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Abstract

As the era of large language models (LLMs) on behalf of users unfolds, Preference Optimiza-
tion (PO) methods have become a central approach to aligning LLMs with human preferences
and improving performance. We propose Maximum a Posteriori Preference Optimization
(MaPPO), a framework for learning from preferences that explicitly incorporates prior reward
knowledge into the optimization objective. While existing methods such as Direct Preference
Optimization (DPO) and its variants treat preference learning as a Maximum Likelihood
Estimation (MLE) problem, MaPPO extends this paradigm by integrating prior reward
estimates into a principled Maximum a Posteriori (MaP) objective. This not only generalizes
DPO and its variants, but also enhances alignment by mitigating the oversimplified binary
classification of responses. More importantly, MaPPO introduces no additional hyperparam-
eter, and supports preference optimization in both offline and online settings. In addition,
MaPPO can be used as a plugin with consistent improvement on DPO variants, including
widely used SimPO, IPO, and CPO. Extensive empirical evaluations of different model
sizes and model series on three standard benchmarks, including MT-Bench, AlpacaEval 2.0,
and Arena-Hard, demonstrate consistent improvements in alignment performance without
sacrificing computational efficiency.

1 Introduction

Reinforcement Learning from Human Feedback (RLHF) has emerged as a general paradigm for aligning large
language models (LLMs) with human preferences. Pioneering work framed the problem as reinforcement
learning (RL) on a reward model trained from group-wise comparisons, yielding notable improvements in
summarization and dialogue (Christiano et al., 2017; Stiennon et al., 2020). Subsequent systems such as
InstructGPT (Ouyang et al., 2022) demonstrated that RLHF could scale to billion-parameter models and
substantially boost helpfulness and safety (Lan et al., 2025). Despite its practical successes, RLHF still suffers
from noisy feedback, reward-model misalignment, optimization instability, and computation inefficiency with
high memory cost, which together hinder its scalability and reliability (Casper et al., 2023; Dai et al., 2023;
Pan et al., 2022).

Direct Preference Optimization (DPO) (Rafailov et al., 2023) reframes the preference learning with a
Kullback–Leibler (KL) regularized objective as a log-odds objective, effectively turning the task into Maximum
Likelihood Estimation (MLE) over pairwise comparisons: The model is trained to assign a higher likelihood
to the preferred response than to the rejected, while staying close to a reference policy. The MLE perspective
accounts for the efficiency of DPO, as it eliminates the need for rollouts or value functions. However, this
formulation also introduces a fundamental limitation: It considers only the relative likelihoods within each
pair, overlooking the absolute reward magnitude and any external prior knowledge (Amini et al., 2024;
D’Oosterlinck et al., 2025). As a result, the training signal in DPO is inherently local, bounded by pairwise
comparisons, and lacks global calibration across examples.

Challenge. A fundamental limitation of MLE-based preference optimization lies in its purely relative
nature: It focuses on maximizing the gap between chosen and rejected responses, yet lacks a mechanism to
anchor their absolute probabilities. As training progresses, the MLE objective tends to suppress the likelihood
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of the rejected response rather than elevate that of the preferred one. Empirical investigations (Pal et al.,
2024; Rafailov et al., 2024; Tajwar et al., 2024; Zhang et al., 2024) consistently show a simultaneous reduction
in the absolute probabilities assigned to both preferred and rejected answers, resulting in abnormal output
distributions. This undesirable dynamic, empirically known as the squeezing effect (Ren & Sutherland, 2024),
undermines policy calibration and injects instability into generation. The issue is especially severe in near-tie
cases (in Figure 2), especially when models approach human-level performance (Liu et al., 2024a; Guo et al.,
2024), where both responses are reasonable yet MLE still enforces an artificial separation, draining probability
mass from the high-quality region of the output space. Motivated by this, the key question that this paper
aims to address is:

How can we improve language model alignment through a more principled training signal, instead of an
oversimplified MLE pipeline?

In this paper, we answer the above question by introducing Maximum-a-Posteriori Preference Optimization
(MaPPO), a simple yet principled extension of DPO that injects data-driven prior knowledge into preference
training. MaPPO augments the standard maximum-likelihood objective with a lightweight MaP regularizer,
an additional log-prior scaled by a calibrated reward gap, which proportionally adjusts each update to
the confidence difference between the preferred and rejected answers. Instead of the oversimplified binary
classification in MLE, this mechanism curbs the excessive penalization of near-tie pairs while preserving
DPO’s one-step closed form and computational efficiency.

Extensive experiments demonstrate that MaPPO delivers consistently stronger performance across three
public alignment benchmarks: AlpacaEval 2.0, Arena-Hard, and MT-Bench. We evaluate MaPPO on multiple
model families, including Llama-3, Qwen2.5, and Mistral, under multiple model sizes. Compared to DPO,
MaPPO achieves absolute win-rate gains of 94.3% on AlpacaEval and 37.1% on Arena-Hard when fine-tuned
on the Mistral-7B-Instruct model. Moreover, the proposed MaPPO is suitable for both offline and online
settings. These results validate that a lightweight prior is sufficient to produce stronger and better-calibrated
policies. Furthermore, MaPPO is designed as a drop-in regularization module and seamlessly integrates with
a broad spectrum of recent DPO variants, including Iterative-DPO (Dong et al., 2024), SimPO (Meng et al.,
2024), IPO (Gheshlaghi Azar et al., 2024), and CPO (Xu et al., 2024). In all cases, we observe consistent
gains up to 31.3% on Arena-Hard in alignment scores without requiring additional computation or changes to
the optimization pipeline. This suggests that MaPPO serves as a robust and general enhancement strategy
for advanced preference training pipelines.

Contributions. In summary, the main contributions of this work are as follows:

1. We propose MaPPO, a principled extension of Direct Preference Optimization, which incorporates data-
driven prior reward estimates into a Maximum-a-Posteriori (MaP) objective.

2. We demonstrate that MaPPO naturally supports both offline (e.g., DPO) and online (e.g., I-DPO)
preference optimization.

3. We show that MaPPO is compatible with and enhances existing DPO variants, including SimPO, IPO,
and CPO. For all variants, no additional hyperparameter is needed.

4. Empirical results across multiple model series and model sizes confirm consistent improvements in alignment
performance on standard benchmarks, including MT-Bench, AlpacaEval 2.0, and Arena-Hard.

Notations. We use σ(·) to denote the logistic (sigmoid) function σ(x) = 1
1+e−x . For preference pairs, yw

denotes the chosen (winning) response, while yl denotes the rejected (losing) response.

2 Related Work

Direct Preference Optimization and its Variants. Driven by the complexity of online RLHF algo-
rithms (Santacroce et al., 2023; Zheng et al., 2023b), recent research has pivoted toward efficient offline
preference optimization. Direct Preference Optimization (DPO) (Rafailov et al., 2023) frames preference
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alignment as maximum-likelihood estimation (MLE) under the Bradley-Terry (BT) model (Bradley & Terry,
1952), while IPO (Gheshlaghi Azar et al., 2024) generalizes this framework without the pointwise-reward
assumption. Further, CPO (Xu et al., 2024) jointly optimizes the sequence likelihood and a contrastive reward
to perform supervised fine-tuning (SFT) and alignment in one pass. KTO (Ethayarajh et al., 2024) extends
the paradigm to single-response feedback via prospect theoretic utility. Recent DPO variants, ORPO (Hong
et al., 2024), R-DPO (Park et al., 2024), and SimPO (Meng et al., 2024), further push performance by
discarding the reference model or regularizing response length. Yang et al. (2025) further introduces a weight
hyperparameter to balance the influence of preference pairs from different policies. Zhao et al. (2025) then
aims to combine the previous PO methods into one cohesive objective. However, all DPO-style variants rely
on MLE in the training process, which oversimplifies the tuning of preferred and unpreferred responses as a
binary classification problem.

Confidence Degeneration in DPO. Pal et al. (2024) and Tajwar et al. (2024) show analytically and
empirically that the expected DPO gradient often decreases the log-likelihood of the preferred response yw

instead of increasing it, leading to a simultaneous shrinkage of both responses. Rafailov et al. (2024) observe
the same trend, attributing the drop to the expected log ratio between the optimized and reference models.
By showing that this is equivalent to the non-negative KL divergence, they conclude that DPO training
inevitably lowers the likelihood of the chosen response. Nemotron-4 (Adler et al., 2024) constraints the DPO
loss with the reward margin. However, no motivation or theoretical perspective is given. Moreover, it cannot
be used in the online setting and is unable to enhance the other DPO variants. More recent analyses of the
learning dynamics in Ren & Sutherland (2024) have identified a phenomenon termed the squeezing effect,
whereby DPO training aggressively drains probability mass from all responses except the most confident
one, y∗ = arg maxi∈[V ]\yl

πθ(y = i), consequently funneling this mass towards y∗. Our method utilizes prior
knowledge to soften the downward pressure on the rejected response yl, it markedly mitigates the squeezing
effect.

3 Preliminary & Problem Setup

3.1 RL Tuning

First, we introduce the general framework of Reinforcement Learning (RL). Consider the Markov decision
process (MDP) as a tuple (S,A,P,R), where S is the state space, A is a finite action space, P : S×A×S → R
is a Markov kernel that determines transition probabilities, and R : S ×A → R is a reward function. At each
time step t, the agent executes an action yt ∈ A from the current state st ∈ S, following a stochastic policy
π, i.e., yt ∼ π(·|st). The corresponding reward is defined as rt.

Following the conventional setting in LLMs, the policy πθ represents the LLM with model parameters θ. The
action space A is set as the vocabulary. At step t, st = (x, y<t) is a cascade of the query x and the tokens
y<t = (y1, · · · , yt−1) that have been predicted, and yt is the next token to be predicted. The transition
kernel P is deterministic as st+1 = (st, yt). The complete answer y = (y1, · · · , yT ) with length |y| = T . The
step reward rt = r(x, y≤t) can be obtained from a trained reward model.

After formalizing the LLM tuning as an RL problem, the goal of RL tuning (Ouyang et al., 2022) is to
maximize the expectation of the cumulative reward r := r(x, y) with a Kullback–Leibler (KL) constraint as
follows

max
πθ

E
x∼D,y∼πθ(·|x)

[r(x, y)]− βDKL [πθ(·|x)||πref(·|x)] , (1)

where DKL(·||·) denotes the KL divergence, and β is a constant weight. πref is a reference model, which is
usually the initial policy model before tuning. This optimization problem can be solved by any RL algorithms,
e.g., PPO (Schulman et al., 2017) and GRPO (Shao et al., 2024).
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3.2 Direct Preference Optimization

In Direct Preference Optimization (DPO) (Rafailov et al., 2023), a closed-form expression of equation 1 is
used, and a connection between policy π and reward function r is built as

π(y|x) = 1
Z(x)πref(y|x) exp

( 1
β

r(y, x)
)
, (2)

where Z(x) is a partition function to normalize the probability.

With a prompt x, we sample two responses from the current policy model y1, y2 ∼ πθ(·|x). A human expert
then demonstrates the preference and ranks the responses as yw (win) and yl (lose). After plugging in
equation 2 into the reward model training (MLE) loss function, the target of RL tuning becomes to minimize
the loss function shown below

L(θ) = E
(yw,yl,x)∼D

[
− log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)]
, (3)

where σ(·) is the logistic function. The training process can be done using mini-batch gradient descent and
the variants, e.g., AdamW (Loshchilov & Hutter, 2019). Notably, the derivation on reward model training is
based on MLE, which oversimplifies the process as a binary classification problem. As a result, minimizing
equation 3 is nothing but increasing the gap between the output probability of yw and yl.

3.3 Current issues with MLE

The learning process is to estimate the parameters θ via maximum likelihood, which is to maximize the gap
of the output probability between the winning response πθ(yw|x) and the losing response πθ(yl|x).

Despite its computational efficiency and simplicity, the MLE formulation introduces a critical limitation: It
focuses solely on relative probabilities within each preference pair, while ignoring the absolute magnitude
of confidence in the responses. Shown as Figure 2, training encourages simultaneous downscaling of both
πθ(yw|x) and πθ(yl|x), to enlarge the preference gap. This undesired tendency can lead to over-penalization
of both responses, especially in near-tie cases, thereby reducing output confidence and harming policy
calibration (Ren & Sutherland, 2024).

Such issues become particularly problematic as models approach human-level performance, where both the
winning and losing responses may be of high quality. For example, consider a preference pair where both yw

and yl are grammatically correct, contextually relevant, and factually accurate, with the only preference
driven by stylistic nuances. In this case, the MLE objective may still enforce a large probability gap by
downscaling both log-likelihoods. This inadvertently shifts the probability mass away from the high-quality
response space, introducing unnecessary uncertainty into the policy, and can lead to erratic or unstable
generation in downstream usage.

Table 1: Comparison of log-probabilities for responses yw and yl in PO methods.
Model logp(yw) logp(yl) logp(yw) - logp(yl)
IT −14.3 −43.4 +29.1
DPO −121.5 −443.2 +321.7
MaPPO −10.4 −321.1 +310.7

In Figure 1, we show an example of the prompt and response pair (x, yw, yl). Given the prompt x, both yw

and yl have correct answers, while in slightly different expressions. Both yw and yl have high rewards, which
reflect the high qualities. However, in MLE and its derived DPO, the learning objective is nothing but to
increase the gap between yw and yl, regardless of the fact that both of them have high qualities with correct
answers, and their qualities match each other. We also list an example with long responses in Appendix B.
As shown in Table 1, after DPO training, the log output probability of yw decreases from −14.3 to −121.5,
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Prompt x

A printer prints 17 pages per minute. How many minutes will it take to print 200 pages? Express
your answer to the nearest whole number.

Response yw, r = 0.95

To find out how many minutes it will take to print 200 pages, we need to divide the total number of
pages by the number of pages the printer can print per minute. So we divide 200 by 17: 200

17 ≈ 11.76.
But since we want the nearest whole number, we need to round it up. That means it will take 12
minutes to print 200 pages. The answer is: 12

Response yl, r = 0.91

To find out how many minutes it will take to print 200 pages at a rate of 17 pages per minute, divide:
200
17 ≈ 11.76. Rounding 11.76 to the nearest whole number gives: 12. So it will take 12 minutes to

print 200 pages. The answer is: 12

Figure 1: An example of (x, yw, yl) pair. Both responses yw and yl have good quality as they achieve high
rewards, where r(x, yw) = 0.95, r(x, yl) = 0.91, and r ∈ [0, 1].

and yl decreases from −43.4 to −443.2. Although the gap indeed increases from 29.1 to 321.7, it violates the
principal goal: Increase the output probability of the high-quality responses.

These issues highlight the need for a more principled formulation that preserves relative preferences while
incorporating global calibration and prior reward knowledge. In the next section, we introduce our Maximum-
a-Posteriori (MaP) framework that addresses these shortcomings in a unified and efficient manner.

MaPMLE

0.26

0.25

×

0.05

0.03

origin

reweighting

Figure 2: Under the standard MLE-based DPO (left), empirical studies (Pal et al., 2024; Rafailov et al.,
2024; Tajwar et al., 2024; Ren & Sutherland, 2024) demonstrated that training tends to simultaneously
downscale (with different magnitudes) both the chosen and rejected responses to increase their gap. Our
MaP-based method (right) mitigates this harmful tendency by re-weighting the rejected response based on
prior knowledge. Here, the x-axis denotes the initial model θ0 and a potentially harmful model θk that may
arise during training, while the y-axis shows the log-likelihood of a fixed preference pair under different
policies.
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4 MaPPO Design

4.1 MaPPO Loss

In this subsection, we start the derivation step by step from the first principle.

With a prompt x and responses (y1, y2), an oracle gives its preference on the responses as (yw, yl). The
Bradley-Terry (BT) model (Bradley & Terry, 1952) builds the connection between the rewards and the
preference probability as follows:

p(yw ≻ yl|x) = exp(r(yw, x))
exp(r(yw, x)) + exp(r(yl, x)) = 1

1 + exp(r(yl, x)− r(yw, x)) . (4)

The preference dataset have N samples denoted as D = {yi
w, yi

l, xi}N
i=1. We can parametrize a reward model

with model parameters ϕ as rϕ(y, x). Given x, assume we have prior knowledge of rewards as rw and rl. This
can be obtained from an oracle, e.g., a pre-trained reward model. To incorporate the prior knowledge of
rewards, we need to use the gap ∆r = rw − rl as suggested in equation 4. To keep the softmax form in the
BT model, we can construct the prior probability as follows

p(rϕ) = exp(rϕ(yw, x)) + exp(∆rrϕ(yl, x))
exp(rϕ(yw, x)) + exp(rϕ(yl, x)) . (5)

We use the reward gap ∆r on the softmax probability to make the probability always greater than 0 and
smaller than 1. Notably, this form is not unique, and other forms are also acceptable if they satisfy the
properties of the probability function. We further discuss the prior function in Appendix D.1.

The MaP loss is the combination of the MLE loss and the prior knowledge loss as follows

LMaP(rϕ) = LMLE(rϕ) + Lp(rϕ)

= E
(yw,yl,x)∼D

[
− log σ

(
rϕ(yw, x)− rϕ(yl, x)

)
− log p(rϕ)

]
= E

(yw,yl,x)∼D

[
− log σ

(
rϕ(yw, x)−∆rrϕ(yl, x)

)]
.

(6)

As proved in previous works (Rafailov et al., 2023; Go et al., 2023; Korbak et al., 2022), given a reward
function r(y, x), we have a closed-form expression of the policy π as

π(y|x) = 1
Z(x)πref(y|x) exp

( 1
β

r(y, x)
)
, (7)

where Z(x) is a partition function. With a parametrized policy πθ, we can plug this result into the loss
function equation 6, and get the MaPPO loss

LMaP(θ) = E
(yw,yl,x)∼D

[
− log σ

(
β log πθ(yw|x)

πref(yw|x) −∆rβ log πθ(yl|x)
πref(yl|x)

)]
. (8)

With the MaP estimation, we achieve a clean result compared to the MLE estimation in DPO with a
calibration term ∆r ∈ [0, 1] from the prior knowledge.

Remark. In our MaPPO method, no additional hyperparameter is introduced compared to the original
DPO method. Thus, MaPPO offers a clean and easily pluggable solution, and no extra hyperparameter
tuning is needed.

4.2 Analysis of MaPPO

In this subsection, we analyze the connection with MaPPO, DPO, and SFT.
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Connection with SFT. First, in equation 8, when rw = rl (i.e., ∆r = 0), the loss function becomes

L(θ) = E
(yw,yl,x)∼D

[
− log σ

(
β log πθ(yw|x)

πref(yw|x)

)]
, (9)

which is equivalent to the SFT loss function, and yw is the supervised target. The reason is that the function
log σ(·) is monotonic. Thus, the optimal solution is equal to that from the loss function below

L(θ) = E
(yw,yl,x)∼D

[
− log πθ(yw|x)

πref(yw|x)

]
. (10)

The gradient is

E
(yw,yl,x)∼D

[
−∇ log πθ(yw|x)

πref(yw|x)

]
= E

(yw,yl,x)∼D

[
−∇ log πθ(yw|x)

]
= ∇LSFT(θ). (11)

Thus, it degenerates to the SFT loss function, and only differs in learning rates. Notably, with online response
data collection (yw is generated from the current policy model πθ), this is also known as the Reject Sampling
(RS) method (Dong et al., 2023).

Connection with DPO. In equation 8, when rw = 1 and rl = 0, we have ∆r = 1. The loss function
becomes

L(θ) = E
(yw,yl,x)∼D

[
− log σ

(
β log πθ(yw|x)

πref(yw|x) − β log πθ(yl|x)
πref(yl|x)

)]
, (12)

which degenerates to the DPO loss function in equation 3.

Overall, both DPO and SFT loss functions (I-DPO and RS in the online setting) can be taken as special
cases of MaPPO. In this sense, MaPPO can be taken as a dynamic weighted mechanism, where the weight
depends on the relative quality (rewards) of the winning response yw and the losing response yl.

Gradient Dynamics Analysis. To analyze the update of MaPPO, the gradient of equation 8 is

∇LMaP(θ) = E
(yw,yl,x)∼D

[
− β(1− σ(u))

(
∇ log πθ(yw|x)−∆r∇ log πθ(yl|x)

)]
, (13)

where u = β
(

log πθ(yw|x)
πref(yw|x) −∆r log πθ(yl|x)

πref(yl|x)
)

serves as a confidence measure of preference separation. 1−σ(u)
down-weights the gradient when the model is already confident in distinguishing yw and yl. ∆r directly
scales the contribution of the losing sample yl, modulating the penalization. The gradient norm of MaPPO
is upper-bounded compared to DPO, leading to less aggressive updates and more stable policy calibration.
We provide a more detailed theoretical analysis, including the stationary convergence analysis in Appendix
A.1 and Lipschitz stability analysis in Appendix A.2.

4.3 Online MaPPO

Beyond the offline setting, our MaPPO method can be directly used in the online or iterative settings. As
shown in Algorithm 1, we describe the online version of MaPPO. In online MaPPO, one key difference is
that the responses {y} are generated online from the current policy πθ instead of the initial policy πθ0 in the
offline setting.

In practice, considering training efficiency, online PO can be implemented in an iterative way, known as
I-DPO (Dong et al., 2024). In Figure 3, we illustrate the iterative MaPPO pipeline. With a prompt set
D, we can equally divide D into K subsets as D1 · · · DK . In the k-th iteration, we first freeze the current
policy model πθ, and then get responses (y1, y2) from the policy according to the prompt set Dk. We then
use a reward model to get the responses’ corresponding rewards and collect (yw, yl) pairs, which reflect the
preference. After response collection on Dk, we conduct the MaPPO training process using equation 8 on the
subset Dk. After training on the prompt subset, we repeat the process in the next iteration k + 1 until we
finish all K training iterations.
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Algorithm 1 Online MaPPO
Require: Prompt data set D; Number of iterations K; Initial policy model θ0.

1: for k = 0, · · · , K − 1 do
2: Sample a prompt x ∼ D.
3: Sample responses from the current policy yw, yl ∼ πθk

(·|x).
4: Get corresponding rewards rw ← r(yw, x) and rl ← r(yl, x).
5: ∆r ← r(yw, x)− r(yl, x)
6: Compute L(θk) according to equation 8.
7: θk+1 ← θk − η∇L(θk) # Or other optimizer, e.g., AdamW.
8: end for

Ensure: θK

Network Load
Balancer

Instances

AWS Deep
Learning AMIs

Policy Model Reward Model

Prompt

Responses Scored Responses

Data
Storage

Data Sample
PO Tuning

Add

Frozen
Model

Tuning
Model

Figure 3: Illustration of the iterative MaPPO pipeline in each iteration k.

Remark. A reward model (or rule-based verifier) is necessary for all online methods, including online DPO
(iterative DPO) (Dong et al., 2024) and reject sampling (Dong et al., 2023).

4.4 Adaptation to Other PO Methods

We have shown MaPPO in the offline and online DPO settings. As this Maximum a Posteriori (MaP)
method is generally suitable for all DPO variants, we show how MaPPO modifies other DPO variants in this
subsection.

Simply replace the MLE part in preference optimization with MaP, and follow the same derivation in Section
4.1. Most DPO variants, as long as MLE is used in the original methods, can be modified with MaPPO as a
plugin. We show some widely adopted methods as examples here, including SimPO, IPO, and CPO.

First, in SimPO (Meng et al., 2024), with the length control penalty, the loss function is given as

LSimPO(θ) = E
(yw,yl,x)∼D

[
− log σ

( β

|yw|
log πθ(yw|x)− β

|yl|
log πθ(yl|x)− γ

)]
, (14)

where γ is a constant hyperparameter, |yw| and |yl| denote the length of yw and yl, respectively.

With the MaPPO plugin, the loss function is modified as

LSimPO+(θ) = E
(yw,yl,x)∼D

[
− log σ

( β

|yw|
log πθ(yw|x)−∆r

β

|yl|
log πθ(yl|x)− γ

)]
. (15)

In IPO (Azar et al., 2024), the original loss function is

LIPO(θ) = E
(yw,yl,x)∼D

[(
log πθ(yw|x)

πref(yw|x) − log πθ(yl|x)
πref(yl|x) −

1
2β

)2]
. (16)
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With the MaPPO plugin, the loss function is modified as

LIPO+(θ) = E
(yw,yl,x)∼D

[(
log πθ(yw|x)

πref(yw|x) −∆r log πθ(yl|x)
πref(yl|x) −

1
2β

)2]
. (17)

In CPO (Xu et al., 2024), the original loss is

LCPO(θ) = E
(yw,yl,x)∼D

[
− log σ

(
β log πθ(yw|x)− β log πθ(yl|x)

)
− λ log πθ(yw|x)

]
, (18)

where λ is a constant hyperparameter.

With the MaPPO plugin, the CPO loss is modified as

LCPO+(θ) = E
(yw,yl,x)∼D

[
− log σ

(
β log πθ(yw|x)− β∆r log πθ(yl|x)

)
− λ log πθ(yw|x)

]
. (19)

To verify the effectiveness, we show the experimental results with the improvement of these DPO variants in
Section 5.3.

Remark. With our MaPPO plugin, no additional hyperparameter is introduced in all DPO variants.

5 Experiments

In this section, we empirically verify the effectiveness of our MaPPO methods.

5.1 Setup

Pipeline Settings. We follow the RLHF framework in Dong et al. (2024). Instead of costly human
annotations, we employ off-the-shelf reward models to generate the preferences. We use the public pre-trained
BT reward model1 as the prior knowledge. For the response selection, we follow the rejection sampling
strategy suggested by Liu et al. (2024b); Gulcehre et al. (2023). For each prompt, we generate n = 8 responses
and use the best-of-8 as yw and the worst-of-8 as yl. We provide hyperparameter details and computing
resources in Appendix C.1.

Dataset. We use the prompt set in Dong et al. (2024). In the offline setting, we generate responses from
the initial model with the whole prompt set. In the online (iterative) setting, we separate the prompt set into
three subsets of the same size. The learning process lasts for K = 3 iterations. In each iteration, we sample
responses from our current policy with one prompt subset, and use preference signals on these responses to
improve our policy.

Models. To show the scalability of our methods, we choose models in two dimensions: (1) Model sizes:
Qwen2.5-1.5B-Instruct, Qwen2.5-3B-Instruct, and Qwen2.5-7B-Instruct. (2) Model series: Qwen2.5-7B-
Instruct, Mistral-7B-Instruct-v0.3, and Llama-3-8B-Instruct in our experiments.

Evaluation. We evaluate the model performance on three widely used benchmarks: MT-Bench (Zheng
et al., 2023a), AlpacaEval 2.0 (Li et al., 2023), and Arena-Hard v0.1 (Li et al., 2024). MT-Bench contains 80
questions from 8 categories, with answers rated by GPT-4 on a scale of 1− 10. Arena-Hard v0.1 contains 500
technical problem-solving questions, and the answers are compared to reference responses from the baseline
model GPT-4-0314. We report the win rate (WR) in percentage as judged by GPT-4 Turbo (Preview-1106).
AlpacaEval 2.0 includes 805 questions from five datasets, with the judge model GPT-4 Turbo (Preview-1106)
comparing the answers to reference responses from itself. We report the length-controlled (LC) WR as
suggested in Dubois et al. (2024).

1https://huggingface.co/sfairXC/FsfairX-LLaMA3-RM-v0.1
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5.2 Main Results

Our main results on three standard benchmarks, introduced in Section 5.1, are shown in Table 2. For
the alignment methods, we show the evaluation results of Instruction Tuning (IT), the original offline
setting (Rafailov et al., 2023) (DPO), and the online setting (Dong et al., 2024) (I-DPO) as described
in Section 4.3. For DPO and I-DPO, we show their improvements that incorporate the MaPPO design
(+MaPPO).

For Llama-3-8B-Instruct, Mistral-7B-Instruct, and Qwen2.5-7B-Instruct models, the performances are signif-
icantly improved with MaPPO on AlpacaEval 2.0 and Arena-Hard in both the offline setting (DPO) and
the online setting (I-DPO). It reflects the effectiveness of MaPPO on different model series in both online
and offline settings. On the MT-Bench, the performances are slightly improved on Qwen2.5-7B-Instruct
and Llama-3-8B-Instruct, because the base models have already achieved very good results on this bench-
mark, which has limitations to reflect the effective improvement. The improvement on MT-Bench becomes
much more significant on models with mediocre base or DPO performances, e.g., Mistral-7B-Instruct and
Qwen2.5-1.5B-Instruct. In one model series, the larger models achieve higher overall scores in both base
performances and after online & offline alignment tuning, suggesting that scaling up model size enhances
alignment capability as expected. With MaPPO, the improvement is consistent in scale with different model
sizes in both online and offline settings, and the alignment can make smaller models outperform larger base
models.

Table 2: Main evaluation results on three standard benchmarks. ↑ indicates the higher the better.
Model Method AlpacaEval 2.0 ↑ Arena-Hard ↑ MT-Bench ↑

Qwen2.5-1.5B-Instruct

IT 11.10 5.0 7.06
DPO 18.71 11.6 7.29
+MaPPO 19.35 +0.64 15.3 +3.7 7.57 +0.28
I-DPO 17.89 12.1 7.39
+MaPPO 19.84 +1.95 15.7 +3.6 7.63 +0.24

Qwen2.5-3B-Instruct

IT 18.91 24.0 7.92
DPO 20.16 29.2 8.02
+MaPPO 26.68 +6.52 35.1 +4.9 8.13 +0.11
I-DPO 19.69 36.6 8.10
+MaPPO 25.99 +6.30 35.8 −0.8 8.01 −0.09

Qwen2.5-7B-Instruct

IT 27.03 42.9 8.61
DPO 32.01 45.5 8.56
+MaPPO 38.24 +6.23 59.2 +13.7 8.79 +0.23
I-DPO 33.80 46.9 8.55
+MaPPO 39.10 +5.30 61.6 +14.7 8.54 −0.01

Mistral-7B-Instruct

IT 15.35 13.1 5.40
DPO 18.24 14.2 6.86
+MaPPO 30.56 +12.32 18.4 +4.2 7.51 +0.65
I-DPO 17.11 14.3 6.92
+MaPPO 33.28 +16.14 19.6 +5.3 7.59 +0.67

Llama-3-8B-Instruct

IT 10.85 10.2 7.52
DPO 22.48 22.4 8.07
+MaPPO 28.37 +5.89 29.5 +7.1 8.18 +0.11
I-DPO 29.47 25.6 8.01
+MaPPO 32.68 +3.21 31.0 +5.4 8.04 +0.03
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5.3 Adaptation to DPO Variants

In Table 3, we show the improvement of the vanilla DPO (Rafailov et al., 2023) and its variants with MaPPO,
including widely used I-DPO (Dong et al., 2024), SimPO (Meng et al., 2024), IPO (Gheshlaghi Azar et al.,
2024), and CPO (Xu et al., 2024). We list the hyperparameter settings in the DPO variants in Appendix
C. Their loss functions with MaPPO adaptation are shown in Section 4.3 and Section 4.4. For all DPO
variants, no additional hyperparameter is needed from the MaPPO plugin. For the model in evaluation, we
keep Qwen2.5-7B-Instruct as the default model.

In general, MaPPO consistently improves all DPO variants with the MLE design on all three benchmarks.
Although it drops a little on MT-Bench in some methods, the original approach has essentially saturated
at the achievable score on MT-Bench, which barely reflects the improvement with a variance in evaluation.
The overall consistent improvements observed across DPO variants after applying the MaPPO plugin
underscore its flexibility and generality in enhancing preference optimization methods. Notably, MaPPO
effectively complements both simple and complex variants without requiring architectural modifications or
hyperparameter tuning. For instance, SimPO benefits from the MaPPO adjustment by further balancing the
length-controlled optimization with better calibration of confidence scores, while IPO and CPO experience
gains due to MaPPO’s capacity to regularize reward signals with prior knowledge, mitigating overfitting to
pairwise preferences. The improvements span diverse evaluation metrics and benchmarks, demonstrating
that MaPPO’s reward-aware calibration systematically addresses the shortcomings of MLE-based objectives
inherent in existing variants. This indicates that MaPPO is not merely a tweak, but a general principle that
can be seamlessly integrated into the PO pipelines to achieve more reliable alignment results.

Table 3: Evaluation results of DPO variants with a MaPPO plugin. ↑ indicates the higher the better.
Method AlpacaEval 2.0 ↑ Arena-Hard ↑ MT-Bench ↑

DPO (Rafailov et al., 2023) 32.01 45.5 8.56
+MaPPO 38.24 +6.23 59.2 +13.7 8.79 +0.23
I-DPO (Dong et al., 2024) 33.80 46.9 8.55
+MaPPO 39.10 +5.30 61.6 +14.7 8.54 −0.01
SimPO (Meng et al., 2024) 25.15 64.2 9.02
+MaPPO 32.75 +7.60 69.5 +5.3 8.94 −0.08
IPO (Gheshlaghi Azar et al., 2024) 27.76 53.0 8.83
+MaPPO 28.84 +1.08 64.4 +11.4 8.84 +0.01
CPO (Xu et al., 2024) 32.94 47.6 8.62
+MaPPO 33.71 +0.77 54.1 +6.5 8.68 +0.06

5.4 Other Results on Academic Benchmarks

It is widely observed that alignment impairs models’ performance on calibration, reasoning, and accuracy
(Ouyang et al., 2022; Lin et al., 2024; Zhang et al., 2025), which is also known as the alignment tax. As
a result, it is also needed to assess the model’s performance using more academic benchmarks. In this
subsection, we investigate whether the serval methods for alignment with human preference could sacrifice
the general model performance.

We test the performance on six widely used academic benchmarks, evaluating various model abilities,
including explicit instruction following (IFEval) (Zhou et al., 2023), general knowledge (GPQA) (Rein
et al., 2024), multitask language understanding (MMLU) (Hendrycks et al., 2021), commonsense reasoning
(HellaSwag) (Zellers et al., 2019), human falsehoods mimicking (TruthfulQA) (Lin et al., 2022), and math
word problem-solving (GSM8K) (Cobbe et al., 2021).

We show the results on the six academic benchmarks from Llama-3-8B-Instruct model in Table 4, and
Qwen2.5-7B-Instruct model in Table 5. In general, for offline DPO with MaPPO outperforms the original
DPO in all benchmarks for both models. The improvement is significant on GSM8K for Qwen2.5-7B-Instruct,
and on TruthfulQA for Llama-3-8B-Instruct. For the iterative DPO with MaPPO, the performances are

11



Under review as submission to TMLR

better than the original I-DPO on most benchmarks, and maintains the performances on IFEval and GPQA.
Overall, the performances of online methods are better than offline methods, and MaPPO generally improves
or maintains the performances on academic benchmarks in both settings.

Table 4: Evaluation results on six academic benchmarks with Llama-3-8B-Instruct model.
Method IFEval ↑ GPQA ↑ MMLU ↑ HellaSwag ↑ TruthfulQA ↑ GSM8K ↑

IT 70.4 30.2 62.4 78.6 53.7 73.4
DPO 77.0 27.5 62.7 79.5 51.5 75.5
+MaPPO 82.0 29.5 63.2 80.1 58.2 79.5
I-DPO 74.6 29.8 63.1 80.5 60.7 81.3
+MaPPO 76.4 28.8 63.5 80.7 63.7 82.4

Table 5: Evaluation results on six academic benchmarks with Qwen2.5-7B-Instruct model.
Method IFEval ↑ GPQA ↑ MMLU ↑ HellaSwag ↑ TruthfulQA ↑ GSM8K ↑

IT 73.5 31.5 71.8 62.1 56.4 81.7
DPO 73.2 32.0 71.9 62.0 57.1 71.3
+MaPPO 73.8 33.1 72.0 62.1 59.2 80.1
I-DPO 72.9 33.0 71.9 62.2 55.9 73.2
+MaPPO 72.6 33.3 72.9 62.2 56.2 82.0

6 Discussions

Limitations and Future Work.
1. Our results indicate that larger models consistently perform better with the MaPPO method. Future work

with more computing resources could explore applying the proposed training pipeline to models larger
than 8B parameters.

2. The prior knowledge function design relies on experts’ domain knowledge. We give a reasonable and
general design. Future works could explore different designs in specific domains.

3. If resources permit, human evaluation can be included for better judgment of alignment.

Conclusion. In this work, we propose MaPPO, a general and principled framework for preference opti-
mization that incorporates prior knowledge into the optimization objective. By extending the Maximum
Likelihood Estimation (MLE)-based Preference Optimization (PO) approach to a Maximum a Posteriori
(MaP) formulation, MaPPO effectively mitigates confidence degeneration and provides a more calibrated
training signal. Our method requires no additional hyperparameters, supports both offline and online settings,
and can be seamlessly integrated into existing Direct Preference Optimization (DPO) variants, including
widely used SimPO, IPO, and CPO. Without sacrificing efficiency, extensive empirical results demonstrate
that MaPPO consistently improves alignment performance on different model series (e.g., Qwen, Mistral, and
Llama), and on scaling to different model sizes (e.g., 1.5B, 3B, 7B, and 8B) across three standard benchmarks,
including MT-Bench, AlpacaEval 2.0, and Arena-Hard. We also evaluate the performance on six widely used
academic benchmarks after alignment, which shows that MaPPO, compared to the other methods, maintains
the performance in various dimensions.

Broader Impact Statement. MaPPO aligns language models by incorporating prior reward knowledge
into preference optimization, leading to better-calibrated and more robust outputs. While beneficial, it relies
on reward models that may encode biases or misrepresent human values, potentially reinforcing harmful
patterns. Its use in persuasive or deceptive applications also poses potential impacts. To mitigate these
impacts, we encourage careful curation and auditing of reward models, broader involvement in defining
reward signals, and transparency in how preference optimization frameworks, such as MaPPO, are applied in
real-world AI systems.
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A Theoretical Results

A.1 Stationary Convergence of MaPPO

Recall that
LMaP(θ) = E

(yw,yl,x)∼D

[
− log σ

(
β log πθ(yw|x)

πref(yw|x) −∆rβ log πθ(yl|x)
πref(yl|x)

)]
= E

(yw,yl,x)∼D

[
− log σ(u)

]
.

(20)

At the first-order stationary point (FOSP), the gradient of the loss with respect to θ becomes 0. Thus, we
have

∇LMaP(θ) = E
(yw,yl,x)∼D

[
− β(1− σ(u))

(
∇ log πθ(yw|x)−∆r∇ log πθ(yl|x)

)]
= 0. (21)

Let the optimal policy be π⋆. The above equation holds when

∇ log π⋆(yw|x)−∆r∇ log π⋆(yl|x) = 0. (22)

Thus, the optimal policy achieves

log π⋆(yw|x) = ∆r log π⋆(yl|x) + c, (23)

where c is a scaling constant determined by the initialization. Thus, the model learns a stable log-linear
relationship between preferred and less-preferred responses, scaled by the prior reward gap.

In DPO, the optimal policy at the FOSP is

log π⋆(yw|x) = log π⋆(yl|x) + c. (24)

DPO converges to maximizing the log-odds between yw and yl, but no inherent bound on the preference gap,
which can lead to confidence degeneration. As training progresses, DPO may tend to decrease the likelihood
of both yw and yl (the squeezing effect), because there is no constraint on absolute probabilities – only the
relative gap matters.

MaPPO prevents overconfidence and instability by grounding optimization in the reward-based prior. The
FOSP of MaPPO guarantees a bounded, calibrated log-probability ratio between yw and yl. Naturally limits
the squeezing effect by scaling the impact of yl via ∆r. Therefore, MaPPO is theoretically more stable,
especially for near-tie preference pairs and in large models where DPO can exacerbate miscalibration.

A.2 Lipschitz Stability

First, we list the standard assumptions for the analysis.
Assumption A.1.

1. The score function is Lipschitz continuous as ∥∇ log πθ(y|x)−∇ log πθ′(y|x)∥ ≤Mg.

Let the gradient operator be defined as
τθ := ∇LMaP(θ). (25)

Then, the gradient operator τ is Lipschitz continuous with

∥τθ − τθ′∥ ≤ LMaP∥θ − θ′∥, (26)

where LMaP = β(1− σ(u))(1 + ∆r)Mg < β(1 + ∆r)Mg.
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Proof. We have
τθ = −β(1− σ(u))

(
∇ log πθ(yw|x)−∆r∇ log πθ(yl|x)

)
. (27)

The norm of the gradient difference is

∥τθ − τθ′∥ = β(1− σ(u)) · ∥∇ log πθ(yw|x)−∇ log πθ′(yw|x)∥
+ β(1− σ(u))∆r · ∥∇ log πθ(yl|x)−∇ log πθ′(yl|x)∥.

(28)

We have that σ(u) is Lipschitz with constant 1
4 . Combining the Mg Lipschitz of the score function∇ log πθ(y|x),

we have
∥τθ − τθ′∥ ≤ β(1− σ(u))(1 + ∆r)Mg∥θ − θ′∥ := LMaP∥θ − θ′∥. (29)

In contrast, in DPO, the gradient is Lipschitz continuous as

∥τθ − τθ′∥ ≤ LDPO∥θ − θ′∥, (30)

where LDPO = 2β(1− σ(u))Mg < 2βMg. The Lipschitz constant of the gradients in DPO is larger than that
in MaPPO, which shows the gradients have less stability in DPO.

With a formal upper bound on MaPPO’s gradient variation, we show a clear theoretical justification for why
MaPPO is less prone to instability and exploding confidence gaps, compared to DPO.

18
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B Supplementary Examples

Prompt x

Solve the following math problem step-by-step. Simplify your answer as much as possible. Present
your final answer as Y ourAnswer . If the sum of two positive integers is 22 and the difference of
their squares is 44, what is the product of the two integers?

B.1 Before Preference Optimization

Response yw, r = 0.93

To solve this problem step-by-step, let’s denote the two positive integers as x and y with x > y.
Step 1: Set Up Equations

Given:
1. The sum of the two integers: x + y = 22
2. The difference of their squares: x2 − y2 = 44

Step 2: Factorize the Difference of Squares Recall that the difference of squares can be factored as:

x2 − y2 = (x + y)(x− y)

Substitute the given sum x + y = 22 into the factored form:

44 = 22(x− y)

Step 3: Solve for x− y Divide both sides by 22:

x− y = 2

Step 4: Solve the System of Linear Equations Now, we have the system: 1. x + y = 22 2. x− y = 2
Add these two equations to eliminate y:

(x + y) + (x− y) = 22 + 2

2x = 24

x = 12

Substitute x = 12 back into the first equation to find y:

12 + y = 22

y = 10

Step 5: Calculate the Product The product of the two integers x and y is:

x · y = 12 · 10 = 120

Final Answer
120
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Response yl, r = 0.90

To solve this problem step-by-step, let’s denote the two positive integers as x and y, where x > y. We
are given two conditions:
1. The sum of the two integers is 22:

x + y = 22

2. The difference of their squares is 44:
x2 − y2 = 44

We can use the identity for the difference of squares, x2 − y2 = (x + y)(x− y), to rewrite the second
equation. Substituting x + y = 22 into the identity gives:

(x + y)(x− y) = 44 =⇒ 22(x− y) = 44

Dividing both sides by 22:
x− y = 2

Now we have a system of linear equations:{
x + y = 22
x− y = 2

Adding these two equations eliminates y:

(x + y) + (x− y) = 22 + 2 =⇒ 2x = 24 =⇒ x = 12

Substituting x = 12 back into the first equation to solve for y:

12 + y = 22 =⇒ y = 10

Thus, the two integers are x = 12 and y = 10.
To find the product of the two integers:

xy = 12× 10 = 120

Therefore, the product of the two integers is 120 .

Figure 4: Before MLE optimization, the model consistently generates high-quality (high rewards) answers yw

and yl with prompt x.
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B.2 After MLE Optimization

Response yw, r = 0.87

To solve the given problem, we’ll proceed through the following steps systematically:
Given:

1. The sum of two positive integers x and y is 22.
2. The difference of their squares is 44.

We need to determine the product of these two integers.
Step-by-Step Solution:
1. Setting up Equations:
- From the first condition:

x + y = 22

- From the second condition (expressing the difference of squares):

x2 − y2 = 44

We know that x2 − y2 can be factored using the difference of squares formula:

x2 − y2 = (x + y)(x− y)

2. Substitute x + y:
- Using the known value from equation (1) in the factored form of the difference of squares:

x2 − y2 = (x + y)(x− y) =⇒ 44 = 22(x− y)

- Solve for x− y:
22(x− y) = 44 =⇒ x− y = 2

3. Solving the System of Linear Equations:
- Now, we have the system of equations:

x + y = 22

x− y = 2

- Add these two equations to eliminate y:

(x + y) + (x− y) = 22 + 2

2x = 24 =⇒ x = 12

- Substitute x = 12 back into x + y = 22 to find y:

12 + y = 22 =⇒ y = 10

4. Finding the Product:
- With x = 12 and y = 10, calculate the product:

xy = 12× 10 = 120

Thus, the product of the two integers is 120 .
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Response yl, r = 0.43

Step 1: Interpret the problem and set up equations based on the given information. Given that the
sum of two positive integers is 22 and the difference of their squares is 44, we need to find these
integers and subsequently their product.
Let’s denote the two integers as a and b such that a > b, to simplify handling the difference and sum
relationships given directly without specifying which integer represents a or b in terms of being greater
than the other directly addresses addressing conditions related directly to interpreting the context
regarding how the operations (sum, difference of squares) relate between two specified integers, based
on the given descriptions for solving in the context presented, focusing on correctly interpreting and
directly addressing the specific requirements as outlined for accurately proceeding with solving based
on the given details, to correctly proceed according to provided instructions and the nature of solving
based on the specifications given for dealing with the described conditions around the operation
outcomes involving the integers in question.

Step 2: Translate the given conditions into mathematical equations.
- The sum of the two integers equals 22: a + b = 22.
- The difference of their squares equals 44: a2 − b2 = 44.

Step 3: Utilize algebraic identities for simplification. From the second equation, apply the algebraic
identity for the difference of squares:

a2 − b2 = (a + b)(a− b)

Thus, substituting in the known value for a + b:

(a + b)(a− b) = 44 =⇒ 22(a− b) = 44.

Step 4: Solve for a− b. Divide both sides by 22:

a− b = 2.

Step 5: Solve the system of linear equations. We now have two simultaneous equations: 1. a + b = 22
2. a− b = 2
Add the two equations together to eliminate b:

(a + b) + (a− b) = 22 + 2 =⇒ 2a = 24 =⇒ a = 12.

Substitute a = 12 back into the first equation to solve for b:

12 + b = 22 =⇒ b = 10.

Step 6: Find the product of a and b. The product of the two integers a and b is:

ab = 12× 10 = 120.

Step 7: Box the final answer.
120

Figure 5: After MLE optimization, the model degenerates, and the outputs yw and yl become verbose (low
rewards) with prompt x.
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B.3 After MaP Optimization

Response yw, r = 0.94

To solve this problem step-by-step, let’s denote the two positive integers by x and y, where without
loss of generality, we assume x > y.
Given:

1. The sum of the two integers: x + y = 22
2. The difference of their squares: x2 − y2 = 44

Step 1: Express the Difference of Squares
We know from algebra that:

x2 − y2 = (x + y)(x− y)

Given x + y = 22, we substitute this into the equation:

44 = 22(x− y)

Step 2: Solve for x− y
Divide both sides by 22:

x− y = 2

Step 3: Solve the System of Linear Equations
Now, we have a system of linear equations:

1. x + y = 22
2. x− y = 2

Add these two equations to eliminate y:

(x + y) + (x− y) = 22 + 2

2x = 24

x = 12

Subtract the second equation from the first to eliminate x:

(x + y)− (x− y) = 22− 2

2y = 20

y = 10

Step 4: Calculate the Product of the Two Integers
Now that we have x = 12 and y = 10, we find their product:

xy = 12× 10 = 120

Thus, the product of the two integers is:

120
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Response yl, r = 0.88

To solve this problem, we’ll use algebraic methods to represent the given conditions and then solve for
the integers. Here are the steps:
1. Define Variables:

Let the two positive integers be x and y, with x > y.

2. Set Up Equations Based on Given Information:
- The sum of the two integers is 22:

x + y = 22

- The difference of their squares is 44:

x2 − y2 = 44

3. Factor the Difference of Squares:
Recall that x2 − y2 can be factored as (x + y)(x− y). Therefore:

(x + y)(x− y) = 44

Substitute x + y = 22 into the equation:

22(x− y) = 44

4. Solve for x− y:
Divide both sides by 22:

x− y = 2

5. Set Up a System of Linear Equations:
We now have the system: {

x + y = 22
x− y = 2

6. Add the Two Equations to Solve for x:
Adding the equations eliminates y:

(x + y) + (x− y) = 22 + 2

Simplifies to:
2x = 24 =⇒ x = 12

7. Substitute x = 12 Back to Find y:
Using x + y = 22:

12 + y = 22 =⇒ y = 10

8. Calculate the Product of the Two Integers:
The product of x and y is:

x · y = 12 · 10 = 120

The answer is
120

Figure 6: After MaP optimization, the model consistently generates high quality outputs with prompt x.
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C Supplementary Experiments

C.1 Supplementary Experimental Settings

Hyperparameter settings. We follow the standard settings and list the hyperparameter details in the
training process of MaPPO in Table 6. We keep the hyperparameter settings for different model series
and model sizes, including Qwen2.5-{1.5B, 3B, 7B}-Instruct, Mistral-7B-Instruct, and Llama-3-8B-Instruct
models.

Table 6: Hyperparameter settings in MaPPO.
Hyperparameter Value

global batch size 128
learning rate η 5× 10−7

warmup steps 100
weight decay 0.01
optimizer AdamW
KL weight β 0.1
number of responses n 8
temperature T 1.0
precision bfloat16

Table 7: Hyperparameter settings in DPO Variants.
Hyperparameter Value

SimPO: γ 1
IPO: β 0.1
CPO: λ 0.2

In Table 7, we list the extra hyperparameters in the reproduce of the DPO variants. The other hyperparameter
settings keep the same in Table 6. Notably, we choose nearly the best hyperparameters for the other methods,
and our reproduction achieves higher performances than the original or other reproduction reports on some
benchmarks, e.g., SimPO on Arena-Hard.

Computing Resources. All tasks are trained and evaluated on a platform with 8 NVIDIA A100 GPUs
on each node, and 80 GB of memory for each GPU. Each training task requires between 4 and 20 hours to
execute, depending on the size of the model.

D Further Discussions

D.1 Prior Function

In Bayes estimation, the prior distribution is usually constructed by experts with domain knowledge without
an exception to avoid it (Jaynes, 2007). We choose a simple form in equation 5, which has the same structure
as the widely used prior function (Blei et al., 2010) and aligns with the softmax probability. This brings
a very clean result in equation 8. In this paper, we offer an effective function with good performances and
concise formulation. We bring the MaP design into the DPO pipeline, and the prior function construction is
not the aim of this paper. Other function choices that are designed by domain experts are also acceptable
and open to be used.
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