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Abstract

Deploying AI in high-stakes settings requires models that are not only accurate but also in-
terpretable and amenable to human oversight. Concept Bottleneck Models (CBMs) support
these goals by structuring predictions around human-understandable concepts, enabling in-
terpretability and post-hoc human intervenability. However, CBMs rely on a ‘complete’
concept set, requiring practitioners to define and label enough concepts to match the pre-
dictive power of black-box models. To relax this requirement, prior work introduced resid-
ual connections that bypass the concept layer and recover information missing from an
incomplete concept set. While effective in bridging the performance gap, these residuals
can redundantly encode concept information, a phenomenon we term concept-residual
overlap. In this work, we investigate the effects of concept-residual overlap and evaluate
strategies to mitigate it. We (1) define metrics to quantify the extent of concept-residual
overlap in CRMs; (2) introduce complementary metrics to evaluate how this overlap impacts
interpretability, concept importance, and the effectiveness of concept-based interventions;
and (3) present Disentangled Concept-Residual Models (D-CRMs), a general class
of CRMs designed to mitigate this issue. Within this class, we propose a novel disentangle-
ment approach based on minimizing mutual information (MI). Using CelebA, CIFAR100,
AA2, CUB, and OAI, we show that standard CRMs exhibit significant concept-residual
overlap, and that reducing this overlap with MI-based D-CRMs restores key properties of
CBMs, including interpretability, functional reliance on concepts, and intervention robust-
ness, without sacrificing predictive performance.

1 Introduction

State-of-the-art deep learning models have achieved remarkable performance in complex tasks, surpassing
humans in areas such as computer vision Han et al. (2022), speech recognition Radford et al. (2023), and
strategic game playing Silver et al. (2016); Brown & Sandholm (2018). However, despite their high accuracy,
the underlying decision-making processes of these models remain opaque to humans, leading to their charac-
terization as black boxes. This opacity poses significant risks when deep learning is deployed in safety-critical
applications, such as medical imaging Salahuddin et al. (2022), where the issued diagnosis must be grounded
in observed evidence.

Concept Bottleneck Models (CBMs) Koh et al. (2020) enhance model interpretability by explicitly predicting
intermediate, semantically meaningful concepts, which subsequently inform downstream predictions. These
human-understandable concepts facilitate clear insights into model decisions, enabling users to trace predic-
tions back to interpretable features. However, CBMs rely heavily on predefined comprehensive concept sets
and sufficient labeled data, making them challenging to apply broadly in practice.

To address these limitations, Concept Residual Models (CRMs) Yuksekgonul et al. (2022); Sawada & Naka-
mura (2022); Zabounidis et al. (2023); Zhang et al. (2023); Espinosa Zarlenga et al. (2022) introduce an
auxiliary residual layer that captures additional task-relevant information beyond the predefined concepts.
While this improves downstream performance, it creates a challenge: residual layers can encode redundant
concept information. This redundancy causes the downstream network to preferentially rely on the opaque
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Figure 1: Overview of the Disentangled Concept–Residual Model (D-CRM). Given an input sample, the
embedding network predicts concept logits and a residual representation. The predicted concepts are super-
vised using ground-truth labels and, together with the residual, are passed to the label predictor to produce
class logits. A disentanglement objective encourages the residual to encode information complementary to
the concepts, while a label loss ensures accurate classification.

residual representation rather than on the interpretable concept features. We term this phenomenon concept-
residual overlap, and show it undermines the interpretability and intervention effectiveness originally sought
by CBMs.

In this paper, we propose a comprehensive approach to tackle concept–residual overlap by enhancing disen-
tanglement between concept and residual representations. We refer to this class of models as Disentangled
Concept–Residual Models (D-CRMs). Central to our approach is a novel training objective based on min-
imizing an upper bound of mutual information (MI) between concept and residual representations, which
directly targets the root cause of interpretability degradation in CRMs.

Our contributions can be summarized as follows:

• We formally define and analyze concept-residual overlap, demonstrating how redundant encoding of concept
information across concept and residual pathways fundamentally impairs concept-based interpretability and
intervention effectiveness.

• We introduce and emphasize new interpretability metrics – random concept interventions and random
residual interventions – that complement traditional performance evaluations, providing deeper insights into
interpretability and residual reliance.

• We propose a novel mutual information minimization objective that reduces concept-residual overlap by 61-
81% while maintaining performance within 3% of baseline CRMs, achieving 3-57× better concept importance
preservation and intervention accuracy gains up to 16%.

• We empirically validate our approach across five diverse datasets, demonstrating that MI-based D-CRMs
achieve near-complete overlap suppression on challenging datasets and maintain 98% counterfactual rea-
soning accuracy compared to 25% for standard CRMs. This significantly broadens the applicability and
practical utility of interpretable concept-residual models.

2 Background

Concept learning approaches a prediction task from inputs x ∈ X to outputs y ∈ Y by introducing a low-
dimensional intermediate representation z ∈ Z that is in some way designed to correspond to semantically
meaningful concepts Lampert et al. (2009); Kumar et al. (2009); Kim et al. (2018); Koh et al. (2020); Chen
et al. (2020). Typically these concepts are specified as a collection of ground truth values c ∈ C representing
human-interpretable properties of input (for example, the color of a bird’s feathers), and are used during
training to learn a suitable representation z.
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For example, in the dog classification task shown in Figure 2, a model might be trained to first predict
concepts like ‘medium size’ or ‘brown fur’ before predicting the final class, ‘duck tolling retriever’. This
structure is the foundation of Concept Bottleneck Models (CBMs).

2.1 Concept Bottleneck Models

Human Expert

Observ
e


Sample

Observ
e


Explanatio
n

Intervene

ConceptsInput Sample

Embedding 
Network Label Predictor

Label Prediction

Residual

Concepts

Residual

Golden Retriever

Cocker Spaniel

Beagle

Setter

Ducktolling Retriever

Label Predictor

Label Prediction

Golden Retriever

Cocker Spaniel

Beagle

Setter

Ducktolling Retriever

Floppy Ears

Hypoallergenic

Golden Fur

Medium Size

Vocal

Floppy Ears

Hypoallergenic

Golden Fur

Medium Size

Vocal

Figure 2: Demonstration of a test-time concept inter-
vention on a mislabeled sample. The input image is
a duck tolling retriever, but the model predicts cocker
spaniel due to incorrectly predicting the “medium size”
concept as false. Manually correcting the concept to
true should ideally update the downstream prediction;
however, if concept–residual overlap exists, the resid-
ual may still encode conflicting size information, pre-
venting the prediction from updating. Our proposed
D-CRMs mitigate this by enforcing disentanglement
between concepts and residuals.

CBMs aim to learn an intermediate concept repre-
sentation z = ĉ that directly predicts ground truth
concept values c Koh et al. (2020). The model is de-
composed into two components: a concept encoder
g : X → C supervised on ground truth concept val-
ues, and a predictor f : C → Y supervised on the
prediction task.

This approach has the advantage of being directly
interpretable and straightforward to intervene over.
For instance, in Figure 2, the model incorrectly pre-
dicts ‘cocker spaniel’ because it failed to recognize
the ‘medium size’ concept. An expert can manually
correct this single concept prediction, which should
ideally correct the final prediction to ‘duck tolling
retriever’. This ability to intervene is a key advan-
tage of CBMs.

Despite their benefits, vanilla CBMs suffer from two
main limitations: concept leakage and the bottle-
neck assumption.

Concept Leakage Concept leakage occurs when
extraneous information is encoded in the concept
layer itself. This compromises interpretability and
reduces intervention performance, as the down-
stream network relies on leaked features that inter-
ventions inadvertently remove. Mahinpei et al. were
the first to name and empirically demonstrate this phenomenon in standard CBMs, showing how it degrades
both interventionability and interpretability Mahinpei et al. (2021); Margeloiu et al. (2021).

Limited Capacity and the Bottleneck Assumption CBMs rely on the bottleneck assumption, that the
intermediate concept representation is sufficient to accurately predict the target label. This assumes that
the provided set of ground truth concepts captures all information relevant to the downstream task. In our
dog example, concepts like ‘medium size’ and ‘brown fur’ might not be enough to distinguish a ‘duck tolling
retriever’ from a ‘golden retriever’. The model might need information about ‘fur texture’ (e.g., wavy vs.
straight), which may not be in the predefined concept set. When the concept set is incomplete, the model
may struggle to make accurate predictions, which limits the practical utility of CBMs.

2.2 Concept-Residual Models

Concept-Residual Models (CRMs) are an extension of CBMs that mitigate the bottleneck assumption by
additionally including a residual r ∈ Rl in the intermediate representation z = (ĉ, r) to encode extra
information relevant to the downstream prediction task Sawada & Nakamura (2022). The model is now
decomposed into three components: a concept encoder g : X → C, a residual encoder h : X → R, and a
predictor f : C × R → Y . In practice, many of the layers in g and h are shared. The residual can, in theory,
learn the missing information about ‘fur texture’ to solve the classification task.

Concept–Residual Overlap By introducing a residual pathway, CRMs relax the bottleneck constraint.
However, this flexibility introduces the risk of concept–residual overlap, where the same concept is
redundantly encoded in both the concept layer g(x) and the residual layer h(x).
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Returning to Figure 2, the residual, in addition to learning about ‘fur texture’, might also learn the ‘medium
size’ concept. Now, when an expert intervenes and corrects the ‘medium size’ concept in the concept layer,
the model might ignore this correction because the residual still contains the incorrect information about
the dog’s size. This creates ambiguity in the model’s information flow and undermines the effectiveness
of interventions. This ambiguity is the central problem we address in this paper. It undermines faithful
attribution and intervention effectiveness, as modifying a concept may have little to no effect on the output
if the residual retains the original, conflicting information.

3 Related Work

CBM variants Concept Bottleneck Models (CBMs), like those described by Koh et al. Koh et al. (2020),
predict downstream tasks using an intermediary bottleneck layer trained with supervised losses. Bahadori
et al. extended CBMs to denoise the concepts Bahadori & Heckerman (2020). ProbCBM models uncer-
tainty in concept prediction and provides explanations based on concept predictions and their corresponding
uncertainty Kim et al. (2023). Shin et al. (2023) develop various strategies for selecting which concepts
maximally improve intervention effectiveness. Chauhan et al. (2023) similarly develop a method combining
concept prediction uncertainty and influence of the concept on the final prediction to improve intervention
effectiveness. CBMs offer interpretability advantages but are limited by the need for complete concept sets
during training. The challenge lies in creating a fully representative set of concepts for a domain. When
concepts are not expressive enough to capture all the needed information for the task, performance suffers.

Label-Free CBMs Recent advances in CBMs aim to reduce reliance on human-labeled concepts by automat-
ing concept discovery, reducing the assumption that concept labels exist for each dataset of interest. Label-
Free CBM methods instead rely on foundation models to label concepts. Post-hoc CBMs (PCBMs) Yuk-
sekgonul et al. transform existing models into CBMs by leveraging concept activation vectors (CAVs) to
discover and represent concepts. Label-Free CBMs Oikarinen et al. (2023) take a different approach by
learning a projection matrix that maximizes cosine similarity between the projection matrix output and
CLIP scores, without requiring explicit concept labels. Both methods relax the requirement of labels, but
still use a separate LLM to propose concept sets. Vision-Language-Guided CBMs (VLG-CBMs) Srivastava
et al. (2024) and Discover-then-Name CBMs Rao et al. (2024) automate concept generation and naming
using multimodal models and latent concept discovery, respectively.

Every label-free CBM method relies on foundation models to generate concept labels. As a result, these
methods do not have access to ground-truth labels and therefore cannot evaluate or optimize for the ability to
intervene on concept predictions. Since intervention is the primary mechanism through which concept leakage
has been empirically demonstrated in CBMs, it remains unclear to what extent concept leakage compromises
the interpretability of label-free approaches Havasi et al. (2022). For example, Label-Free CBMs Oikarinen
et al. (2023) attempt to filter out uninterpretable concepts by requiring a minimum correlation threshold
(40%) between the predicted concept activations and CLIP similarity scores for a corresponding concept
prompt. However, this filtering does not eliminate the possibility of leakage: a concept that aligns with a
CLIP embedding at 40% correlation may still represent a latent entanglement of multiple factors, or may
not faithfully reflect the semantics of the intended concept at all. Since CLIP itself is not guaranteed to
produce disentangled or interpretable concept representations, high correlation with its outputs may not be
a sufficient condition for interpretability or faithful concept separation.

Our work addresses these limitations by integrating human-labeled concepts to ensure reliability, while utiliz-
ing additional residual capacity to capture information not represented in the labeled concepts. This hybrid
approach combines the strengths of human oversight and automated discovery, enabling both interpretability
and precision across a wide range of applications. By making stronger assumptions about label availabil-
ity, we provide stronger guarantees regarding model transparency, disentanglement, and responsiveness to
human intervention.

Concept–Residual Approaches Several works augment CBMs with residuals but do not explicitly ad-
dress concept–residual overlap. Yüksekgönül et al. add a post-hoc residual predictor to CBMs, modeling
y = f(c(x)) + g(x), where g(x) captures input-level information and can be removed for interpretability
Yuksekgonul et al. (2022). However, when g(x) is active, it’s unclear whether predictions still rely on con-
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cepts, and the additive form cannot capture nonlinear concept–residual interactions. Sawada et al. propose
a similar residual augmentation but do not evaluate leakage Sawada & Nakamura (2022). Zabounidis et al.
use CRMs in multi-agent RL and demonstrate improved intervention performance through disentanglement,
but without quantifying overlap Zabounidis et al. (2023). Zhang et al.’s DCBMs use mutual information to
trace concept-label alignment but do not isolate residual contributions Zhang et al. (2023). Oguntola et al.
reduce intra-concept leakage via mutual information minimization in RL agents, improving rewards but not
addressing interpretability under intervention Oguntola et al. (2023).

Introducing Concept Embedding Models (CEMs), Espinosa Zarlenga et al. (2022; 2023) relax the strict
bottleneck of CBMs by embedding each concept into a high-dimensional, continuous latent space. This im-
proves representational flexibility and predictive performance, especially when the concept set is incomplete
or noisy. However, the flexibility comes at the cost of interpretability: each concept embedding inherently
mixes semantic content with residual information, making it difficult to reason about the causal role of indi-
vidual concepts or to isolate their influence via counterfactual interventions. We provide further commentary
in Appendix A.1.

Despite these efforts, no prior work systematically evaluates how decorrelation techniques affect con-
cept–residual overlap or their impact on intervention effectiveness. We address this gap by quantifying
overlap under common decorrelation strategies and examining residual-layer influence on concept-level in-
terventions.

4 Method

We introduce Disentangled Concept Residual Models (D-CRM), a unifying class of models designed
to improve the interpretability and intervention fidelity of CRMs by minimizing concept-residual overlap.
This framework encompasses a range of existing methods – such as IterNorm Zabounidis et al. (2023) and
EYE Wang et al. (2022) – that aim to reduce redundancy between concept and residual representations.
Within this general methodology, we propose two explicit techniques: (1) a decorrelation loss that penal-
izes linear dependencies between concept and residual representations, and (2) a mutual information (MI)
minimization objective that enforces statistical independence. These techniques target different forms of
overlap, with MI minimization providing a more general approach by capturing both linear and nonlinear
dependencies.

4.1 Mitigating CRM Overlap with Decorrelation

We introduce a targeted decorrelation loss to reduce overlap between concept and residual representations in
CRMs. Unlike prior methods that enforce full orthogonality across concept and residual vectors, our approach
selectively penalizes only the linear dependencies between the two, preserving any natural correlations within
the concept space.

Formally, given a mini-batch of concept representations C ∈ Rb×k and residual representations R ∈ Rb×d,
we define the cross-covariance matrix as:

CovCR = 1
b

C⊤R. (1)

Our decorrelation loss penalizes the squared off-diagonal entries:

Ldecorr =
∑
i ̸=j

(CovCR)2
ij , (2)

encouraging decorrelation between the concept and residual pathways while leaving intra-group correlations
intact. This targeted approach contrasts with techniques such as ZCA whitening, used in prior work to
promote concept interpretability or improve intervention performance Chen et al. (2020); Zabounidis et al.
(2023). Those methods decorrelate all dimensions-including between concepts-by applying a global transfor-
mation:

X′ = DΛ− 1
2 DT (X − µX), (3)
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where X contains concatenated concept and residual vectors. While this enforces orthogonality, it also
removes meaningful correlations among concept dimensions. By contrast, our loss focuses only on the
interaction between concept and residual spaces. This makes it better suited for scenarios where concept
relationships are semantically meaningful and should be preserved. Still, this approach only removes linear
dependencies.

4.2 Minimizing Mutual Information

To more generally quantify dependence between residual and concept representations, we use mutual infor-
mation (MI) between residuals r = h(x) and ground truth concepts c:

I(c; r) = H(c) − H(c | r) = DKL(p(c, r) ∥ p(c) p(r)), (4)

where H(·) denotes entropy and DKL is the Kullback–Leibler divergence. Mutual information measures how
much knowing r reduces uncertainty about c: higher values indicate stronger dependence, while I(c; r) = 0
corresponds to statistical independence, i.e., p(c | r) = p(c), meaning the residual contains no information
about the concepts. We estimate I(c; r) using the Contrastive Log-ratio Upper Bound (CLUB) (Cheng et al.,
2020), which learns a variational approximation qθ(c | r) to the true conditional distribution. The estimator
is trained by solving:

min
θ

−Ep(c,r) [log qθ(c | r)] . (5)

Once trained, this estimator provides a differentiable approximation of mutual information. We then freeze
θ and use the estimated I(c; r) as a regularizer in the D-CRM training objective. Because qθ is differen-
tiable, gradients can propagate through it into the residual encoder h, enabling effective minimization of
concept–residual overlap.

4.3 Semi-Independent Training Objective

D-CRMs are trained to balance accurate concept & target prediction with disentanglement between learned
concepts and residuals. The model consists of: (1) a concept encoder g : X → ĉ, (2) a residual encoder
h : X → r, and (3) a predictor f : C × R → ŷ, where x ∈ X is the input, ĉ = g(x) are predicted concepts,
r = h(x) is the residual representation, and ŷ = f(c, r) is the model’s final prediction using ground truth
concepts c and learned residuals r.

Gradient-blocked supervision. Following Havasi et al. (2022), we supervise g using ground truth concepts
c, while preventing gradient flow from the target loss into g. This avoids concept leakage while maintaining
alignment with c. The residual encoder h, however, remains fully trainable with respect to the target loss,
enabling it to encode task-relevant information.

Training losses. The model is trained by minimizing a weighted combination of loss terms over the dataset
distribution D:

min
g,h,f

E(x,c,y)∼D

α Lconcept(g(x), c)︸ ︷︷ ︸
Concept supervision

+β Ltarget(f(c, h(x)), y)︸ ︷︷ ︸
Prediction with fixed c

+γ Ldisentangle(h(x), c)︸ ︷︷ ︸
Disentanglement

 , (6)

where α, β, γ ∈ R≥0 control the trade-off between concept fidelity, predictive performance, and representation
disentanglement.

Disentanglement via mutual information. Because the CLUB estimate depends on a learned variational
distribution qθ(r | c), we must optimize both the model parameters and the estimator jointly. This results
in a nested optimization problem: e. Specifically, we solve:

min
g,h,f

α Lconcept(g(x), c) + β Ltarget(f(c, h(x)), y) + γ ICLUB(r, c; θ⋆), (7)
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where θ⋆ is obtained by solving the estimator subproblem:

θ⋆ = arg min
θ

−Ep(c,r) [log qθ(c | r)] . (8)

In practice, we alternate updates by taking a single gradient step on θ to improve the mutual information
estimate, and a single gradient step on the model parameters (g, h, f) using ICLUB(r, c; θ⋆) as a fixed, dif-
ferentiable regularizer. This prevents the mutual information estimate from becoming stale as r evolves,
ensuring that gradients used to penalize overlap remain aligned with the current residual distribution.

5 Quantifying Concept-Residual Overlap and CRM Performance

While our mutual information formulation confirms the presence of concept–residual overlap, it does not
indicate how this overlap affects the model’s use of concept during target prediction. To address this, we
introduce intervention-based metrics that measure the model’s reliance on concepts versus residuals. These
metrics help assess whether concepts meaningfully influence the model’s output, or are ignored in favor of
the residual as overlap increases.

5.1 Intervention-Based Metrics

Intervention-based metrics directly assess how changes to concept or residual inputs affect the predictions of
the target model.

Positive Concept Interventions We construct a modified input c̃i = ctrue
i by setting concept i to its

ground-truth value. Accuracy under positive interventions is defined as:

ACCpos = E(x,y)∼D
[
1

(
f(cintv(x), h(x)) = y

)]
, (9)

where cintv(x) is c(x) with the i-th component replaced by ctrue
i . High ACCpos indicates that concept updates

are correctly propagated to model outputs.

Random Concept Interventions We randomly replace concept i with a value from another training
example:

c̃i ∼ {c
(j)
i | j ∈ D, c

(j)
i ̸= ctrue

i }, (10)

and measure:

ACCneg = E(x,y)∼D
[
1

(
f(cintv(x), h(x)) = y

)]
. (11)

In CBMs, all predictive information flows through the concept layer, so randomizing concepts leads to random
accuracy. For CRMs, where the target model has access to a residual, the degree of degradation reveals how
much the CRM actually relies on concept representations for prediction.

Residual Interventions To test the model’s reliance on the residual layer, we replace h(x) with a residual
from another sample:

h̃(x) ∼ {h(x(j)) | j ∈ D, j ̸= i}, (12)

and define residual intervention accuracy:

ACCres = E(x,y)∼D
[
1

(
f(c(x), h̃(x)) = y

)]
. (13)

High ACCres indicates that concepts alone suffice for accurate target classification.
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5.2 Feature Attribution with DeepLIFT

We assess the influence of each concept using DeepLIFT (?), which assigns contribution scores C∆ci∆fy

quantifying how the deviation of concept ci from a reference cref
i contributes to the deviation of the model

logit fy (for class y) from its reference output f ref
y , such that:

dc∑
i=1

C∆ci∆fy
+

dr∑
j=1

C∆hj∆fy
= ∆fy. (14)

We average C∆ci∆fy
over the validation set to estimate global concept importance. Baselines cref

i are set
to 0.5 for binary concepts and to the empirical mean for continuous ones. Attribution patterns reveal the
extent to which the model relies on concepts vs. residuals, and how this balance shifts under decorrelation.

6 Experiments

In this section, we evaluate CRMs by exploring the following questions:

• Q1: Concept-Residual Overlap: Does concept-residual overlap exist in CRMs, and how does it change
with increasing residual capacity? Can MI-based regularization suppress this overlap more effectively than
existing decorrelation methods?

• Q2: Concept Importance: As residual dimension—and thus concept-residual overlap—increases, how
does this affect the functional importance of concept representations in CRMs? Does MI-based disentangle-
ment better preserve reliance on the concept layer compared to alternative methods?

• Q3a: Impact on Baseline Performance: How does MI minimization’s constraint on concept-residual
overlap affect task performance compared to other CRM disentanglement techniques and CEMs?

• Q3b: Intervention Efficacy: Does MI minimization’s reduction of concept-residual overlap enhance
CRMs’ responsiveness to test-time concept interventions compared to alternative approaches?

Datasets and Tasks We analyze five vision tasks: (1) CUB, a bird classification task with 112 concept
features predicting 200 species Wah et al. (2011), (2) OAI, using ten ordinal variables to predict four KL
grades of knee osteoarthritis severity Nevitt et al. (2006), (3) CIFAR-100, with 20 superclasses as concepts
where each image belongs to one of five associated classes per superclass Krizhevsky et al. (2009), (4)
CelebA, using 6 of 8 concept annotations with vector product creating a 256-class task Espinosa Zarlenga
et al. (2022; 2023), and (5) AA2, where we use a 6-concept subset to create an incomplete task allowing
only 38 of 50 classes to be uniquely distinguished Xian et al. (2019). Complete datasets (CUB, OAI) contain
sufficient concepts to predict the task, while incomplete ones (CIFAR-100, CelebA, AA2) require additional
information for high task performance.

Models We evaluate mutual information based Concept Residual Models against other disentanglement
techniques including decorrelation loss, iterative normalization Huang et al. (2019), and expert yielded
estimates (EYE) regularization Wang et al. (2022). We compare these approaches with baseline CBMs and
CEMs using identical architectures, averaging metrics over five random initializations across challenging
image classification and medical datasets. To match previous papers, we use ResNet18 pre-trained on
ImageNet as the backbone for CIFAR, AA2, and OAI; ResNet34 for CelebA; and InceptionV3 for CUB.
The output of the feature extractor is split into concept and residual layers. The target network consists of
one layer for CIFAR, CelebA, and CUB, and three layers for OAI. Semi-independent training is used for all
datasets except for CelebA, where disentangled intervention aware training is used for all D-CRMs. CEMS
are trained using intervention aware training with hyper parameters supplied in Espinosa Zarlenga et al.
(2022). Further details on Disentangled Intervention Aware Training can be found in Section D.2 and in our
code included in the supplementary material.
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Incomplete Concept Sets Complete Concept Sets
CIFAR 100 CelebA CUB OAI

Method F1↓ F1ρ↓ MI↓ MIρ↓ F1↓ F1ρ↓ MI↓ MIρ↓ F1↓ F1ρ↓ MI↓ MIρ↓ RMSE↑ RMSEρ↓ MI↓ MIρ↓

Latent 0.62 1.00 1.51 1.00 0.87 0.75 2.69 0.99 0.29 1.00 1.26 0.89 0.99 0.96 9.49 0.93
Decorr. 0.61 0.98 1.45 1.00 0.87 0.62 2.65 0.88 0.26 1.00 0.78 0.89 1.18 0.86 6.54 0.86

IterNorm 0.62 0.91 1.39 1.00 0.80 0.98 2.22 0.98 0.25 0.89 0.77 1.00 1.00 0.82 8.54 0.96
EYE 0.61 0.98 1.17 1.00 0.84 0.95 2.39 0.93 0.28 0.93 0.77 0.93 0.96 0.95 9.15 0.93
MI 0.12 0 .50 0.70 0 .19 0.78 0.99 1.50 0.99 0.22 0.75 0.70 0.82 1.34 0 .25 1.25 0.39

Random 0.05 - - - 0.471 - - - 0.15 - - - 1.30 - - -

Table 1: Summary of concept-residual overlap across disentanglement strategies. F1-Score and Mutual In-
formation (MI) are reported at a fixed high residual dimensionality (16 for all datasets, 64 for CUB), with
lower values indicating better disentanglement. To assess monotonic trends, we compute Spearman’s rank
correlation coefficient (ρ) between residual dimensionality (powers of 2 from 1 to 64) and the corresponding
F1/MI values; these are shown in subscripted columns. Bold values denote statistically significant improve-
ments (p < 0.01) in the primary metric. Italicized ρ values indicate no evidence of a significant monotonic
relationship (p ≥ 0.01). Random baselines are reported for F1 only.

7 Results

Across five datasets encompassing both complete and incomplete concept scenarios, we demonstrate that
standard CRMs exhibit significant concept-residual overlap (F1-scores: 0.29-0.87, MI scores: 1.17-2.69).
Our proposed MI-based D-CRMs reduce this overlap by 61-81% while maintaining performance within 3%
of baseline CRMs. This overlap reduction yields substantial improvements in intervention effectiveness (up
to 16% on OAI) and concept importance preservation (3-57x), validating our core hypothesis.

7.1 Concept-Residual Overlap in Standard CRMs (RQ1)

Our first research question asks whether concept-residual overlap exists in CRMs and how effectively MI-
based regularization can suppress it. Our hypothesis is that as the residual layer’s capacity increases,
it encodes more concept-related information, undermining model interpretability. We find that standard
CRMs exhibit significant overlap that increases monotonically with residual capacity, while MI-based D-
CRMs achieve near-complete suppression on 2/4 tested datasets and substantial reduction on all others,
outperforming all alternative disentanglement methods.
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Figure 3: F1-Scores for each concept plotted against
the concepts’ estimated Shapley value for a residual
dimension of 64 for the CUB dataset. Results show the
residual encodes more information on concepts that
are found to be important to the task prediction.

We systematically evaluate concept-residual overlap
by training CRMs with residual dimensions rang-
ing from 1 to 64 (powers of 2) and measuring both
F1-Score (ability to predict concepts from residu-
als) and Mutual Information between concepts and
residuals. To validate monotonic relationships, we
compute Spearman’s rank correlation coefficients
(ρ) between residual dimension and overlap metrics.
Table 1 summarizes our findings at high residual ca-
pacities, with correlation coefficients quantifying the
strength of monotonic trends.

Standard CRMs exhibit strong concept-
residual overlap. Latent residual CRMs show
strong positive correlations between residual size
and overlap across all datasets: F1-Score correla-
tions of ρ = 1.00 (CIFAR-100, CUB), ρ = 0.75
(CelebA), and ρ = 0.96 (OAI). Mutual information
correlations are similarly high: ρ = 1.00 (CIFAR-
100), ρ = 0.99 (CelebA), ρ = 0.89 (CUB), and
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Figure 4: Test-time intervention results averaged over 5 seeds. Top: Random concept interventions; higher
degradation indicates stronger concept dependence. Middle: Random residual interventions; lower degra-
dation suggests reduced residual reliance. Bottom: DeepLIFT SHAP concept importance; higher values
indicate greater concept influence.

ρ = 0.93 (OAI). These results provide strong evidence that residual capacity directly enables concept infor-
mation leakage in standard CRMs.

Residuals selectively encode task-relevant concepts. Figure 3 reveals that standard CRMs exhibit
strong correlations (R2 > 0.80) between concept importance (SHAP values) and residual encoding strength
(F1-scores), significantly exceeding random baseline correlations (p < 0.01). This demonstrates that overlap
is not random but systematically biased toward task-critical concepts, making the interpretability problem
even more severe.

MI-based D-CRMs achieve superior overlap reduction. As shown in Table 1, MI D-CRMs consis-
tently achieve the lowest overlap across all datasets and metrics. The improvements are substantial: F1-score
reductions of 81% (CIFAR-100), 10% (CelebA), 24% (CUB) relative to the next-best method, and RMSE
improvements of 34% (OAI). All improvements are statistically significant (p < 0.01). Importantly, MI
D-CRMs reduce the correlation between concept importance and residual encoding to R2 = 0.63, which is
not significantly different from the random baseline (R2 = 0.59), indicating more uniform disentanglement.

Near-complete suppression achieved on CIFAR-100 and OAI. On these datasets, MI D-CRMs break
the monotonic relationship between residual size and overlap: Spearman correlations become non-significant
(CIFAR-100: ρ = 0.50, p = 0.21; OAI: ρ = 0.25, p = 0.58). Furthermore, F1-scores of 0.12 (CIFAR-100) and
RMSE of 1.34 (OAI) are statistically indistinguishable from random baselines of 0.05 and 1.30 respectively
(p < 0.01), indicating near-complete disentanglement.

Partial but significant reduction on CelebA and CUB. While MI D-CRMs do not fully eliminate
overlap on these datasets (F1-scores of 0.78 and 0.22 remain above random baselines), they still achieve the
best performance among all tested methods, with statistically significant improvements in both F1-score and
MI metrics. CelebA presents a particularly challenging case where all methods, including MI, show uniform
decline patterns, though MI consistently outperforms alternatives across all residual dimensions.

7.2 Impact of Overlap on Concept Importance (RQ2)

Having established that concept-residual overlap exists, we next investigate how this overlap affects the
functional importance of concepts in CRM decision-making. Our analysis reveals that overlap progressively
diminishes concept importance as residual capacity increases, with models increasingly relying on opaque
residual pathways. However, MI-based D-CRMs preserve concept importance three times better than stan-
dard CRMs, maintaining interpretable decision-making even at high residual dimensions.
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We assess concept importance through three complementary metrics: random concept interventions (mea-
suring performance degradation when concepts are corrupted), SHAP-based attribution scores, and random
residual interventions (measuring residual dependence).

MI D-CRMs maintain significantly stronger concept reliance. Under random concept interventions
(Figure 4, top), MI D-CRMs exhibit substantially larger accuracy degradations than competing methods,
indicating preserved concept dependence. At residual dimension 64: CIFAR-100 shows 40.1% degradation
(vs. 0.7% for latent residual), CUB shows 57.4% degradation (vs. 4.4%), and CelebA shows 22.0% degrada-
tion (vs. 6.7%). This 6-57× difference demonstrates that MI D-CRMs successfully prevent the model from
bypassing the concept layer.

SHAP-based concept attribution reveals preserved reliance. Figure 4 (bottom) shows that MI D-
CRMs maintain higher concept attribution scores across increasing residual dimensions. On CIFAR-100, MI
preserves a SHAP score of 1.01 at dimension 64—over 3× higher than latent residual (0.33) and decorrelated
residual (0.34). This pattern holds across CUB (0.18 vs 0.12) and CelebA datasets. ANOVA confirms
statistical significance (p < 6Ö10−5) across all residual dimensions >4.
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Counterfactual: Intervene on white concept should
 change brown bear prediction to Polar Bear

Figure 5: Counterfactual intervention accuracy on the
’white’ concept for brown bear images in the AA2
dataset, testing whether models update predictions to
polar bear when the distinguishing concept is modi-
fied.

Random residual interventions reveal re-
duced dependence on residual features. Ran-
dom residual interventions (Figure 4, middle) re-
veal that MI D-CRMs maintain lower dependence
on residual features. On complete concept datasets
where residuals should be unnecessary: OAI shows
<1% accuracy reduction for MI vs. 26% for la-
tent residual; CUB shows 31.6% degradation for MI
vs. 74.9% for latent residual. On incomplete con-
cept datasets where some residual dependence is ex-
pected, MI still shows reduced reliance: CIFAR-100
(38.6% vs. 56.6%), CelebA (17.1% vs. 27.6%).

Disentanglement Preserves Counterfactual
Reasoning. Using the AA2 dataset where ’white’
is the only distinguishing feature between brown and
polar bears, we test counterfactual reasoning by in-
tervening on brown bear images to set ’white’=true.
Figure 5 shows that while CBMs achieve perfect
100% counterfactual accuracy, standard CRMs fail
increasingly as residual dimension grows (dropping
to 25% at dimension 64). MI D-CRMs maintain robust counterfactual performance (98% accuracy), demon-
strating that disentanglement preserves concept-level reasoning capabilities.

7.3 Performance Trade-offs and Intervention Efficacy (RQ3a & RQ3b)

Our final research questions examine whether MI-based disentanglement affects baseline task performance
and intervention effectiveness. We find that while MI-based disentanglement incurs modest baseline perfor-
mance costs (1-3%), it substantially improves intervention efficacy, achieving the highest positive concept
intervention accuracy across 4/5 datasets with improvements up to 16%. These results validate that the
practical benefits of reduced concept-residual overlap outweigh the minimal performance trade-offs.

Acceptable performance trade-offs for interpretability gains. Table 2 shows that MI D-CRMs
achieve baseline accuracies within 1-5% of standard CRMs across all datasets. Specifically: CIFAR-100
(0.58 vs 0.60), AA2 (0.40 vs 0.42), CUB (0.76 vs 0.79), and OAI (0.67 vs 0.72). Only CelebA maintains
equivalent performance (0.35). These modest costs are consistent with other interpretability methods and
represent acceptable trade-offs given the substantial interpretability benefits.

Superior intervention efficacy validates practical utility. MI D-CRMs achieve the highest positive
concept intervention accuracy on 4/5 datasets, with substantial improvements: CIFAR-100 (0.72 vs 0.66,
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Incomplete Concept Sets Complete Concept Sets
CIFAR 100 AA2 CelebA CUB OAI

Method B C+ ↑ B C+ ↑ B C+ ↑ B C+ ↑ B C+ ↑
Bottleneck 0.11 0.2 0.28 0.79 0.31 0.63 0.75 0.99 0.69 0.96

Latent 0.60 0.66 0.42 0.90 0.35 0.70 0.79 0.93 0.72 0.78
Decorr. 0.60 0.67 0.42 0.90 0.35 0.70 0.79 0.94 0.72 0.82

IterNorm 0.60 0.67 0.42 0.90 0.35 0.71 0.79 0.96 0.71 0.90
EYE 0.59 0.61 0.42 0.90 0.37 0.67 0.77 0.95 0.72 0.82
CEM 0.44 0.70 0.33 0.89 0.24 0.67 0.62 0.99 - -
MI 0.58 0.72 0.40 0.91 0.35 0.73 0.76 0.96 0.67 0.94

Table 2: Classification accuracy comparison: baseline (B) and positive concept interventions (C+). Bold
values indicate statistically significant best performance (p < 0.05). MI consistently achieves superior inter-
vention performance despite modest baseline costs.

+6%), AA2 (0.91 vs 0.90, +1%), CelebA (0.73 vs 0.70, +3%), and OAI (0.94 vs 0.78, +16%). These im-
provements demonstrate that reduced concept-residual overlap directly translates to enhanced human-model
interaction capabilities, validating the core premise that disentanglement improves practical interpretability.

Comparison with Concept Embedding Models. CEMs, which use more complex training procedures,
show larger baseline performance drops (0.44 vs 0.58 on CIFAR-100) while achieving comparable interven-
tion performance (0.70 vs 0.72). This suggests MI D-CRMs provide a superior balance between baseline
performance and intervention effectiveness.

8 Conclusion

Our study systematically demonstrates that standard Concept-Residual Models (CRMs) suffer from concept-
residual overlap, a critical flaw where the residual pathway redundantly encodes concept information. We
show not only that this overlap increases monotonically with residual capacity, but that it is systematically
biased, with the residual preferentially encoding concepts most critical to the downstream task (Figure 3).
This phenomenon fundamentally undermines the core goals of concept-based models: interpretability and
reliable human-in-the-loop intervention.

To address this, we introduced Disentangled Concept-Residual Models (D-CRMs) and a novel mutual infor-
mation (MI) minimization objective. Our experiments across five diverse datasets validate this approach,
showing that MI-based D-CRMs reduce concept-residual overlap by up to 81% and achieve near-complete
disentanglement on challenging datasets like CIFAR-100 and OAI. This disentanglement restores the modelś
functional reliance on the interpretable concept pathway. As shown in Section 7.2, MI D-CRMs preserve con-
cept importance up to 57× better than standard CRMs under random concept interventions and maintain
98% accuracy in counterfactual reasoning tasks where standard CRMs fail (dropping to 25% accuracy).

Crucially, these gains in interpretability and robustness do not come at a significant cost to performance.
Our MI-based D-CRMs maintain baseline accuracy within 3% of standard CRMs while substantially im-
proving intervention efficacy by up to 16% (Table 2). By successfully balancing predictive performance with
interpretability, MI-based D-CRMs represent a significant step forward. They are a practical and effective
solution for building more reliable and transparent concept-based models, broadening their applicability in
high-stakes domains where both accuracy and human oversight are paramount.

Limitations and Future Work While promising, our approach has limitations that suggest clear direc-
tions for future work. The MI minimization does not completely eliminate overlap on all datasets, and it
introduces a modest performance trade-off. Furthermore, the scalability of our method to massive, ImageNet-
scale datasets remains an open question. Future work could explore more powerful disentanglement tech-
niques to address the remaining overlap and develop methods to close the performance gap. Finally, creating
large-scale concept benchmarks would be a significant contribution to the field, allowing for more rigorous
testing of the next generation of interpretable models.

12



Under review as submission to TMLR

References
Mohammad Taha Bahadori and David E Heckerman. Debiasing concept-based explanations with causal

analysis. arXiv preprint arXiv:2007.11500, 2020.

Noam Brown and Tuomas Sandholm. Superhuman ai for heads-up no-limit poker: Libratus beats top
professionals. Science, 359(6374):418–424, 2018.

Kushal Chauhan, Rishabh Tiwari, Jan Freyberg, Pradeep Shenoy, and Krishnamurthy Dvijotham. In-
teractive concept bottleneck models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 37, pp. 5948–5955, 2023.

Zhi Chen, Yijie Bei, and Cynthia Rudin. Concept whitening for interpretable image recognition. Nature
Machine Intelligence, 2(12):772–782, 2020.

Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and Lawrence Carin. Club: A contrastive
log-ratio upper bound of mutual information. In International conference on machine learning, pp. 1779–
1788. PMLR, 2020.

Mateo Espinosa Zarlenga, Pietro Barbiero, Gabriele Ciravegna, Giuseppe Marra, Francesco Gian-
nini, Michelangelo Diligenti, Zohreh Shams, Frederic Precioso, Stefano Melacci, Adrian Weller,
Pietro Lió, and Mateja Jamnik. Concept embedding models: Beyond the accuracy-explainability
trade-off. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 21400–21413. Curran
Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
867c06823281e506e8059f5c13a57f75-Paper-Conference.pdf.

Mateo Espinosa Zarlenga, Katie Collins, Krishnamurthy Dvijotham, Adrian Weller, Zohreh Shams,
and Mateja Jamnik. Learning to receive help: Intervention-aware concept embedding mod-
els. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.),
Advances in Neural Information Processing Systems, volume 36, pp. 37849–37875. Curran As-
sociates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
770cabd044c4eacb6dc5924d9a686dce-Paper-Conference.pdf.

Kai Han, Yunhe Wang, Hanting Chen, Xinghao Chen, Jianyuan Guo, Zhenhua Liu, Yehui Tang, An Xiao,
Chunjing Xu, Yixing Xu, et al. A survey on vision transformer. IEEE transactions on pattern analysis
and machine intelligence, 45(1):87–110, 2022.

Marton Havasi, Sonali Parbhoo, and Finale Doshi-Velez. Addressing leakage in concept bottleneck models.
Advances in Neural Information Processing Systems, 35:23386–23397, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Lei Huang, Yi Zhou, Fan Zhu, Li Liu, and Ling Shao. Iterative normalization: Beyond standardization
towards efficient whitening. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4874–4883, 2019.

Been Kim, Martin Wattenberg, Justin Gilmer, Carrie Cai, James Wexler, Fernanda Viegas, et al. Inter-
pretability beyond feature attribution: Quantitative testing with concept activation vectors (tcav). In
International conference on machine learning, pp. 2668–2677. PMLR, 2018.

Eunji Kim, Dahuin Jung, Sangha Park, Siwon Kim, and Sungroh Yoon. Probabilistic concept bottleneck
models. arXiv preprint arXiv:2306.01574, 2023.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been Kim, and Percy
Liang. Concept bottleneck models. In International Conference on Machine Learning, pp. 5338–5348.
PMLR, 2020.

13

https://proceedings.neurips.cc/paper_files/paper/2022/file/867c06823281e506e8059f5c13a57f75-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/867c06823281e506e8059f5c13a57f75-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/770cabd044c4eacb6dc5924d9a686dce-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/770cabd044c4eacb6dc5924d9a686dce-Paper-Conference.pdf


Under review as submission to TMLR

Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 and cifar-100 datasets. URl: https://www. cs.
toronto. edu/kriz/cifar. html, 6(1):1, 2009.

Neeraj Kumar, Alexander C Berg, Peter N Belhumeur, and Shree K Nayar. Attribute and simile classifiers
for face verification. In 2009 IEEE 12th international conference on computer vision, pp. 365–372. IEEE,
2009.

Christoph H Lampert, Hannes Nickisch, and Stefan Harmeling. Learning to detect unseen object classes by
between-class attribute transfer. In 2009 IEEE conference on computer vision and pattern recognition, pp.
951–958. IEEE, 2009.

Anita Mahinpei, Justin Clark, Isaac Lage, Finale Doshi-Velez, and Weiwei Pan. Promises and pitfalls of
black-box concept learning models. arXiv preprint arXiv:2106.13314, 2021.

Andrei Margeloiu, Matthew Ashman, Umang Bhatt, Yanzhi Chen, Mateja Jamnik, and Adrian Weller. Do
concept bottleneck models learn as intended? arXiv preprint arXiv:2105.04289, 2021.

M. Nevitt, D. Felson, and Gayle Lester. The osteoarthritis initiative. Protocol for the cohort study, 1, 2006.

Ini Oguntola, Joseph Campbell, Simon Stepputtis, and Katia Sycara. Theory of mind as intrinsic motivation
for multi-agent reinforcement learning. arXiv preprint arXiv:2307.01158, 2023.

Tuomas Oikarinen, Tsui-Wei Wang, Emanuele Rodolà, and Christoph H Lampert. Label-free concept bot-
tleneck models. In International Conference on Learning Representations, 2023.

Emma Pierson, David M Cutler, Jure Leskovec, Sendhil Mullainathan, and Ziad Obermeyer. An algorithmic
approach to reducing unexplained pain disparities in underserved populations. Nature Medicine, 27(1):
136–140, 2021.

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine McLeavey, and Ilya Sutskever. Robust
speech recognition via large-scale weak supervision. In International Conference on Machine Learning,
pp. 28492–28518. PMLR, 2023.

Sukrut Rao, Sweta Mahajan, Moritz Böhle, and Bernt Schiele. Discover-then-name: Task-agnostic concept
bottlenecks via automated concept discovery. In European Conference on Computer Vision, pp. 444–461.
Springer, 2024.

Zohaib Salahuddin, Henry C Woodruff, Avishek Chatterjee, and Philippe Lambin. Transparency of deep
neural networks for medical image analysis: A review of interpretability methods. Computers in biology
and medicine, 140:105111, 2022.

Yoshihide Sawada and Keigo Nakamura. Concept bottleneck model with additional unsupervised concepts.
IEEE Access, 10:41758–41765, 2022.

Sungbin Shin, Yohan Jo, Sungsoo Ahn, and Namhoon Lee. A closer look at the intervention procedure of
concept bottleneck models. arXiv preprint arXiv:2302.14260, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche, Julian
Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering the game of go
with deep neural networks and tree search. nature, 529(7587):484–489, 2016.

Divyansh Srivastava, Ge Yan, and Tsui-Wei Weng. VLG-CBM: Training concept bottleneck models with
vision-language guidance. In The Thirty-eighth Annual Conference on Neural Information Processing
Systems, 2024. URL https://openreview.net/forum?id=Jm2aK3sDJD.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the
inception architecture for computer vision. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 2818–2826, 2016.

14

https://openreview.net/forum?id=Jm2aK3sDJD


Under review as submission to TMLR

Catherine Wah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie. The caltech-ucsd birds-
200-2011 dataset. 2011.

Jiaxuan Wang, Sarah Jabbour, Maggie Makar, Michael Sjoding, and Jenna Wiens. Learning concept cred-
ible models for mitigating shortcuts. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and
A. Oh (eds.), Advances in Neural Information Processing Systems, volume 35, pp. 33343–33356. Cur-
ran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper_files/paper/2022/file/
d791394d32c428aecc7a5b101fb47799-Paper-Conference.pdf.

Peter Welinder, Steve Branson, Takeshi Mita, Catherine Wah, Florian Schroff, Serge Belongie, and Pietro
Perona. Caltech-ucsd birds 200. 2010.

Yongqin Xian, Christoph H. Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot learning—a comprehen-
sive evaluation of the good, the bad and the ugly. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 41(9):2251–2265, 2019. doi: 10.1109/TPAMI.2018.2857768.

Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. In The Eleventh
International Conference on Learning Representations.

Mert Yuksekgonul, Maggie Wang, and James Zou. Post-hoc concept bottleneck models. arXiv preprint
arXiv:2205.15480, 2022.

Renos Zabounidis, Joseph Campbell, Simon Stepputtis, Dana Hughes, and Katia P Sycara. Concept learning
for interpretable multi-agent reinforcement learning. In Conference on Robot Learning, pp. 1828–1837.
PMLR, 2023.

Rui Zhang, Xingbo Du, Junchi Yan, and Shihua Zhang. Decoupling concept bottleneck model, 2023. URL
https://openreview.net/forum?id=vVbUB9oWUup.

15

https://proceedings.neurips.cc/paper_files/paper/2022/file/d791394d32c428aecc7a5b101fb47799-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/d791394d32c428aecc7a5b101fb47799-Paper-Conference.pdf
https://openreview.net/forum?id=vVbUB9oWUup


Under review as submission to TMLR

A Additional Background

A.1 Concept Embedding Models

Concept Embedding Models (CEMs) relax the strict bottleneck constraint imposed by CBMs by learning
high-dimensional, continuous embeddings for each concept, rather than forcing predictions to rely solely on
discrete, human-interpretable concept labels. Specifically, Concept Embedding Models (CEMs) learn high-
dimensional concept embeddings through a concept encoder g : Rd → Rk·m that maps input X to concept
embeddings, where m is the embedding dimension for each of the k concepts Espinosa Zarlenga et al. (2022;
2023). For each concept ci, CEMs learn two semantic embeddings: ĉ+

i and ĉ−
i representing the positive and

negative states, respectively. The final concept embedding ĉi is computed as a weighted mixture:

ĉi = p̂iĉ
+
i + (1 − p̂i)ĉ−

i (15)

where p̂i = σ(Ws[ĉ+
i , ĉ−

i ]T + bs) is the predicted probability that the concept is active, calculated using
a shared scoring function s : R2m → [0, 1]. The downstream model f : Rk·m → R maps these concept
embeddings to the target prediction.

By embedding concepts in a continuous latent space and combining them in a soft, learnable manner, CEMs
provide greater representational flexibility than CBMs. This allows them to capture subtle or complex
variations in concept instantiations that may be lost in a discrete bottleneck. As a result, CEMs effectively
relax the bottleneck assumption by enabling the model to represent and use more nuanced information for
prediction, even when the concept set is incomplete or ambiguous. However, this added flexibility comes at
the cost of interpretability and counterfactual reasoning. Since each embedding combines concept activation
with implicit residual structure, modifying a concept affects both its representation and its interactions
with the rest of the embedding space. This entanglement makes it difficult to isolate the causal impact of
individual concepts or to reason about how concept changes alone influence model predictions.

B Dataset Details

CIFAR-100 The CIFAR-100 dataset is uniquely utilized by employing its 20 superclasses as primary con-
cepts Krizhevsky et al. (2009). Given a superclass, an image can belong to any of the five associated classes,
indicating that knowledge of the superclass alone is insufficient for precise classification, as the concept space
is incomplete. The challenge lies in predicting one of 100 classes, which requires the residual to encode the
conditional distribution of possible classes given a superclass. This setup makes CIFAR-100 an ideal bench-
mark for evaluating methods that can disentangle the residual and concept layers while preserving valuable
information in both.

CelebA For CelebA , we follow Espinosa Zarlenga et al. (2022), selecting the 8 most balanced attributes
[a1, · · · a8] out of each image’s 40 binary attributes, as defined by how close their distributions are to
a random uniform binary distribution, and use attributes [a1, · · · , a6] as concepts annotations for each
sample. To create a scenario where full concept annotations are not available, each image in CelebA receives
a label that matches the decimal value of the binary vector [a1, ..., a8], leading to a total of l = 28 = 256
classes. It is important to note that the concept annotations are partial, as attributes a7 and a8, crucial
for the downstream task, are omitted from the concept set. To enhance training efficiency and resource use,
the size of the CelebA dataset is decreased by selecting every 12th sample through random subsampling and
reducing each image’s resolution to (3, 64, 64). Consequently, this process yields approximately 16,900 RGB
images, which are then divided into training, validation, and test sets following a conventional 70%-10%-20%
distribution.

Caltech-UCSD Birds (CUB): The CUB dataset is a rich resource for fine-grained visual categorization,
particularly in bird species recognition Welinder et al. (2010). It contains images of 200 bird species, each
annotated with detailed attributes like feather color, beak shape, and wing patterns. These concepts are
learned via multi-binary classification Chen et al. (2020).. Bottleneck Models trained on CUB rely heavily
on the use of majority voting Chen et al. (2020). Chen et al. explain that the provided concepts are noisy,
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and thus to make them effective for CBMs they employ majority voting; if more than 50% of a downstream
class has a particular concept in the data, then we set all that downstream task to have that concept.

OAI (Osteoarthritis Initiative): The OAI dataset, comprising 36,369 knee X-ray data points, focuses on
individuals at risk of knee osteoarthritis. It includes both radiological and clinical data, with the primary
task being to predict the Kellgren-Lawrence grade (KLG), a four-level ordinal scale used by radiologists
to assess osteoarthritis severity. Higher KLG scores indicate more severe disease. The dataset utilizes ten
ordinal variables as concepts for analysis, encompassing joint space narrowing, bone spurs, calcification,
and other clinical features. These variables, essential for evaluating osteoarthritis severity, align with the
preprocessing techniques employed by Pierson et al. Pierson et al. (2021).

C Experiment Details

C.1 Model Architecture

We used pretrained imagenet models as our backbones. For CUB, we use inception_v3 Szegedy et al. (2016),
following Chen et al. (2020). For CIFAR and OAI, we use resnet18 He et al. (2016). For CelebA, we follow
Espinosa Zarlenga et al. (2022) and use resnet34. The target network is one layer for CIFAR, CelebA and
CUB, and three for OAI, with each hidden layer being 50 neurons. Specific hyperparameters and detailed
configurations for each dataset can be found in the configs/ directory of the provided codebase.

C.2 Training Scheme

We apply intervention-aware training only to the **CelebA** dataset, where we observe consistent im-
provements in both baseline accuracy and intervention performance (typically 1–2%) compared to standard
independent training. For **CUB**, **OAI**, and **CIFAR-100**, we do not use intervention-aware train-
ing, as empirical evaluation shows no statistically significant benefit over semi-independent training.

Concept Embedding Models (CEMs) We employ intervention-aware training and maintain the origi-
nal hyperparameters as specified in the source implementation. However, a key distinction in our approach
is the omission of concept groups. Instead of using hundreds of concept embeddings for the CUB dataset
as in the original implementation, we reduce this to 28 core concepts. This simplification likely explains
the lower baseline performance we observe on CUB compared to the results reported in the original paper.
Specific hyperparameters and detailed configurations for each dataset can be found in the configs/ directory
of the provided codebase.

D Additional Methodology Details

D.1 EYE Regularization

Concept-Credible models propose EYE regularization, which targets the dependencies on features cor-
related with but not within concept space C Wang et al. (2022). Let θx and θc be the parameters
for the linear transformation from the concept and residual layers. The combined penalty function,
J([θx, θc]) = |θx|1 +

√
|θx|22 + |θc|22. The EYE penalty imposes a stricter penalty on θx relative to θc,

permitting a greater norm for θc and thus promoting reliance on the concept space C.

While EYE regularization does not explicitly constrain the residual representations themselves, it creates
an implicit regularization effect through backpropagation. By differentially penalizing how the residual
layer’s outputs are transformed in the downstream network (θc), the gradients flowing back to the residual
encoder will favor learning representations that are complementary to, rather than redundant with, the
concept space. This occurs because the network optimizes to make efficient use of the less-penalized concept
pathway, incentivizing the residual encoder to capture only the information that cannot be effectively encoded
through concepts. However, this implicit approach to disentanglement may not be as robust as methods
that directly constrain the statistical independence between concept and residual representations, such as
mutual information minimization.
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D.2 Disentangled Intervention aware Training

For CelebA, we extend our semi-independent training objective with disentangled intervention-aware train-
ing, following the framework introduced in Intervention-Aware Concept Embedding Models (IntCEM) (Es-
pinosa Zarlenga et al., 2023). As in the semi-independent setting, the model comprises: (1) a concept encoder
g : X → ĉ, (2) a residual encoder h : X → r, and (3) a predictor f : C × R → ŷ, where x ∈ X , r = h(x), and
the concept input to the predictor is an intervened version c̃ of g(x).

Intervention-based supervision. During training, we sample a stochastic initial intervention mask
µ(0) ∼ Bernoulli(pint) and a trajectory length T ∼ Unif({1, . . . , Tmax}). A sequence of interventions is
applied to the predicted concepts ĉ = g(x), replacing selected dimensions with their corresponding ground
truth values c, producing an intervened vector c̃(x, c, µ(0), T ). This process partially supervises the concept
space while encouraging robustness to interventions.

Training losses. The final training objective becomes:

min
g,h,f

E(x,c,y)∼D E µ(0)∼Bern(pint)
T ∼Unif({1,...,Tmax})

[
α Lconcept(g(x), c)︸ ︷︷ ︸

Concept supervision

+β Ltarget(f(c̃(x, c, µ(0), T ), h(x)), y)︸ ︷︷ ︸
Trajectory-aware prediction

+ γ Ldisentangle(h(x), c)︸ ︷︷ ︸
Disentanglement

]
(16)

where c̃(x, c, µ(0), T ) denotes a T -step intervention trajectory that replaces progressively more components
of g(x) with corresponding values from c.

In practice, we sample a single µ(0) and T per training step, with pint = 0.25 and Tmax linearly annealed
from 2 to 6 during early training.

E Further Discussion

E.1 CEM Baseline Performance

As discussed in Section??, CEMs exhibit consistently lower baseline performance across all of our tested
datasets. This reflects a fundamental trade-off in CEMs, which incorporate an intervention-aware mechanism
that can be tuned to prioritize either baseline or intervention performance. Their behavior is governed by
several hyperparameters (e.g., λroll, λconcept), allowing practitioners to emphasize one objective over the
other. In our experiments, we adopt the parameters reported in prior work that maximize intervention
performance for fair comparison to our work, aligning with the goal of this paper to evaluate and improve
model intervenability.

3


	Introduction
	Background
	Concept Bottleneck Models
	Concept-Residual Models

	Related Work
	Method
	Mitigating CRM Overlap with Decorrelation
	Minimizing Mutual Information
	Semi-Independent Training Objective

	Quantifying Concept-Residual Overlap and CRM Performance
	Intervention-Based Metrics
	Feature Attribution with DeepLIFT

	Experiments
	Results
	Concept-Residual Overlap in Standard CRMs (RQ1)
	Impact of Overlap on Concept Importance (RQ2)
	Performance Trade-offs and Intervention Efficacy (RQ3a & RQ3b)

	Conclusion
	Additional Background
	Concept Embedding Models

	Dataset Details
	Experiment Details
	Model Architecture
	Training Scheme

	Additional Methodology Details
	EYE Regularization
	Disentangled Intervention aware Training

	Further Discussion
	CEM Baseline Performance


