandre
Tkatchenko, Anatole Lilienfeld, and Klaus-Robert Müller.
Learning invariant representations of molecules for atom-
ization energy prediction. Advances in neural information
processing systems, 25, 2012.

5

Ryan Murphy, Balasubramaniam Srinivasan, Vinayak Rao,
and Bruno Ribeiro. Relational pooling for graph rep-
resentations. In International Conference on Machine
Learning, pages 4663–4673. PMLR, 2019a.

Ryan L Murphy, Balasubramaniam Srinivasan, Vinayak
Rao, and Bruno Ribeiro. Janossy pooling: Learning deep
permutation-invariant functions for variable-size inputs.
In The 7th International Conference on Learning Repre-
sentations, 2019b.

Mathias Niepert, Mohamed Ahmed, and Konstantin
Kutzkov. Learning convolutional neural networks for
graphs. In International conference on machine learning,
pages 2014–2023. PMLR, 2016.

Peter Orbanz and Daniel M Roy. Bayesian models of graphs,
arrays and other exchangeable random structures. IEEE
transactions on pattern analysis and machine intelligence,
37(2):437–461, 2014.

Milan Papež, Martin Rektoris, Václav Šmídl, and Tomáš
Pevný. Sum-product-set networks: Deep tractable models
for tree-structured graphs. In The 12th International
Conference on Learning Representations, 2024.

Robert Peharz, Steven Lang, Antonio Vergari, Karl Stelzner,
Alejandro Molina, Martin Trapp, Guy Van den Broeck,
Kristian Kersting, and Zoubin Ghahramani. Einsum net-
works: Fast and scalable learning of tractable probabilistic
circuits. In International Conference on Machine Learn-
ing, pages 7563–7574. PMLR, 2020a.

Robert Peharz, Antonio Vergari, Karl Stelzner, Alejandro
Molina, Xiaoting Shao, Martin Trapp, Kristian Kersting,
and Zoubin Ghahramani. Random sum-product networks:
A simple and effective approach to probabilistic deep
learning. In Uncertainty in Artificial Intelligence, pages
334–344. PMLR, 2020b.

Hoifung Poon and Pedro Domingos. Sum-product networks:
A new deep architecture. In 2011 IEEE International
Conference on Computer Vision Workshops (ICCV Work-
shops), pages 689–690. IEEE, 2011.

Raghunathan Ramakrishnan, Pavlo O Dral, Matthias Rupp,
and O Anatole Von Lilienfeld. Quantum chemistry struc-
tures and properties of 134 kilo molecules. Scientific data,
1(1):1–7, 2014.

Jean-Louis Reymond, Lars Ruddigkeit, Lorenz Blum, and
Ruud Van Deursen. The enumeration of chemical space.
Wiley Interdisciplinary Reviews: Computational Molecu-
lar Science, 2(5):717–733, 2012.

Chence Shi, Minkai Xu, Zhaocheng Zhu, Weinan Zhang,
Ming Zhang, and Jian Tang. GraphAF: A flow-based au-
toregressive model for molecular graph generation. arXiv
preprint arXiv:2001.09382, 2020.

Andy Shih, Guy Van den Broeck, Paul Beame, and Antoine
Amarilli. Smoothing structured decomposable circuits.
Advances in Neural Information Processing Systems, 32,
2019.

Martin Simonovsky and Nikos Komodakis. GraphVAE:
Towards generation of small graphs using variational
autoencoders. In Artificial Neural Networks and Machine
Learning–ICANN 2018: 27th International Conference
on Artificial Neural Networks, Rhodes, Greece, October 4-
7, 2018, Proceedings, Part I 27, pages 412–422. Springer,
2018.

Victor Veitch and Daniel M Roy. The class of random graphs
arising from exchangeable random measures. arXiv
preprint arXiv:1512.03099, 2015.

Antonio Vergari, Nicola Di Mauro, and Floriana Espos-
ito. Visualizing and understanding sum-product networks.
Machine Learning, 108(4):551–573, 2019.

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso,
and Guy Van den Broeck. A compositional atlas of
tractable circuit operations: From simple transformations
to complex information-theoretic queries. arXiv preprint
arXiv:2102.06137, 2021.

Yogesh Verma, Samuel Kaski, Markus Heinonen, and Vikas
Garg. Modular flows: Differential molecular generation.
Advances in neural information processing systems, 35:
12409–12421, 2022.

Edward Wagstaff, Fabian B Fuchs, Martin Engelcke,
Michael A Osborne, and Ingmar Posner. Universal ap-
proximation of functions on sets. Journal of Machine
Learning Research, 23(151):1–56, 2022.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long,
Chengqi Zhang, and S Yu Philip. A comprehensive survey
on graph neural networks. IEEE transactions on neural
networks and learning systems, 32(1):4–24, 2020.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and
Jure Leskovec. GraphRNN: Generating realistic graphs
with deep auto-regressive models. In International con-
ference on machine learning, pages 5708–5717. PMLR,
2018.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barn-
abas Poczos, Russ R Salakhutdinov, and Alexander J
Smola. Deep sets. Advances in neural information pro-
cessing systems, 30, 2017.

Chengxi Zang and Fei Wang. Moflow: An invertible flow
model for generating molecular graphs. In Proceedings
of the 26th ACM SIGKDD international conference on
knowledge discovery & data mining, pages 617–626,
2020.

6

Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on
graphs: A survey. IEEE Transactions on Knowledge and
Data Engineering, 34(1):249–270, 2020.

Kaiyu Zheng, Andrzej Pronobis, and Rajesh Rao. Learning
graph-structured sum-product networks for probabilistic
semantic maps. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 32, 2018.

7

1
2

3

4

π1X π1A

pspn
m,n(π

1X,π1A)

1
2

3

4

π2X π2A

pspn
m,n(π

2X,π2A)

1

2

3

4

π3X π3A

pspn
m,n(π

3X,π3A)

· · ·

1

2

3

4

πn!X πn!A

pspn
m,n(π

n!X,πn!A)

(a) Exact invariance

1

2

3
4

X A

1

2

Xt1 At1

pspn
2,n(Xt1 , At1)

1

2

3
4

X A

1

3

Xt2 At2

pspn
2,n(Xt2 , At2)

· · ·

1

2

3
4

X A

3

2

XtMAtM

pspn
2,n(XtM , AtM)

(b) k-ary invariance (e.g., binary for k = 2)

1

2

3
4

πX πA

(πX, πA)

→

1
2

3

4

X A

sort(πX, πA)

1

2

3

4

πX πA

(πX, πA)

→

1
2

3

4

X A

sort(πX, πA)

· · ·

1

2
3

4

πX πA

(πX, πA)

→

1
2

3

4

X A

sort(πX, πA)

(d) Sorting

1

2

3

4

π1X π1A

pspn
m,n(π

1X,π1A)

1

2

3
4

π2X π2A

pspn
m,n(π

2X,π2A)

1

2

3

4

π3X π3A

pspn
m,n(π

3X,π3A)

· · ·

1

2
3

4

πNX πNA

pspn
m,n(π

NX,πNA)

(c) Random sampling

Figure 3: An illustration of the key principles behind various GraphSPNs. (a) The exact permutation invariance first computes pspn
m,n for

all n! permutations and then averages the results in (2). (b) The k-ary permutation invariance approximates the exact invariance (a) by
computing pspn

k,n (with the root scope of size k(k + 1)) for all ways to choose k-node sub-graphs from the n-node original graph, G,
without repetition and with the order, and then averaging the M = n!/(n−k)! < n! results in (4). (c) The random sampling approximates
the exact invariance (a) by computing the average only for N < n! permutations of G in (5). (d) The sorting approach is also exact, but it
simplifies the target data distribution by first imposing the same canonical ordering of G and then computing pspn

m,n, as displayed in (3).

A MORE NOTES ON PERMUTATION INVARIANCE

Figure 3 illustrates the fundamental principles underlying the GraphSPN variants discussed in Section 3.

B TRACTABILITY

Tractability. An SPN is tractable if it answers probabilistic queries exactly and efficiently. Here, exact means that the
answers do not involve any approximation or heuristic, and efficient means that the answers can be obtained (computed) in
polynomial time [Choi et al., 2020]. We are interested in probabilistic queries that can collectively be expressed in terms of
the following expectation:

ν(f) :=

∫
f(G)p(G)dG, (6)

where f(G) is a function that allows us to formulate a desired query over (a part of) G. We defer concrete examples of f(G)
to Section B.1. The expectation (6) admits a closed-form solution only if both f and p satisfy certain structural constraints.

Assumption 1. (Constraints on p). We consider the following constraints. (i) Smoothness: each u ∈ LS satisfies ∀a, b ∈
in(u) : ψa = ψb, where in(u) is the set of inputs of a u-unit. (ii) Decomposability: each u ∈ LP satisfies ∀a, b ∈ in(u) :
ψa ∩ ψb = ∅. (iii) Tractable input layers:

∫
fu(ψu)up(ψu)dψu is tractable for each u ∈ LI.

Assumption 1(iii) requires that each pi(ψ) is from a tractable family of probability distributions [Barndorff-Nielsen, 1978]
and fi(ψ) is such that the integral admits an algebraically closed-form solution.

Assumption 2. (Constraints on f). The function f(G) := f(X1, A1 . . . , Xn, An) is omni-compatible [Vergari et al., 2021]
with respect to pspn

m,n.

Proposition 1. (Tractability of GraphSPNs.) Let p(G) be a GraphSPN (1) satisfying Assumptions 1, and let f(G) be a
function satisfying Assumption 2. Then, the integral (6) is tractable.

Proposition 1 covers all the GraphSPN variants (2), (3), and (5), except the k-ary sub-graphs (4). Indeed, the average in
(2) and (5) can be seen as a sum unit with fixed uniform weights, which satisfies the smoothness assumption. The sorting
operation in (3) does not affect the tractability. However, regarding the k-ary GraphSPNs, the average in (4) does not satisfy
the smoothness assumption (i.e., it is not a smooth sum unit), as each of its children has a different scope. To make the k-ary
variant tractable, we must perform the smoothing [Shih et al., 2019, Choi et al., 2020].

8

f(X,A) = h(X2)h(A22)
∏
k/∈a

h(A2k)
∏
t/∈a

h(Xt)

(∏
u/∈a

h(Atu)h(At2)

)

= 1X (X2)1A(A22)
∏
k/∈a

1A(A2k)
∏
t/∈a

1Xt
(Xt)

(∏
u/∈a

1Atu
(Atu)1A(At2)

)

(a) An example of (7) for a := {2}

1
2

3

4

X A

(b) The corresponding node of G

2
1

3

4

X A

(c) G after the marginal query
Figure 4: An example of a tractable inference query over a graph. (a) An instantiation of the omni-compatible function (7) over a graph G
for a := {2}. The blue color highlights the targeted node and its associated edges. (b) A visual and matrix representation of G, where the
targeted node and its associated edges, which correspond to (a), are highlighted in blue. (c) After targeting the node and its connected
edges, we can perform, e.g., the marginal query and obtain a marginal graph G.

B.1 TRACTABLE INFERENCE QUERIES OVER GRAPHS

Querying r-node sub-graphs. An omni-compatible function f (Assumption 2) that targets an r-node sub-graph of G can
be expressed as follows:

f(X,A) :=
∏
i∈a

h(Xi)

∏
j∈a

h(Aij)
∏
k/∈a

h(Aik)

∏
t/∈a

h(Xt)

(∏
u/∈a

h(Atu)
∏
v∈a

h(Atv)

)
, (7)

where a := {a1, . . . , ar} ⊆ {1, . . . , n} specifies indices of r nodes presented in a queried sub-graph.

Marginalizing selected nodes and (or) edges. The marginal query is realized by an appropriate choice of h for Xi and
Aij . The choice h(Xi) := 1B(Xi), where 1B is the indicator function and B := X , corresponds to marginalizing node
feature of i-th node in the graph G. The evidence query is obtained for B := Xi. Similarly, choosing h(Aij) := 1B(Aij)
and B := A corresponds to marginalizing edge between nodes i and j in the graph G. Again, the evidence query is given by
setting B := Aij . We demonstrate an example of the marginal query for a := {2} in Figure 3.

C EXPERIMENTAL DETAILS

Preprocessing. We use the RDKit library [Landrum et al., 2006] to first kekulize the molecules and then remove the
hydrogen atoms. The final molecules contain only the single, double, and triple bonds. Since we aim to test the permutation
invariance of various GraphSPNs, we randomly permute the atoms in each molecule during the preprocessing.

Baselines. We compare GraphSPNs with various molecular deep generative models: grammar variational autoencoder
(GVAE) [Kusner et al., 2017], character VAE (CVAE) [Gómez-Bombarelli et al., 2018], regularizing VAE (RVAE) [Ma
et al., 2018], junction tree VAE (JT-VAE) [Jin et al., 2018], graph VAE (GraphVAE) [Simonovsky and Komodakis, 2018],
graph real-valued non-volume preserving (GraphNVP) flow [Madhawa et al., 2019], graph autoregressive flow (GraphAF)
[Shi et al., 2020], graph discrete flow (GraphDF) [Luo et al., 2021], molecular flow (MoFlow) [Zang and Wang, 2020],
modular flow (ModFlow) [Verma et al., 2022], and graph residual flow (GRF) [Honda et al., 2019].

Architecture. To implement the permutation-sensitive part of GraphSPNs, we adopt the EinSum networks [Peharz et al.,
2020a]. The expressive power of this monolithic and tensorized variant of SPNs is driven by four hyper-parameters: the
number of layers nl ∈ {1, 2, 3}, the number of sum units nS ∈ {10, 40, 80}, the number of input units nI ∈ {10, 40}, and
the number of repetitions nR ∈ {10, 40, 80}. The input units are categorical distributions. Molecules are undirected acyclic
graphs. To satisfy this constraint, we use only the lower triangular part of A in the sampling procedure.

For the rand variant of GraphSPNs (5), we use S20m , i.e., 20 permutations. For the k-ary variant (4), we use k = 2 to obtain
the average with only 72 elements. To impose the canonical ordering with the sort variant (3), we use the RDKit library.

Learning. The results for the baseline methods in the top part of Table 1 are obtained from their respective papers. For all
the GraphSPN variants in the bottom part of Table 1, we minimize negative log-likelihood for 40 epochs using the ADAM
optimizer [Kingma and Ba, 2014] with 256 samples in the minibatch, step-size α = 0.05 and decay rates β1 = 0.9 and
β2 = 0.82. All experiments are repeated 5 times with different initialization of the model’s parameters. We sample 4000
molecules to compute the metrics introduced in Section 4.

9

Figure 5: Unconditional molecule generation on the QM9 dataset.

D ADDITIONAL RESULTS

Figure 5 shows unconditional samples of molecules from the sort variant (3) that was trained on the QM9 dataset. The
resulting molecules resemble those from the training data, yet they are all newly discovered molecules.

10

	Introduction
	Background
	Graph Sum-Product Networks
	Experiments
	Conclusion
	More notes on permutation invariance
	Tractability
	Tractable inference queries over graphs

	Experimental Details
	Additional results

