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ABSTRACT

We propose a novel framework for reliable reward modeling in model-based
reinforcement learning, built on top of Mamba-based sequence models. While
prior work suffers from cumulative error over long rollouts due to decoding only
immediate rewards from the latent dynamics, our approach trains an ensemble of
multi-horizon reward heads that each predict the cumulative return over different
horizons. To tie these predictions together, we introduce a cross-horizon consistency
regularization to encourage the difference between any two heads to match the
prediction of their gap head. We further add a chunk-level reward model that
summarizes rewards over non-overlapping blocks, and enforce consistency between
chunk and per-step predictions for smoother estimates. During imagination, we
dynamically select the reward heads with the lowest predictive uncertainty to
guide policy rollouts, and combine these multi-scale predictions with the standard
λ-return during value estimation. This design ensures that more accurate, well-
conditioned reward estimates directly shape policy learning. We integrate our
method into Drama, a state-of-the-art Mamba-enabled model-based agent, and
evaluate on the Atari 100k benchmark. Compared to the single-head baseline, our
multi-scale, cross-horizon consistency approach reduces reward prediction error by
47% on average and yields higher or comparable game scores across the suite. Our
results demonstrate that explicitly modeling and regularizing rewards at multiple
temporal scales and carefully enlisting the most confident predictions improve both
the fidelity of imagined rollouts and the policy performance.

1 INTRODUCTION

Model-based reinforcement learning (MBRL) Moerland et al. (2023); Micheli et al. (2023a); Hafner
et al. (2023); Kaiser et al. (2020) is known for its virtues in terms of policy robustness, sample
efficiency, and interpretability compared to model-free RL. This learning paradigm explicitly learns a
predictive world model to estimate the dynamics and rewards of the underlying environment, which
offers a rational and highly interpretable policy derived from the learned decision model. Moreover,
the estimated model enables agents to “imagine” artificial trajectories internally for value estimation
and policy optimization without having to collect new real-world data. This capability dramatically
improves sample efficiency. Yet classical MBRL approaches rely on short-horizon, one-step transition
models or Gaussian process approximations, making them struggle to capture long-term dependencies
and suffer from compounding errors during rollouts.

To tackle this challenge, sequence modeling techniques Chen et al. (2021); Wang et al. (2023); Zhuang
et al. (2024) emerge. They treat planning trajectories as token sequences Fang et al. (2019), enabling
the model to capture temporal dependencies and predict future states, rewards, and other relevant
signals from learned latent representations of the agent’s history. Transformer-based dynamics
models Micheli et al. (2023b); Hafner et al. (2023) can flexibly handle hundreds of past timesteps,
thereby capturing long-range correlations in both state and reward signals. Unfortunately, their
quadratic time and memory complexity in sequence length make them intractable for long rollouts
or high-resolution inputs. In contrast, the Mamba family Gu & Dao (2024); Dao & Gu (2024) of
state-space models (SSMs) achieves linear scaling in sequence length while retaining the ability to
summarize distant context via continuous-time convolutions. By embedding SSMs within modern
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variational or hybrid frameworks Ota (2024); Lv et al. (2024); Huang et al. (2024), one can train
compact, expressive world models Wang et al. (2025) that support sample-efficient planning on
high-dimensional tasks such as Atari 100k.

(a) Random policy (b) Actor–Critic policy

Figure 1: Average cumulative reward prediction errors by
random action selection (left) and policy learned along with
the world model (right) in Alien. In both cases, the proposed
approach effectively constrains the error over extended hori-
zons, showing an evident performance gain over the baseline.

Despite advances in Mamba-based
MBRL, they suffer from unreli-
able reward modeling over extended
horizons. For example, we eval-
uate Drama Wang et al. (2025),
a state-of-the-art (SOTA) Mamba-
based MBRL method in an Atari
game Alien, and illustrate its aver-
age cumulative reward prediction er-
ror over time in Fig. 1. We observe
that the error spikes after the 14th
step, particularly with learned pol-
icy where errors compound more
severely. This challenge stems from
three key limitations. First, conven-
tional reward decoders only predict immediate rewards, causing small errors to accumulate without
any temporal consistency constraints across different prediction horizons. Second, even with multi-
step reward encoders, the lack of cross-horizon consistency leads to divergent estimates that corrupt
downstream policy learning. Third, focusing exclusively on fine-grained per-timestep predictions
overlooks coarse-grained reward patterns that could provide more stable long-term guidance. We
argue that these complementary reward modeling deficiencies ultimately compromise policy quality.

In this paper, we propose Robust Reward Modeling with Multi-Scale Consistency, a novel enhance-
ment to Mamba-based MBRL that tackles reward-prediction drift at its roots. Here are our core
ideas. (1) Multi-horizon reward ensemble. We train an ensemble of reward heads, each predicting
the sum of future rewards over a different horizon h ∈ H = {h1, h2, . . . , hK}. (2) Cross-Horizon
consistency. We introduce a regularizer that enforces r̂(hi+hj)

t ≈ r̂
(hi)
t + r̂

(hj)
t+h1

, where r̂
(h)
t denotes

the predicted cumulative reward over the next h steps at timestep t. (3) Chunk-level reward head
and slow-fast consistency. We augment the ensemble with a low-frequency, chunk-stride head that
predicts entire C-step sums from a single latent state. This head provides robust coarse rewards by
explicitly modeling reward patterns at a broader temporal scale, enabling the agent to capture reward
dynamics that might be missed by fine-grained predictions. Finally, we blend the standard generalized
advantage estimator (GAE) Schulman et al. (2016) λ-return with the introduced enhancements,
ensuring that consistent multi-scale rewards directly guide policy and value learning. As shown
in Fig. 1, our approach demonstrates a noticeably better-bounded cumulative error.

We implement our method atop the Drama Wang et al. (2025) framework and evaluate on the Atari
100k benchmark. Empirically, we observe a 47% reduction in mean absolute reward-prediction error
across horizons, and up to 25% improvement in median normalized score over Drama. These gains
demonstrate that enforcing multi-scale and cross-horizon consistency in reward modeling not only
tames error accumulation but also translates into more robust policy learning under limited data.

2 METHODOLOGY

In this section, we first demonstrate the pipeline used to train the latent world model and behavior pol-
icy jointly. Then, we walk through the proposed techniques: ensemble multi-step reward estimation,
cross-horizon consistency, chunk-level reward estimation, and slow-fast consistency.

2.1 GENERAL PIPELINE

We formulate the problem as a Partially Observable Markov Decision Process (POMDP) Cassandra
(1998); Kaelbling et al. (1998); Sondik (1971). Unlike its fully observable counterpart, i.e., MDP, a
POMDP is technically non-Markovian in the absence of direct access to the underlying physical state.
To keep track of the state estimation, one has to maintain the entire history of partial observation and

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Algorithm 1 Training procedures for the world model

Require: Obsv. trajectory τo, action trajectory τa, reward trajectory τr, termination signals τd
Require: HorizonsH = {h1, . . . , hK}, chunk size C, loss weights {α(h)

r }, αchunk
r , βrc, βsfc

1: Lothers,L(1)
r , τz ← DramaBackbone(τo, τa, τd) ▷ Lothers includes Lrecon, Ldyn, and Lterm

2: for all h ∈ H do
3: τr(h) ← [ ]
4: for t← 0 . . . T do
5: τr(h) [t]←

∑h−1
i=0 γiτr[t+ i] ▷ Calculate ground truth cumulative rewards

6: end for
7: τr̂(h) ← fR̂(h)(τz), L(h)

r ← LSL2H(τr̂(h) , τr(h))
8: end for
9: Lreward

cons ← 0
10: for all (hi, hj) ∈ H ×H where hi < hj and hj − hi ∈ H do
11: Lreward

cons ← Lreward
cons + 1

T−hj

∑T−hj−1
t=0 ∥τ

r̂(hj) [t]− (τr̂(hi) [t] + γhiτ
r̂(hj−hi) [t+ hi])∥2

12: end for
13: τrchunk ← [ ], τr̂(C) ← [ ]
14: for j ← 0 . . . ⌊T/C⌋ − 1 do
15: τrchunk [j]←

∑C−1
i=0 τr[j · C + i] ▷ Sum rewards in non-overlapping chunks

16: end for
17: τr̂chunk ← fR̂chunk(τz[:: C]) ▷ Predict at chunk boundaries
18: Lchunk

r ← LSL2H(τr̂chunk , τrchunk)
19: for j ← 0 . . . ⌊T/C⌋ − 1 do
20: τr̂(C) [j]←

∑C−1
i=0 τr̂(1) [j · C + i] ▷ Sum consecutive single-step predictions

21: end for
22: Lslowfast

cons ← ∥τr̂chunk − τr̂(C)∥2

23: Ltotal ← Lothers +
∑

h∈H α
(h)
r L(h)

r + αchunk
r Lchunk

r + βrc · Lreward
cons + βsfc · Lslowfast

cons
24: θ ← θ − ηθ∇θLtotal

action pairs ht = (o1, a1, o2, a2, . . . , ot). This particularly suits sequence modeling, especially for
Mamba that can capture dependencies in extremely long history with linear complexity.

Our goal is to use a sequence model like Mamba as backbone to explicitly model the underlying
dynamics and reward of the target POMDP. We learn a latent state representation zt that encodes
the observation history ht, and model the transition dynamics p(zt+1|zt, at) as well as the reward
function fR(rt|zt, at). Then, using the artificial data produced by this learned world model, we
optimize a policy π (at | zt) that maximizes expected returns.

We illustrate the proposed framework including world model estimation and behavior policy learning
in Fig. 2 and provide the procedures of world model training in Algorithm 1. Our architecture
builds upon the Drama framework, which uses a Mamba backbone to govern sequential latent state
transitions. The encoder transforms observations into latent representations, while a discrete varia-
tional autoencoder (VAE) framework with categorical distributions enables efficient representation
learning. For the reward modeling aspects, we enhance the standard single-step reward predictor
f
(1)

R̂
with two key components. The first is an ensemble of multi-horizon reward heads {f (h)

R̂
}, each

predicting cumulative returns over different horizons h ∈ H, which we constrain with cross-horizon
consistency regularization. The second is a chunk-level "slow" reward model f chunk

R̂
that operates on

non-overlapping blocks of C timesteps, providing a coarse-grained perspective that complements
the fine-grained rewards through slow-fast consistency. We demonstrate these components in detail
in Sec. 2.2 and Sec. 2.3, respectively.

2.2 LONG-HORIZON REWARD REGULARIZATION

In world model estimation, to effectively address the challenge of accumulated error in reward
modeling over extended planning horizons, we propose a comprehensive framework with two key
components. First, we train an ensemble of specialized reward decoders that estimate cumulative
returns over different horizons, creating a more robust predictive mechanism compared to conventional
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Figure 2: Illustration of the proposed MBRL framework. The framework consists of two main
modules, the latent world model and behavior policy module. During the joint training, the two
modules are connected by imagination, a process in which the agent rolls out using “imagined”
dynamics produced by the learned world model rather than real data. This diagram focuses on
demonstrating the latent world model estimation and the imagination. In the imagination block, ∼
denotes the ensemble decision process for the set of estimated multi-horizon rewards {τr̂(h)} based
on variance. λΣ designates weighted sum of multi-scale rewards. The policy icon abstracts an entire
policy learning network, where we can use any standard on-policy RL to derive a desired policy.

single-step reward models. Second, we introduce a cross-horizon consistency regularization that
enforces agreement between predictions at different temporal scales, ensuring coherence in the
model’s understanding of reward dynamics. This dual approach improves prediction accuracy across
various horizons and provides a principled way to handle uncertainty during imagination, enabling
more reliable policy optimization.

Multi-step reward supervision and uncertainty-aware imagination. We formulate reward pre-
diction as a multi-scale modeling problem by introducing a family of decoders {f (h)

R̂
}h∈H, each

predicting the cumulative return over horizon h. For each horizon h ∈ H, the ground-truth cumulative
return at time t is defined as r(h)t =

∑h−1
i=0 γirt+i, representing the discounted sum of rewards over

the next h steps. Each decoder head produces an estimate r̂
(h)
t from the same latent state output by

our sequential backbone. We train these heads using a symmetric log two-hot encoded loss

Lmulti-r =
∑
h∈H

α(h)
r LSL2H (τr̂(h) , τr(h)) . (1)

During the imagination phase, we use an ensemble of reward predictors, each specialized on different
horizons. Specifically, for each candidate action sequence, we roll out all of our predictors within the
ensemble. Then, according to the variance for the predictions, we select those with lower variance out
of others and score a sequence by a weighted sum of their cumulative return predictions via Eq. (2).

τr̂ensem [t] =

∑
h∈St

w
(h)
t τr̂(h) [t]∑

h∈St
w

(h)
t

, where w
(h)
t =

1(
σ
(h)2
t + ϵ

)β . (2)

Here, σ(h)2
t is the estimated variance of horizon h at timestep t. ϵ > 0 is a small constant. T denotes

the temperature-scaling parameter that controls how sharply we focus on the most confident heads.
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Such a set of jointly trained multi-step reward decoders with uncertainty-aware reward estimation
makes planning more robust to noisy reward predictions. If a particular head produces wildly
anomalous estimates, it will most likely be filtered out by our variance-based selection. Even
for included heads with moderately elevated uncertainty, their influence is automatically down-
weighted in the ensemble average. Technically, this dynamic weighting mechanism provides a
smooth degradation path that creates a more nuanced and resilient reward estimation system. This
ensures that more reliable predictors compensate for less confident ones.

Cross-horizon-consistent reward estimation. Adding multiple reward heads inevitably divides the
network’s capacity across one-step, multi-step, and other objectives, potentially diluting its ability
to capture sharp reward spikes that a specialized single-step decoder would detect. To address this
trade-off, we introduce cross-horizon consistency regularization that explicitly couples predictions
across different time scales. This approach ensures that a reward spike at timestep t is consistently
represented in both the one-step head and all longer-horizon heads. By aligning gradient signals
across temporal scales, we reduce conflicting updates that might otherwise obscure transient high-
magnitude rewards. The result is a model that maintains sensitivity to important reward spikes while
simultaneously providing smooth, accurate long-term predictions.

We formulate the cross-horizon consistency and demonstrate its usage in the reward gradient cali-
bration as follows. For some horizon h and k, where h < k, we define r̂1→h + r̂(h+1)→(k) ≈ r̂1→k

as the consistency between horizon h, h − k, and k. In practice, at any timestep t, for every pair
of horizons (hi, hj) ∈ H satisfying the constraint that hj−i ∈ H (suppose i < j), we enforce the
cross-horizon reward prediction consistency by minimizing the following loss:

Lreward
cons =

∑
{hi,hj ,hj−i}⊆H

1

T − hj

T−hj−1∑
t=0

∥τ
r̂(hj) [t]− (τr̂(hi) [t] + γhiτ

r̂(hj−hi) [t+ hi])∥2. (3)

Horizon set selection. Different environments may have different underlying reward feedback
patterns. A uniformly selected set of horizons for multi-horizon reward decoders cannot work equally
well in all environments. Therefore, we need to choose a dedicated set for each environment, or those
sharing similar reward patterns. Using games in the Atari 100k benchmark as examples. Games
like Boxing and Pong, which exhibit a denser reward feedback in relatively rapid cycles, typically
prefer denser and shorter horizons. In contrast, games like Freeway and PrivateEye, which have more
complex mechanisms and demonstrate slower and sparser reward feedback, are usually in favor of
sparser and longer horizons. A reasonable horizon selection aware of reward patterns is another key
to accurately model the reward function and thereby boost the policy quality. We discuss in detail the
impact of the selection of the horizon set on policy performance in Sec. A.2.

2.3 SLOW-FAST REWARD AND VALUE ESTIMATION

To reduce the high-frequency noise and improve long-horizon coherence in our reward estimates, we
augment the current “fast” world model estimator with a “slow”, chunk-level predictor. It predicts the
cumulative return over non-overlapping blocks of C timesteps. Specifically, given the latent feature
sequence τz = {zt}Tt=1, the chunk-level predictor produces:

r̂chunkt = f chunk
reward (zt+C−1) ≈

C−1∑
k=0

rt+k, (4)

where rt+k is the true reward at timestep t + k. We train the chunk-level predictor with the same
sym-log-two-hot loss LSL2H,

Lchunk
r = LSL2H (τr̂chunk , τrchunk) . (5)

To enforce consistency between scales, we add a slow-fast consistency loss:

Lslowfast
cons =

1

⌊T/C⌋

⌊T/C⌋−1∑
j=0

∥τr̂chunk [j]− τr̂(C) [j]∥2, (6)

which penalizes discrepancies between the chunked prediction and the C-step sum of per-step returns.
During imagination, the slow head provides coarse reward signals that complement fine-grained fast
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estimates, providing a higher-level view for long-horizon planning, similar in sense to the hierarchical,
multi-grained mechanisms.

Despite both capturing multi-step cumulative returns and imposing consistency across the steps, the
chunk-level module has major differences than the multi-horizon reward predictors. A k-horizon
head from the ensemble makes overlapping, per-step forecasts r̂(k)t for each t. It reuses the same
latent feature zt that the single-step head f

(1)

R̂
uses, but trained to predict

∑C−1
i=0 rt+i. In contrast,

the chunk-level head partitions the trajectory into non-overlapping windows of length C. It pools
the entire chunk’s information into a single feature vector, zchunk = g

(
{zt:i∈[t,t+C−1]}

)
, and then

predicts the return of that chunk at t+ C − 1. This encourages the model to learn a coherent, low-
frequency summary representation over the whole block, instead of trying to “stretch” a single-step
latent feature to make multi-step forecasts at every time point. Empirically, this slow-fast interplay
reduces cumulative reward prediction error and mitigates drift in long-horizon rollouts, yielding more
robust latent dynamics and improved downstream policy learning.

3 EXPERIMENTS

3.1 BENCHMARK AND BASELINES

We evaluate our method on the Atari 100k benchmark Kaiser et al. (2020), a widely adopted suite
that measures sample efficiency by limiting each agent to just 100, 000 environment interactions
across 26 Atari games. Performance is reported in terms of human-normalized scores and median
normalized score, emphasizing rapid learning under severe data constraints.

We compare against a range of model-based and sequence-modeling approaches. SimPle Kaiser et al.
(2020) is the first to demonstrate world model planning on Atari under low budgets. SPR Schwarzer
et al. (2021) enhances world models with self-predictive auxiliary losses. IRIS Micheli et al. (2023a)
combines contrastive representation learning with reconstruction to improve sample efficiency.
STORM is a stochastic Transformer-based world model optimized for high-variance environments.
DreamberV3 Hafner et al. (2023) is the latest iteration of the Dreamer family with classifier-free
dynamics modeling. HarmonyDream Ma et al. (2024) harmonizes multi-task behaviors inside a
shared world model. Drama Wang et al. (2025) is our baseline built on the Mamba-enabled Drama
framework. All experiments are conducted under the same interaction step constraint, using identical
preprocessing, action repeats, and evaluation protocols, allowing a fair comparison.

3.2 RESULTS AND DISCUSSION

Reward modeling. We use the average cumulative reward prediction error per horizon (Eq. (7)) as
the metric to evaluate the quality of the reward modeling. It captures how accurately each model
predicts the rewards over time, with lower values indicating better performance.

avg_err (N) =
1

|EN |
∑
e∈EN

(
1

N

N∑
t=1

|r̂e,t − re,t|

)
. (7)

As shown in Fig. 3 top row, our approach consistently achieves significantly smaller errors than
Drama across the selected Atari game environments. First, we observe a 47% reduction in mean
absolute reward prediction error on all horizons compared to the baseline Drama, demonstrating
the effectiveness of our multi-scale consistency approach. Moreover, the error curves show that
our method not only achieves lower error but also converges earlier during training, suggesting
that the multi-horizon ensemble and consistency constraints help the model learn more accurate
reward predictions with fewer environment interactions. The results demonstrate that enforcing
multi-scale and cross-horizon consistency in reward modeling effectively tames error accumulation
over extended horizons. This is particularly evident in the flatter error curves of our method compared
to Drama’s steeper error increases. While the improvement pattern is consistent across environments,
the magnitude varies.

The plots clearly show that as the prediction horizon increases, the error gap between our method and
Drama widens, highlighting how our approach specifically addresses the challenge of long-horizon
reward modeling. The shaded regions represent confidence intervals, which demonstrates not only
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Figure 3: Visualization of experimental results regarding performance comparison between
Drama and our approach. Top row: Average cumulative reward prediction errors against horizons
in four Atari environments. It is evident that our approach results in significantly smaller prediction
errors than those of the baseline Drama in all environments and converges earlier. Bottom row: Online
evaluation in gained scores over training steps. Across all four games, our approach learns faster and
attains higher overall scores than Drama. This alignment between reduced long-horizon reward error
and accelerated policy improvement underscores how our multi-horizon consistency regularizer and
chunk-level reward head stabilize imagined rollouts, yielding faster, more reliable learning.

lower mean error but also reduced variance of our approach than Drama in predictions. This indicates
more stable and reliable reward modeling. These improvements in reward prediction directly translate
to better policy learning, as shown in the bottom row of Fig. 3, where our approach consistently
learns faster and achieves higher scores across multiple environments.

Behavior policy optimization. The effectiveness of our approach extends beyond improved reward
estimation to enhanced policy learning. As illustrated in the bottom row of Fig. 3, our approach
consistently outperforms Drama across all environments in terms of learning speed and final perfor-
mance. Firstly, our method exhibits faster learning progress during the early stages of training. This
acceleration is attributed to accurate and consistent reward predictions provided by our multi-scale
reward modeling framework. They enable more effective policy optimization from the beginning of
training. Secondly, across the four environments, our approach achieves higher final scores by the
end of training. This implies that the benefits of improved reward modeling persist throughout the
learning process. Finally, the games with the largest improvements in reward prediction also tend to
show the most significant gains in policy performance, highlighting the relevance between reward
modeling quality and policy effectiveness.

Tab. 1 provides a thorough evaluation of our approach against multiple SOTA baselines on the Atari
100k benchmark. The result reveals several important findings. The most evident one is that our
approach achieves impressive results across the 26 Atari games in the benchmark, with particularly
strong performances in games like Asterix (1681), BattleZone (13250), CrazyClimber (90212), and
Hero (10196). Compared with Drama, our method shows significant improvements in most games,
with an average improvement of 10.48% in mean and 100% in median normalized score. This
substantial improvement validates the effectiveness of our approach in enhancing MBRL.

Our approach achieves competitive or superior results compared to other leading methods such as
DreamerV3, HarmonyDream, and STORM across many games. In several challenging environments
like Asterix, CrazyClimber, and RoadRunner, our method establishes new state-of-the-art results.
The normalized mean and median scores at the bottom of Table 1 provide a standardized comparison
across methods. Our approach achieves strong performance on both metrics, demonstrating its
general effectiveness across the diverse set of games in the benchmark. The results reveal that our
method particularly excels in games requiring long-horizon planning and temporal consistency, such
as Hero and CrazyClimber, where reward prediction accuracy over extended sequences is crucial.
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Table 1: Comparison for our approach and the baselines on Atari 100k benchmark. We highlight the
highest, second highest, and third highest scores for each game. Each number is an average over 5
independent seeds.

Game Random Human SimPLe SPR IRIS STORM DreamerV3 HarmonyDream DramaXS Ours

Alien 228 7128 617 842 420 984 959 890 820 912
Amidar 6 1720 74 180 143 205 139 141 131 150
Assault 222 742 527 566 1524 801 706 1003 539 805
Asterix 210 8503 1128 962 854 1028 932 1140 1632 1681
BankHeist 14 753 34 345 53 641 649 1069 137 416
BattleZone 2360 37188 4031 14834 13074 13540 12250 16456 10860 13250
Boxing 0 12 8 36 70 80 78 80 78 80
Breakout 2 30 16 20 84 16 31 53 7 17
ChopperCmd 811 7388 979 946 1565 1888 420 1510 1642 1651
CrazyClimber 10780 35829 62584 36700 59324 66776 97190 82739 83931 90212
DemonAttack 152 1971 208 518 2034 165 303 203 201 361
Freeway 0 30 17 19 31 34 0 0 15 23
Frostbite 65 4335 237 1171 259 1316 909 679 785 838
Gopher 258 2412 597 661 2236 8240 3730 13043 2757 3342
Hero 1027 30826 2657 5859 7037 11044 11161 13378 7946 10196
Jamesbond 29 303 100 366 463 509 445 317 372 485
Kangaroo 52 3035 51 3617 838 4208 4098 5118 1384 2158
Krull 1598 2666 2205 3682 6616 8413 7782 7754 9693 9374
KungFuMaster 258 22736 14862 14783 21760 26183 21420 22274 23920 23906
MsPacman 307 6952 1480 1318 999 2673 1372 1681 2270 2374
Pong -21 15 13 -5 15 11 18 19 15 18
PrivateEye 25 69571 35 86 100 7781 882 2932 90 226
Qbert 164 13455 1289 866 746 4522 3405 3933 796 927
RoadRunner 12 7845 5641 12213 9615 17564 15565 14646 14020 14315
Seaquest 68 42055 683 558 661 525 618 665 497 572
UpNDown 533 11693 3350 10859 3546 7985 7667 10874 7387 7892

Normalized Mean (%) 0 100 33 62 105 127 125 136 105 116
Normalized Median (%) 0 100 13 40 29 58 49 67 27 54

3.3 ABLATION STUDY
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(a) Cumulative returns.
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(b) Online policy evaluation.

Figure 4: Ablation study results demonstrating the incre-
mental contribution of each component in reducing reward
prediction error and improving policy performance.

To analyze the individual contribu-
tions of each component in our ap-
proach, we conduct a comprehensive
ablation study. Fig. 4 presents the
results for the game Alien, with the
subfigure on the left showing the im-
pact on cumulative reward prediction
error and that on the right the effects
on policy performance. We system-
atically evaluated the three core com-
ponents of our framework.

Multi-step reward decoder ensemble. Adding the multi-step reward heads to Drama provides
significant improvement. As shown in Fig. 4a, this modification alone reduces the average cumulative
reward prediction error by approximately 25% across horizons. The error reduction is particularly
noticeable as the prediction horizon increases beyond 20 steps, demonstrating the ensemble’s effec-
tiveness at mitigating error accumulation over longer time scales. On the policy learning side (Fig. 4b),
the multi-step reward ensemble leads to improved learning dynamics with faster initial progress and
higher intermediate scores. This confirms that having dedicated predictors for different horizons
helps the agent better anticipate the consequences of its actions over varying time scales, leading to
more informed decision-making. However, the multi-step heads alone, while beneficial, still exhibit
increasing divergence at longer horizons, indicating that simply adding multiple prediction targets
without enforcing consistency between them has limitations.

Cross-horizon consistency. Building upon the multi-step reward heads, adding the cross-horizon
consistency regularizer further reduces prediction errors across all horizons. The consistency enforces
agreement between different horizon-length predictions, resulting in a more coherent internal model
of reward dynamics. Fig. 4a shows that the cross-horizon consistency reduces the prediction error by
an additional 15% compared to using just the multi-step heads, with the improvement becoming more
pronounced at longer horizons (beyond 30 steps). This indicates that the consistency regularization
is particularly effective at constraining drift in long-horizon predictions. The policy performance

8
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in Fig. 4b reflects this improvement, with more stable learning progress and higher scores in the
middle stages of training. The cross-horizon consistency helps the agent develop a more coherent
understanding of long-term consequences, enabling it to make more consistent policy decisions.

Chunk-level coarse-grained reward modeling and slow-fast consistency. This pair of components
contribute less to the reduction of cumulative reward error and policy performance gain. As shown
in Fig. 4a, adding this pair only to Drama leads to the second highest error, while the earned score is
the second lowest. The chunk-level modeling and slow-fast consistency still provide a complementary
signal that stabilizes long-horizon prediction, but the effectiveness is not as evident.

4 RELATED WORK

Selective state space models. Mamba Dao & Gu (2024); Gu et al. (2020); Gu & Dao (2024); Hasani
et al. (2021) is a structured state-space model (SSM) Goel et al. (2022); Gu et al. (2022); Gupta
et al. (2022); Smith et al. (2023); Gu & Dao (2024) optimized for efficient long-sequence processing
through a selective mechanism. Traditional SSMs use static, time-invariant parameters, which restrict
their adaptability to changing sequence contexts. Mamba makes these parameters input-dependent
through a selective mechanism, allowing adaptive filtering of relevant historical information based on
the input sequence. This adaptivity helps Mamba prioritize key information dynamically, adjusting
the timestep ∆(xt) as a gating function to capture long-range dependencies better.

Sequence modeling for RL. Transformers are popular in RL due to their capacity to model long-
term dependencies and capture complex patterns in sequential data via self-attention, which enables
effective global context modeling. This capacity is essential for planning in large-scale environments.
However, the quadratic computational and memory complexity of Transformers with respect to
sequence length remains a drawback, especially for real-time applications that require processing
extensive histories. In the realm of sequential decision-making, Decision Transformers reframe RL
as a sequence modeling problem by treating states, actions, and rewards as a sequence. They use a
Transformer to predict actions that maximize expected returns Chen et al. (2021). Variants of Decision
Transformers enhance long-horizon planning by capturing global context from observations Fang
et al. (2019). To improve efficiency, some works try to reduce the overhead through actor-learner
distillation, which minimizes computational load during inference Parisotto et al. (2021). Transformer-
based world models serve as visual planners, aiding agents in complex visual environments Tang et al.
(2022). These models employ spatial attention to enable agents to focus on relevant spatial features
for visual navigation tasks Wang et al. (2023). Some approaches also extend Decision Transformers
to online settings, allowing models to adapt incrementally to new data Zheng et al. (2022).

Mamba-based architectures offer a compelling solution to the limitations of RNNs and Transformers,
leveraging selective SSMs for efficient RL and planning. Research highlights Decision Mamba
(DeMa) for its ability to handle long sequences with scalability advantages over Transformers,
making it highly effective for sequence modeling Ota (2024). Studies on Mamba’s compatibility with
trajectory optimization confirm DeMa’s strengths in offline planning Dai et al. (2024), while hybrid
selective sequence modeling variants improve policy learning in complex environments Huang et al.
(2024). Further extending its use, multi-grained state-space models with self-evolution regularization
address the exploration-exploitation balance in offline RL Cao et al. (2024). In visual navigation,
deep state-space models Krantz et al. (2023) enhance performance in memory-intensive tasks by
effectively integrating past observations.

5 CONCLUSION AND FUTURE WORK

This paper presented a novel framework that enhances reward prediction fidelity in MBRL. By
combining a multi-horizon reward ensemble, cross-horizon consistency regularization, and chunk-
level reward modeling with slow-fast consistency, our approach addresses the critical challenge of
reward prediction drift over extended horizons. Empirical results exhibit reduced reward prediction
error and improved policy performance compared to the baseline Drama. It shows that explicitly
modeling rewards at multiple temporal scales and enforcing consistency between them aid robust
MBRL for more efficient policy learning, especially in environments requiring long-horizon reasoning.
Future work could explore automatic, adaptive horizon selection for ensemble and more elegant
consistency design instead of relying on manual, environment-specific configurations.

9
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REPRODUCIBILITY STATEMENT

An algorithm demonstrating the training workflow of the world model is shown in Algorithm 1. An
architecture diagram that strictly reflects the true construction of the framework and the training and
imagination procedures is exhibited in Fig. 2. The implementation of the core components of our
proposed method can be found in Sec. A.7. More detailed implementation of training and inference
can be found in Sec. A.8. We commit to open-source the full framework if the paper is accepted.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS

Large language models (LLMs), including ChatGPT and Claude, are used to polish the writing,
correct grammar errors, and refine the organization of some sections of this paper. Specifically, we
use GPT-4o for writing refinement and grammar correction, and Claude Opus 4 for limited content
organization for Sec. 2.

A.2 HORIZON SET CHOICE AND PERFORMANCE

Different underlying reward feedback properties determine distinct horizon set selection strategies. A
uniform set, e.g., {2, 4, 8, . . . , 64}, does not always align with a task’s reward pattern. We study the
impact of task-aware horizon set selection in multiple representative Atari game environments. The
results are displayed in Tab. 2 and Tab. 3. In Gopher, rewards arrive in rapid cycles of 3–5 frames,
so denser short horizons help. Using a Fibonacci-like set {2, 3, 5, 8, 13} or arithmetic sequence
{2, 4, 6, 8} lead to a higher score 3342 than 2520 corresponding to the uniform set. DemonAttack
and Krull show a similar dependency on H. This supports the view that awareness of the reward
pattern is useful and that inaccurate reward estimates can degrade the policy quality.

Table 2: Effect of task-aware horizon sets. Scores are averages over independent seeds.

Task Baseline UniformH Task-AwareH
DemonAttack 201 198 361
Gopher 2757 2520 3342
Krull 9693 8712 9323

Table 3: Sensitivity to the choice ofH. Numbers are averaged over 5 seeds.

Horizon SetH Alien Asterix DemonAttack Gopher Krull

{2, 4, 8, . . . , 64} (uniform) 912 1681 198 2520 8712
{2, 3, 5, 8, 13} 885 1398 183 3342 8488
{4, 8, 12, 20, 32} 868 1472 361 2586 8695
{5, 10, 20, 40, 80} 830 1665 147 2374 9374

A.3 EVALUATION PROTOCOL AND AGGREGATE METRICS

To obtain the numbers shown in Tab. 1, we follow the Drama’s setup that uses 5 independent seeds
per Atari game with means over 5 episodes. For a stronger aggregate view, we compute IQM, mean,
median, and optimality gap on 7 representative games using 5 seeds per game and task-aware H
where applicable. These preliminary results indicate consistent directional improvement, but with
overlapping confidence intervals due to the small sample.
Table 4: Aggregate metrics on 7 games with 5 seeds each. Higher is better except optimality gap.

Metric Drama Ours Difference Statistical Signal

IQM ↑ 0.42 [0.31, 0.58] 0.48 [0.35, 0.67] +14.3% overlapping
Mean ↑ 1.33 [0.89, 1.84] 1.47 [1.01, 2.02] +10.1% overlapping
Median ↑ 0.30 [0.17, 0.84] 0.31 [0.18, 0.98] +5.4% overlapping
Optimality Gap ↓ 0.67 [0.42, 0.83] 0.53 [0.33, 0.73] −20.9% overlapping

These patterns motivate a full rerun on all 26 games with 5 seeds, performance-profile plots, and
stratified bootstrap for game-level correlation.
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Table 5: Efficiency comparison. Lower is better for times and memory; relative overhead reported vs
Drama.

Metric Drama STORM Ours Overhead vs Drama

World Model Update Time (ms) 16 40 20 +25%
Imagination Time (ms) 2.4 9.0 3.6 +50%
Total Inference per Step baseline 2.5×slower 1.3×slower +30%
Peak GPU Memory (GB) 5.0 7.8 5.2 +4%
Allocated GPU (GB) 1.87 3.2 1.89 +1%
Reserved GPU (GB) 5.0 7.8 5.1 +2%

Table 6: Applying the method on a Transformer backbone (STORM).

Method Alien KungFuMaster MsPacman

STORM (baseline) 984 26183 2673
Ours on STORM 1032 26710 2727

A.4 EFFICIENCY EVALUATION

Our comprehensive benchmarking for computational requirements as shown in Tab. 5 reveals that
while our approach does introduce overhead compared to the original Drama baseline, it remains
significantly more efficient than Transformer-based alternatives. The numbers are based on the
experiment in playing the game Alien for 5 runs with independent random seeds exactly the same as
we used in the main paper. As the table shows, our method increases world model update time by only
25% (from 16ms to 20ms) and imagination time by 50% (from 2.4ms to 3.6ms) compared to Drama,
while Transformer-based methods show 150% and 275% increases respectively. More evidently,
the memory consumption remains nearly identical to Drama, with only a 4% increase in peak GPU
memory (5.2GB vs 5.0GB), and negligible 1% and 2% increases for another 2 memory-related
metrics. This demonstrates the memory efficiency of our multi-horizon ensemble despite using 7
reward heads. Furthermore, our curriculum learning strategy, which gradually increases the set of
active horizons based on training progress, helps alleviate this cost during early training phases.
Most importantly, this modest computational cost yields a 47% reduction in reward prediction error
and 11% improvement in game scores, representing a favorable trade-off between computational
efficiency and performance gains.

The facts about computational and memory costs also address potential concerns about build-
ing our method on the Mamba-based Drama rather than Transformer-based approaches such as
STORM, which achieve higher policy performance. Our primary goal is to investigate the effi-
ciency–performance trade-offs of using SSM backbones. While some Transformer methods earn
higher scores, they do so at substantially higher computational and memory costs. Importantly, our
method is not limited to SSMs. It can also be applied to Transformer-based models. As shown
in Tab. 6, integrating our approach into STORM yields performance gains in several games.

A.5 HYPERPARAMETER SENSITIVITY

We sweep loss weights in [0.001, 1.0] on Alien with 5 seeds, varying one component at a time
while fixing others to the baseline configuration (0.005 for multi-horizon, 0.001 for others). As
shown in Tab. 7, performance is most sensitive to consistency terms. When their weights are large,
optimization targets consistency rather than accuracy, which hurts scores. Multi-horizon and chunk
losses are less sensitive but should remain down-weighted so as not to dominate the single-step
reward objective.

A.6 ROBUSTNESS TO VARIANCE MIS-CALIBRATION

We perturb predictive variances by factors of 0.1 (overconfidence) and 10 (underconfidence). Scores
degrade by 6% and 3% respectively. Two factors explain robustness: diversity across 7 horizons
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Table 7: Sensitivity of game score to loss weights on Alien. Larger is better.

Weight Multi-Horizon Cross-Horizon Consistency Chunk-Level Slow-Fast Consistency

Reported 912 912 912 912

0.000 624 821 873 885
0.001 890 912 912 912
0.005 912 795 860 776
0.010 840 579 694 588
0.050 781 323 626 509
0.100 663 230 563 313
0.500 512 135 455 150
1.000 345 101 241 90

reduces correlated failures, and the head-weighting function caps any single head’s influence with a
bounded weight controlled by ε and β.

A.7 NETWORK ARCHITECTURE

The architecture represents a Mamba-based model-based reinforcement learning framework with
multi-horizon reward prediction and cross-horizon consistency. It consists of two main components:
(1) a world model that learns to predict environment dynamics and rewards across multiple time
horizons, and (2) an agent module that uses these predictions to learn optimal policies. We
demonstrate the composition of our framework in details as follows.

A.7.1 WORLD MODEL

The world model encodes observations, predicts dynamics, and generates multi-horizon reward
predictions through several specialized components.

Perception components.

• Encoder. A convolutional neural network (CNN) that transforms raw image observations (3 ×
64× 64) into latent feature representations.

• Distribution head. An output layer (head) that transforms features into categorical latent state
distributions through a learned prior and posterior with uniform noise mixing.

Dynamics model. The sequence model using Mamba-2 as backbone, which processes sequences
of latent states and actions to predict the next latent states. Specifically, it is a 2-layer Mamba with
hidden dimension 512 and state dimension 16.

Prediction heads.

• Image decoder. Transposed CNN that reconstructs observations from latent states. It is trained by
minimizing the reconstruction loss, which is the MSE between predicted and actual observations.

• Single-step reward predictor. MLP that outputs a SymLog Two-Hot encoded distribution for
immediate rewards. It is trained by minimizing the SymLog Tow-hot loss between predicted and
ground-truth immediate reward sequences.

• Termination predictor. MLP that outputs termination probabilities. It is trained by BCE loss
between predicted and ground-truth termination sequences.

• Multi-horizon cumulative reward predictors. An ensemble of unique predictors for cumulative
rewards over a set of candidate horizons. Each of these predictors is trained by minimizing SymLog
Two-Hot loss between predicted cumulative reward and the real sum of multi-step reward for the
corresponding horizon. We have tested multiple horizon setH. See Sec. A.10 for details.

• Chunk-level reward predictor. MLP that outputs a SymLog Two-Hot encoded distribution for
chunked rewards. It is trained by minimizing the SymLog Two-hot loss between the predicted
reward sequence and real immediate reward sequence pooled every C steps.
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Cross-horizon consistency mechanism. We enforce that for any triplet (hi, hj , hj − hi) where all
are valid horizons belong toH, Eq. (3) holds. We implement this regularization through consistency
pairs (hi, hj) via appropriate temporal alignment as follows.

x_horizon_consistency_loss = 0.0

for hi, hj in active_consistency_pairs:
head_i = self.multi_reward_heads[f"reward_head_hi"](dist_feat)
head_j = self.multi_reward_heads[f"reward_head_hj"](dist_feat)
head_diff= self.multi_reward_heads[f"reward_head_hj -

hi"](dist_feat)←↩

pred_i = decode_logits(head_i) # with shape (B, L)
pred_j = decode_logits(head_j) # with shape (B, L)
pred_diff = decode_logits(head_diff) # with shape (B, L)

# only compare over t=0..L-hj
Lj = pred_j.shape[1] - hj
Pi = pred_i[:, :Lj]
Pj = pred_j[:, :Lj]
Pd = pred_diff[:, hi:hi+Lj] # shift by hi
c_loss = F.mse_loss(Pj, Pi + Pd)
x_horizon_consistency_loss += c_loss * (self.lam ** hj)

Slow-fast consistency mechanism. We enforce that for any chunked reward prediction r̂chunkt and
the C-step sum of ground-truth per-step returns

∑C−1
k=0 rt+k, Eq. (6) holds. We implement this

regularization via temporal alignment below.

slow_loss = torch.tensor(0., device=dist_feat.device)

for i, end_idx in enumerate(end_idxs.tolist()):
# slow_pred: the slow-head’s decoded chunk-sum at chunk i
slow_pred = self.symlog_twohot_loss_func.decode(logits_slow[:,

i])←↩

# pick out the fast-head’s C-step window starting at end_idx
C = self.slow_chunk_length
start = end_idx - (C - 1)
fast_pred = self.symlog_twohot_loss_func.decode(logits_fast[:,

start])←↩

# penalize the squared-error between the two:
c = F.mse_loss(slow_pred, fast_pred)
slow_fast_consistency_loss += c

A.8 DETAILS IN TRAINING THE NETWORK

Curriculum learning for horizon complexity. We implement a progressive curriculum for introduc-
ing multi-horizon reward prediction heads during training. Rather than simultaneously training all
horizon predictors, we gradually increase the set of active horizons based on training progress. The
implementation details are as follows.

self.active_horizons = [min(self.horizons)] # Start with shortest
one←↩

self.horizon_curriculum_steps = [
(10000, self.horizons[:2]), # After 10k steps, use first 2 horizons
(30000, self.horizons[:3]), # After 30k steps, use first 3 horizons
(50000, self.horizons), # After 50k steps, use all horizons

]

This approach allows the model to first master shorter-horizon predictions, which are inherently more
accurate, before tackling the complexity of longer-horizon predictions. By incrementally increasing
prediction difficulty, the model develops a more stable foundation for learning.

Adaptive loss weighting. We employ dynamic weighting for multi-horizon and consistency losses
through a gradual ramp-up schedule based on training progress. The implementation details are as
follows.
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def get_adaptive_loss_weights(self, global_step):
warmup_steps = 5000
max_steps = 50000 # Full ramp-up by 50k steps

# No multi-horizon during initial warmup
if global_step < warmup_steps:

return 0.0, 0.0

# Calculate progress factor (0 to 1)
progress = min(1.0, (global_step - warmup_steps) / (max_steps -

warmup_steps))←↩

# Sigmoid ramp-up for smoother transition
ramp_factor = 1.0 / (1.0 + np.exp(-10 * (progress - 0.5)))

# Scale weights
multi_horizon_weight = self.multi_horizon_reward_weight *

ramp_factor←↩

# Extra gradual ramp for consistency losses
consist_ramp = progress * progress # Quadratic ramp
consistency_weight =

self.x_horizon_consistency_weight * ramp_factor *
consist_ramp

←↩

←↩

return multi_horizon_weight, consistency_weight

Starting with zero weight and gradually increasing prevents these additional components from
destabilizing early training. The sigmoid-based ramp provides a smooth transition, while the quadratic
ramp for consistency ensures this more stringent constraint is applied even more gradually.

Multi-horizon reward ensemble mechanism. We implement an advanced uncertainty-aware
ensemble mechanism that combines predictions from multiple horizon heads based on three key
factors: prediction confidence, horizon length, and temporal relevance. This approach creates a more
robust reward prediction signal for policy learning by dynamically weighting predictions based on
their reliability. The implementation details are as follows.

def get_n_step_predictions(self, dist_feat_buffer, batch_length):
# Get predictions from all active horizon heads
per_head_logits =

h: self.multi_reward_heads[f"reward_head_h"](
dist_feat_buffer[:, :batch_length]
)
for h in self.active_horizons

per_head_values =
h: self.symlog_twohot_loss_func.decode(logits)
for h, logits in per_head_logits.items()

# Compute prediction uncertainty using entropy
head_uncertainties =

h: -torch.sum(
F.softmax(logits, dim=-1) *
torch.log(F.softmax(logits, dim=-1) + 1e-8), dim=-1)
for h, logits in per_head_logits.items()

# Apply multiple weighting factors and combine predictions
# Factor 1: Confidence factor
uncertainty_factor = torch.exp(-uncertainty_tensor)
# Factor 2: Horizon length factor
horizon_lengths = torch.tensor([

1.0/h for h in self.active_horizons
])
# Factor 3: Temporal relevance factor
temporal_factor = torch.tensor([
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self.gamma ** (h / 10.0)
for h in self.active_horizons

])

This ensemble mechanism incorporates three key factors in determining prediction weights. Firstly,
regarding prediction uncertainty, we use the entropy of the predicted distribution as a direct measure
of uncertainty, giving more weight to confident predictions. Secondly, for the horizon length,
shorter horizons naturally provide more accurate predictions of near-term rewards, so they receive
higher base weights. Finally, we apply an exponential discount factor based on the horizon length,
acknowledging that predictions further into the future should have a diminishing influence. Through
this uncertainty-aware ensemble mechanism, our framework maintains a delicate balance between
prediction diversity and reliability, creating a more robust reward signal for effective policy learning
in complex environments.

λ-return and N-step reward blending. We combine traditional λ-returns with multi-horizon reward
predictions using a weighted blend to create enhanced return estimates. The implementation details
are as follows.

# Calculate lambda-return using standard method
lambda_return = calc_lambda_return(

reward, value, termination, self.gamma, self.lambd
)

# Get multi-horizon n-step reward prediction from ensemble
n_step_reward = self.n_step_reward_hat_buffer

# Blend the two return estimates
blend = self.n_step_blend_alpha # Typically set to 0.5
mixed_return = blend * n_step_reward + (1.0 - blend) * lambda_return

# Use mixed return for both value and policy optimization
value_loss = self.symlog_twohot_loss_func(raw_value[:, :-1],

mixed_return.detach())←↩

norm_advantage = (mixed_return - value[:, :-1]) / norm_ratio
policy_loss = -(log_prob * norm_advantage.detach()).mean()

λ-returns have strong theoretical guarantees but can be myopic in complex environments. Multi-
horizon predictions offer better long-term reward estimation but may be less accurate for immediate
rewards. Blending combines the strengths of both approaches, creating a return estimate that balances
accuracy and foresight.

A.9 ADDITIONAL EVALUATION RESULTS

See Fig. 5.

A.10 IMPORTANT HYPERPARAMETERS

See Tab. 8.
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Figure 5: Visualized results of performance comparison between Drama and our approach in addi-
tional Atari environments. Average cumulative reward prediction errors against horizons.
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Table 8: Important hyperparameters used for the framework.

Component Parameter Value

Basic Settings Image Size 64× 64× 3
Precision BFloat16 (Mixed Precision)

World Model

Model Type Mamba2
Hidden State Dimension 512
Categorical Latent Dim 32
Mamba Layers 2
Mamba State Dimension 16
Dropout 0.1

Multi-Horizon

Reward Horizons task-aware
Reward Weight 0.005
Consistency Weight 0.001
Curriculum Steps {10000, 30000, 50000}

Chunk-Level
Chunk Length 8 or 10
Chunked Reward Weight 0.001
Slow-Fast Consistency Weight 0.001

Behavior Policy

Paradigm Actor-Critic
Gamma 0.985
Lambda 0.95
Entropy Coefficient 3× 10−4

Learning Rate 4× 10−5

Actor Hidden Units 256
Critic Hidden Units 512

Training

Batch Size 16
Batch Length 128
Imagine Batch Size 1024
Imagine Context Length 8
Imagine Batch Length 32
Reality Context Length 32

Optimization
Optimizer LaProp
Learning Rate 4× 10−5

Weight Decay 1× 10−4
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