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Abstract

Interpreting and understanding the predictions made by deep learning models poses
a formidable challenge due to their inherently opaque nature. Many previous
efforts aimed at explaining these predictions rely on input features, specifically, the
words within NLP models. However, such explanations are often less informative
due to the discrete nature of these words and their lack of contextual verbosity.
To address this limitation, we introduce the Latent Concept Attribution method
(LACOAT), which generates explanations for predictions based on latent concepts.
Our foundational intuition is that a word can exhibit multiple facets, contingent
upon the context in which it is used. Therefore, given a word in context, the
latent space derived from our training process reflects a specific facet of that word.
LACOAT functions by mapping the representations of salient input words into the
training latent space, allowing it to provide latent context-based explanations of the
prediction.

1 Introduction

The opaqueness of deep neural network (DNN) models is a major challenge to ensuring a safe and
trustworthy AI system. Extensive and diverse research works have attempted to interpret and explain
these models. One major line of work strives to understand and explain the prediction of a neural
network model using the attribution of input words to prediction [Sundararajan et al., 2017b, Denil
et al., 2014] (see the discussion of existing work in App A).

However, the explanation based solely on input words is less informative due to the discrete nature of
words and the lack of contextual verbosity. A word consists of multifaceted aspects such as semantic,
morphological, and syntactic roles in a sentence. Consider the word “trump” in Figure 1. It has
several facets such as a verb, a verb with specific semantics, and a named entity representing a certain
aspect such as tower names, family names, etc. We argue that given various contexts of a word in the
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Figure 1: An example of various facets of word “trump”

training data, the model learns these diverse facets during training. Given a test instance, depending
on the context a word appears, the model uses a particular facet of the input words in making the
prediction. The explanation based on salient words alone does not reflect the facets of the word the
model has used in the prediction and results in a less informed explanation.

Dalvi et al. [2022] showed that the latent space of DNNs represents the multifaceted aspects of
words learned during training. The clustering of training data contextualized representations provides
access to these multifaceted concepts, hereafter referred to as latent concepts. Given an input word
in context at test time, we hypothesize that the alignment of its contextualized representation to a
latent concept represents the facet of the word being used by the model for that particular input. We
further hypothesize that this latent concept serves as a correct and enriched explanation of the input
word. To this end, we propose the LAtent COncept ATtribution (LACOAT) method that generates an
explanation of a model’s prediction using the latent concepts. LACOAT discovers latent concepts of
every layer of the model by clustering contextualized representations of words in the training corpus.
Given a test instance, it identifies the most salient input representations of every layer with respect to
the prediction and dynamically maps them to the latent concepts of the training data. The shortlisted
latent concepts serve as an explanation of the prediction. Lastly, LACOAT integrates a plausibility
module that generates a human-friendly explanation of the latent concept-based explanation.

2 Methodology

LACOAT consists of the following four modules:

• The first module, ConceptDiscoverer, discovers latent concepts of a model given a corpus.

• PredictionAttributor, the second module, selects the most salient words (along with their
contextual representations) in a sentence with respect to the model’s prediction.

• Thirdly, ConceptMapper, maps the representations of the salient words to the latent concepts
discovered by ConceptDiscoverer and provides a latent concept-based explanation.

• PlausiFyer takes a latent concept explanation as input and generates a plausible and human-
understandable explanation of the prediction.

Consider a sentiment classification dataset and a sentiment classification model as an example.
LACOAT works as follows: ConceptDiscoverer takes the training dataset and the model as input and
outputs latent concepts of the model. At test time, given an input sentence, PredictionAttributor
identifies the most salient input representations with respect to the prediction. ConceptMapper
maps these salient input representations to the training data latent concepts and provides them as an
explanation of the prediction. PlausiFyer takes the test sentence and its concept-based explanation
and generates a human-friendly and insightful explanation of the prediction. In the following we
describe these modules in detail.

Consider M represents the DNN model being interpreted, with L layers, each of size H . Let
−→z wi be the contextual representation of a word wi in an input sentence {w1, w2, ..., wi, ....}. The
representation can belong to any particular layer in the model, and LACOAT will generate explanations
with respect to that layer.
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2.1 ConceptDiscoverer

The words are grouped in the high-dimensional space based on various latent relations such as
semantic, morphology and syntax [Mikolov et al., 2013, Reif et al., 2019]. With the inclusion of
context i.e. contextualized representations, these groupings evolve into dynamically formed clusters
representing a unique facet of the words called latent concept [Dalvi et al., 2022]. Figure 1 shows a
few examples of latent concepts that capture different facets of the word "trump".

The goal of ConceptDiscoverer is to discover latent concepts given a model M and a dataset D.
We follow an identical procedure to Dalvi et al. [2022] to discover latent concepts. Specifically, for
every word wi in D, we extract contextual representations −→z wi

. We then cluster these representations
using agglomerative hierarchical clustering [Gowda and Krishna, 1978]. The distance between any
two representations is computed using the squared Euclidean distance, and Ward’s minimum variance
criterion is used to minimize total within-cluster variance.

Each cluster represents a latent concept. Let C = C1, C2, ..., CK represents the set of latent concepts
extracted by ConceptDiscoverer, where each Ci = w1, w2, ... is a set of words in a particular
context. For sequence classification tasks, we also consider the [CLS] token (or a representative
classification token) from each sentence in the dataset as a “word” and discover the latent concepts.
In this case, a latent concept may consist of words only, [CLS] tokens only, or a mix of both.

2.2 PredictionAttributor

Given an input instance s, the goal of PredictionAttributor is to extract salient input repre-
sentations with respect to the prediction p from model M. Gradient-based methods have been
effectively used to compute the saliency of the input features for the given prediction, such as pure
Gradient [Simonyan et al., 2014], Input x Gradient [Shrikumar et al., 2017] and Integrated Gradients
(IG) [Sundararajan et al., 2017a]. In this work, we use IG as our gradient-based method as it is a
well-established method from literature. However, LACOAT is agnostic to the choice of the attribution
method, and any other method that identifies salient input representations can be used while keeping
the rest of the pipeline unchanged.

Formally, we first use IG to get attribution scores for every token in the input s, and then select the
top tokens that make up 50% of the total attribution mass (similar to top-P sampling).

2.3 ConceptMapper

At test time, given an input sentence PredictionAttributor provides the salient input representa-
tions. ConceptMapper maps each salient representation to a latent concept Ci of the training latent
space. These latent concepts highlight a particular facet of the salient representations that is being
used by the model and serve as an explanation of the prediction.

ConceptMapper uses a logistic regression classifier that maps a representation −→z wi
to one of the

K latent concepts. The model is trained using the representations of words from D that are used by
ConceptDiscoverer as input features and the concept index (cluster id) as their label. Hence, for a
concept Ci and a word wj ∈ Ci, a training instance of the classifier is the input x = −→z wj

and the
output is y = i.

2.4 PlausiFyer

Interpreting latent concepts can be challenging due to the need for diverse knowledge, including
linguistic, task-specific, worldly, and geographical expertise (as seen in Figure 1). PlausiFyer
offers a user-friendly summary and explanation of the latent concept and its relationship to the input
instance using a Large Language Model (LLM). Our intuition of natural language explanation is
similar to Singh et al. [2023], however, we relied on latent concepts compared to most activated
ngrams and the generation of synthetic data. Given an input sentence and the latent concept, we ask
an LLM to explain the relationship between them. Due to space limitation, we present the prompts
used for sequence labeling and classification tasks in App. D.
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Figure 2: Sentiment task: Latent concepts of the most attributed words in Layers 0, 6 and 12

3 Evaluation

We perform a qualitative evaluation, a human evaluation, and a module-level evaluation of LACOAT
to measure its correctness and efficacy. Due to space limitations, we mainly present the results of
the qualitative evaluation. The evaluation of the human evaluation, the module-level evaluation and
faithfulness evaluation of LACOAT is provided in Appendix G, H, and I. Also, the full set of results
for all tasks are presented in Apps. F, J, K, L.

3.1 Qualitative Evaluation

In this section, we qualitatively evaluate the usefulness of the latent concept-based explanation and
the generated human-friendly explanation. We describe the experimental setup in App. E.

3.1.1 Evolution of Concepts

LACOAT generates the explanation for each layer with respect to a prediction, which shows the
evolution of concepts in making the prediction. Figure 2 shows layers 0, 6 and 12’s latent concept of
the most attributed input token for RoBERTa fine-tuned on the sentiment task. We found that the initial
layer latent concepts do not always align with the sentiment of the input instance and may represent a
general language concept. Figure 2(a) shows the concept of comparative and superlative adjectives of
both positive and negative sentiments. In the middle layers, the latent concepts evolved into concepts
that align better with the sentiment of the input sentence. The latent concept of Figure 2(b) shows a
mix of adjectives and adverbs of negative sentiment. In the sentiment task, the most attributed word
in the last layer is [CLS] which resulted in latent concepts consisting of [CLS] representations of the
most related sentences to the input. We randomly pick five [CLS] instances from the latent concept
and show their corresponding sentences in the figure (see Figure 2(c)). We found that the last layer’s
latent concepts are best aligned with the input instance and its prediction and are the most informative
explanation of the prediction. Then, we deepen our analysis of the explanations generated using the
last layer only.

(a) Sentiment: A positive labeled test instance
correctly predicted by the model.

(b) Sentiment: A negatively labeled test instance
that is incorrectly predicted as positive.

Figure 3: A few examples of LACOAT explanations for BERT using Sentiment task
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3.1.2 Analyzing Last Layer Explanations

Figure 3 presents various examples of LACOAT for Sentiment tasks using BERT.

Correct prediction with correct gold label Figure 3a presents a case of correct prediction with
latent-concept explanation and human-friendly explanation. In the case of sentence-level latent
concepts (Figure 3a), it is harder to interpret compared to latent concepts consisting of words.
However, PlausiFyer still highlights additional information about the relation between the latent
concept and the input sentence. For example, it captures that the reason of positive sentiment in 3a is
due to praising different aspects of a film and its actors and actresses.

Wrong prediction with correct gold label Figure 3b shows the predicted label is wrong. The
input sentence has a negative sentiment but the model predicted it as positive. The instances of latent
concepts show sentences with mixed sentiments such as “manages to charm” is positive, and “never
quite lives up to its promise” is negative. This provides the domain expert an evidence of a possible
wrong prediction. The PlausiFyer’s explanation is even more helpful as it clearly states that “there
is no clear ... relation between these sentences ...".

To study how the explanation would change if it is a correct prediction, we employ TextAttack [Morris
et al., 2020] to create an adversarial example of the sentence in Figure 3b that flips its prediction.
The new sentence replaces “laughing” with “kidding” which has a similar meaning but flipped
the prediction to a correct prediction. Figure 7 in the appendix shows the full explanation of the
augmented sentence. With the correct prediction, the latent concept changed and the explanation
clearly expresses a negative sentiment “... all express negative opinions and criticisms ..." compared
to the explanation of the wrongly predicted sentence.

Cross model analysis LACOAT provides an opportunity to compare various models in terms of how
they learned and structured the knowledge of a task. Figure 4 compares the explanation of RoBERTa
(4a) and XLMR (4b) for identical inputs. Both models predicted the correct label. However, their
latent concept based explanation is substantially different. RoBERTa’s explanation shows a large and
diverse concept where many words are related to finance and economics. The XLMR’s latent concept
is rather a small focused concept where the majority of tokens are units of measurement. It is worth
noting that both models are fine-tuned on identical data.

(a) Explanation of the RoBERTa model (b) Explanation of the XLMR model

Figure 4: Comparing explanation of RoBERTa and XLMR

4 Conclusion

We presented LACOAT that provides a human-friendly explanation of a model’s prediction. The
qualitative evaluation and human evaluation showed that LACOAT explanations are insightful in
explaining a correct prediction, in highlighting a wrong prediction and in comparing the explanations
of models. The reliance on training data latent space enables interpreting how knowledge is structured
in the network. Similarly, it enables the study of the evolution of predictions across layers. LACOAT
promises human-in-the-loop in the decision-making process and is a step towards trust in AI. We
discuss the limitations in App. M.
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A Related work

The explainability methods can be approached by local explanations and global explanations targeting
post-hoc analysis or introducing interpretability in the architecture [Madsen et al., 2023, Sundararajan
et al., 2017b, Denil et al., 2014, Selvaraju et al., 2020, Kapishnikov et al., 2021, Zhao and Aletras,
2023b, Kim et al., 2018, Ghorbani et al., 2019, Jourdan et al., 2023, Zhao et al., 2023, Ribeiro et al.,
2016, Rajagopal et al., 2021]. Lyu et al. [2023] provides a survey of explainability methods in NLP.
LACOAT is a local explanation method providing post-hoc explanations given an input instance. One
of the common ways for local explanations is to interpret the model prediction based on the input
features. However, such an explanation lacks contextual verbosity and it could not interpret the
multifaceted roles of the input features.

Previous work attempted to explain and interpret NLP models using human-defined concepts [Kim
et al., 2018, Abraham et al., 2022] and concepts extracted from hidden representations [Zhao et al.,
2023, Ghorbani et al., 2019, Rajani et al., 2020, Geva et al., 2022]. Zhao et al. [2023], Kim et al. [2018]
worked on the global explanation based on a surrogate model. We provide local explanations and we
ensure the faithfulness of latent concepts by extracting them directly from the hidden representation
without any supervised training. Rajani et al. [2020] used k-nearest neighbors of the training data
to identify erroneous correlations and misclassified instances. Dalvi et al. [2022] analyzed latent
concepts in their ability to represent linguistic knowledge. Our ConceptDiscoverer module is
motivated by them. However, we propose a method to explain a model’s prediction using latent
concepts.

B Datasets

Table 1: The data statistics of each dataset used in the evaluation experiments and the number of
tags to be predicted. POS [Marcus et al., 1993], Jigsaw Toxicity dataset [cjadams et al., 2017],
the ERASER Sentiment dataset [Pang and Lee, 2004, Zaidan and Eisner, 2008] and the MNLI
dataset [Wang et al., 2019]

Task Train Dev Tags

Sentiment 13878 856 2
POS 36557 1802 48
Toxicity 9000 800 2
MNLI 9000 1200 3

C Finetuning Performance

We tuned several transformers BERT-base-cased, RoBERTa and XLM-RoBERTa. We used standard
splits for training, development and test data that we used to carry out our analysis. The splits to
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preprocess the data are available through git repository1. See Table 2, Table 3, Table 4, and Table 5
for statistics and classifier accuracy.

Table 2: The fine-tuned performance of models, data statistics (number of sentences) on training,
development, and test sets used in the finetuning, and the number of tags to be predicted for the POS
tagging task. Model: BERT, RoBERTa, XLM-R

Task Train Dev Test Tags BERT RoBERTa XLM-R

POS 36557 1802 1963 48 96.81 96.70 96.75

Table 3: The fine-tuned performance of models, data statistics (number of sentences) on training,
development, and test sets used in the finetuning, and the number of tags to be predicted for the
sentiment classification task. Model: BERT, RoBERTa, XLM-R

Task Train Dev Test Tags BERT RoBERTa XLM-R

Sentiment 13878 1516 2726 2 94.53 96.31 93.80

Table 4: The fine-tuned performance of models, data statistics (number of sentences) on training,
development, and test sets used in the finetuning, and the number of tags to be predicted for the
toxicity classification task. Model: BERT, RoBERTa, XLM-R

Task Train Dev Test Tags BERT RoBERTa XLM-R

Toxicity 159570 63977 89185 2 91.53 91.55 91.53

Table 5: The fine-tuned performance of models, data statistics (number of sentences) on training,
development, and test sets used in the finetunings, and the number of tags to be predicted for the
MNLI task. Model: BERT, RoBERTa, XLM-R

Task Train Dev Test Tags BERT RoBERTa XLM-R

MNLI 393000 19650 19650 3 84.00 87.69 84.54

1https://github.com/nelson-liu/contextual-repr-analysis
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D Task-specific Prompts used with PlausiFyer

We use the following prompt for the sequence classification task:

Do you find any common semantic, structural, lexical and topical relation between
these sentences with the main sentence? Give a more specific and concise summary
about the most prominent relation among these sentences.

main sentence: {sentence}
{sentences}
No talk, just go.

and the following prompt for the sequence labeling task:

Do you find any common semantic, structural, lexical and topical relation between
the word highlighted in the sentence (enclosed in [[ ]]) and the following list
of words? Give a more specific and concise summary about the most prominent
relation among these words.

Sentence: {sentence}
List of words: {words}
Answer concisely and to the point.

We did not provide the prediction or the gold label to LLM to avoid biasing the explanation.

E Experimental Setup

Data We use Parts-of-Speech (POS) Tagging, Toxicity classification (Toxicity), Sentiment Clas-
sification (Sentiment) and Natural Language Inference (NLI) tasks for our experiments. POS is
a sequence labeling task while the other tasks are sequence classification tasks. We use the Penn
TreeBank dataset [Marcus et al., 1993] for POS, Jigsaw Toxicity dataset [cjadams et al., 2017] for
toxicity, the ERASER Movie Reviews dataset [Pang and Lee, 2004] for Sentiment and the MNLI
dataset [Wang et al., 2019] for the NLI tasks. Appendix B provides the information about each
dataset.

Models We fine-tune 12-layered pre-trained models; BERT-base-cased [Devlin et al., 2019],
RoBERTa-base [Liu et al., 2019] and XLM-Roberta [Conneau et al., 2020] using the training datasets
of the tasks considered. For Llama2-2-7b-chat-hf [Touvron et al., 2023], we use the base model
without finetuning with zero-shot prompting for each task. We use transformers [Wolf et al., 2020]
with the default settings and hyperparameters. Task-wise performance of the models is provided in
App C. Tables 2, 3, 4, and 5.

Module-specific hyperparameters When extracting the activation and/or attribution of a word, we
average the respective value over the word’s subword units. We optimize the number of clusters K
for each dataset as suggested by Dalvi et al. [2022]. We use K = 600 (POS, Toxicity) and K = 400
(Sentiment, MNLI) for ConceptDiscoverer.

Since the number of words in D can be very high, and the clustering algorithm is limited by the
number of representations it can efficiently cluster, we filter out words with frequencies less than 5
and randomly select 20 contextual occurrences of every word with the assumption that a word may
have a maximum of 20 facets. These settings are in line with Dalvi et al. [2022]. In the case of [CLS]
tokens, we keep all of the instances.

We use a zero-vector as the baseline vector in PredictionAttributor’s IG, using 500 approxima-
tion steps. For ConceptMapper, we use the cross-entropy loss with L2 regularization and train the
classifier with ‘lbfgs’ solver and 100 maximum iterations. To optimize the classifier and to evaluate
its performance, we split the dataset D into train (90%) and test (10%). ConceptMapper used in the
LACOAT pipeline is trained using the full dataset D. Finally, for PlausiFyer, we use ChatGPT with
a temperature of 0 and a top_p value of 0.95.
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Figure 5: Sentiment task: Examples of the latent concepts of the most attributed words in layers 0, 6
and 12

(a) POS: An adverb with semantics showing degree
and intensity of an action

(b) POS: An incorrect prediction that can be
detected from the latent concept

Figure 6: A few examples of LACOAT explanations for BERT using POS tasks

F Qualitative Evaluation - More Examples in POS tagging and sentiment
classification tasks

F.1 Example for the Evolution of Concepts

Figure 5 presents the other example of latent concepts of the salient words in layers 0, 6, and 12.
Similarly to the example shown in Figure 2, the latent concept of this example shows that the different
forms of the verb “sit” are not aligned with its usage in the input instance. The concept in the middle
layer aligns better with the sentiment of the input sentence (Figure 5(b)). Most words of layer 6’s
latent concept match the sentiment of the input sentence. We also randomly pick five [CLS] instances
from the latent concept and show their corresponding sentences in the figure (see Figure 5(c)). The
concept of the last layer is best aligned with the input sentence.

F.2 Example for the last layer explanation explanation analyzing

Correct prediction with correct gold label Figure 6a shows a correct prediction case in POS
tagging task. PlausiFyer discovers relation between the latent concept and the input sentence.
For example, it captures that the adverbs in Figure* have common semantics of showing degree or
frequency.

Wrong prediction with correct gold label Figure 6b presents a wrong prediction case. The
prediction is Noun; however, the the majority of words in the latent concepts are plural Nouns,
giving evidence of a possibly wrong prediction. In addition, the explanation did not capture any
morphological relationship between the concept and the input word.

Adversarial Example of the Sentence in Figure 3b The augmented sentence has a similar meaning
word “kidding” instead of “laughing” (See Figure 7). The predicted label of the sentence becomes
Positive, which is matched to the gold label. The latent concept of the “kidding” is more aligned
with the sentence than the original one.
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Figure 7: An augmented example for the test instance in Figures 3b: The augmented sentence
replaced the “laughing” with “kidding” which has a similar meaning. The label of the augmented
sentence becomes positive, which is matched with the gold label. The new predicted latent concept is
more closely aligned with the main sentence. The model may not learn the implicit meaning of the
“laughing stock” in the sentence.

Figure 8: A correct prediction but incorrect gold label: The test instance emphasizes the movie’s
shortcomings and uses the word "especially" to highlight the flaws. The explanation is rather long
but it correctly highlights that the sentences are about “critiques or opinions"

Correct Predicted Label with Incorrect Gold Label The automatic labeling of latent concepts
based on the model’s class provides an opportunity to analyze the wrong predictions of the model
with respect to the concept labels. We specifically observe the wrong predictions of test instances.
We discovered that many of the wrong prediction cases were not caused by misclassification of the
models but were due to the fact that the gold label was annotated incorrectly. Figure 8 shows an
example in which the main sentence and the explanation sentence share the same sentiment. We can
see that the sentence provides critiques of the different aspects of the film. But the gold label of this
sentence is positive. We think the gold label for this sentence is incorrect.
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Figure 9: An incorrect prediction (noun vs adjective) based on a latent concept made up of a mixture
of nouns and adjectives: the “deputy” in this case is an adjective. The prediction aligns with a mixed
cluster that contains both nouns and adjectives and the model may not learn to distinguish the “noun”
and “adjective” in this case. The latent concept explanation is useful for the user to know that the
model has used a mixed latent space for the prediction. The Explanation is rather wrong since it
mentions that all these words are nouns.

Incorrect Prediction in POS tagging Task Figure 9 presents an incorrect prediction in the POS
tagging task. The prediction is aligned with a mixed concept that consists of nouns and adjectives.
According to the latent concept explanation, we know that the model may not learn to distinguish the
“noun” and “adjective”, which causes the incorrect prediction.
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Table 6: Top: Consolidated label distribution for Q1-Q5. Fleiss’ κ scores are computed by averaging
each annotator with the consolidated annotation. The consolidated labels and agreement scores
are shown for all the samples, as well as partitioned into those where the model prediction was
correct/incorrect. Bottom: Percentage of samples where LACOAT is ranked similar or better than
other methods. A∗ represents the average preference of LACOAT per annotator.

Top Labels Correct
Sam-
ples

Incor-
rect
Sam-
ples

All Samples

Annotation Fleiss κ

Q1 Yes/No 28 / 0 20 / 2 48 / 2 0.35
Q2 Helps/Neutral/Hinders 27 / 1 / 0 17 / 5 / 0 44 / 6 / 0 0.41
Q3 Helps/Neutral/Hinders 16 / 10 / 2 1 / 19 / 2 17 / 29 / 4 0.61
Q4 Yes/No 17 / 11 5 / 17 22 / 28 0.47
Q5 Yes/No 17 / 11 6 / 16 23 / 27 0.80

Bottom A1 A2 A3 A4 Consolidated Average Cohen’s κ

LACOAT ↑ 85% 72% 77% 87% 89% 0.37

G Human Evaluation

We perform two human evaluations; one aimed at evaluating the usefulness of LACOAT’s explanation
in understanding a prediction (LACOAT Effectiveness) and the other compares LACOAT with other
explanation methods.

G.1 LACOAT Effectiveness

We conduct a human evaluation using four annotators across 50 test samples. Specifically, given an
explanation (e.g. Figure 6), three annotators are asked to answer the following five questions:

1. Regardless of the prediction, can you see any relation between the original input and the concept
used by the model? (Yes/No)

2. Given the prediction, does the latent concept help you understand why the model made that
prediction? (Helps/Neutral/Hinders)

3. Given the prediction, does the explanation help you understand why the model made that predic-
tion? (Helps/Neutral/Hinders)

4. Does the explanation accurately describe the latent concept? (Yes/No)
5. Is the explanation relevant to the task at hand? (Yes/No)

Q1 evaluates whether LACOAT attributes the correct concept to a given prediction, while Q2 and Q3
measure the efficacy of LACOAT’s output in helping a user understand the prediction. Q4 and Q5
evaluates the output of PlausiFyer. They specifically separate out the cases where the explanation
was accurate but irrelevant to the task at hand.

Table 6 shows the consolidated labels by picking the majority label in case of Yes/No questions
and averaging the annotations in case of the rest. The evaluation shows that the latent concept
itself was not only relevant to the task at hand, but also helped the user understand the model’s
prediction. The results for the helpfulness of the explanation text were mixed, with the majority of
the annotations stating that it did not help or hinder their process. However, upon inspection, we see
that the explanation was mostly helpful in all the cases where the model made the correct prediction,
and not helpful when the prediction was incorrect. Qualitatively analyzing the explanation text for
incorrect prediction shows that PlausiFyer mostly outputs “There is no relationship between the
sentences and the concepts”, which was deemed as hindering by most of the annotators. While such
an explanation may serve as an indicator of a potential problem in the prediction, improving the
prompt may result in a response that is indicative of the issue with the prediction. We leave this
exploration for the future. Table 6 also shows the agreement between the annotators using Fleiss’
Kappa. Since not all samples were annotated by all annotators, we compute the average Fleiss’ kappa
of each annotator with the consolidated annotation. The agreement ranges from Fair to Substantial
across the five questions.
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G.2 Comparison with other Methods

Despite a number of explanation methods proposed in the literature, it is hard to draw a comparison
between them due to the difference in granularity of explanation, type of explanation and the
methodology used. We design a human evaluation, asking evaluators to give a score between 1
to 3 to each of three explanations generated by IG, LACOAT and Cockatiel [Jourdan et al., 2023].
The annotation setup allows to rank multiple methods with the same usefulness rating. A total of
400 annotations were collected using four evaluators where each test instance is evaluated by all
annotators. We ask four annotators to rank 100 samples where they see the original input, gold
label, predicted label, and explanations by three methods: LACOAT, IG and COCKATIEL. LACOAT
explanations are shown across three layers (layer 0, 6 and 12), while IG explanations are shown for
layer 0 and COCKATIEL for layer 12. The annotators are asked to rank each method from 1 to 3
in terms of usefulness in understanding the reason for the prediction where 1 implies the method
was very useful while 3 implies it was not useful. The annotation allows for the annotator to rank
multiple methods with the same usefulness rating, e.g. for a particular sample, both LACOAT and
COCKATIEL can have the rank 1. This setting is intentional since the output of explanation methods
is not directly comparable to each other due to the difference in their design and the targeted form
and granularity of explanation.

The second part of Table 6 shows the percentage of samples for which each of the annotators ranked
LACOAT to be the same or better than both IG and Cockatiel. The consolidated ranking is computed
by averaging the ranks across users. The average Cohen’s κ indicates Fair agreement between
each annotator and the consolidated ranking. The results show that LACOAT explanation is more
useful in understanding the prediction compared to other methods. Also, the results suggested that
LACOAT is preferred or equally preferred by all annotators. The average Cohen’s κ further shows a
"fair agreement" between annotators and the consolidated ranking where consolidated ranking is the
average rank across users.

H Module Specific Evaluation

The correctness of LACOAT depends on the performance of each module it comprised off. The ideal
way to evaluate the efficacy of these modules is to consider gold annotations. However, they are not
available for any module. To mitigate this limitation, we design various constrained scenarios where
certain assumptions can be made about the representations of the model. For example, the POS model
optimizes POS tags so it is highly probable that the last layer representations form latent concepts that
are a good representation of POS tags as suggested by various previous works [Kovaleva et al., 2019,
Durrani et al., 2022]. One can assume that for ConceptDiscoverer, the last layer latent concepts
will form groupings of words based on specific tags and for PredictionAttributor, the input
word at the position of the predicted tag should reside in a latent concept that is dominated by the
words with the same tag. In the following, we evaluate the correctness of these assumptions.

Latent Concept Annotation For the sake of evaluation, we annotated the latent concepts automati-
cally using the class labels of each task. Given a latent concept, we annotate it with a certain class
if more than 90% of the words in the latent concept belong to that class. In the case of POS, the
latent concepts will be labeled with one of the 44 tags. For sentiment, the class labels, Positive and
Negative, are at sentence level. We tag a latent concept as Positive/Negative if 90% of its tokens
([CLS] or words) belong to sentences labeled as Positive/Negative in the training data. The latent
concepts that do not fulfill the criteria of 90% for any class are annotated as Mixed.

H.1 ConceptDiscoverer

ConceptDiscoverer identifies latent concepts by clustering the representation. We question whether
the discovered latent concepts are a true reflection of the properties that a representation possesses.
Using ConceptDiscoverer, we form latent concepts of the last layer and automatically annotate
them as described above. We found 87%, 83% and 86% of the latent concepts of BERT, RoBERTa
and XLMR that perfectly map to a POS tag respectively. We further analyzed other concepts where
90% of the words did not belong to a single tag. We found them to be of compositional nature i.e. a
concept consisting of related semantics like a mix of adjectives and proper nouns about countries
such as Swedish and Sweden (App. Figure 10). For sentiment, we found 78%, 95%, and 94% of the
latent concepts of BERT, RoBERTa, and XLMR to consist of either Positive or Negative sentences.
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The high number of class-based clusters of RoBERTa and XLMR show that at the 12th layer, the
majority of their latent space is separated based on these two classes (see Table 7 for detailed results).

Table 7: Number of clusters for each polarity: “Neg” for negative Label, “Pos” for positive, and
“Mix” for mix label. The total number of clusters is 400.

Sentiment

BERT RoBERTa XLM-R

Layer Neg Pos Mix Neg Pos Mix Neg Pos Mix

Layer 0 49 1 350 45 0 355 55 0 345
Layer 1 53 1 346 50 0 350 58 0 342
Layer 2 51 1 348 49 0 351 62 0 338
Layer 3 53 0 347 60 0 340 62 0 338
Layer 4 57 0 343 52 0 348 69 0 331
Layer 5 56 0 344 51 0 349 68 0 332
Layer 6 57 0 343 45 1 354 59 1 340
Layer 7 51 0 349 56 2 342 68 0 332
Layer 8 49 0 351 116 25 259 71 0 329
Layer 9 66 4 330 226 126 48 82 7 311
Layer 10 125 31 244 235 140 25 257 92 51
Layer 11 174 49 177 258 120 22 256 110 34
Layer 12 230 81 89 254 126 20 105 270 25

(a) (b)

Figure 10: Compositional concepts: (a) A cluster representing countries (NNP) and their adjectives
(JJ), (b) Different form of verbs (Gerunds, Present and Past participles).

We also found that the concepts are not always formed aligning to the output class. Some concepts
are formed by combining words from different classes. For example in Figure 10a, the concept is
composed of nouns (specifically countries) and adjectives that modify these country nouns. Similarly,
Figure 10b describes a concept composed of different forms of verbs.

Moreover, Table 7 provides the number of clusters for each polarity in the sentiment classification
task. It shows that the majority of latent concepts are class-based clusters at the last layer for the
BERT, RoBERTa, and XLMR models.

H.2 PredictionAttributor

We question whether the salient input representation correctly represents the latent space of the
output. This specifically evaluates PredictionAttributor.We calculate the number of times the
representation of the most salient word/[CLS] token maps to the latent concept of the identical label
as that of the prediction. We expect a high alignment at the top layers for PredictionAttributor
to be correct.
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We do not include ConceptMapper when evaluating this and conduct the experiment using the
training data only where we already know the alignment of a salient representation and the latent
concept. Table 8 shows the results across the last four layers (See App. Tables 9, 10 for full
results). For POS, we observed a successful match of above 90% for all models. We observed the
mismatched cases and found them to be also of a compositional nature i.e. latent concepts comprised
of semantically related words (see App. Figure 10 for examples).

For sentiment, more than 99% of the time, the last layer’s salient representation maps to the predicted
class label, confirming the correctness of PredictionAttributor. The performance drop for the
lower layer is due to the absence of class-based latent concepts in the lower layers i.e. concepts that
comprised more than 90% of the tokens belonging to sentences of one of the classes.

Table 8: Accuracy of PredictionAttributor in mapping a representation to the correct latent
concept.

POS Sentiment

Layers BERT RoBERTa BERT RoBERTa

9 92.38 86.97 31.94 99.59
10 92.79 89.64 99.57 99.69
11 93.39 89.95 99.71 99.48
12 93.95 90.04 99.25 99.27

H.3 ConceptMapper

We evaluate the correctness of ConceptMapper in mapping a test representation to the training data
latent concepts. ConceptMapper trains using representations and their cluster IDs as labels. We
randomly split this training data into 90% train and 10% test where the test data serves as the gold
annotation of latent concepts. We train ConceptMapper using the train instances and measure the
accuracy of the test instances. Table 11 summarizes the results of BERT (See App. Tables 12, 13 for
all results). Observing Top-1 accuracy, the performance of ConceptMapper starts high (100%) for
lower layers and drops to 84.19 and 68.24% for the last layer. We found that the latent space becomes
dense on the last layer. This is in line with Ethayarajh [2019] who showed that the representations of
higher layers are highly anisotropic. This causes concepts to be close in the space. If true, the correct
label should be among the top predictions of the mapper. We empirically tested it by considering the

Table 9: Saliency-based method (95%): accuracy of PredictionAttributor in mapping a represen-
tation to the correct latent concept in the POS tagging task. Model: BERT-base-cased, RoBERT-base,
XLM-R

POS
Layer BERT RoBERTa XLM-R

Layer 0 13.76 11.13 11.97
Layer 1 12.75 13.58 11.91
Layer 2 15.51 15.60 12.99
Layer 3 17.61 17.25 22.88
Layer 4 23.81 20.30 32.08
Layer 5 37.03 23.28 48.44
Layer 6 64.83 32.52 67.94
Layer 7 77.90 48.61 80.11
Layer 8 86.96 73.88 85.83
Layer 9 88.98 82.56 89.30
Layer 10 89.99 83.24 89.94
Layer 11 90.68 84.61 90.19
Layer 12 92.16 85.67 90.18
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Table 10: Saliency-based method: accuracy of PredictionAttributor in mapping a representation
to the correct latent concept in the sentiment classification task. The reason of very low values for
the lower layers is mainly due to the absence of class-based latent concepts in the lower layers i.e.
concepts that comprised more than 90% of the tokens belonging to sentences of one of the classes.

Sentiment
Layer BERT RoBERTa XLM-R

Layer 0 6.40 12.08 7.46
Layer 1 7.12 12.46 5.57
Layer 2 7.66 17.29 6.36
Layer 3 7.13 22.00 8.03
Layer 4 12.18 20.08 9.71
Layer 5 13.24 24.25 8.88
Layer 6 11.18 17.26 8.75
Layer 7 12.80 39.87 14.05
Layer 8 4.06 92.84 15.75
Layer 9 31.94 99.59 32.63
Layer 10 99.57 99.69 92.06
Layer 11 99.71 99.48 94.97
Layer 12 99.25 99.27 99.08

Table 11: BERT: Accuracy of ConceptMapper in mapping a representation to the correct latent
concept. See Table 12, 13 in the Appendix for results on all layers.

Layers 0 2 5 10 12

POS Top 1 100 100 99.03 92.67 84.19
Top 2 100 100 99.75 97.89 94.15
Top 5 100 100 99.94 99.68 99.05

Senti-
ment

Top 1 100 100 97.19 83.09 68.24

Top 2 100 100 99.63 92.67 83.24
Top 5 100 100 99.94 97.75 94.24

top two and top five predictions of the mapper, achieving a performance of up to 99.05% and 94.24%
for POS and Sentiment respectively.

We also validate ConceptMapper by measuring the accuracy of the test instances for both the
sentiment classification and POS tagging tasks based on the BERT, RoBERTa, and XLMR models.
The top 1, 2, and 5 accuracy of ConceptMapper in mapping a representation to the correct latent
concept for each layer is shown in Table 12 and Table 13. For all models, the performance of the
top-5 is above 99% for the POS tagging task and above 90% for the sentiment classification task.
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Table 12: Top 1, 2, and 5 accuracy of ConceptMapper in mapping a representation to the cor-
rect latent concept for the POS tagging task. The top-5 performance reaches above 99% for all
models demonstrating that the correct latent concept is among the top probable latent concepts of
ConceptMapper.

POS

BERT RoBERTa XLM-R

Layer Top-1 Top-2 Top-5 Top-1 Top-2 Top-5 Top-1 Top-2 Top-5

Layer 0 100 100 100 99.91 99.95 99.98 99.99 100 100
Layer 1 100 100 100 99.92 99.94 99.98 100 100 100
Layer 2 100 100 100 99.76 99.92 99.98 99.72 99.98 100
Layer 3 99.85 99.98 100 99.38 99.85 99.98 98.25 99.60 99.98
Layer 4 99.72 99.92 99.97 98.67 99.58 99.87 97.72 99.60 99.98
Layer 5 99.03 99.75 99.94 97.69 99.15 99.73 97.05 99.23 99.91
Layer 6 97.76 99.34 99.83 96.52 98.71 99.59 95.8 98.95 99.76
Layer 7 96.51 98.91 99.68 94.72 98.11 99.57 93.92 98.31 99.80
Layer 8 95.27 98.52 99.79 92.56 97.55 99.52 94.20 98.52 99.80
Layer 9 94.54 98.25 99.70 92.24 97.48 99.55 92.79 97.82 99.73
Layer 10 92.67 97.89 99.68 91.61 97.19 99.55 92.03 97.66 99.60
Layer 11 90.86 97.34 99.64 90.72 96.77 99.58 90.40 97.28 99.67
Layer 12 84.19 94.15 99.05 86.88 95.13 99.15 85.07 94.57 99.08

Table 13: Top 1, 2, and 5 accuracy of ConceptMapper in mapping a representation to the correct
latent concept for the sentiment classification task. The top-5 performance reaches above 90% for all
models demonstrating that the correct latent concept is among the top probable latent concepts of
ConceptMapper.

Sentiment

BERT RoBERTa XLM-R

Layer Top-1 Top-2 Top-5 Top-1 Top-2 Top-5 Top-1 Top-2 Top-5

0 100 100 100 99.95 100 100 100 100 100
1 100 100 100 99.86 99.98 100 100 100 100
2 100 100 100 99.89 99.98 100 99.9 100 100
3 98.80 100 100 99.44 99.83 99.96 99.57 99.99 100
4 97.84 99.85 99.99 99.28 99.73 99.91 99.4 99.96 100
5 97.19 99.63 99.94 98.4 99.5 99.84 99.12 99.84 99.96
6 96.44 99.30 99.89 97.35 99.15 99.82 98.9 99.84 99.96
7 94.86 98.97 99.90 96.13 98.74 99.63 98.22 99.62 99.9
8 93.26 97.99 99.67 87.42 95.14 98.43 98.13 99.48 99.84
9 90.42 96.97 99.20 75.38 88.14 96.07 96.37 98.77 99.66
10 83.09 92.67 97.75 65.84 81.13 93.46 89.12 95.2 98.61
11 76.84 88.02 96.01 65.91 81.36 93.43 70.99 84.31 94.18
12 68.24 83.24 94.24 70.83 84.54 95.67 55.3 75.08 91.74
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I Faithfulness Evaluation

Table 14: Faithfulness evaluation using the RoBERTa model. Original is the performance of the
model without any manipulation, LACOAT is the performance of the model after subtracting the
most salient latent concept vector from the [CLS] vector and Random is the average performance of
the model across five random vectors when subtracted from the [CLS] vector

Faithfulness Metrics

Dataset Setting Accuracy % Label Flip

Sentiment
Original 96.31 -
LACOAT 55.91 43.98
Random 96.09 0.14

Toxicity
Original 91.55 -
LACOAT 51.78 46.44
Random 91.93 0.13

MNLI
Original 87.69 -
LACOAT 82.08 8.83
Random 88.12 0.55

Zhao and Aletras [2023a] proposed masking parts of input token representations to evaluate faith-
fulness. We adapted their methodology to the latent concept faithfulness evaluation. We consider a
salient latent concept highlighted by LACOAT to be faithful to the prediction if the ablation of that
latent concept causes a change in prediction performance. We define ablation of a latent concept as
removing the information of that latent concept from the prediction vector i.e. [CLS] . We calculate
the vector of a latent concept by averaging the training representations that belong to the latent
concept. At inference time, we subtract the latent concept vector from the [CLS] representation of
layer 12 and perform the prediction. Random represents the subtraction of a random vector. We report
the average results of five random vectors. Accuracy represents the performance of the model on the
test set. Prediction change represents the percentage of predictions that altered after manipulation. We
report the accuracy of the model and the percentage of predictions altered (see Table 14). Moreover,
we report the manipulation of [CLS] using random vectors.

The results show that manipulating the [CLS] token representation using the LACOAT vector leads
to significant drops in performance and changes in predictions across all datasets. In contrast, random
vector manipulations have a minimal impact on the model’s performance and predictions. These
results suggest that the LACOAT vector plays a crucial role in the model’s decision-making process.
Comparing the results of different datasets, MNLI showed a relatively smaller drop in accuracy when
manipulating using the salient latent concept vector. We suspect that this is due to the nature of the
MNLI task that requires reasoning over multiple sentences and whose information may be present in
multiple latent concepts. Nevertheless, the difference in results from original accuracy and random
vector confirms our hypothesis of the faithfulness of latent concepts.

J Toxicity Classification Task

J.1 Experimental Setup

We use the Jigsaw Toxicity dataset for the toxicity classification task (Toxicity). This dataset
comprises Wikipedia comments labeled by human annotators to identify instances of toxic behavior.
We retain only the "toxic" feature as the label for each instance, thereby classifying each instance as
toxic or non-toxic. The dataset has more than 159k, 63k, and 89k instances for train, dev, and test.
We randomly select 9k, 800, and 800 splits for train, dev, and test respectively. We use K = 600 for
ConceptDiscoverer and have the same setting for the rest of the module-specific hyperparameters.
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J.2 Qualitative Evaluation

J.2.1 Correct prediction with correct gold label

Figure 11 and Figure 12 present the correct prediction case for a toxic and a non-toxic labeled instance.
In the toxic label instance, PlausiFyerdiscovers that the words in latent concept have common
semantics of negative behaviors and highlights the reason for toxic label due to harsh language. For
the non-toxic labeled instance, PlausiFyerfinds that the relation between the sentence and the list of
words in the latent concept is about the governance theme and user management in online community
platforms.

J.2.2 Wrong prediction with correct gold label

Figure 13 shows a non-toxic labeled instance that is incorrectly predicted as toxic. The sentence
contains non-toxic content and has cultural/religious terms expressing positive emotion. However,
the model predicts this sentence with a toxic label. The latent concept provides helpful evidence
that it contains many toxic words such as “ASSHOLE”, “idiot”, “bitch”, and “Niggers”. Also, the
PlausiFyerprovides additional information that both the sentence and the latent concept contain the
context of religion and culture. We hypothesize that the model captures the correlations between the
toxic content or label and the religion/culture concept in the training. Thus, the model has a bias in
the prediction with the religion/culture-related content to the toxic label.

J.3 Module Specific Evaluation

J.3.1 ConceptDiscoverer

We also form latent concepts of each layer using ConceptDiscoverer and annotate them with the
procedure mentioned in H. In the toxicity classification task, we discovered that 88%, 99%, and 96%
of the latent concepts of BERT, RoBERTa, and XLMR were made up of either toxic majority or
non-toxic majority sentences (see Table 15). Similar to the sentiment, we noticed that the 12th layer
has a higher number of class-based clusters of Roberta and XLMR.

Figure 11: RoBERTa: A toxic labeled test instance correctly predicted by the model.

J.3.2 PredictionAttributor

For toxicity, we found over 98% accuracy in mapping the salient representation to the correct latent
concept for the last layer (see Tables 16). This high accuracy indicates that PredictionAttributor
performs effectively and accurately in the toxicity task.
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Figure 12: RoBERTa: A non-toxic labeled test instance correctly predicted by the model.

Figure 13: RoBERTa: A non-toxic labeled instance that is incorrectly predicted as toxic.

J.3.3 ConceptMapper

Table 17 presents the performance of ConceptMapper for toxicity. The accuracy of the first layer is
high (around 100%) and drops as the layer increases for all models. In the last layer, the accuracy of
the top prediction arrives at 67.01%, 81.43%, and 64.19% for BERT, RoBERTa, and XLMR. We also
consider the top two and top five predictions of the mapper. The performances of the top two and the
top five predictions are more than 81% and 93% for these three models. Especially, the mapper based
on the RoBERTa model has the best performance, achieving 81.43%, 93.72%, and 98.21% for the
top one, two, and five predictions respectively.
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Table 15: Number of clusters for each polarity. The total number of clusters is 600.

Toxicity

BERT RoBERTa XLM-R

Layer non-toxic toxic Mix non-toxic toxic Mix non-toxic toxic Mix

Layer 0 15 30 555 22 15 563 19 16 565
Layer 1 13 27 560 17 20 563 16 16 568
Layer 2 11 33 556 18 24 558 16 20 564
Layer 3 16 35 549 17 28 555 16 21 563
Layer 4 18 36 546 20 29 551 15 24 561
Layer 5 12 41 547 28 33 539 14 22 564
Layer 6 15 48 537 37 42 521 23 24 553
Layer 7 18 49 533 324 131 145 114 53 433
Layer 8 23 49 528 332 186 82 267 74 259
Layer 9 43 52 505 373 158 69 334 134 132
Layer 10 116 73 411 425 137 38 328 154 118
Layer 11 298 110 192 449 130 21 423 139 38
Layer 12 374 155 71 502 92 6 449 129 22

Table 16: Saliency-based method: accuracy of PredictionAttributor in mapping a representation
to the correct latent concept in the toxicity classification task. The reason of very low values for
the lower layers is mainly due to the absence of class-based latent concepts in the lower layers i.e.
concepts that comprised more than 90% of the tokens belonging to sentences of one of the classes.

Toxicity

Layer BERT RoBERTa XLM-R

Layer 0 10.54 13.45 6.57
Layer 1 8.98 19.14 8.45
Layer 2 10.92 19.92 10.56
Layer 3 49.90 22.95 13.90
Layer 4 50.07 34.30 15.12
Layer 5 11.30 31.50 23.89
Layer 6 66.21 35.42 34.47
Layer 7 67.11 91.84 59.38
Layer 8 63.74 97.84 77.43
Layer 9 84.41 98.79 94.44
Layer 10 94.92 99.30 97.52
Layer 11 94.73 99.49 97.39
Layer 12 98.93 99.72 99.61

K NLI Task

K.1 Experimental Setup

We use the MNLI dataset for the NLI task. This task classifies each sentence pair into three classes:
entailment, contradiction, and neutral. The MNLI dataset contains 393k, 19.65k, and 19.65k
splits for train, dev, and test. We randomly select 9k and 1.2k for train and dev splits. We use
K = 400 for ConceptDiscoverer and set the same numbers for the other hyperparameters.

K.2 Qualitative Evaluation

Figure 14 shows a correct prediction instance with a “contradiction” label. PlausiFyer detects
that all premise-hypothesis pairs are “semantic incongruity”, which means that the premise sentence
does not have a matched logic with the hypothesis sentence. This indicates that the model learns the
knowledge of the “contradiction" label in the training.
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Table 17: Top 1, 2, and 5 accuracy of ConceptMapper in mapping a representation to the correct
latent concept for the toxicity classification task. The top-5 performance reaches above 90% for all
models demonstrating that the correct latent concept is among the top probable latent concepts of
ConceptMapper.

Toxicity

BERT RoBERTa XLM-R

Layer Top-1 Top-2 Top-5 Top-1 Top-2 Top-5 Top-1 Top-2 Top-5

0 100 100 100 99.96 99.99 100 100 100 100
1 100 100 100 99.92 100 100 100 100 100
2 99.99 100 100 99.94 100 100 99.75 100 100
3 99.07 99.88 100 99.34 99.80 99.92 99.46 99.95 100
4 98.49 99.78 99.99 96.87 98.96 99.78 98.81 99.83 100
5 98.25 99.72 99.94 93.10 97.63 99.26 97.72 99.42 99.89
6 97.22 99.51 99.88 87.72 95.05 98.50 94.83 98.45 99.61
7 95.00 98.57 99.68 73.50 87.21 95.70 86.96 95.37 98.72
8 91.87 97.41 99.18 67.62 83.09 94.38 79.62 91.37 97.62
9 85.66 93.80 98.01 66.75 82.80 94.38 73.73 88.57 96.76
10 76.22 87.90 95.89 64.87 81.37 93.07 66.10 82.36 93.39
11 70.53 84.31 94.31 77.91 91.09 98.10 68.30 84.49 95.28
12 67.01 81.71 93.65 81.43 93.72 98.21 64.19 81.96 94.26

However, due to the complexity of the task, it is difficult for humans to understand or find the
relationship between the latent concept and the prediction of the input sentence. Especially, if we
have the word cloud as the latent concept-based explanation, it may not be helpful for humans to
interpret the model prediction. PlausiFyer simplifies the interpretation in such cases.

K.3 Module Specific Evaluation

K.3.1 ConceptDiscoverer

In the MNLI task, we found more “mixed” latent concepts than class-based latent concepts related
to other tasks. There are 0%, 82%, and 58% discovered label dominant latent concepts by BERT,

Figure 14: MNLI: A contradiction labeled instance that is correctly predicted.
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Table 18: Number of clusters for each polarity: ’0’ for entailment label, ’1’ for neutral label, and ’2’
for contradiction label. The total number of clusters is 400.

MNLI

BERT RoBERTa XLM-R

Layer 0 1 2 Mix 0 1 2 Mix 0 1 2 Mix

Layer 0 0 6 0 394 0 2 0 398 0 7 0 393
Layer 1 0 4 0 396 0 2 0 398 0 4 0 396
Layer 2 0 3 0 397 0 1 0 399 0 3 0 397
Layer 3 0 4 0 396 0 2 0 398 0 5 0 395
Layer 4 0 4 0 396 0 1 0 399 0 4 0 396
Layer 5 0 4 0 396 0 0 0 400 0 4 0 396
Layer 6 0 6 0 394 0 1 0 399 0 4 0 396
Layer 7 0 4 0 396 0 3 0 397 0 2 0 398
Layer 8 0 1 0 399 1 11 6 382 0 1 0 399
Layer 9 0 1 0 399 27 38 24 311 4 6 6 384
Layer 10 0 0 0 400 38 48 34 280 24 41 18 317
Layer 11 0 1 0 399 51 76 50 223 40 67 51 242
Layer 12 0 0 0 400 92 155 81 72 64 86 82 168

Table 19: Saliency-based method: accuracy of PredictionAttributor in mapping a representation
to the correct latent concept in the MNLI task. The reason of very low values for the lower layers
is mainly due to the absence of class-based latent concepts in the lower layers i.e. concepts that
comprised more than 90% of the tokens belonging to sentences of one of the classes.

MNLI
Layer BERT RoBERTa XLM-R

Layer 0 0.027 0.41 0.56
Layer 1 0.083 0.67 0.43
Layer 2 0.04 0 0.23
Layer 3 0 0.05 0.35
Layer 4 0.10 0 0.08
Layer 5 0.10 0 0.12
Layer 6 0.05 0 0.12
Layer 7 0 0 0.13
Layer 8 0 21.61 0
Layer 9 0 83.90 14.29
Layer 10 0 91.78 55.93
Layer 11 0 92.63 89.73
Layer 12 0 95.22 90.58

RoBERTa, and XLMR (see Table 18). We speculate that tasks that involve multiple sentences as input
are more complex and abstract, thereby it is difficult to have clear distinct concepts. This observation
also varies depending on the model. For instance, we did not detect any class-based latent concepts
of the BERT model. However, we achieve good performance in discovering the latent concept when
using the RoBERTa model.

K.3.2 PredictionAttributor

We found that both RoBERTa and XLMR models have over 90% accuracy for the salient repre-
sentation mapping for the last layer (see Tables 19). To some extent, this accuracy indicates that
PredictionAttributor have good performance in the MNLI task based on the RoBERTa and
XLMR model. Unlike other tasks, we have extremely low accuracy with the BERT model. We assume
that the BERT model may not be able to capture the task knowledge due to the task complexity.
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Table 20: Top 1, 2, and 5 accuracy of ConceptMapper in mapping a representation to the correct
latent concept for the MNLI task. The top-5 performance reaches above 90% for all models demon-
strating that the correct latent concept is among the top probable latent concepts of ConceptMapper.

MNLI

BERT RoBERTa XLM-R

Layer Top-1 Top-2 Top-5 Top-1 Top-2 Top-5 Top-1 Top-2 Top-5

0 100 100 100 99.97 100 100 100 100 100
1 100 100 100 99.91 99.99 100 100 100 100
2 100 100 100 99.92 99.99 100 99.75 100 100
3 99.25 100 100 99.70 99.92 99.96 99.46 99.95 100
4 99.22 99.97 99.98 99.15 99.65 99.88 98.81 99.83 100
5 99.04 99.95 99.99 97.07 96.98 99.26 97.72 99.42 99.89
6 97.07 99.45 99.90 91.91 95.05 98.50 94.83 98.45 99.61
7 96.81 99.35 99.85 96.99 87.21 95.70 86.96 95.37 98.72
8 94.15 98.18 99.55 94.75 83.09 94.38 79.62 91.37 97.62
9 90.08 96.52 98.90 91.52 82.80 94.38 73.73 88.57 96.76
10 81.31 90.97 97.20 84.79 81.37 93.07 66.10 82.36 93.39
11 79.05 89.62 96.51 81.79 91.09 98.10 68.30 84.49 95.28
12 72.07 89.27 99.45 77.56 93.72 98.21 64.19 81.96 94.26

K.3.3 ConceptMapper

Similar to other tasks, the performance of ConceptMapper has very high accuracy (around 100%) at
the first layer for all models. Then, the accuracy is decreased to 72.07%, 77.56%, and 64.19% for the
top prediction of BERT, RoBERTa, and XLMR. The accuracy of the top two and two five predictions
are above 81% and 94%. The Roberta model still has the best performance than the others, which has
77.56%, 93.72%, and 98.21% accuracy for the top one, two, and five predictions (Table 20).

L LLama2

L.1 Experimental Setup

We also tried the Eraser Movie sentiment classification and Jigsaw Toxicity classification tasks with
the Llama2 model. We applied the “Llama-2-7b-chat-hf” version of the Llama2 model. We used the
last token of the input prompt as the [CLS] token. We only used these [CLS] tokens as the latent
concept explanation. For ConceptDiscoverer, we set K = 400 for the sentiment and set K = 200
for the toxicity.

L.2 Sentiment Classification Task

L.2.1 ConceptDiscoverer

Compared to the BERT, RoBERTa, and XLMR models (Table 7), the Llama2 model has fewer
class-based clusters at the last layer(See Table 21). There are around 67% class-based clusters
detected at the last layer for the Llama2 model. The BERT, RoBERTa, and XLMR models have 78%,
95%, and 94% class-based clusters at the last layer.

L.2.2 PredictionAttributor

With the Llama2 model, the accuracy in mapping the salient word representation to the correct
latent concept for the last layer is approximately 70% (See Table 22). Although this accuracy
indicates that the Llama2 model performs well, it is notably lower than the accuracy achieved by
the PredictionAttributor model based on BERT, RoBERTa, and XLMR models, which has
significantly high performance (Table 10).
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Table 21: Number of clusters for each polarity. The total number of clusters is 400.

Sentiment

Llama-2-7b-chat-hf

Layer Negative Positive Mix

Layer 0 27 372 1
Layer 4 18 12 370
Layer 8 21 21 358
Layer 12 73 47 279
Layer 16 154 90 155
Layer 20 163 102 134
Layer 24 173 108 118
Layer 28 159 106 134
Layer 32 164 103 132

Table 22: Saliency-based method: accuracy of PredictionAttributor in mapping a representation
to the correct latent concept in the sentiment classification task using Llama2 model.

Sentiment

Layer Llama-2-7b-chat-hf

Layer 0 2.88
Layer 4 0.93
Layer 8 1.94
Layer 12 22.11
Layer 16 64.18
Layer 20 70.63
Layer 24 75.64
Layer 28 71.30
Layer 32 71.02

L.2.3 ConceptMapper

We found that, like the performance of using the other three models, the performance of
ConceptMapper using the Llama2 model exhibits a high Top-1 accuracy (97.55%) in the lower
layers, and decreases to 66.47% for the last layer(Table 23). Additionally, the top two and five
predictions of the mapper achieve accuracies of 82.84% and 94.88%, respectively. The accuracy of
ConceptMapper using the Llama2 model is relatively lower compared to its accuracy using BERT,
RoBERTa, and XLM-RoBERTa(Table 13).

L.3 Toxicity Classification Task

L.3.1 ConceptDiscoverer

We found that 83% of the latent concepts of Llama2 are the class label-based at the last layer(Table 24).
The BERT, RoBERTa, and XLMR models have a relatively higher number of class label-based
clusters(Table 15).

L.3.2 PredictionAttributor

The accuracy of the Llama2 model in our experiments is significantly lower compared to BERT,
RoBERTa, and XLMR (Table 25). The performance of the other three models achieves accuracy
values exceeding 90% (Table 16). The lower accuracy is due to several reasons. Llama2 is a
generative model and it is hard to restrict its output to a single class. While we optimized the prompt
for this purpose, we classified responses as label 0 (non-toxic) only if they contained “non-toxic”,
“NON-TOXIC”, or “Non-toxic”. Similarly, we classified responses as 1 (toxic) if they contained
variations of the term “toxic”. Moreover, many responses of the model did not provide a classification
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Table 23: Top 1, 2, and 5 accuracy of ConceptMapper in mapping a representation to the correct
latent concept for the sentiment classification task using the Llama2 model.

Sentiment

Llama-2-7b-chat-hf

Layer Top-1 Top-2 Top-5

0 97.55 97.55 97.55
4 19.90 31.36 47.08
8 49.46 68.06 86.37
12 60.85 77.43 92.36
16 61.86 80.97 95.03
20 64.02 80.61 94.23
24 63.95 82.26 94.23
28 65.83 81.25 94.52
32 66.47 82.84 94.88

result due to inappropriate or disrespectful content of input instances that was blocked by the safety
filter. Consequently, there are many sentences were skipped, which may account for the lower
accuracy of Llama2 compared to the other models.

L.3.3 ConceptMapper

The top-1 performance of ConceptMapper based on the Llama2 model achieves 74.44% for the
last layer(Table 26). This performance is better than the one based on the BERT and XLM-Roberta
(Table 17). RoBERTa still delivers the best performance.

Table 24: Number of clusters for each polarity. The total number of clusters is 200.

Toxicity

Llama-2-7b-chat-hf

Layer Non-toxic toxic Mix

Layer 0 84 108 1
Layer 4 35 13 150
Layer 8 27 5 168
Layer 12 43 22 135
Layer 16 61 21 117
Layer 20 62 25 113
Layer 24 69 25 106
Layer 28 67 26 107
Layer 32 69 21 109
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Table 25: Saliency-based method: accuracy of PredictionAttributor in mapping a representation
to the correct latent concept in the toxicity classification task using Llama2 model.

Toxicity

Layer Llama-2-7b-chat-hf

Layer 0 2.26
Layer 4 7.20
Layer 8 6.59
Layer 12 32.10
Layer 16 42.91
Layer 20 45.83
Layer 24 46.93
Layer 28 46.43
Layer 32 44.28

Table 26: Top 1, 2, and 5 accuracy of ConceptMapper in mapping a representation to the correct
latent concept for the toxicity classification task using the Llama2 model.

Toxicity

Llama-2-7b-chat-hf

Layer Top-1 Top-2 Top-5

0 96.97 96.97 97.09
4 42.38 62.00 83.86
8 67.83 85.20 97.20
12 70.40 89.24 98.21
16 73.09 87.44 98.77
20 74.22 90.25 98.99
24 71.19 88.68 98.88
28 72.65 90.13 98.76
32 74.44 91.82 99.10

M Limitations

A few limitations of LACOAT are: 1) while hierarchical clustering is better than nearest neighbor in
discovering latent concepts as established by Dalvi et al. [2022], it has computational limitations and
it can not be easily extended to a corpus of say 1M tokens. However, the assumptions that are taken in
the experimental setup e.g. considering the maximum 20 occurrences of a word (supported by Dalvi
et al. [2022]) work well in practice in terms of limiting the number of tokens and covering all facets
of a majority of the words. Moreover, the majority of the real-world tasks have limited task-specific
data and LACOAT can effectively be applied in such cases. 2) For tasks requiring reasoning over
multiple sentences, we observe that sometimes the LACOAT explanation’s are not clearly indicative of
the reason of a prediction which might be based on some syntactic and semantic similarity between
multiple input sentences. A possible solution to this is to consider hierarchical relationship between
latent concepts in contrast to considering a flat structure among latent concepts. The underlying setup
of ConceptDiscoverer supports this. However, comparing hierarchical structures requires further
investigation beyond the scope of current work which provides a strong evidence towards faithful and
human friendly explanations using training data latent space.
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