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Abstract
Despite a strong desire to quit, individuals with long-term sub-
stance use disorder (SUD) often struggle to resist drug use,
even when aware of its harmful consequences. This dis-
connect between explicit knowledge and compulsive behavior
reflects a fundamental cognitive-behavioral conflict in addic-
tion. Neurobiologically, differential cue-induced activity within
striatal subregions, along with dopamine-mediated connec-
tivity from the ventral to the dorsal striatum, is a key factor
in driving compulsive drug-seeking. However, the functional
mechanism linking these neuropharmacological findings to
the cognitive-behavioral conflict remains unclear.

Another key aspect of addiction is temporal discounting,
with studies showing that individuals with drug dependence
exhibit steeper discount rates than non-users. Assuming the
ventral-dorsal striatal organization reflects a gradient from
cognitive to motor-action representations, addiction can be
modeled within a hierarchical reinforcement learning (HRL)
framework. However, incorporating discounting into the bio-
logical HRL framework is challenging, and remains an open
problem.

In this work, we build upon an algorithmic model that cap-
tures how the action choices that the agent makes when rein-
forced with drug rewards become impervious to the presence
of negative consequences that often follow those choices. We
address the challenge of incorporating discounting into the
HRL framework by ensuring that the values of natural rewards
converge across all hierarchical levels in the HRL framework.
In contrast to natural reward values, we show that the phar-
macological effects of drugs on the dopamine system cause
divergence in drug reward values.

Our results demonstrate that high discounting amplifies
drug-seeking behavior across all levels of the hierarchy, sug-
gesting that faster discounting is associated with increased
addiction severity and impulsivity. We show how these re-
sults align with the evidence supporting temporal discounting
as a behavioral marker. Additionally, our model offers testable
predictions and establishes a framework that conceptualizes
addiction as a disorder of hierarchical decision-making pro-
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Introduction
Drug addiction is characterized by the persistent and compul-
sive pursuit of drug rewards, often in the face of severe ad-
verse consequences. A signature of such pathological behav-
ior becomes evident in controlled experiments where addicts
exhibit a characteristic “self-described mistake”: an inconsis-
tency between the potent behavioral response toward drug-
associated choices and the relatively low subjective value that
the addict reports for the drug (Goldberg, 1991; Stacy & Wiers,
2010; Goldstein et al., 2010). Several studies have proposed
that prolonged exposure to drugs when coupled with the loss
of inhibitory cognitive control over behavior could be respon-
sible for the transition from casual to compulsive drug-seeking
behavior (Everitt & Robbins, 2005; Kalivas & Volkow, 2005;
Belin et al., 2009; Keramati & Gutkin, 2013). The loss of cog-
nitive control and self-acknowledged mistakes in addiction re-
main inadequately explained by formal computational models
(Redish, 2004; Takahashi et al., 2008; Dezfouli et al., 2009;
Dayan, 2009; Piray et al., 2010; Garrett et al., 2023) and an-
imal models (Ahmed & Koob, 1998; Gardner, 2020; Hogarth,
2020). Amongst several computational approaches, one dom-
inant approach utilises the model-free reinforcement learning
framework to explain addiction by interpreting it as a maladap-
tive state of the habit learning system (Redish, 2004; Taka-
hashi et al., 2008; Dezfouli et al., 2009; Dayan, 2009; Piray
et al., 2010). These models propose that drugs, through their
pharmacological effects on dopamine signaling, believed to
convey a teaching signal, cause excessive reinforcement of
drug-seeking actions, which in turn lead to compulsive drug-
seeking habits. Although this simplified perspective has ad-
dressed certain aspects of addiction, growing evidence sug-
gests that multiple learning systems contribute to the pathol-
ogy.

In this paper, we aim to develop a decision-making model
that explains addictive behavior using the Hierarchical Rein-
forcement Learning (HRL) framework whilst incorporating the
effects of temporal discounting. HRL is an extension of tra-



ditional reinforcement learning (RL) that incorporates a hier-
archical structure into the decision-making process. This re-
flects how humans intuitively use abstractions, for instance,
the goal of getting coffee may begin with identifying the near-
est coffee shop. This is followed by a sequence of mid-level
actions, such as walking to the door, navigating streets, enter-
ing the café. At an even finer level, each of these actions is
further broken down into primitive motor actions. Botvinick et
al. (2009) posit that HRL provides a compelling computational
framework for explaining the neural underpinnings of com-
plex, hierarchically structured behaviors. Eckstein & Collins
(2020) demonstrate that hierarchical abstraction significantly
improves modeling of human learning, implying that the brain
likely leverages HRL-like organization (a “biologically inspired”
approach) to achieve flexible and efficient learning in complex
environments.

Our hierarchical reinforcement learning framework as-
sumes that an abstract cognitive plan is broken down into
a sequence of lower-level actions, ultimately culminating in
concrete lowest-level responses at the base of the hierarchy
(Botvinick, 2008; Botvinick et al., 2009). Neurobiologically,
the decision-making hierarchy, from cognitive to motor lev-
els, is organized along the rostro-caudal axis of the cortico-
basal ganglia (BG) circuit (Koechlin et al., 2003; Badre et
al., 2009; Badre & D’esposito, 2009). This circuit comprises
multiple parallel, closed loops connecting the frontal cortex
with the basal ganglia (Alexander et al., 1986, 1991). While
the anterior loops are responsible for representing more ab-
stract actions, the caudal loops that include the sensory-motor
cortex and the dorsolateral striatum are associated with en-
coding low-level habits (Koechlin et al., 2003; Badre et al.,
2009; Badre & D’esposito, 2009). Midbrain dopamine (DA)
neurons signal reward prediction errors to the striatum, rein-
forcing stimulus-response associations (Schultz et al., 1997).
Through spiraling connections, DA projections link ventral and
dorsal striatal regions, enabling feed-forward coupling across
cortico-basal ganglia loops (Haber et al., 2000; Haber, 2003;
Belin & Everitt, 2008). These DA spirals allow the abstract
cognitive levels of valuation to guide the learning in the more
detailed action-valuation processes (Haruno & Kawato, 2006).

Keramati & Gutkin (2013) presents a hierarchical reinforce-
ment learning (HRL) model where higher levels represent ab-
stract, cognitive options and lower levels represent more prim-
itive actions. Learning occurs faster at higher levels due to
fewer abstract states, and prediction errors propagate through
the hierarchy, influenced by drug-induced biases. Their model
focuses on value learning without addressing action selection.
Mahajan et al. (2023) extend this work to an HRL algorithm
which captures the imbalanced decision hierarchy emerging
in an agent with substance use disorder. However, neither
the Keramati & Gutkin (2013) model nor the Mahajan et al.
(2023) model includes temporal discounting of future rewards.
Both focus on hierarchical value learning and the propagation
of prediction errors, emphasizing the impact of drugs on com-
pulsive behavior without incorporating temporal discounting of

rewards and punishments that follow. In our framework, com-
pulsivity refers to the emergence of rigid, habitual stimulus-
response behaviors at lower levels of the hierarchy, consistent
with prior HRL models (Keramati & Gutkin, 2013).

Temporal discounting, at a behavioral level, refers to the de-
crease in the perceived value of a reward with the time delay
associated with its reception (Ainslie, 1975; Rachlin & Green,
1972). Numerous studies have shown that people suffering
from substance use disorders (SUDs) overvalue immediate,
drug-associated rewards and undervalue long-term natural re-
wards (Bickel et al., 2007; Schultz, 2011). Impulsivity can
be defined as the degree to which an individual dispropor-
tionately favors short-term rewards over long-term outcomes.
Bickel et al. (2014) proposed that the degree of discounting
can be used as a behavioral marker to indicate the addiction
severity in people with SUDs and as a predictive measure in-
dicating susceptibility to developing SUDs.

Motivated by these studies, we present a novel method to
incorporate discounting in HRL modeling framework. We be-
gin by demonstrating the challenges involved in incorporating
discounting into biological HRL. Then, we introduce our ap-
proach and illustrate how it implements normative discount-
ing. We then use this model to analyze shifts in an agent’s
preferences in response to varying discounting factors. Fi-
nally, we show how the HRL framework explains the cognitive-
behavioral conflict in addiction and aligns with the findings of
Bickel et al. (2014).

Results

Challenges with incorporating discounting in
biological hierarchical reinforcement learning

Hierarchical reinforcement learning (HRL) is formalized using
semi-Markov Decision Processes (semi-MDPs), which sup-
port temporal and state abstraction via the options framework
Precup (2000). In this framework, lower levels correspond to
primitive actions (e.g., motor movements), while higher levels
represent temporally extended options composed of those ac-
tions. For instance, in the task of “getting coffee,” a primitive
action might involve moving a hand, while an option may en-
capsulate walking to the kitchen. At each level, the Q-value of
a state-option pair captures the expected cumulative reward
upon initiating and following through with that option.

In the model proposed by Keramati & Gutkin (2013), higher
levels are viewed as more “cognitive” and lower levels as more
“habitual,” though this distinction does not imply goal-directed
behavior. Drug-induced effects are modeled by adding a non-
negative bias d to the temporal-difference (TD) error, captur-
ing elevated striatal dopamine responses Redish (2004); Dez-
fouli et al. (2009); Piray et al. (2010); Dayan (2009); Di Chiara
& Imperato (1988). Unlike the non-converging TD errors in
Redish (2004) due to the max operator, the HRL framework
allows error convergence while modeling persistent drug ef-
fects. A full discussion of how the HRL model addresses prior
limitations is provided in Mahajan et al. (2023).

Following Haruno & Kawato (2006), the TD error at abstrac-



tion level n is computed using value information from level
n+1:
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Here, an+1
t denotes the abstract option, and an

t is the cor-
responding primitive action. Likewise, rn+1

t incorporates the
reward from rn

t . If the action advances the agent toward a
natural reward, d = 0; for drug-directed behavior, a positive
bias d = +D is applied. Further implementation details are
provided in the Methods section.

To motivate why incorporating discounting into HRL dis-
counting is challenging, consider that time tends to move more
slowly at higher levels than at lower levels. One abstract op-
tion in a higher-level decision corresponds to multiple primitive
steps at a lower level. This disparity makes it difficult to apply
discounting consistently across different levels of the hierar-
chy, as the time span of each decision expands with abstrac-
tion. An example is illustrated in Figure 1b, the option bn+1

t+1
corresponds to the combination of primitive steps an

t+1 and
an

t+2.

(a) Q-value update rule in standard (flat) RL

(b) Q-value update rule in HRL with state abstraction (naive discount-
ing with γ as the discounting factor at the nth level)

Figure 1: Comparison of Q-value updates in standard RL ver-
sus HRL with state abstraction. (a) In standard RL, the Q-
value of a state updates based on its temporal relationship
with the subsequent state. (b) In HRL with state abstraction,
Q-values update according to Equation 1, relying on abstract
states at a higher level rather than consecutive states at the
same level. This abstraction removes the temporal compo-
nent, making consecutive states have identical Q-values, irre-
spective of their relative proximity to the goal. This highlights
the challenge of incorporating discounting in HRL.

Additionally, the difficulty arises from the way the states in
the nth level learn the action values from the abstract states in
the (n+1)th level and not from the subsequent states in the
nth level (RPE is calculated according to equation 1).

The temporal component that exists when states learn from

their immediate subsequent states is removed. In fact, two
consecutive states at a lower level mapped to the same ab-
stract state at a higher level will have the same action values
even though one of them is closer to the goal state. In Figure
1b, Q(Sn

t ,a
n
t ) and Q(Sn

t+1,a
n
t+1) will be equal as their respec-

tive successors i.e Sn
t+1 and Sn

t+2 and are mapped to the same
abstract state Sn+1

t+1 even though Sn
t+1 is closer to the goal state

Gn than Sn
t .

A naive approach of adding a discount factor in equation 1
modifies the equation as -

δ
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where γ is the discounting factor.
To illustrate that an approach with a single discounting fac-

tor for all the hierarchy levels is insufficient, we simulate an
agent based on this naive implementation in a two-choice task
environment, that has to choose between a food reward and
a drug reward (Figure 2a). Note that drug rewards, unlike the
(natural) food rewards, are followed by an unavoidable punish-
ment and also incorporate the hijacking effect in TD errors as
mentioned before.

(a)

(b)

Figure 2: (a) The two-choice task environment where the
agent chooses between a Food reward of +15 vs. a Drug
reward of +15 followed by a punishment of −10 with an ad-
ditional drug-associated D = 3 effect on RPE. (b) Q-values of
actions leading to Food and Drug rewards at the start state
of the environment. The experiments were conducted in the
two-choice MDP shown in (a).

By examining the Q-values of the options at different levels,
to select food or drug rewards, starting from the starting state
S, we find that discounting according to equation 2 leads to



the deviation in the Q-values even for actions leading to nat-
ural rewards (Figure 2b, left). The model valuation predicts
that the Q-values of actions associated with natural rewards
decrease as we move down the hierarchy. Firstly, this result
is not normative: the valuation of the same outcome should
not differ merely due to changes in the level of abstraction.
Secondly, it contradicts the hypothesis proposed by Keramati
& Gutkin (2013); Mahajan et al. (2023), which suggests that
hierarchical valuation inconsistencies arise specifically due to
the pharmacological effects of drugs, not in the case of nat-
ural rewards. The divergences in Q-values of drug-seeking
options in the model (Figure 2b, right), include opposing ef-
fects of (intended) drug-hijacking effect inflating the values for
lower levels and (unintended) improper discounting shrinking
the values for lower levels.

Motivated by these reasons, we developed a novel model
that integrates discounting across hierarchical levels, address-
ing the complexities of spatial and temporal abstraction in the
HRL environment. We first test if this model normatively cap-
tures discounting solving the problem of convergence in natu-
ral (food) rewards. Then we show the predictions of the model
with drug rewards.

Normative discounting in the biological HRL model

We extend the model proposed by Mahajan et al. (2023) by
incorporating discounting across all levels of the hierarchical
decision structure. Each level is assigned an adjusted dis-
count factor that is calculated according to the discount factor
at the topmost level, which we refer to as the effective discount
factor γ, and the number of intermediate steps introduced at
each level ϑn. The adjusted discount factor at level n is de-
noted by ζ(n) as follows.

Let the L levels in the hierarchy be zero-indexed as follows,
n = 0,1, ..,L− 1, where level n = 0 is the bottom-most level
and the level L− 1 is the top-most level. We further define
ϑn as the number of consecutive options in level n required to
construct the corresponding option in level above n+ 1. For
the topmost level, ϑL−1 is set to 1. For example, in our Fig-
ure 2a, we have 3 levels n = 0,1,2 and each option decom-
poses into two smaller options at the lower level, therefore
ϑ0 = 2,ϑ1 = 2,ϑ2 = 1. Further, we let the effective discount
factor be γ, which is equivalent to the discount factor used in
the topmost level. This allows us to propose an equation for
the adjusted discount factors ζ(n) as a function of level n and
the effective discount factor γ, ensuring that values at differ-
ent levels do not diverge, but rather converge according to the
effective discount factor γ.

ζ(n) = γ
(∏L−1

i=n
1
ϑi
)

(3)

Further, if the ϑn are the same across all levels (except the
topmost level which is 1), then we can set it to simply ϑ i.e.
at every level an option decomposes into ϑ number of smaller
options at the level below. This further simplifies the equation
for adjusted discount factors as follows,

ζ(n) = γ
( 1

ϑi
)L−1−n

(4)

Therefore in the case presented in Figure 2a, if we use
the effective discount factor as γ = 0.9 and ϑ = 2, then the
adjusted discount factors for the three levels are ζ(n = 0) =
(0.9)

1
4 ,ζ(n = 1) = (0.9)

1
2 ,ζ(n = 2) = 0.9.

This adjustment to the discount factors at each level en-
sures that the model remains consistent with the effective dis-
count rate γ. If we simply had hierarchical levels, with varying
granularity in options, but did not incorporate biologically plau-
sible spiraling connections then we could have directly used
adjusted discount factors ζ(n) at respective levels. But in the
biological HRL framework that we work with, the TD-errors re-
quire using the Q-values from a level above, representing the
spiraling connections across the striatum. Therefore, to use
these adjusted discount factors to compute TD-errors, we first
need to ”undiscount” the values from the level above (n+ 1)
before discounting them appropriately at the current level (n),
as follows:
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where ν(sn
t ,a

n
t ) indicates how many steps the state sn

t is
from reaching the goal state associated with the action an

t (ex-
plained further in Methods, using Figure 6), within that level
n. At each level, the Q-values for state-action pairs, Q(st ,at),
and the state-function values, V (st), adjust to their discounted
values based on the discount factor ζ(n) for that level.

This structure requires the system to account for the steps
to future rewards at respective levels of hierarchy when cal-
culating the reward prediction error (RPE). Such information-
sharing may be biologically plausible as recent research indi-
cates that midbrain dopamine neurons may encode informa-
tion about the distribution of time between the cue presenta-
tion and the rewarding outcome (Sousa et al., 2023).

First, we test whether our model reproduces normative be-
havior and solves the problem of lack of convergence of Q-
values for actions leading to natural rewards. We will discuss
the drug reward scenario later. We test this in an environ-
ment where the agent has to choose between an immediate
food reward vs. a delayed food reward of equal magnitude as
shown in Figure 3a.

We find that the HRL model based on equation 5 performs
discounting normatively, as demonstrated by the results in Fig-
ure 3b. The Q-values of actions leading to food rewards con-
verge across all the levels in the hierarchy. The Q-value of the
delayed reward is further discounted and converge to a lower
value as compared to the value of immediate reward and thus,
the agent is performing discounting normatively. We conclude
that this method provides a foundation for further investigating
the effects of discounting within the framework of HRL model-
ing in addiction.



(a)

(b)

Figure 3: (a) The two-choice task environment where the
agent chooses between an immediate vs. delayed +10 food
reward. (b) Q-values of actions leading to immediate and de-
layed food rewards at different levels when D = 0 and γ = 0.9.
Across all levels, the Q-values converge to 9 for the immediate
reward and to 8.1 for the delayed reward.

Model prediction: Over-discounting exacerbates
drug-seeking behavior

Having implemented normative discounting in natural re-
wards, we now turn to model predictions in the case of drug
rewards. Temporal discounting, where delayed rewards are
perceived as less valuable, is significant in understanding sub-
stance use disorders (SUDs), as individuals with SUDs tend to
overvalue immediate drug rewards and undervalue long-term
natural rewards, with the degree of discounting serving as a
marker of addiction severity (Bickel et al., 2007, 2014; Schultz,
2011).

In this experiment, we aim to examine how variations in the
discounting rate influence the agent’s drug-seeking behavior
across different levels of the hierarchy in the HRL framework.
We hypothesize that more discounting will lead to more drug-
seeking behavior. To study the preference of the agent to-
wards drug rewards over natural rewards, we trained our HRL
agent in a two-choice environment where it has to choose be-
tween a food reward or a drug reward followed by a punish-
ment (Figure 2a). We use hard allocation, clamping behav-
ioral control to a single hierarchical level to assess agent be-
havior under full control of option selection at that level (other
approaches to allocating control over levels are discussed by
Mahajan et al. (2023)). The controlling level selects actions or
options using Boltzmann exploration based on the Q-values
of the corresponding state-option pairs. Each episode ter-

minates when the agent either reaches the reward states or
exceeds the maximum step limit. (Please refer to Methods
section for a detailed description of the environment, agent
design and action selection). Across trials, we increased the
discounting rate by adjusting the discount factor γ from 1 to
0.8 and 0.6 to examine its effect on the agent’s drug-seeking
propensity.

We find that irrespective of the value of the discounting
factor, drug-seeking increases as we move down the hierar-
chy. However, for γ = 1, the increase is minimal when com-
paring drug-seeking behavior between levels 2 and 1 (Figure
:4a). The combined effect of discounting and the accumula-
tion of the pharmacological +D factor make the drug action
the favourable choice of the agent when the agent’s behav-
ior is controlled by the lower levels of the hierarchy. Simi-
lar effects of increased drug-seeking as the behaviour con-
trol is transferred to lower levels were observed in the previ-
ous versions of the model (Keramati & Gutkin, 2013; Mahajan
et al., 2023) which did not involve temporal discounting. Our
model extends these previous models to additionally incorpo-
rate the effect of temporal discounting, by demonstrating that
over-discounting further increases drug seeking even when it
is followed by punishment. As seen in Figure 4a, increasing
discounting in turn significantly increases drug-seeking at ev-
ery level in the hierarchy.

Selective delay of natural rewards vs. immediate
drug rewards

In the real world, natural and drug rewards are often not
equidistant, requiring different times to obtain. Often, natural
rewards that offer greater benefit require long-term planning,
whereas drug seeking actions are often short sighted which
provide immediate reinforcement but are frequently followed
by negative consequences. To simulate these conditions, we
studied the agent’s preference in a two-choice environment
where a drug reward is available immediately and is followed
by a punishment, whereas a more advantageous natural re-
ward is available after a delay of 1 time-step.

Our findings (Figure 5b) show that in the scenario under
consideration, at lower levels the agent always prefers the
immediate drug reward over food reward irrespective of the
ζ(n). This result is different than the one which we found in
the previous environment where the food reward and drug re-
ward were equidistant. Based on the agent’s behavior, we
can conclude that the agent inherently becomes more impul-
sive when the behavior is controlled by the lower levels, in this
task. Even when the higher layers are controlling the behav-
ior, we observe a similar gradient of increasing impulsivity as
discounting increases as seen in the Figure 4b. Our model
suggests that the cumulative effect of drug rewards is suffi-
cient to drive the agent toward drug-seeking behavior when
decision-making is governed by lower levels of the hierarchy.
Additionally, our model predicts that increased discounting at
higher levels enhances the agent’s impulsivity, further reinforc-
ing the preference for immediate drug rewards.



Figure 4: This figure shows the simulation results of the two-choice task (Figure 2a) where drug reward is followed by punishment.
(a) The bar chart illustrates the comparison between % drug seeking by the agent when discounting is varied. In all cases, drug-
seeking increases when the lower levels of the hierarchy are in control of behavior. When discounting is increased, drug-seeking
significantly increases at all levels of the hierarchy. (b) Q value for food/drug-seeking option at the start state on the y-axis and are
calculated through algorithmic simulations involving environment interactions, with D = 0 for Natural reward and D =+3 for drug
reward, from equation 7, following the simulation protocols described in section 4.4. The error bars represent the variability across
trials, which arises due to stochasticity in the action selection process of the agent which is based on Boltzmann exploration.

Discussion

Previous HRL models (Keramati & Gutkin, 2013; Mahajan et
al., 2023) provided a normative framework for understanding
the distinct roles of ventral and dorsal striatal circuits in drug-
seeking acquisition and habit execution, as well as the selec-
tive influence of feed-forward dopamine connectivity on drug
versus natural reinforcers. However, these models lacked a
critical component: Temporal discounting, which is essential
to simulating real-world decision making. Incorporating dis-
counting into HRL frameworks has long been a challenge.
Harutyunyan et al. (2019); Hengst (2003) proposed methods
for discounting within the Options framework and using state
abstraction. However, no existing approaches in the litera-
ture address discounting within a biologically plausible HRL
framework. In this work, we address this gap by introducing a
novel approach to incorporate discounting into the biological
HRL framework (Haruno & Kawato, 2006; Keramati & Gutkin,
2013; Mahajan et al., 2023).

Steep delay discounting is a common trait observed in var-
ious substance use and psychiatric disorders, including gam-

bling addiction, drug dependence, and internet gaming disor-
der Amlung et al. (2017, 2019); Wöhlke et al. (2021). Am-
lung et al. (2017) conducted a comprehensive meta-analysis
and found a significant association between steeper delay
discounting and greater substance use frequency/quantity as
well as a slightly higher correlation with indices of SUD prob-
lem severity. They concluded that delay discounting is robustly
associated with continuous measures of addiction severity,
and this relationship holds across different types of addictive
substances and behaviors. Bickel et al. (2014) proposed tem-
poral discounting as a behavioral marker for addiction, high-
lighting its potential to: 1) identify individuals at risk of devel-
oping drug dependence, 2) measure the severity of addiction,
and 3) connect to the biological and genetic mechanisms un-
derlying addiction. Our model aligns with these predictions,
demonstrating that agents with higher discounting rates ex-
hibit an increased propensity for drug-seeking behavior across
all levels of the hierarchy. Furthermore, we hypothesize that
chronic drug use may exacerbate discounting, creating a feed-
back loop that amplifies drug-seeking tendencies. Individuals



(a)

(b)

Figure 5: (a) The two-choice task environment where the
agent chooses between a Food reward of +15 vs. a Drug re-
ward, which is necessarily followed by a punishment of −10.
Thus, the net reward for the drug action is 15− 10 = 5. (b)
The bar chart illustrates the comparison of Results show a
trend similar to those in Figure 4a, where drug-seeking in-
creases when lower levels of the hierarchy control behavior.
When discounting is increased, drug-seeking significantly in-
creases at all hierarchical levels.

with inherently high baseline discounting, shaped by biological
and genetic factors, may thus face a greater risk of addiction.
It is also interesting to compare discounting levels in absti-
nent individuals with dependent users and non-users. Empiri-
cal evidence on delay discounting in abstinent individuals has
shown mixed patterns across different substances. In opioid
dependence, long-term abstinent individuals display similar
levels of discounting to those of actively using patients—both
elevated compared to non-users (Robles et al., 2011). In con-
trast, abstinent individuals with a history of alcohol or nicotine
use tend to show reduced discounting, indicating partial re-
covery of future-oriented decision-making (Bickel et al., 1999;
Petry, 2001). A hierarchical reinforcement learning framework
offers a potential explanation: impulsivity is influenced by the
level of the hierarchy currently governing behavior. We spec-
ulate that in abstinent opioid users, behavioral control may re-
main biased toward levels closer to the lower layers of the
hierarchy, reflecting higher impulsivity, whereas alcohol and
nicotine abstinence may allow re-engagement of higher-level,

more deliberative control. Future studies would be required to
test this idea, for example neuroimaging approaches may be
able to examine which regions of the decision hierarchy are
active during inter-temporal choice across substance types
and stages of abstinence.

One line of research suggests that the neuromodulator
serotonin plays a crucial role in regulating temporal discount-
ing and impulsivity in individuals (Schweighofer et al., 2008;
Miyazaki et al., 2012). Specific serotonergic adaptations as-
sociated with controlled drug use can increase vulnerability
to compulsive drug-seeking behaviors (Müller & Homberg,
2015). Future extensions of formal addiction models can inte-
grate serotonin levels by modeling their influence on temporal
discounting and impulsivity, further refining our understanding
of their role in addiction.

In line with previous works using the biological HRL frame-
work to explain drug seeking (Keramati & Gutkin, 2013; Maha-
jan et al., 2023), our model highlights how drug-induced mis-
valuations, particularly at lower hierarchical levels, can drive
drug-seeking behavior. Control allocated to these lower lev-
els, biased by drug-related prediction errors, promotes com-
pulsive habits. Our model suggests, supported by prior simu-
lation results from Mahajan et al. (2023), that individuals with
SUDs may disproportionately rely on lower-level mechanisms,
compared to non-addicted individuals who retain greater en-
gagement of higher-level cognitive processes. Empirical stud-
ies comparing basal ganglia–cortical interactions in addicted
versus non-addicted populations would provide valuable vali-
dation for this theoretical prediction.

Relapse can be viewed as the reactivation of dormant, low-
level maladaptive habits that were previously suppressed by
higher-level cognitive control during therapy or abstinence.
However, dysfunction at the top levels may reduce—but not
eliminate—the likelihood of addictive behaviors. Stress or
drug re-exposure may further impair cognitive control, en-
abling habit-driven drug seeking to resurface. Future work
should investigate how control is allocated across hierarchical
levels. Prior studies suggest a cost-benefit arbitration mecha-
nism may govern this process (Kool et al., 2017; Mahajan et
al., 2023).

However, our model is not intended to provide a complete
account of drug addiction. Many unexplained aspects of ad-
diction involve other brain systems known to be affected by
drugs of abuse (Koob, 2015). Further, our model does not
capture the contributions to addiction from a goal-directed sys-
tem (Hogarth, 2020). In our model, drug-induced biases ac-
cumulate over DA spirals within a model-free value-estimation
framework (habit learning). One potential method of including
a model-based decision system within such a biological HRL
framework is by having it interact with the topmost level in a
Dyna-like fashion (Sutton, 1991; Mahajan et al., 2023). In-
corporating these systems into a formal computational frame-
work remains a promising direction for future research. An-
other limitation of our work is that the ”undiscounting” step
across hierarchical levels may reduce the biological plausibil-



ity of our model; empirical studies are required to validate how
inter-level communication occurs biologically. Additionally, a
direct comparison between the model’s discounting behavior
and empirical data from individuals with SUD remains an im-
portant direction for future research.

In summary, this work extends previous HRL models by in-
corporating temporal discounting, offering a more comprehen-
sive framework for understanding addiction-related behaviors.
Our findings emphasize the critical role of hierarchical misval-
uations and discounting in driving drug-seeking tendencies,
with lower levels of the decision-making hierarchy playing a
key role in compulsive habits. The model aligns with be-
havioral evidence linking over-discounting rates to addiction
severity and highlights relapse as a reactivation of latent mal-
adaptive habits under diminished cognitive control.

Methods

Computational Theory of Biological HRL

In our model, the agent updates its value estimates Q(st ,at)
using temporal-difference (TD) learning (Sutton & Barto,
1998), computing reward prediction errors upon receiving re-
ward rt for action at in state st :

δt = rt + γV (st+1)−Q(st ,at) (6)

where V (st+1) is the next state’s value and γ is the discount
factor.

Hierarchical decision-making organizes actions with tempo-
ral and state abstractions, decomposing high-level goals into
lower-level sub-goals and primitive actions (Figure 2a). Up-
dates occur upon completion of primitive actions, ensuring
convergence at the goal states. Higher-level abstractions fa-
cilitate faster learning by refining teaching signals for lower
levels, accelerating convergence:

δ
n
t = rn

t +V n+1(sn+1
t+1 )−Qn(sn

t ,a
n
t ) (7)

The corresponding level is updated using:

Qn(sn
t ,a

n
t )← Qn(sn

t ,a
n
t )+αδ

n
t (8)

where α is the learning rate. This hierarchical communica-
tion aligns with the biological structure of dopaminergic spirals
(Haruno & Kawato, 2006; Keramati & Gutkin, 2013; Mahajan
et al., 2023).

Keramati & Gutkin (2013) modified this approach to incor-
porate drug-induced dopamine elevation (Di Chiara & Imper-
ato, 1988; Redish, 2004; Dezfouli et al., 2009; Piray et al.,
2010; Dayan, 2009), introducing a positive bias d =+D in the
prediction error:

δ
n
t = rn

t +Qn+1(sn+1
t ,an+1

t )− rn+1
t −Qn(sn

t ,a
n
t )+d (9)

Here, d = 0 for natural rewards and d =+D for drug rewards.
This bias leads to hierarchical misvaluation, overvaluing drug-
seeking actions at lower levels. Mahajan et al. (2023) further
extended this model to translate these misvaluations into be-
havioral choices.

Arbitration scheme and action selection

In our experiments, we use hard allocation, where control is
clamped to a single level in the hierarchy to examine behav-
ior under full control of option selection. The controlling level
selects actions via Boltzmann exploration based on Q-values
and directs lower levels to execute the chosen option as a
sequence of primitive actions. Reward feedback updates val-
ues across all levels. While Mahajan et al. (2023) propose a
cost-benefit arbitration-based soft allocation scheme, we do
not implement it here for simplicity but it can be used for future
work.

Algorithmic implementation and Simulation details

The original algorithm employed temporal and state abstrac-
tions using (1) a stacked MDP framework, (2) an option-level
eligibility table, and (3) an abstract state mapping table Ma-
hajan et al. (2023). We extend this by introducing a stacked
discounting map that encodes each state’s distance to ter-
minal states within each hierarchical level, which is essential
for propagating undiscounted state and action values down-
ward. Value updates occur at all hierarchy levels associated
with the chosen option. Rewards are assigned only once per
episode—either upon final action completion or upon enter-
ing a drug-reward state followed by punishment and episode
termination—consistent with the assumption that abstract ac-
tions yield rewards only upon completion. Thus, the discount
factors ζ(n) are selected to ensure that natural reward val-
ues remain consistent across hierarchical levels Keramati &
Gutkin (2013).

Simulations are performed in a multi-step two-choice task,
averaging agent behavior over 10 random-seed trials. Each
trial includes 1500 episodes, with a maximum of 400 primitive
steps per episode, typically ending earlier upon reaching a ter-
minal state. All values are initialized to zero; the learning rate
is set to 0.1, and Boltzmann exploration uses a temperature
of 10. Following Mahajan et al. (2023), agent performance is
evaluated using cumulative termination ratios across trials to
reflect reward preferences. The choice of d = 3 in our simu-
lations follows the methodology of Mahajan et al. (2023), who
used d = 2 for a drug reward of +10. Since our setup uses
a drug reward of +15, we scaled d proportionally, assuming
a linear relationship between the bias term and drug reward
magnitude.

Explanation of steps-to-reward assumption

In our model of discounting in biological HRL, ν(sn
t ,a

n
t ) repre-

sents the number of steps state sn
t is far from the goal state

of action an
t (Detailed in Figure 6). The Q-values for each

state-action pair Q(st ,at) and the state-function values V (st)
for each state at every level converge to their discounted val-
ues according to the discount factor ζ(n) of the corresponding
level. However, through equation 7, every layer passes down
undiscounted values i.e values if ζ(n) = 1 to the layer below it
and so on. This form of information-sharing requires the user
to be aware of how far the reward is in the future during the



Figure 6: Illustration of the Steps-to-Reward (ν) concept. In
state S0, taking action c′ (food action) leads directly to the food
reward F in 1 step, so ν(S0,c′) = 1. However, taking action
b (drug action) requires 3 steps to reach the drug reward D:
S0→ S1→ S2→ D. Therefore, ν(S0,b) = 3.

calculation of the RPE. This may be biologically plausible, as
recent studies have suggested that mid-brain dopamine neu-
rons also reflect information about the distribution of future
rewards on cue presentation (Sousa et al., 2023).
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