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Abstract

Image pyramids are commonly used in modern computer vision tasks to obtain
multi-scale features for precise understanding of images. However, image pyra-
mids process multiple resolutions of images using the same large-scale model,
which requires significant computational cost. To overcome this issue, we pro-
pose a novel network architecture known as the Parameter-Inverted Image Pyra-
mid Networks (PIIP). Our core idea is to use models with different parameter sizes
to process different resolution levels of the image pyramid, thereby balancing com-
putational efficiency and performance. Specifically, the input to PIIP is a set of
multi-scale images, where higher resolution images are processed by smaller net-
works. We further propose a feature interaction mechanism to allow features of
different resolutions to complement each other and effectively integrate informa-
tion from different spatial scales. Extensive experiments demonstrate that the PIIP
achieves superior performance in tasks such as object detection, segmentation, and
image classification, compared to traditional image pyramid methods and single-
branch networks, while reducing computational cost. Notably, when applying our
method on a large-scale vision foundation model InternViT-6B, we improve its
performance by 1%-2% on detection and segmentation with only 40%-60% of the
original computation. These results validate the effectiveness of the PIIP approach
and provide a new technical direction for future vision computing tasks.

1 Introduction

In modern computer vision, high-performance image perception systems increasingly rely on large-
scale pre-trained models. These models typically consume tens of thousands to millions of GPU
hours during pre-training [43, 44, 41]. To adapt these expensively pre-trained models for fine-
grained image perception tasks (e.g., detection [4, 63, 57, 56] and segmentation [19, 50]), researchers
usually combine them with image pyramids [40, 37] or feature pyramids [27, 42, 34]. This combi-
nation is crucial for constructing multi-scale features essential for image understanding.

However, integrating these pre-trained models with image pyramids results in significant compu-
tational overhead. Image pyramids process the same image at multiple resolutions with the same
large-scale model, causing the computational demands to increase quadratically with the image res-
olutions across all scales. Although feature pyramids [27, 16, 42] aim to reduce this overhead, in
MS COCO challenges [28], most top-performing models [48, 14, 64, 7] still rely on image pyramids
due to their superior performance. Therefore, it is necessary to reduce the computing resources for
building image pyramids while maintaining high performance.
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Figure 1: Different parameter-resolution designs of image pyramid networks. (a) Plain network which
lacks multi-scale features. (b)(c) Inefficient image pyramid networks (shared weights / separate weights with
interactions) using equivalently large networks for all scales. (d) Parameter-direct image pyramid network
which processes high-resolution images with large models, leading to high computational cost. (e) Our efficient
parameter-inverted image pyramid network (PIIP), which pairs models of increasing parameter sizes inversely
with images of decreasing resolution. It delivers better performance than those of (b)(c)(d) with much lower
computational cost.

To address this, our key idea is that it is unnecessary to employ vision models of equivalent size for
feature extraction at all resolutions (Fig. 1(b-c)) or adopt a parameter-direct design (Fig. 1(d)). Fea-
tures at different resolutions can complement each other through adequate feature fusion, thereby
enhancing computational efficiency and avoiding redundant modeling of similar information. Specif-
ically, for lower-resolution pyramid levels, the smaller images allow the efficient use of larger mod-
els to extract rich contextual and semantic features. The high-resolution branches need only provide
the detail information missing from the lower-resolution features, instead of re-modeling existing
semantic information. Thus, high-resolution features can focus on smaller receptive fields with less
semantic information, making it possible to use smaller models to save computational resources.

Building on this strategy, a low-cost and high-performance image pyramid network can be con-
structed using a series of models with increasing parameter size, paired inversely with images of
decreasing resolution, as shown in Fig. 1(e). Each resolution level should be able to directly lever-
age existing pre-trained vision foundation models for feature extraction, avoiding the large compu-
tational costs for training multi-scale image pyramid networks from scratch. In addition, sufficient
feature interactions between different levels are also required to ensure the complementarity of fea-
tures at different scales and avoid redundant feature extractions.

To this end, we propose Parameter-Inverted Image Pyramid Networks (PIIP) based on the comple-
mentarity of image features at different resolutions. Specifically, the network takes images at mul-
tiple scales as inputs, where higher resolution features are extracted through networks with fewer
parameters for local detail perception, and lower resolution features are extracted with more param-
eters for global information extraction. Additionally, we introduce a feature interaction module that
allows features between different resolutions to complement each other. This structure reduces the
number of parameters of high-resolution branches and effectively integrates information from dif-
ferent receptive fields, significantly reducing computational costs without sacrificing performance.

We conduct experiments on object detection, instance segmentation, semantic segmentation and
image classification. Our method achieves better performance while reducing computational costs,
compared to traditional image pyramids and single-branch networks. These results validate the
effectiveness of our multi-resolution feature interaction strategy and parameter-inverted paradigm
and provide a new direction for future visual computing. Our contributions are as follows:

1) We propose a novel architecture named Parameter-Inverted Image Pyramid (PIIP) that enhances
the multi-scale representational capability of vision backbones with high computation efficiency.
The proposed architecture is capable of effectively and flexibly utilizing strong pre-trained vision
foundation models without the need for extensive training from scratch.

2) We evaluate our method on classic vision tasks of object detection, instance segmentation, seman-
tic segmentation, and image classification. Through combination of existing pre-trained models, our
method surpasses single-branch models and other image pyramid methods with higher performance
and lower computation cost.

3) To validate the generalizability of PIIP on large-scale vision foundation models, we apply PIIP to
InternViT-6B [8], improving its performance on object detection and semantic segmentation by 1.9%
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(55.7 APb) and 1.3% (59.7 mIoU) while reducing 43% and 58% of computational costs, respectively.
We also provide extensive analysis and valuable insights on ablation and design guidelines for PIIP
that may benefit future research.

2 Related Work

Image Pyramids and Feature Pyramids. Image pyramids and feature pyramids are two widely
used techniques to enhance the multi-scale perceptive ability for downstream dense prediction tasks.
Image pyramids [60, 39, 40, 37] resize the original image and extract features of different resolutions
separately, allowing models to accurately detect objects of various scales. However, this technique
significantly increases computational costs. Feature pyramids [27, 16, 42, 61, 34] represent another
method for constructing multi-scale feature representations by merging low-resolution, semantically
strong features with high-resolution, semantically weak features. Although significantly reducing
computational costs, they cannot fully replace image pyramids when detecting very small or large
objects [39]. Our proposed architecture integrates both image and feature pyramids and introduces
the parameter-inverted paradigm to achieve efficient computation.

Multi-branch Architectures. Multi-branch architectures have been widely adopted to combine fea-
tures from different resolutions in various computer vision tasks, including image classification [5],
object detection [46, 25, 7, 52], semantic segmentation [58, 17] and multimodal dialogues [33, 21].
CrossViT [5] adopts a two-branch structure with different patch sizes to obtain inputs of various
scales and different model sizes to balance the computational load. HRNet series [46, 58, 17] adopt
a four-branch architecture, where the number of branches gradually increases as the layers deepen.
However, they do not adopt the parameter inversion paradigm and cannot utilize existing pre-trained
models. In contrast, we propose a general model architecture that supports the use of pre-trained
models with different parameters to build efficient image pyramids.

Redundancy Reduction for Visual Models. Extensive studies focus on reducing computational re-
dundancy for acceleration. Some work exploits the sparsity of images to accelerate model inference
by reducing the number of visual tokens. Dynamic ViT [38] and AdaViT [35] design lightweight
prediction modules to predict and prune less informative tokens. EViT [26] and Evo-ViT [55] com-
pute attention scores for each token from class token to identify less informative tokens and adopt
accelerated processing strategies for them. Other approaches focus on improving the model struc-
ture for efficient computation, such as attention mechanisms [47, 17, 3] or gradually reducing the
spatial resolution as the number of layers increases [30, 49, 20]. Orthogonal to the above studies, we
propose to use a parameter-inverted design to avoid using large models to process high-resolution
images, greatly reducing the computation redundancy.

3 Parameter-Inverted Image Pyramid Networks

To construct efficient image pyramid networks, we employ a multi-branch structure to handle im-
ages of different resolutions with different sizes of models. As shown in Fig. 2, our architecture con-
sists of three parts: multi-resolution branches, cross-branch interactions, and branch merging. Each
branch uses an off-the-shelf pre-trained model to process images of different resolutions, where
larger resolutions are processed by branches with fewer parameters. Cross-branch interactions are
added every few blocks to fuse features across different feature scales. Branch merging combines
the outputs from all branches to form a final output. We use the existing pre-trained ViTs [43, 44, 41]
to initialize the branches, and initialize the interactions and branch merging from scratch.

3.1 Multi-Resolution Branches

The multi-resolution branches serve to extract representations from different image scales and se-
mantic levels. The input image is first resized to different resolutions through bilinear interpolation,
and then fed into corresponding branches to extract features at different scales. All the branches have
the same number of blocks N , where each block contains one or multiple ViT [13] layers. Typically,
blocks from different branches have different feature dimensions due to the pre-trained models, e.g.
ViT-T, ViT-S and ViT-B. Branches with larger image sizes have a smaller number of parameters. For
clarity, we refer to the branch with the largest number of parameters (with the smallest image size)
as Branch 1, the second largest as Branch 2, and so on. The output of the i-th block of Branch j is
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Figure 2: Overall architecture of our method. We use multi-resolution branches to process images of different
resolutions, where larger images are handled by smaller models. Interaction Units build connections between
branches. Branch merging combines the features of all branches to form the final output. Our architecture can
leverage pre-trained models with different model sizes to build efficient image pyramids.

denoted as F i
j ∈ RHjWj/P

2
j ×Dj , where Hj , Wj , Pj , Dj are the image height, image width, patch

size, and feature dimension of Branch j, respectively.

3.2 Cross-branch Interactions

Branches of different resolutions focus on different spatial scales and semantic levels. To enhance
the features of different scales, we propose the cross-branch interactions. Each cross-branch interac-
tion consists of several interaction units, where each unit builds connections between outputs from
two feature-scale adjacent branches. The structure of the interaction unit is shown in Fig. 3.

Specifically, for the outputs of the i-th block of Branch 1 and 2, denoted as F i
1 ∈ RH1W1/P

2
1 ×D1 and

F i
2 ∈ RH2W2/P

2
2 ×D2 , we perform two deformable cross-attention [63] between the two features,

denoted as Attention(·). Each cross attention is preceded by a linear layer FC(·) to project the
feature dimension of key and value into that of the query, i.e. from D1 to D2 or vice versa. A feed-
forward network FFN(·) is added after each cross attention to provide channel-wise feature fusion.
The hidden dimension ratio of FFN is set to 0.25 to save computational overhead.

For the first cross-attention in the interaction unit, the interaction process can be formulated as:

F̂ i
1 = F i

1 + γi
1Attention(norm(F i

1), norm(FC(F i
2))), (1)

F̃ i
1 = F̂ i

1 + τ i1FFN(norm(F̂ i
1)), (2)

where norm(·) is LayerNorm [1], τ i1 and γi
1 are learnable parameters, and F̃ i

1 is the interaction
output. τ i1 and γi

1 are initialized with 0 to ensure that the feature extraction of the original blocks
(i.e. distribution of F i

1) will not be modified drastically due to the interactions, better utilizing the
pre-trained weights.

Similarly, the second cross-attention is performed by switching the query and key/value to obtain F̃ i
2.

The outputs F̃ i
1 and F̃ i

2 are used for subsequent feature extractions. We only construct interaction
units between each pair of feature-scale adjacent branches, such as Branch 1 & Branch 2 and Branch
2 & Branch 3.

3.3 Branch Merging

The final feature maps of all branches F̃N
j have different spatial shapes and feature dimensions,

where spatially larger feature maps have fewer feature dimensions. A single feature map fails to pro-
vide multi-scale semantic features, so we employ the branch merging module to merge the outputs
of all branches into a single feature map.

As shown in Fig. 2, all branch outputs are first projected to the feature dimension of Branch 1
(the largest feature dimension) with Proj(·). Then, all branch outputs are upsampled by bilinear
interpolation Upsample(·) into the feature map size of the last branch (the largest feature map size).
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Figure 3: Structure of an interaction unit.

Finally, these outputs, with the same spatial shape and feature dimension, are added together with
learnable scalar weights wj to form the final output. This process can be formulated as:

F̃out
j = Upsample(Proj(F̃N

j )), (3)

Fout =

M∑
j=1

wjF̃out
j , (4)

where M is the number of branches. Fout is the final feature map, which has the largest feature
resolution and also the largest feature dimension across all branches.

For object detection and semantic segmentation, Proj(·) is a two-convolution layer with Group-
Norm [51], and the final output Fout is used for feature pyramid network [27] similar to ViTDet [23].

For image classification, we do not use the branch merging module, but instead append the original
classification heads of the pre-trained models after each branch. The final classification score is the
average of the output logits of all branches. We observe that using the pre-trained heads can speed
up convergence compared to using a randomly initialized head after a branch merging module.

4 Experiments

4.1 Implementation Details

For comparison with Base-size models, we use pre-trained ViT-T/S/B as the branches to construct
three-branch PIIP network, namely PIIP-TSB. Similarly, ViT-S/B/L are used to construct PIIP-SBL
to match the computation of Large-size models. We also construct four-branch PIIP-TSBL with
ViT-T/S/B/L. We set the number of interactions (each with 2 interaction units as shown in Fig. 2)
N to 12, i.e. after every layer for ViT-T/S/B or after every two layers for ViT-L. We construct
multiple variants of three-branch and four-branch models with different resolution configurations.
For combinations with an inconsistent number of layers, we will use a larger learning rate decay for
the backbone with fewer layers. For example, for ViT-S/B (12 layers) and ViT-L (24 layers), the
learning rate decay for ViT-S/B is set to be twice that of ViT-L (24/12=2).

For object detection and segmentation, we use ViT-S/B/L pre-trained on ImageNet [11] from DeiT
III [44], ViT-T from DeiT [43]. ViT-H from MAE [18] and InternViT-6B [8] are used for 6B-
scale experiments. For all PIIP-SBL models, we use the ImageNet-21K 384-resolution pre-trained
weights to compare with previous approaches. We adopt AdamW [32] optimizer with layer-wise
learning rate decay [2] to train the model on 8 NVIDIA A800 GPUs. For image classification,
in Base-size experiments we use pre-trained ViT-T/S/B weights from DeiT [43]. In Large-size
experiments, since DeiT does not provide ViT-L models, we use ImageNet-21K pre-trained ViT-
S/B/L weights from [41].

We use the FLOPs calculation script from MMDetection [6], with our modifications to accurately
calculate FLOPs of modules like self-attention and deformable attention. The script is released
along with the training code. We have also manually verified the calculations using formulas, and
the results are consistent with those produced by the script.
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Table 1: Comparison with baseline on COCO val2017. We report the number of parameters and FLOPs of
the backbone. Underline indicates FLOPs or metrics on par with the baseline. APb and APm represent box
AP and mask AP, respectively.

Model Resolution #Param #FLOPs Mask R-CNN 1× schedule
APb APb

50 APb
75 APm APm

50 APm
75

ViTDet-B [23] 1024 90M 463G 43.8 67.6 47.7 39.9 63.6 42.2
1120/896/448 146M 243G 43.9 65.7 47.5 38.6 61.8 40.6

PIIP-TSB (ours) 1568/896/448 147M 287G 45.0 67.0 48.7 40.2 63.8 42.6
1568/1120/672 149M 453G 46.6 68.4 51.1 41.4 65.2 44.3

ViTDet-L [23] 1024 308M 1542G 46.8 70.8 51.4 42.5 67.3 45.3
1120/672/448 493M 727G 46.7 69.0 50.6 40.8 65.2 42.8

PIIP-SBL (ours) 1344/896/448 495M 1002G 48.2 71.0 52.8 42.5 67.3 45.4
1568/896/672 497M 1464G 49.4 71.9 53.9 43.7 68.4 46.6

1344/896/672/448 506M 755G 46.9 69.9 50.6 41.6 65.9 44.1
PIIP-TSBL (ours) 1568/1120/672/448 507M 861G 48.2 70.5 52.7 42.8 66.9 45.6

1792/1568/1120/448 512M 1535G 49.6 72.4 54.2 44.2 69.2 47.5

(a) Object detection (b) Instance segmentation

Figure 4: Performance of different PIIP variants by adjusting input resolutions. Detailed resolution con-
figuration and results are provided in the appendix.

4.2 Object Detection and Instance Segmentation

Settings. The MS COCO [28] dataset is used to evaluate the performance on object detection and in-
stance segmentation. We use three detectors, including Mask R-CNN [19], Cascade R-CNN [4] and
DINO [59], based on MMDetection [6]. Following common practices [7], we adopt 1× (12 epochs)
or 3× (36 epochs) training schedules and use window attention [23] to save time and memory. The
total batch size is 16, and the initial learning rate and weight decay are 1e-4 and 0.05.

Effectiveness of Parameter-Inverted Image Pyramid. To demonstrate the performance and com-
putational advantages of the Parameter-Inverted Image Pyramid (PIIP) Networks, we perform val-
idation on two baseline models ViTDet-B and ViTDet-L [23] in Tab. 1. Taking the three-branch
structure as an example, while maintaining similar performance with ViTDet-B, our PIIP-TSB re-
duces the computational cost by 47.5% (243G vs. 463G) and 38.0% (287G vs. 463G) in object
detection and instance segmentation tasks respectively. Similarly, compared with ViTDet-L, our
PIIP-SBL reduces the computational cost by about 52.9% (727G vs. 1,542G) and 35.0% (1,002G
vs. 1,542G) in the above two tasks respectively. On the other hand, with similar computational
cost as the baseline, PIIP-TSB and PIIP-SBL improve the object detection performance by 2.8%
and 2.6%, respectively, and instance segmentation by 1.5% and 1.2%, compared to ViTDet-B and
ViTDet-L. To better illustrate the above conclusion, we depict the trend between the computational
cost and performance of different PIIP model combinations by adjusting the input resolution, as
shown in Fig. 4. Furthermore, when we use the four-branch structures, the curve in the figure is
slightly better than that of the three-branch structure.
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Table 2: Object detection and instance segmentation performance on COCO val2017. ‘MS’ means using
AutoAugment [10] for multi-scale training. Large-size models use ViT weights trained on ImageNet-21K. The
ViTDet-B and ViTDet-L results (and other entries) are cited from ViT-Adapter [7]. PIIP-SBL with Mask R-
CNN uses higher resolutions than those in Tab. 1, as reported in Tab. 12. For PIIP-TSB with Mask R-CNN,
higher resolutions (1568/896/672 -> 1792/1344/672) and a larger window size (14 -> 28) are used, compared
with the results in the Tab. 1.

Method APb APb
50 APb

75 APm APm
50 APm

75

Mask R-CNN 1× schedule
PVTv2-B5 [49] 47.4 68.6 51.9 42.5 65.7 46.0

ViT-B [24] 42.9 65.7 46.8 39.4 62.6 42.0
ViTDet-B [23] 43.2 65.8 46.9 39.2 62.7 41.4
Swin-B [30] 46.9 - - 42.3 - -

ViT-Adapter-B [7] 47.0 68.2 51.4 41.8 65.1 44.9
PIIP-TSB (ours) 47.9 70.2 52.5 42.6 67.2 45.5

ViT-L [24] 45.7 68.9 49.4 41.5 65.6 44.6
ViTDet-L [23] 46.2 69.2 50.3 41.4 65.8 44.1

ViT-Adapter-L [7] 48.7 70.1 53.2 43.3 67.0 46.9
PIIP-SBL (ours) 49.9 72.8 54.7 44.6 69.3 47.9

DINO + MS 3× schedule
PIIP-SBL-3× (ours) 57.9 76.9 63.3 - - -

Method APb APb
50 APb

75 APm APm
50 APm

75

Cascade R-CNN 1× schedule
Swin-L [30] 51.8 71.0 56.2 44.9 68.4 48.9

ConvNeXt-L [31] 53.5 72.8 58.3 46.4 70.2 50.2
PIIP-SBL (ours) 53.6 73.3 57.9 46.3 70.3 50.0

Cascade R-CNN 3× + MS schedule
Swin-B [30] 51.9 70.9 57.0 - - -

Shuffle-B [22] 52.2 71.3 57.0 - - -
ViT-B [24] 50.1 69.3 54.3 - - -

ViT-Adapter-B [7] 52.1 70.6 56.5 - - -
PIIP-TSB (ours) 53.1 72.3 57.4 46.5 70.1 51.1

Swin-L [30] 53.9 72.4 58.8 46.7 70.1 50.8
RepLKNet-31L [12] 53.9 72.5 58.6 46.5 70.0 50.6

ConvNeXt-L [31] 54.8 73.8 59.8 47.6 71.3 51.7
PIIP-SBL (ours) 54.5 73.8 59.1 47.7 71.6 52.1

Table 3: Experiments on the large-scale vision foundation model InternViT-6B.

Model #Param Mask R-CNN 1× schedule UperNet 160k
#FLOPs Resolution APb APm Crop Size #FLOPs mIoU

InternViT-6B [8] 5919M 24418G 1024 53.8 48.1 5122 6105G 58.36

7269M 5643G 1280/1024/256 53.5 47.5 640/5122/192 1903G 57.82
PIIP-LH6B (ours) 7271M 10368G 1280/1024/512 54.4 47.8 640/5122/256 2592G 58.42

7273M 13911G 1280/1024/640 55.7 49.0 640/5122/384 4560G 59.65

Results with Base-size and Large-size models. As shown in Tab. 2, combined with Mask R-CNN,
PIIP achieves higher performance than ViT-Adapter by a considerable margin, about 0.9% and 1.2%
on APb. With a more powerful detector Cascade R-CNN and stronger training schedule (3× +
MS), PIIP-TSB and PIIP-SBL achieve competitive performance of 53.1% and 54.5% APb, respec-
tively. Finally, we achieve 57.9% APb with the DINO [59] detector. These results demonstrate the
scalability of PIIP.

Results with InternViT-6B. We further examine PIIP on an extremely large vision foundation
model InternViT-6B [8]. As can be seen from Tab. 3, PIIP-LH6B finally achieves 55.7% APb

when using Mask R-CNN 1× training schedule. In addition, our PIIP can save nearly 43% of the
computation and achieve better performance than the single-branch InternViT-6B by 1.9% on APb

and 0.9% on APm.

4.3 Semantic Segmentation

Settings. We use UperNet [54] as the basic framework to train on the ADE20K [62] dataset based
on MMSegmentation [9]. We follow the settings of [30] to train the model for 160k iterations. The
batch size, initial learning rate and weight decay are 16, 4e-5 and 0.05.

Results with Base-size and Large-size models. In Tab. 5, PIIP can achieve better performance
with fewer computations compared with single-branch baselines. In Tab. 4, we compare PIIP with
state-of-the-art segmentation backbones. PIIP-TSB attains 51.6% mIoU with UperNet, exceeding
InternImage-B [48] by 1.4%. Similarly, PIIP-SBL yields 54.3% mIoU, which is outstanding com-
pared to counterparts like ConvNeXt-XL [31] and InternImage-L [48].

Results with InternViT-6B. As shown in Tab. 3, similar to the conclusions obtained in the object
detection experiment, our method achieves better performance than the InternViT-6B baseline with
less computation. PIIP-LH6B finally achieves 59.65% mIoU without using additional optimization
techniques.
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Table 4: Semantic segmentation performance on
ADE20K using UperNet.

Method Crop Size mIoU

Swin-B [30] 5122 48.1

ConvNeXt-B [31] 5122 49.1

RepLKNet-31B [12] 5122 49.9

SLaK-B [29] 5122 50.2

InternImage-B [48] 5122 50.2

PIIP-TSB (ours) 896/4482/336 51.6

Swin-L [30] 6402 52.1

RepLKNet-31L [12] 6402 52.4

ConvNeXt-L [31] 6402 53.2

ConvNeXt-XL [31] 6402 53.6

InternImage-L [48] 6402 53.9

PIIP-SBL (ours) 1120/4482/336 54.3

Table 5: Comparison with baseline on ADE20K
using UperNet.

Method Crop Size #FLOPS mIoU

ViT-B 6402 159G 51.0
PIIP-TSB (ours) 896/4482/336 118G 51.6

ViT-L 6402 545G 53.6
PIIP-SBL (ours) 1120/4482/336 456G 54.3

Table 6: Image classification performance on
ImageNet. Underline indicates FLOPs or metrics
on par with the baseline.

Model Resolution #FLOPs Top-1 Acc

DeiT-B [43] 224 17.2G 81.8
PIIP-TSB (ours) 368/192/128 17.4G 82.1

ViT-L [41] 224 61.6G 84.0
ViT-L [41] (our impl.) 224 61.6G 85.2

PIIP-SBL (ours) 320/160/96 39.0G 85.2
PIIP-SBL (ours) 384/192/128 61.2G 85.9

Table 7: Ablation on image pyramid and parameter-inverted design. ‘PI’, ‘IP’ and ‘Inter.’ represent
parameter-inverted, image pyramid and interactions. ‘MS’ means multi-scale training, following [10].

Figure Branches PI IP Inter. Resolution #Param #FLOPs Mask R-CNN 1× schedule
APb APb

50 APb
75 APm APm

50 APm
75

Fig. 1(a) B 1024 90M 463G 43.8 67.6 47.7 39.9 63.6 42.2
Fig. 1(b) B ✓ MS 90M 463G 44.8 69.2 49.1 41.0 65.8 43.9

- BBB ✓ 896/448/224 262M 369G 43.3 65.8 46.6 37.9 61.5 39.6
- BBB ✓ 896/672/224 263M 457G 43.8 66.3 47.3 38.2 62.2 39.7

Fig. 1(c) BBB ✓ ✓ 896/448/224 341M 466G 44.5 66.5 48.2 38.7 62.6 40.6
- TSB ✓ 896/896/896 148M 468G 44.6 66.4 48.3 39.0 62.7 41.4

Fig. 1(d) TSB ✓ ✓ 448/672/896 147M 452G 42.6 64.2 45.6 36.5 59.5 38.0
Fig. 1(e) TSB ✓ ✓ ✓ 1568/1120/672 149M 453G 46.6 68.4 51.1 41.4 65.2 44.3

Fig. 1(a) L 1024 308M 1542G 46.8 70.8 51.4 42.5 67.3 45.3
Fig. 1(c) LLL ✓ ✓ 896/448/224 1053M 1458G 46.9 69.7 51.2 40.8 65.3 43.3

- SBL ✓ 848/848/848 495M 1539G 47.2 69.4 51.0 41.1 65.4 43.7
Fig. 1(e) SBL ✓ ✓ ✓ 1568/896/672 497M 1464G 49.4 71.9 53.9 43.7 68.4 46.6

4.4 Image Classification

Settings. We load the pre-trained models for each branch and train the model for 20 epochs on
ImageNet-1K [11]. The batch size, initial learning rate and weight decay are 1024, 3e-5 and 0.1.
The learning rate for the random initialized interactions is 10 times the base learning rate, i.e. 3e-4.
The other settings mainly follow the fine-tuning recipe of [44] and are provided in the appendix.

Results. As shown in Tab. 6, when compared with the DeiT baseline, our PIIP-SBL reduces the
computational cost by 36.7% (39.0G vs. 61.6G) while maintaining the performance. When using
a similar computational cost as the baseline models, PIIP-TSB and PIIP-SBL improve the top-1
accuracy by 0.3% and 0.7%, respectively.

4.5 Ablation Study

Superiority of parameter-inverted image networks. We evaluate the effectiveness of the image
pyramid and parameter-inverted design by comparing our method with other methods, e.g. designs
in Fig. 1. First of all, a single-branch with multi-scale training is the simplest image pyramid practice,
as shown in Tab. 7. Compared with the baseline model, its performance improvement is limited
(44.8% vs. 43.8%). Secondly, we conduct experiments by controlling the scale of the branch model
and the input resolution while ensuring that the total computational cost is close. Specifically, when
using the same input image resolution, the combination of models of different sizes does not bring
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(a) Variants with different resolutions (b) Number of interactions

Figure 5: Ablation on model variants and number of interactions.

Table 8: Ablation on Branch
Merging on COCO val2017.
We use PIIP-TSB 1568/896/672.

Out Branch APb APm

B 43.1 37.0
S 44.7 39.1
T 45.6 40.6

B+S 45.4 39.8
B+T 46.3 41.1
S+T 46.2 40.9

B+S+T 46.6 41.4

Table 9: Ablation on attention type and number of interactions with
PIIP-TSB 1120/896/448.

#Inter. Regular Attention Deformable Attention
#FLOPs APb APb

l APb
m APb

s #FLOPs APb APb
l APb

m APb
s

0 176G 41.3 59.0 44.6 22.5 176G 41.3 59.0 44.6 22.5
1 211G 41.1 59.1 44.9 22.6 182G 41.9 59.8 45.5 22.4
2 245G 41.7 59.5 45.2 22.7 187G 42.5 60.5 46.4 23.1
4 315G 41.6 59.2 45.3 22.8 198G 43.0 61.0 47.3 23.3
6 384G 42.1 59.7 45.8 23.2 210G 43.3 61.8 46.9 23.6

12 592G 42.0 60.0 45.9 23.1 243G 43.9 62.4 47.9 24.4

significant improvements to detection performance. Correspondingly, when the three branches use
the same model (e.g. BBB), the input image resolution is adjusted to the pyramid structure. The
performance of the final model is slightly improved on APb (44.5% vs. 43.8%), but the APm

drops significantly (38.7% vs 39.9%) due to the reduction of the maximum resolution. The former
demonstrates the importance of the image pyramid, and the latter further demonstrates the need
for the image pyramid to maintain a larger image scale range, which is especially essential for
instance segmentation. Drawing on experience, parameter-inverted image networks are an efficient
design method that can meet the above requirements, especially when compared to its opposite
configuration parameter-direct image pyramid, i.e. TSB with 448/672/896 resolution (46.6% vs.
42.6%). As shown in Tab. 7, with less computation than the baseline, the model can support image
inputs in the maximum range from 672 to 1,568, and the performance is significantly improved.

Design guidelines for parameter-inverted image networks. Through extensive practice, there
are two empirical design guidelines when scaling up the model: 1) Prioritize increasing the image
resolution of the largest image branch: as shown in the blue dashed circle in Fig. 5(a), the input
resolution of the largest image branch is greatly increased without causing a sharp increase in the
total computational cost. 2) The largest model does not need to exceed the compared baseline model:
the introduction of larger models will limit the resolution range of the image pyramid, e.g. TSB is
more cost-effective than TBL according to Fig. 5(a).

Branch merging. Experiments in Tab. 8 prove that branch merging of all branches yields the best
performance by providing multi-scale semantically rich features, compared to only using feature
maps from single or partial branches.

Attention type. The core of information interaction between branches is cross-attention. We adopt
PIIP-TSB with resolution 1120/896/448 as the basic model and investigate two different attention
mechanisms. As shown in Tab. 9, deformable attention [53] with linear complexity can significantly
improve the performance of the model without substantially increasing the computational cost. We
end up using deformable attention as the default configuration. Notably, it can be replaced by other
more advanced attention mechanisms in the future to further boost performance.

9



Table 10: Ablation on interaction directions with PIIP-TSB under resolution 1120/896/448.

Type

#FLOPs 210G 230G 230G 243G 283G

APb 43.5 43.2 43.6 43.9 44.0

APm 38.7 38.3 38.6 38.6 38.7

Figure 6: Performance of different interaction directions.

Number of interactions. As shown in Tab. 9, no matter which attention mechanism is used, the
increase in the number of interactions will improve the performance of the model to varying degrees.
Since it also increases the computational cost, we further explore the cost-effectiveness of different
numbers of interactions. We conduct experiments with different resolution combinations on models
with different numbers of interactions, and the scatter plot of all results is shown in Fig. 5(b). It
can be seen that when the number of interactions is small (less than 2), the growth trend of model
performance with the increase in computational cost is relatively slow. We attribute this to too few
interactions and insufficient information complementation between branches. Therefore, we use 12
interactions by default. Note that as the model size increases (e.g. more layers), the number of
interactions can also increase accordingly.
Interaction direction between branches. We compare five different interaction directions in
Tab. 10. Considering both the computational cost and performance, we finally choose the fourth
method, i.e. bidirectional connections of adjacent branches, as the default choice. As can be seen
from Fig. 6, all the interaction directions achieve a satisfactory performance-computation balance,
validating their ability to improve communication between branches.

5 Conclusion

This paper introduces the Parameter-Inverted Image Pyramid Networks (PIIP) to address the com-
putational challenges of traditional image pyramids. With the parameter-inverted design and fea-
ture interaction mechanism, PIIP effectively balances computational efficiency and performance.
Extensive experiments on detection, segmentation and classification tasks demonstrate that PIIP
outperforms traditional methods and single-branch networks while reducing computational costs,
providing an efficient and effective framework of multi-scale feature integration for future research.

Limitations. While our method manages to save computation, its memory consumption is higher
than single-branch models due to the increase of parameter count. Our current method only focuses
on ViT-based models. PIIP with hierarchical networks (e.g. CNN) or heterogeneous structures (e.g.
CNN for some branches and ViT for other branches) remain unexplored for future work.
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A Appendix

A.1 Detailed Training Settings for Image Classification

Detailed training settings for image classification are provided in Table 11.

A.2 Full Detection Results

Full results of Fig. 4 are provided in Table 12.

Table 11: Detailed training setting for image classification.

batch size 1024
epochs 20

optimizer AdamW
weight decay 0.1

learning rate scheduler cosine
initial learning rate 3e-5

warmup epochs 5

mixup 0.8
cutmix 1.0

random erasing 0
auto augment ✓

color jitter 0.3

label smoothing 0.1
dropout 7

drop path rate
0.4 (ViT-L) / 0.2 (ViT-B) /

0.05 (ViT-S, ViT-T)
repeated aug 7

gradient clip 7

loss cross entropy

A.3 Broader Impacts

Our method helps to save computational overheads of large-scale vision foundation models such as
InternViT-6B, therefore reducing energy consumption. This may bring positive impacts on carbon
emissions reduction and contribute to environmental sustainability. However, energy consumption
of large models still needs to be treated with caution.
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Table 12: Full results of PIIP variants under different resolution configurations.

Model Resolution #FLOPs Mask R-CNN 1× schedule
APb APb

l APb
m APb

s APm APm
l APm

m APm
s

896/672/448 176G 42.1 62.2 46.8 20.8 36.9 60.9 40.2 13.7
1120/672/448 192G 42.7 62.3 46.9 22.7 37.9 61.2 40.9 15.4
1344/672/448 212G 43.5 62.1 47.2 23.5 38.9 60.9 41.7 16.2
1120/896/448 243G 43.9 62.4 47.9 24.4 38.6 60.8 41.9 16.6

PIIP-TSB
1344/896/448 263G 44.5 62.1 48.3 24.9 39.5 61.1 42.6 17.5
1568/896/448 287G 45.0 62.0 48.4 26.2 40.2 61.4 43.3 19.0
1568/896/672 387G 45.8 62.9 49.9 27.2 40.7 62.3 44.1 19.5

1568/1120/672 453G 46.6 63.1 50.9 28.5 41.4 62.3 45.0 20.6
1792/1120/672 480G 46.7 63.0 50.6 29.0 41.7 62.5 45.0 20.5
1792/1344/672 561G 46.8 62.5 50.8 30.1 42.0 62.5 45.1 21.8

672/448/224 245G 41.1 63.6 45.8 18.4 35.3 61.5 38.4 10.7
896/448/224 298G 43.5 63.9 47.8 21.9 37.7 62.4 41.1 14.3
1120/448/224 367G 45.2 63.7 49.4 25.2 39.6 62.9 42.9 16.7
1120/672/224 504G 45.8 64.7 50.0 26.1 40.3 63.3 43.8 17.4

PIIP-SBL
1120/672/448 727G 46.7 63.0 50.6 29.0 40.8 64.4 44.1 18.1
1344/672/448 811G 47.5 65.8 51.7 27.6 42.0 64.7 45.7 19.5
1344/896/448 1002G 48.2 66.2 52.5 28.8 42.5 65.3 46.2 20.1
1568/896/672 1464G 49.4 66.5 53.9 30.6 43.7 64.9 47.5 22.0

1568/1120/672 1709G 49.9 66.9 54.3 31.7 44.3 65.3 48.0 22.9
1792/1120/672 1824G 49.9 65.9 54.3 32.0 44.6 65.4 48.3 23.1

1344/896/672/448 755G 46.9 65.5 50.4 27.8 41.6 64.4 44.7 19.5
1568/1120/672/448 861G 48.2 66.1 52.0 29.4 42.8 64.7 46.0 21.0

PIIP-TSBL 1568/1120/896/448 1052G 48.7 66.4 52.4 30.2 43.4 65.2 46.7 21.4
1792/1344/896/448 1180G 49.0 65.9 52.7 30.5 43.7 65.0 47.0 22.4
1792/1568/1120/448 1535G 49.6 65.7 53.1 32.1 44.2 65.2 47.5 22.9

A.4 Licenses of Datasets

ImageNet-1k [11] is subject to the ImageNet terms of use [45].

COCO [28] is subject to the Flickr terms of use [15].

ADE20K [62] is subject to the ADE20K terms of use [36].
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions are stated in the abstract and introduction.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: The limitations are discussed in the conclusion section.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means
that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the ap-
proach. For example, a facial recognition algorithm may perform poorly when image
resolution is low or images are taken in low lighting. Or a speech-to-text system might
not be used reliably to provide closed captions for online lectures because it fails to
handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to ad-
dress problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theo-

rems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a
short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclu-
sions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The details are provided in the experiment section and the appendix. Our
code has been released.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend
on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to re-
produce the model (e.g., with an open-source dataset or instructions for how to
construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case au-
thors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: The data is publicly available datasets. Our code has been released. Details
to reproduce the experiments is described in the experiments section and the appendix.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Training details are in the experiment section and appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropri-
ate information about the statistical significance of the experiments?
Answer: [No]
Justification: Calculating error bars would be too computational expensive, given the size
of the model and the dataset.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should prefer-

ably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of
Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Details are in the experiment section and the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: the paper conforms the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader impacts are discussed in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitiga-
tion strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by re-
quiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Datasets are referenced. License are provided in the appendix.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the pack-

age should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the li-
cense of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documenta-
tion provided alongside the assets?
Answer: [Yes]
Justification: Documentation is be provided along with the code and models.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the pa-
per include the full text of instructions given to participants and screenshots, if applicable,
as well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should
be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimum wage in the country of the
data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiva-
lent) may be required for any human subjects research. If you obtained IRB approval,
you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity
(if applicable), such as the institution conducting the review.

22


	Introduction
	Related Work
	Parameter-Inverted Image Pyramid Networks
	Multi-Resolution Branches
	Cross-branch Interactions
	Branch Merging

	Experiments
	Implementation Details
	Object Detection and Instance Segmentation
	Semantic Segmentation
	Image Classification
	Ablation Study

	Conclusion
	Appendix
	Detailed Training Settings for Image Classification
	Full Detection Results
	Broader Impacts
	Licenses of Datasets


