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Abstract—This paper proposes a safety-critical obstacle avoid-
ance control approach for autonomous surface vehicles (ASVs)
with disturbances and uncertainties. The existing exponential
control barrier functions (ECBF) are extended to handle un-
known disturbances, leading to the development of input-to-
state safe exponential control barrier functions (ISSf-ECBFs). An
extended state observer is used to estimate unknown external
marine disturbances and internal model uncertainties, based
on which an anti-disturbance controller is designed. Based on
the proposed ISSf-ECBFs, a quadratic programming problem is
formulated to determine the optimal control input. It is proven
that the closed-loop system is input-to-state safe and the errors
of the closed-loop system are uniformly ultimately bounded.
Simulations validate the effectiveness of the proposed control
strategy.

Index Terms—Autonomous surface vehicles (ASVs), safety-
critical control, obstacles avoidance, input-to-state safe exponen-
tial control barrier functions (ISSf-ECBFs)

I. INTRODUCTION

Autonomous Surface Vehicles (ASVs) are gaining attention
for their ability to enhance maritime operations [1]–[3]. With
advanced sensors and navigation systems, ASVs can navigate
complex environments and perform diverse tasks [4]. They are
increasingly utilized in search and rescue, fisheries manage-
ment, hydrographic surveying, and offshore energy, making
them a focal point for researchers in ASV control [5]–[7].

ASVs navigating in dynamic marine environments face
numerous challenges, primarily internal model uncertainties
and external disturbances [8]. Internal uncertainties arise from
modeling inaccuracies, parameter variations, and sensor noise.
Additionally, ASVs must navigate unpredictable ocean condi-
tions, such as waves, currents, and winds. These factors can ad-
versely affect the performance of control strategy. To address
this challenge, researchers have proposed various methods to
enhance the robustness of the system, such as sliding mode
control [9], adaptive control, and neural network control [10].
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The Extended State Observer (ESO) can estimate disturbances
in real-time and dynamically adjust the control strategy. By
treating internal model uncertainties and external disturbances
as lumped disturbances for estimation, the reliance on the
model can be reduced, thereby enhancing the robustness of
the system.

In complex maritime environments, ASVs face significant
threats from various obstacles, including vessels, islands, and
reefs [11]. To mitigate these risks, researchers have proposed
several obstacle avoidance strategies, such as the artificial
potential method [12], the velocity obstacle method [13], and
the dynamic window approach [14]. Control barrier functions
(CBFs), introduced in [15], have proven effective in ensuring
real-time safety. In [16], the nominal controller was modified
to formally adhere to safety constraints for successful obstacle
avoidance. However, the control strategy in [16] did not
account for model uncertainties or disturbances. To address
this, [17] introduced input-to-state safe control barrier func-
tions (ISSf-CBFs). Furthermore, [18] proposed a framework to
ensure safety for uncertain nonlinear systems with structured
parametric uncertainty. In [19], a collision avoidance strategy
for ASVs was proposed using ISSf-CBFs. However, these
functions have a relative degree of one, limiting their use
in higher-order systems. To address this, [20] introduced
exponential control barrier functions (ECBFs). [21] further
explored ISSf-ECBFs under known perturbation bounds, but
measuring such disturbances is challenging. Therefore, a
safety-critical controller based on ISSf-ECBFs is crucial for
ASVs dealing with unknown model uncertainties and external
disturbances.

This paper presents a safety-critical control strategy for Au-
tonomous Surface Vehicles (ASVs) that accounts for external
marine disturbances and internal model uncertainties. The key
contributions are as follows:

1) While the existing method [21] constructs safety con-
straints only under known disturbances or their upper bounds,
this paper extends the results of input-to-state safe control
barrier functions (ISSf-ECBFs) to develop safety constraints
for unknown disturbances.



2) Unlike previous work [12], [22]–[24], this paper for-
mulates a safety-critical controller based on ISSf-ECBFs by
constructing a quadratic programming problem to facilitate
collision avoidance with obstacles.

The structure of the paper includes the following sections:
The preliminaries and problem statement are covered in Sec-
tion II. Section III gives the safety-critical controller design
and Section IV is stability and safety analysis. Simulations are
carried out in Section V. Section VI summarizes this article.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Notation

In this paper, the notation ∥·∥ denotes the 2-norm of
a vector, and R represents the set of real numbers. The
symbols λmin(·) and λmax(·) indicate the smallest and largest
eigenvalues of a symmetric matrix, respectively.

Let β(r) be a scalar continuous function defined for r ∈
[−b, a). If a = ∞, b = 0, and β(r) → ∞ as r → ∞, then
β(r) belongs to class K∞. If a, b = ∞, β(r) → ∞ as r → ∞,
and β(r) → −∞ as r → −∞, it represents an extended class
K∞, denoted as K∞,e.

B. Input-to-state Safe Exponential Control Barrier Functions

Consider the following system

ẋ = f(x) + g(x)u+ dw (1)

where x(t) ∈ Rn denotes state and u ∈ Rm denotes
control input. The term dw denotes bounded disturbances. The
function f(x) ∈ Rn and g(x) ∈ Rn×m are locally Lipschitz
continuous.

Definition 1. [25] The set C ∈ Rn is described as

C ≜ {x ∈ Rn | S(x) ≥ 0}
∂C ≜ {x ∈ Rn | S(x) = 0}

Int(C) ≜ {x ∈ Rn | S(x) > 0} (2)

where h(·) ∈ Rn 7→ R represents a continuously differen-
tiable function, and C is referred to as the safe set. If for all
x0 ∈ C it holds that x(t) ∈ C for every t ∈ I(x0), then the set
C is considered forward invariant. Consequently, the system
described by (1) with dw(t) = 0 can be deemed safe on C.

Definition 2. The relative degree of S(x) : Rn → R with
respect to the system (1) refers to the number of derivatives
required along the dynamics of (1) before the control input u
explicitly appears.

Definition 3. [17] For system (1), an extended set Cd ⊃ C is
expressed as follows

Cd ≜ {x ∈ Rn | S(x) + βd(||dw(t)||∞) ≥ 0}
∂Cd ≜ {x ∈ Rn | S(x) + βd(||dw(t)||∞) = 0}

Int(Cd) ≜ {x ∈ Rn | S(x) + βd(||dw(t)||∞) > 0} (3)

where ||dw||∞ ≤ d̄w, a positive constant, and S(x) is a
continuous function, with βd(·) ∈ K∞,e.

Definition 4. (ISSf [17]) If the control input u and the function
βd ensure the forward invariance of the set Cd, then the system
(1) with disturbances is ISSf on C.

Definition 5. (ISSf-ECBF [17]) Considering the sets Cd de-
fined by (3), S(x), which has a relative degree ρ > 1, qualifies
as an ISSf-ECBF for the system described in (1). This holds
true if, for all x ∈ Rn, there exist a bound ∥dw∥∞ ≤ τ̄w and
a function γ(·) ∈ K∞,e that satisfies

sup
u∈U

[Lρ
fS(x) + LgLρ−1

f S(x)u+ (
∂(Lρ−1

f S(x))

∂x
)T dw

+T T
s Hs] ≥ −γ(∥dw∥∞) (4)

The terms Lρ
f and LgLρ−1

f represent the Lie derivatives of the

function S(x). Ts =
[
p0 p1 . . . pι

]T
where pi is positive

constant. Hs = [S(x) LfS(x) . . . Lρ−1
f S(x)]T .

Lemma 1. If S(x) functions as an ISSf-ECBF for the system
(1) in the set C, then any controller u ∈ U that is Lipschitz
continuous and valid for all x ∈ Rn must satisfy

U(x) =
{
u ∈ Rm : Lρ

fS(x) + LgLρ−1
f S(x)u

+ (
∂(Lρ−1

f S(x))

∂x
)T dw + T T

s Hs ≥ −γ(∥dw∥∞)
}
. (5)

This implies that the set Cd is forward invariant. In other
words, the system (1) is ISSf on the set C.

C. ASV Model

The kinematics and kinetics of ASV can be described as:
η̇(t) = R(ψ)ν(t)

Mν̇(t) = f(ν) + dw(t) + τ(t)
(6)

where η(t) =
[
p̄(t) ψ(t)

]T ∈ R3 represents the position and
heading of ASV. R(ψ) = diag {R2(ψ), 1} is a rotate matrix
with

R2(ψ) =

[
cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]
. (7)

The vector ν(t) =
[
u(t) v(t) r(t)

]T ∈ R3 represents the
surge velocity, sway velocity, and yaw velocity, respectively.
The matrix M denotes the inertial matrix. f(ν) represents
the Coriolis and centripetal matrix, damping matrix, and
unmodeled hydrodynamics. The vector τ(t) signifies the forces
produced by the actuators. The external disturbances, caused
by wind, waves, and ocean currents, are represented by
dw(t) =

[
dw1(t) dw2(t) dw3(t)

]T ∈ R3.
Letting q(t) = R(ψ)ν(t), (6) can be rewritten as

ṗ = q

q̇ = ξ +RM−1τ
(8)

where ξ = RM−1(dw + f(ν)) + Ṙν.
The desired parameterized path is set as p0(θ) =

[x0(θ), y0(θ), ψ0(θ)]
T
, ψ0(θ) = arctan(yθ0(θ)/x

θ
0(θ)) where

θ represents path variable. yθ0(θ) and xθ0(θ) is the partial
derivative of y0(θ) and x0(θ), respectively. In addition, it is
assumed that pθ0(θ) is bounded.



D. Problem Formulation

The safety-critical obstacle avoidance controller of ASV is
required to achieve the following tasks:
(1) Geometric task: Ensure that the ASV follows the desired
path, meaning that

lim
t→∞

∥p(t)− p0(θ)∥ < l1 (9)

where l1 ∈ R denotes a small positive constant.
(2) Dynamic task: The derivative of the path variable θ
converge to the desired speed

lim
t→∞

∥θ̇(t)− ud(t)∥ < l2 (10)

where ud(t) represents desired speed and l2 is a small positive
constant.
(3) Obstacle avoidance task: To prevent collisions between the
ASV and obstacles, the following condition must be met

∥p̄(t)− p̄k(t)∥ > rk + dk (11)

where p̄k(t), rk, and dk represent the position, the radius, and
the minimum obstacle avoidance distance of the kth obstacle.

III. MAIN RESULTS

A. ISSf-ECBF with Unknown Disturbancces

While the previous studies have made substantial progress,
they were mainly directed at scenarios with known distur-
bances or predefined upper bounds. To alleviate this limitation,
the following theorem is presented to account for unknown
disturbances.

Theorem 1. Given the ISSf-ECBF S(x) as defined in Defini-
tion 5 for the system (1) on the set C, if there exists a bound
∥dw∥∞ ≤ d̄w such that for every x ∈ Rn, the following
inequality holds

sup
u∈U

[Lρ
fS(x) + LgLρ−1

f S(x)u+ T T
s Hs

− (
∂(Lρ−1

f S(x))

∂x
)T (

∂(Lρ−1
f S(x))

∂x
)] ≥ 0 (12)

and the admissible control set satisfies as

U(x) ={u ∈ Rm : Lρ
fS(x) + LgLρ−1

f S(x)u+ T T
s Hs

− (
∂(Lρ−1

f S(x))

∂x
)T (

∂(Lρ−1
f S(x))

∂x
) ≥ 0}. (13)

Then, we can obtain that the system (1) is ISSf on C.

Proof. For u ∈ U(x), one has

Lρ
fS(x) + LgLρ−1

f S(x)u+ (
∂(Lρ−1

f S(x))

∂x
)T dw + T T

s Hs

≥ (
∂(Lρ−1

f S(x))

∂x
)T (

∂(Lρ−1
f S(x))

∂x
) + (

∂(Lρ−1
f S(x))

∂x
)T dw

≥ (
∂(Lρ−1

f S(x))

∂x
)T (

∂(Lρ−1
f S(x))

∂x
)

− ∥
∂(Lρ−1

f S(x))

∂x
∥∥dw∥∞. (14)

Adding and subtracting ||dw||2∞
4 yields

ḣ ≥ (
∂(Lρ−1

f S(x))

∂x
− ||dw||∞

2
)2 − ||dw||2∞

4

≥ −||dw||2∞
4

(15)

which is of the form (4).

Remark 1. Compared with [21], the proposed ISSf-ECBF
can deal with unknown perturbations. Although asymptotically
stable ESO is used in reference 21, in practice, the disturbance
estimation error is difficult to be 0. Thus, it is essential to
develop ISSf-ECBFs that ensure safety in the presence of
unknown disturbances.

B. Anti-disturbance Controller Design

In this section, we will focus on designing a safety-critical
controller. The control architecture for the proposed strategy
is illustrated in Figure 1.

Kinematic 
controller

Anti-
disturbance
controller

Optimization ASV

Disturbances

ESO

Path update 
law

ISSf-HOCBF

Fig. 1. Control architecture of the safety-critical controller for the ASV.

Firstly, we utilize the ESO to obtain the estimations of
the model uncertainties, external disturbances in this part. In
addition, the ESO relies on the following assumption.

Assumption 1. ξ̇(t) is a bounded function meeting

∥ξ̇(t)∥ ≤ ξ∗ (16)

where ξ∗ is a positive constant.

Then, the ESO is devised to estimate model uncertainties,
external disturbances.{

˙̂q(t) = −K1q̃(t) + ξ̂(t) +RM−1τ

˙̂
ξ(t) = −K2q̃(t)

(17)

where q̂(t) and ξ̂(t) represent the estimates of q(t) and ξ(t).
The observer matrices

[
K1 K2

]T
=

[
2wI3 w2I3

]T
where

w is the observer bandwidth.
Defining q̃(t) = q̂(t)− q(t), and ξ̃(t) = ξ̂(t)− ξ(t) are the

estimates. The dynamics of q̃(t) and ξ̃(t) can be written as{
˙̃q(t) = −K1q̃(t) + ξ̃(t)

˙̃
ξ(t) = −K2q̃(t)− ξ̇(t).

(18)

Next, (18) can be rewritten as

Ėo(t) = TEo(t)−Dξ̇(t) (19)



where Eo(t) =
[
q̃T(t) ξ̃T(t)

]T ∈ ℜ6 and

T =

[
−K1 I3
−K2 03

]
, D =

[
03
I3

]
.

Then, the following tracking error is defined as e1 = p −
p0(θ). By taking the derivative of e1 and using (6), we can
get

ė1 = q − pθ0(θ)θ̇. (20)

Let ud − ϑ(t) = θ̇(t), one can obtain

ė1 = q − pθ0(θ)(ud − ϑ). (21)

The kinematic guidance law qd is designed as follows to
stabilize e1:

qd = −k1e1 + pθ0(θ)ud (22)

and
ϑ̇ = −ℓ(ϑ+ µpθ0(θ)

Te1) (23)

where k1 = diag{k11, k12, k13}, ℓ and µ are positive constants.
To proceed, defining e2 = q−q̂d, where q̂d is the estimate of

qd. q̂d can be obtained by using the following filtering scheme:

td ˙̂qd + q̂d = qd, q̂d(0) = qd(0) (24)

where td is a positive constant. Let

ed = q̂d − qd. (25)

And q̇d ≜ a =
[
a1 a2 a3

]T
. aj is bounded by |aj | ≤ a∗j ,

j = 1, 2, 3, where a∗j is a positive constant. For details, please
refer to [26].

Then, the time derivative of e2 yields

ė2 = ξ +RM−1τ(t) +
ed
td
. (26)

To stabilize e2, the anti-disturbance control law is developed
as follows:

τc(t) =MRT (−ξ̂ − e1 −
ed
td

− k2e2) (27)

where k2 = diag{k21, k22, k23}. Denote τ = τc + τe.

C. Safety-critical Obstacle Avoidance Controller

In this part, considering the collision with obstacles and
ASV to design the optimal surge and sway force of safety
conditions. From (8), we can get

˙̄p = q̄

˙̄q = ξ̂2 + τ2 − ξ̃2
(28)

where p̄ denotes [x(t), y(t)]T , q̄ denotes R2(ψ)[u, v]
T . ξ̂2, ξ̃2

and τ2 is the first two dimensions of ξ̂, ξ̃ and τ , respectively.
p̄k = [xk, yk]

T is position of kth obstacle.
We choose the following candidate ISSf-ECBF

Sk(s) = ∥p̄ek∥2 − (rk + dk)
2 (29)

where p̄ek = p̄− p̄k, s = [p̄T , q̄T ]T . To achieve the objective
of obstacle avoidance, the set C can be obtained

C =
{
p̄ ∈ R2 : Sk(s) = ∥p̄ek∥2 − (rk + dk)

2 ≥ 0
}

(30)

For ease of notation, it is denoted by Sk in the sequel. The
safety constraint with Sk(s) is described as

U =
{
τ2 : L2

fSk + LgLfSkτ2 − (
∂(LfSk)

∂x
)T (

∂(LfSk)

∂x
)

+ T T
s Hs ≥ 0

}
(31)

where L2
fSk = 2q̄T q̄ + 2p̄Tek ξ̂2, LgLfSk = 2p̄Tek, Ts =

[β2, 2β]T . For the ASV, ensuring safety takes precedence over
geometric objectives. Based on the safety constraint (31), the
following quadratic programming problem is constructed.

τ∗ = argmin
τ∈Rm

J(τ) = ∥τ − τc∥2

s.t. − LgLfSkτ ≤ ϕ (32)

where ϕ = 2q̄T q̄−−(
∂(LfSk)

∂x )T (
∂(LfSk)

∂x )+2p̄Tek ξ̂2+T T
s Hs.

The τ∗ is obtained by solving the above quadratic program-
ming problem.

Remark 2. The proposed safety-critical controller can avoid
obstacles while ensuring minimal impact on the given tracking
task.

IV. STABILITY AND SAFETY ANALYSIS

In this section, we will conduct stability and safety analysis
of the closed-loop system.

A. Stability Analysis

Lemma 2. The observer error subsystem in (19) is ISS, and
the error signals being q̃ and f̃ are bounded by

∥Eo(t)∥ ≤

√
λmax(N)

λmin(N)
max{∥Eo(t0)∥e−γ1(t−t0)/2,

2∥ND∥ξ∗

ς1κ
},∀t ≥ t0 (33)

where γ1 = ([ς1(1−κ)]/[λmax(N)]) and 0 < κ < 1 provided
that

TTN +NT ≤ −ς1I (34)

where ς1 ∈ R is a positive constant.

Proof. Choose the following Lyapunov function

V1 = (1/2)ET
o (t)NEo(t). (35)

Taking (34) into account, one has V̇1 = Eo(t)
TN(TEo(t)−

Dξ̇(t)) ≤ − ς1
2 ∥Eo(t)∥2 + ∥Eo(t)∥ ∥ND∥ ||ξ̇(t)|| Since

∥Eo(t)∥ ≥ [(2||ND||||ξ̇(t)||/ς1κ)], we have

V̇1 ≤ − ς1
2
(1− κ)∥Eo(t)∥2. (36)

It follows that the observer error subsystem described by
(19) is ISS. It is important to note that V1 is bounded
and satisfies the inequality ([λmin(N)]/2)||Eo(t)||2 ≤ V1 ≤
([λmax(N)]/2)∥Eo(t)∥2. From this, we can derive (33).

Next, we will outline the stability analysis of the closed-
loop system.



Lemma 3. Taking into account the error dynamics represented
by (21) and (26), the error signals e1, e2, er, ϑ, and γ̃ are
uniformly ultimately bounded by

∥E∥ ≤

√
λmax(Q)

λmin(Q)
max{∥E(t0)∥ e−γ2(t−t0)/2,

Eo + ∥a∗∥+ϖ

ϵς2
},∀t ≥ t0 (37)

where Q = diag {1, 1/ℓµ}, γ2 = 2ς2(1− ϵ)/λmax(Q).

Proof. The constructed Lyapunov function is

V2 =
1

2
(eT

1e1 + eT
2e2 + eT

ded) +
ϑ2

2ℓµ
.

According to (20), (23)-(27) , the time derivative of V2 is

V̇2 = eT
1(e2 + ed)− eT

1k1e1 + eT
2f + eT

2

ed
td

+ eT
d(−

ed
td

− a)

+ eT
2(−f̂ − e1 −

ed
td

− k2e2) + eT
2RM

−1τe −
ϑ2

µ
. (38)

Finally, we can obtain

V̇2 ≤ −(λmin(k1)−
1

2
)||e1||2 − (

1

td
− 1

2
)∥ed∥2 + ∥ed∥ ∥a∗∥

− λmin(k2)||e2||2 + ∥e2∥∥f̃∥+ ∥eT
2∥∥Mτe∥ −

ϑ2

µ
. (39)

Choose λmin(k1) − 1
2 > 0, 1

td
− 1

2 > 0. Then, de-
fine ς2 = min(λmin(k1) − 1

2 , λmin(k2),
1
td

− 1
2 ,

1
µ ), ϖ =

∥Mτe∥, E =
[
eT
1 eT

2 eT
d ϑ

]T
. Hence, (39) becomes V̇2 ≤

−ς2∥|E∥2+∥E∥(Eo+∥a∗∥+ϖ) and V̇2 ≤ −ς2(1−ϵ)||E||2+
∥E∥(−ϵς2∥E∥+ Eo + ∥a∗∥+ϖ) where ϵ ≤ 1.

Note that
||E|| ≥ Eo + ∥a∗∥+ϖ

ϵς2

renders

V̇2 ≤ −ς2(1− ϵ)||E||2. (40)

It can be established that the error subsystem related to
obstacle avoidance control is ISS. Additionally, the errors of
the closed-loop system satisfies (37).

B. Safe Analysis

The subsequent lemma presents the safety analysis of the
ASV.

Lemma 4. Given the dynamics of the ASV as outlined in (6),
if p̄(t0) ∈ U and τ̄∗ ∈ U are satisfied for all t > t0, the
closed-loop system will be ISSf.

Proof. According to Lemma 1, if τ̄∗ ∈ U holds, then C is
forward invariant, meaning that the set C is ISSf. In other
words, as long as p̄(t0) is within C, the position p̄(t) will
remain in C indefinitely. Therefore, the closed-loop system is
ISSf.

Theorem 2. The closed-loop system is shown to achieve ISSf,
indicating that collision avoidance is feasible. Furthermore,

all error signals in the closed-loop system are uniformly
ultimately bounded.

Proof. According to Lemma 4, the ASV will meet the safety
constraint, meaning that the safety objective (11) is fulfilled.
We employ Lemmas 2, 3, and [27, Lemma 1], which enable
us to deduce that the closed-loop system is ISSf. The norm
||E|| is uniformly ultimately bounded by

∥E∥ ≤

√
λmax(Q)

λmin(Q)
(

√
λmax(N)

λmin(N)

2 ∥ND∥ ξ∗

ς1κϵς2

+
∥a∗∥+ϖ

ϵς2
). (41)

Given that E is bounded, we can deduce that e1 and ϑ are
also bounded. As a result, it follows that ∥p(t)− p0(θ)∥ =
∥e1∥ and ||θ̇(t) − ud|| remain bounded, that is, (9) and (10)
hold.

Remark 3.

V. SIMULATION RESULTS

To validate the effectiveness of the proposed control strat-
egy, this paper conducts simulations using Cybership II in
[28]. The simulation parameters are set as follows: w = 40,
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Fig. 2. Control performance of the proposed control strategy for ASV.

Ω = 0.1, l = 1, µ = 0.1, β = 30, dk = 0.5, rk = 1,
k1 = diag{3, 2, 8}, k2 = diag{16, 22, 28}, td = 0.1, dw =[
3cos(t)sin(0.5t) 4sin(0.5t)cos(0.5t) 0.2sin(t)

]T
. The de-

sired parameterized path is xd (ϑ0) = yd (ϑ0) = 0.06ϑ0+0.5,
ψd = π/4. The position of static obstacle is p̄1 =

[
3 2.5

]T
,

p̄2 =
[
6 7

]T
.

Fig. 2 illustrates the effectiveness of the safety-critical
controller proposed for the autonomous vessel. The upper
section demonstrates that the vessel prioritizes obstacle avoid-
ance to ensure safety. Once the obstacle avoidance operation
is complete, it can proceed with the tracking task. Fig. 3
illustrates the observation effect of the extended state observer.
The velocity and aggregated disturbances of the ASV can be
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Fig. 5. Velocity comparisons of the ASV.

accurately estimated. Fig. 4 and Fig. 5 depict the comparisons
of the tracking errors and velocities, respectively.

VI. CONCLUSION

This paper introduces a safety-critical control strategy for
ASVs that considers external marine disturbances and internal
model uncertainties. Initially, an anti-disturbance controller is
devised based on the estimation of lumped disturbances using
an ESO. Following this, a quadratic optimization problem is
established by incorporating ISSf-ECBFs to enforce safety
constraints on the control inputs. By solving this problem,
a safety-critical controller is derived, significantly improving
the safety and robustness of the system. The closed-loop
system is demonstrated to be ISSf, with error signals shown
to be uniformly ultimately bounded. The effectiveness of the
proposed control strategy is verified through simulation results.
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