
Open-Ended Reinforcement Learning with Neural
Reward Functions

Robert Meier ∗

Department of Computer Science
ETH Zürich

Zürich, Switzerland
romeier@inf.ethz.ch

Asier Mujika ∗

Department of Computer Science
ETH Zürich

Zürich, Switzerland
asierm@inf.ethz.ch

Abstract

Inspired by the success of unsupervised learning in Computer Vision and Natural
Language Processing, the reinforcement learning community has recently started
to focus more on unsupervised discovery of skills. Most current approaches, like
DIAYN or DADS, optimize some form of mutual information objective. We pro-
pose a different approach that uses reward functions encoded by neural networks.
These are trained iteratively to reward more complex behavior. In high-dimensional
robotic environments our approach learns a wide range of interesting skills includ-
ing front-flips for HALF-CHEETAH and one-legged running for HUMANOID. It is
the first skill discovery algorithm that can learn such skills without relying on any
form of feature engineering. In the pixel-based Montezuma’s Revenge environment
our method also works with minimal changes and it learns complex skills that
involve interacting with items and visiting diverse locations. The implementation
of our approach can be found here.

1 Introduction

Deep reinforcement learning (RL) has proven to be very successful in many challenging tasks (Mnih
et al., 2015; Silver et al., 2017b; Berner et al., 2019). These were considered intractable just a
few years ago. However, current methods require enormous amounts of compute to achieve great
performance in individual tasks. Most of the time, previous models can not be utilised when new
tasks are considered, even if the environment does not change. This was also the case in Computer
Vision and Natural Language Processing. However, recently unsupervised learning has been shown
to be very effective in both fields. By using task agnostic pre-training schemes (Tenney et al., 2019;
Brown et al., 2020; Caron et al., 2021), unsupervised models can solve most tasks with minimal
or even no fine-tuning. Unsupervised reinforcement learning aims to bring similar successes to the
reinforcement learning community.

Agents which learn a wide range of unsupervised skills may be able to leverage those to solve new
tasks faster and with minimal fine-tuning.

Here, we propose a new method for open-ended, unsupervised skill discovery.

We devise an iterative process which creates pairs of neural reward functions and policies. The policy
optimizes the corresponding reward function. Each of them corresponds to a skill that the agent has
learned. The neural reward function is a neural network that maps the current observation to a scalar
reward. In each iteration, the neural reward function is modified to differ from the previous one. This
results in increasing the complexity of the encoded task. Then, a new skill is trained to optimize this
reward function. We devise several techniques to transfer the knowledge from previously learned

∗equal contribution

36th Conference on Neural Information Processing Systems (NeurIPS 2022).

https://github.com/amujika/Open-Ended-Reinforcement-Learning-with-Neural-Reward-Functions

skills. These mechanisms enable learning the most complex reward functions that our method creates.
In fact, we show that some of the functions are impossible to learn from scratch.

We empirically test our framework in a diverse set of environments. First, we apply it to a simple 2d
navigation task. This lets us perform experiments quickly and gain a solid empirical understanding of
the different components of our method. Then, we apply it to three robotic environments where we
have continuous high-dimensional observations and actions. In contrast to previous methods, our
approach can deal with high-dimensional input directly without feature engineering. Finally, we
apply it on the challenging Montezuma’s Revenge Atari game which has visually rich pixel based
observations and discrete actions. Despite their differences, our method manages to learn useful and
interesting skills in all of them. This shows that neural reward functions are equipped to encode
meaningful tasks in diverse environments. We highlight the main contributions of this paper:

• Propose the first skill-discovery algorithm to work in high-dimensional environments without
prior expert knowledge.

• Solve a 2d maze that cannot be solved by using random exploration.
• Acquire complex skills including performing front- and back-flip in the HALF-CHEETAH,

running in all directions in ANT and HUMANOID, standing and jumping on one leg in
HUMANOID.

• Learn to run as fast in HUMANOID as a supervised agent trained for tens of millions of steps.
• Achieve a higher Particle-Based Mutual Information Metric (Gu et al., 2021) than approaches

that explicitly optimize this metric.
• Collect the first key and reach several rooms in Montezuma’s Revenge.

2 Related Work

Our work fits best into the unsupervised skill discovery literature (Mohamed & Rezende, 2015;
Gregor et al., 2016; Florensa et al., 2017a; Achiam et al., 2018; Eysenbach et al., 2018; Sharma et al.,
2019; Choi et al., 2021). Compared to DIAYN (Eysenbach et al., 2018) and similar approaches, we
do not fix the number of skills to be learned at the beginning of training. This allows us to learn
new skills in an open-ended fashion. On top of that, maximizing mutual information can lead to
degenerate behaviors in high-dimensional environments. By manipulating a small subset of the
dimensions, a lot of information can be encoded, without exploring the rest of the state space. Due to
this issue, previous methods only consider a hand-picked subset of the dimensions to perform well.

Open-ended learning (Srivastava et al., 2012; Wang et al., 2019, 2020; Campero et al., 2020; Dennis
et al., 2020; Ecoffet et al., 2021; Stooke et al., 2021) is closely related to unsupervised skill discovery.
However, most approaches require either a parameterizable environment (Wang et al., 2019, 2020),
some fixed encoding of tasks (Stooke et al., 2021) or self-competition (Silver et al., 2017a; Baker
et al., 2019). This limits the applicability to environments that are engineered with these restrictions
in mind. In contrast, neural networks are universal function approximators and thus, our approach
can encode any possible task in any possible environment, as long as the input is chosen appropriately.
Similar to our method, the Go-Explore algorithm (Ecoffet et al., 2021) also explores around the
frontier of the known. It uses a handcrafted feature map to group similar states. Instead, we use
neural reward functions to group them as skills. This does not use any expert knowledge.

Another related line of research to our approach is intrinsic motivation (Stadie et al., 2015; Bellemare
et al., 2016; Pathak et al., 2017; Burda et al., 2018b,a; Pathak et al., 2019; Raileanu & Rocktäschel,
2020). These approaches have managed great success in hard-exploration Atari games. However,
these approaches do not learn multiple skills by default. Additionally, their goal is to reward all novel
states, which leads to general policies that visit many states. In contrast, skill discovery algorithms
try to reward narrow regions of the state space to achieve controllability of meaningful dimensions.

Encoding reward functions as neural networks has also been considered in the literature. Compared
to our work, they are trained with supervised signals (Abbeel & Ng, 2004; Fu et al., 2017; Singh et al.,
2019; Li et al., 2021). Other approaches train auxiliary rewards with meta-learning (Zheng et al.,
2018; Du et al., 2019; Veeriah et al., 2019) to enhance the learning of the original reward function.

Another approach to train multiple behaviors is goal-conditioned learning (Kaelbling, 1993; Schaul
et al., 2015; Andrychowicz et al., 2017; Rauber et al., 2017; Nair et al., 2018; Veeriah et al., 2018;

2

Warde-Farley et al., 2018; Pong et al., 2019; Choi et al., 2021). In automated curriculum learning
(Bengio et al., 2009; Florensa et al., 2017b; Forestier et al., 2017; Graves et al., 2017; Sukhbaatar
et al., 2017; Florensa et al., 2018; Matiisen et al., 2019; Narvekar et al., 2020; Portelas et al., 2020a,b;
Zhang et al., 2020), a sequence of goals is created such that each of them is not too hard nor too easy
for the current agent. These approaches mostly rely on low-dimensional goal embeddings. When
dealing with high-dimensional observations, they must use dimensionality reduction techniques.
These techniques can introduce instabilities or destroy relevant information from the input. Our
approach, on the other hand, can deal with high-dimensional inputs directly. On top of that, goals
encode a narrow region of the state space, while each of our reward functions can be rewarding in a
large region. This speeds-up the exploration in ‘easy’ regions of the state space.

3 Method

We introduce a method that performs open-ended, unsupervised skill discovery. It iteratively creates
pairs of neural reward functions Rψ and policies πθ trained to maximize the corresponding Rψ.
Our proposed method alternates between increasing the complexity of the reward function Rψ and
leveraging the previously learned skills to learn a policy πθ that can solve the new Rψ . This yields a
general learning procedure that learns complex skills in a diverse set of environments. See Figure 1
for a high level overview.

3.1 Increasing the complexity of Rψ

Figure 1: Main steps of our algorithms open-ended
training loop.

The reward function in a fully observable
Markov Decision Process (MDP) is by definition
a function of the current observation, the next
one and the action that was performed. However,
in many cases this can be reduced to a function of just the current observation. Because of this, we
opt for these simpler reward functions as the basis of our Rψ. In our method, the reward function
Rψ is a neural network which takes observations ot as input and outputs a single scalar value, the
instantaneous reward rψt .

Assume that we have a policy πθ that can reach states in the MDP which are rewarding under Rψ . To
increase the complexity of the reward function, we do the following:

• Decrease the reward of states which are visited by πθ, as we already have a policy that
reaches these states. We create a data set Oneg of such states. We refer to these states as
negative samples.

• Increase the reward of states that can almost be reached by the current policy. This allows
us to leverage πθ to learn the new reward function. We create a data set Opos of such states.
We refer to these states as positive samples.

To generate the negative samples, we run πθ for a given number of steps (ideally until it reaches
rewarding states) and store the visited states. To then generate positive samples, we change to
performing random actions2 for a fixed number of steps. To ensure that the new reward function is
different from all previous ones, we also keep track of all the negative samples that we have collected
for all skills in a data set Oneg all.

Finally, we set target values a and −a for the positive and negative samples respectively, and train the
reward network using standard supervised learning on the following loss:

Lψ =
∑

o∈Oneg

(Rψ(o) + a)2

|Oneg|
+

∑
o∈Oneg all

(Rψ(o) + a)2

|Oneg all|
+

∑
o∈Opos

(Rψ(o)− a)2

|Opos|

This loss ensures that positive samples that have never been seen before have positive reward in
the next Rψ, while all other samples that have been seen before decrease their reward. In the
reinforcement learning phase we clip rewards to the [0, a] range. This ensures that the agent seeks
positive samples, rather than less negative ones.

2In MDPs with discrete actions we sample actions u.a.r. and in the continuous case, we keep the mean of πθ

and increase the standard deviation.

3

3.2 Forward transfer for πθ

Given the procedure presented in Section 3.1, we create increasingly complex reward functions.
While this is great for open-ended learning, it eventually leads to skills that are too complex and
cannot be learned from scratch. In order to learn these skills, we must leverage previous knowledge
about the environment. In this section we present several forward transfer mechanisms that are
necessary for the most complex skills.

In principle, our method can be combined with any standard reinforcement learning (RL) technique.
But here, we focus on actor-critic methods like Advantage Actor-Critic (Mnih et al., 2016) or Proximal
Policy Optimization (Schulman et al., 2017) for learning πθ for several reasons. These methods have
a value network that is separate from the policy which allows us to use different transfer mechanisms
for the value and policy network. Also, these approaches work for both continuous and discrete
action spaces. This allows us to use the same technique for the robotic environments and for the 2d
navigation tasks. Finally the learned policies are stochastic which increases the diversity of negative
samples and speeds up the skill discovery process. See Section 4.1.2.

We present our three forward transfer mechanisms below. All of them exploit the similarity between
consecutive reward functions to ensure that even very complex reward functions can be solved by the
RL agent in a reasonable number of environment interactions.

• Value Reuse: Initialize the value network to the final value network of the previous agent.
While two consecutive reward functions are different, both still reward close-by regions of
the state space. Thus, by keeping the previous value function, the policy network will be
nudged towards that region of the state space from the very first gradient updates.

• Policy Feature Reuse: Initialize the policy network to the final policy of the previous agent
but setting the weights of the final layer to 0. This keeps the previously learned features, but
outputs a uniform policy over all actions (or mean 0 and a fixed standard deviation in the
continuous case) which allows for proper learning and exploration3.

• Guiding Policy: Act with the previous policy for a random number of steps at the beginning
of each episode. This heavily simplifies the exploration problem. The agent will start
exploring from states that are much closer to the rewards defined by Rψ . This is because the
previous policy could already solve the previous reward function. In contrast to the other
two mechanisms, this one does not rely on initialization. Thus, this is the most effective in
sparse reward functions that need many parameter updates to be learned.

In Section 4.1.1 we individually evaluate these three techniques and show that their combination is
necessary in complex environments.

Putting everything together we get an algorithm which learns reward functions that encode increas-
ingly complex behaviors and learns RL agents that solve those reward functions. Figure 1 illustrates
the main steps of our training loop and see Algorithm 1 in the appendix for more detail.

4 Experiments

We now proceed to experimentally test our method. First, in Section 4.1, we thoroughly test all
different components of our model in a 2d navigation task. This task allows us to verify the function
of each component and also to explicitly visualize what each reward function is encoding.

Then, in Section 4.2, we move to BRAX robotic environments (Freeman et al., 2021). These have a
lot of flexibility and thus allow the agent to learn very complex tasks. In these tasks, we evaluate the
complexity of our skills by measuring their zero-shot transfer ability to the environment rewards. In
the HUMANOID environment, our unsupervised skills outperform supervised agents trained for tens
of millions of time steps. We also compute the one dimensional particle-based mutual information
metric that has been proposed in the literature before (Gu et al., 2021) and show that our method
outperforms previous approaches, even when other approaches only consider handcrafted feature
dimensions in their objective.

3Policies at the end of learning can be very deterministic which slows down or completely stops learning of
new reward functions.

4

Finally, in Section 4.3, we apply our method to Montezuma’s Revenge. We show that the learned
reward functions keep getting increasingly complex and we are mostly limited by the amount of
compute that it takes to learn each new reward function.

4.1 2D Navigation Task

Figure 2: The black bars represent the
walls and the dotted line represents the
danger zone in the 2d maze. 40 skills dis-
covered by our method are shown. For
each skill, the circles represent the av-
erage position of locations visited often.
Colors change from early skills in purple
to late skills in red. Consecutive reward
functions are connected by a line. The
agent learns increasingly complex skills,
until it reaches the bottom right corner
of the maze; the hardest part to reach in
the whole maze.

The task consists of a 32 by 32 maze with several walls and
a ‘danger zone’. The observation is given as a 32x32x1
image with all values set to 0, except a 1 in the current
position of the agent. The agent starts in the top left corner
and can perform 5 actions, either move in one of the car-
dinal directions or stay in the current position. If the agent
moves into a wall it stays at its current position instead.
If the agent is in the ‘danger zone’ and moves up, moves
down or stays, the episode is terminated and the agent
is moved back to the starting position. Figure 2 shows
the layout of the maze. The ‘danger zone’ ensures that
random exploration will not work to reach many parts of
the environment and lets us easily test both the increasing
complexity of the reward functions and the importance of
forward transfer. We computed the expected number of
steps to reach the bottom right corner with a random walk
using Dynamic Programming. In expectation, 7 · 1027
episodes are needed to do so. This shows that this maze
is difficult to navigate.

To train our agent we use the Advantage Actor Critic
(A2C) (Mnih et al., 2016) algorithm. To learn the rewards
we use the full algorithm presented in Section 3. We use
the same architecture for the reward, policy and value net-
works, but do not share any parameters. The architecture is
a ReLU network with 2 convolutional layers followed by
2 fully connected layers. For the exact hyper-parameters
see Table 3 in Appendix B. Figure 2 plots the most visited
locations for each skill of one run of our algorithm. The
first few skills visit points near the origin, later skills start
moving to harder to reach parts of the state space. After
roughly 40 iterations they reach the bottom right part. As
stated before, this would take unreasonably long when
using only random exploration.

Inspired by the BRAX library (Freeman et al., 2021), we
implemented both the environment and an A2C agent
inside a single JAX (Bradbury et al., 2018) compiled func-
tion. By doing this, the computation graph of the environment and agent are optimized jointly and
both run on the GPU. This eliminates the need to send data between the CPU and GPU which is one
of the main bottlenecks in RL. Using just one NVIDIA RTX 3090 GPU, the training process runs
at over one million frames per second which enables training of agents in just a few seconds. This
allows us to experiment quickly and at a lower economic and environmental cost. We believe this
code is useful for the RL community on its own and provide it in the supplementary material.

4.1.1 Forward transfer of skills

0.005 0.015 0.025 0.035 0.045 0.055 adaptive
entropy regularization

0.0

0.2

0.4

0.6

0.8

1.0

fra
ct

io
n

of
 v

isi
te

d
st

at
es

Figure 3: Total number of states visited
by the learned policies after 60 genera-
tions as a function of the entropy regu-
larization used by the underlying A2C
agent. The adaptive entropy model man-
ages to visit all states in all runs.

As pointed out in Section 3.2, our reward functions become too complex to be learned from scratch
with random exploration in a reasonable number of steps. When this happens, our agent must rely on
transferring knowledge from previous generations. Our navigation task is specifically designed to
test this transfer ability, as random exploration would never reach the bottom right corner (7 · 1027
episodes in expectation).

We experimentally evaluate the three forward transfer mechanisms proposed in Section 3.2: Value
reuse, Policy feature reuse and Guiding policy. The reward functions from Figure 2 serve as tasks,

5

sorted according to creation order. We train ablations of the three mechanisms sequentially on these
tasks. This allows us to ignore the skill discovery process and only measure the forward transfer of
skills. We repeat each experiment three times. The agent with all mechanisms always manages to
solve4 all reward functions. On the other hand, the Policy, Value and Guiding ablations fail to learn
after solving 29.3± 9.5, 18.7± 11.6 and 19± 8.5 reward functions, respectively.

4.1.2 Speeding-up deep exploration

(a) Fixed 0.0025 (b) Fixed 0.035

(c) Adaptive (d) Reward Function

Figure 4: States visited by policies trained to solve
a reward function (d) that was created in the train-
ing process of Figure 2. We trained two policies
with a fixed entropy regularization of 0.0025 (a)
and 0.035 (b). (c) shows an agent trained with an
entropy regularization of 0.0025 in non-rewarding
states and of 0.035 in rewarding ones.

One key parameter when training actor critic
methods is entropy regularization. In our
method, policies with a lot of entropy generate
a diverse set of negative samples. Diverse nega-
tive samples lead to reward functions that evolve
more in each generation. This is especially ben-
eficial in environments where many steps are
necessary to reach certain states, like in this 2D
navigation task or Montezuma’s Revenge. We
empirically verify this claim by training a set of
agents with varying levels of entropy regulariza-
tion. Figure 3 shows the coverage of the state
space after 60 generations as a function of the
entropy regularization. We observed that higher
entropy leads to a faster coverage of the state
space up to a certain threshold. However, too
much entropy leads to policies that do not learn
to reach the rewarding states when these are far
away from the origin. Observe that this problem
arises independent of the training procedure as
entropy regularization changes which policy is
considered optimal.

Hence, we want to have policies that gather diverse samples to change the reward function but can
also be deterministic in parts of the trajectory that already have no reward. To achieve this, we use
adaptive entropy regularization. That is, we apply a small entropy regularization term everywhere.
We increase the entropy regularization in states where the reward function is positive, i.e. states in
which we want to decrease the reward function. See Figure 4 for a visualization of the impact of the
different entropy regularization strategies. With this, the method manages to consistently visit all
states in the maze. This technique was necessary to create the reward functions from Figure 2.

4.2 Robotic Environments

Quantitatively measuring unsupervised reinforcement learning progress remains an open problem
and active area of research (Gu et al., 2021). Because of this, it is still important to visualize and
qualitatively study the learned skills. We do this in Section 4.2.1. In the next two Sections, 4.2.2 and
4.2.3, we quantitatively measure the performance of our algorithm on downstream task performance
and with the so-called particle-based mutual information metric.

In contrast to the previous experiments, the action space is continuous and the input modality is now a
vector of features, like relative position, angle and speed of the different joints. We do not use adaptive
entropy here, as we need deterministic policies to maximize the downstream task performance and
the mutual information metric. Given that the environments do not have far away regions to reach, we
did not implement the guiding algorithm here. We do ablations for the other two transfer mechanisms.
Note that the agent does not see the x-y position. Details about hyper-parameters and architecture
can be found in Appendix C.

In addition to skill discovery methods, we also compare our methods to RND (Burda et al., 2018b)
and ‘Disagreement’ (Pathak et al., 2019), two of the most prominent works in intrinsic motivation.
By default, these methods only create a single final policy. We extract multiple skills by taking

4We consider a reward function as solved if the agent manages to find positive reward.

6

checkpoints of the policy regularly during training 5. To our knowledge, this has not been done
before and we believe this showcases how closely related intrinsic motivation and unsupervised skill
discovery are. We tuned the hyper-parameters of both methods extensively to maximize the Mutual
Information metric (c.f. Section 4.2.3).

4.2.1 Qualitative Analysis

In Figure 5 we illustrate a selection of particularly interesting skills. Videos of these and addi-
tional skills can be found here. In Figure 6 we see how the velocity of learned skills in ANT
and HUMANOID evolve over training. See Appendix E for the other runs. One can see that con-
secutive skills slightly change the direction and speed of moving. However, it is important to
realize that the observations contain tens to hundreds of dimensions. Thus, the skills can encode
much more complex behaviors than speed and direction of movement. For example, Figure 5
shows that the skill involves keeping one leg in the air on top of moving in the right direction.

Figure 5: Visualization of four learned robotic skills. One of
the legs is tracked with a red circle when it is visible. The
HALF-CHEETAH learns to do a front-flip. The ANT does a
partial rotation around its torso and then starts running. The
upper HUMANOID also does a partial rotation and then runs
backwards. The lower HUMANOID jumps on one leg while
moving forward.

We also show scatter plots for RND
and ‘Disagreement’ in Appendix E.
While the two methods also work well
in the HUMANOID environment (c.f.
Figures 14 and 15), they do not find
any useful behavior in the ANT en-
vironment (c.f. Figures 11 and 12).
These approaches reward all novel
states, they lead to policies that cover
large regions of the state space, as
can be seen in ANT. We believe that
the inherent instability of HUMANOID
forces the policies to be more specific.

4.2.2 Zero-Shot Transfer

After discovering 50 unsupervised
skills, we identify the skill that aligns
best with the reward given by the en-
vironment. We report this zero-shot6

performance in Table 1. As a base-
line, we train an agent from scratch
and measure how long it takes it to
reach an equivalent performance. We
use the Optuna hyper-parameter op-
timizer (Akiba et al., 2019) to find
hyper-parameters which maximize the
speed of learning beforehand. The
exact procedure can be found in Ap-
pendix D.

Figure 6: Scatter-plots of the x- and y-velocity of the states
visited by the first 13 skills of one run in ANT and HU-
MANOID. The second half of the trajectory is shown. Colors
change from early skills in purple to late skills in red.

The simplest environment, HALF-
CHEETAH, benefits the least from un-
supervised learning, while the hardest
one, HUMANOID, benefits the most.
We report the zero-shot performance
of RND, ‘Disagreement’ and the ablations in Table 7 in the Appendix. As already seen in Sec-
tion 4.2.1, the intrinsic motivation methods do not find any interesting behavior in ANT. Conversely,
they perform well on the HUMANOID environment, the latter one even slightly outperforming our
method7.

5We thank anonymous reviewers ‘Wvtf’ and ‘uUdP’ for suggesting this baseline.
6Technically, we query the true reward function to identify the skills, but do not perform any training with it.
7Note that the tuning RND and ‘Disagreement’ for the x-velocity MI-metric promotes locomotion.

7

https://github.com/amujika/Open-Ended-Reinforcement-Learning-with-Neural-Reward-Functions/tree/main/videos

4.2.3 Particle-based Mutual Information metric

Table 1: Zero-shot environment reward of our al-
gorithm and the number of steps a supervised PPO
agents needs to match it. Both columns averaged
over 10 repetitions.

Task Zero-shot Steps from
reward scratch

Cheetah 1094± 1130 340K ± 50K
Ant 2506± 511 1.2M ± 0.24M
Humanoid 9092± 1063 55M ± 27M

Measuring how well the agent can control rel-
evant state dimensions is another way to track
progress in Unsupervised reinforcement learn-
ing. This is measured using the mutual informa-
tion between state dimensions and skills. While
high-dimensional estimation of mutual infor-
mation is an active area of research, sampling
can be an effective form of estimation in the 1-
dimensional case, c.f. Algorithm 1 in (Gu et al.,
2021). We report the particle-based mutual in-
formation for the x-velocity in Table 2, using
the same bucketing strategy8 as in (Gu et al.,
2021).

Our method heavily outperforms DIAYN and DADS, when both methods look at the complete
observation space. DIAYN and DADS achieve diversity by learning a set of skills that can be
correctly labeled by a neural network. In high-dimensional spaces this is easy to do by relying
on a small subset of all state dimensions. This leads to non-diverse behaviors across most state
dimensions. Even when expert knowledge about relevant dimensions is supplied to other methods,
i.e. only taking the x- and y-velocity into account, our method still fares well. Particularly, in the
most complex environment, HUMANOID, our method performs best. We believe that the iterative
increase in complexity leads to better coverage of hard to reach regions of the state like high speed or
running backwards. With all this, our approach achieves greater controllability of the x-velocity than
DIAYN and DADS without any kind of feature engineering.

Table 2: Particle-based mutual information metric for the x-
velocity. Results are averaged over 10 runs. Algorithms with
feature engineering only consider x-y velocities. Baselines
taken from (Gu et al., 2021)

Task Method Feature MI(s, z)
Engineering

Cheetah Ours ✗ 1.40± 0.21
Cheetah DIAYN ✗ 0.49± 0.16
Cheetah DIAYNp ✓ 1.82± 0.20
Cheetah GCRL ✓ 1.63± 0.16

Ant Ours ✗ 1.33± 0.11
Ant RND ✗ 0.26± 0.15
Ant Disagreement ✗ 0.08± 0.03
Ant DIAYN ✗ 0.07± 0.01
Ant DADS ✗ 0.32± 0.06
Ant DIAYNp ✓ 1.12± 0.27
Ant GCRL ✓ 1.22± 0.19

Humanoid Ours ✗ 1.29± 0.25
Humanoid RND ✗ 0.94± 0.17
Humanoid Disagreement ✗ 1.05± 0.14
Humanoid DIAYN ✗ 0.07± 0.01
Humanoid DADS ✗ 0.24± 0.06
Humanoid DIAYNp ✓ 0.93± 0.13
Humanoid GCRL ✓ 0.77± 0.15

Surprisingly, our novel9 baselines,
RND and ‘Disagreement’, also
achieve better performance than
DIAYN and DADS in the HU-
MANOID environment, but not in
ANT. As already discussed in
Section 4.2.1, we believe that the
larger instability of HUMANOID
compared to ANT is the reason for
this difference in performance.

4.3 Montezuma’s Revenge

To show the generality of our ap-
proach we evaluate it on the notori-
ously hard Montezuma’s Revenge
Atari game. In this game, the agent
controls a character in a complex
2d world with several rooms. Ap-
pendix G shows the initial room
and various items with which the
agent may interact. Same as in
(Mnih et al., 2015), the observation
is a stack of the last 4 frames. This
gives the agent information about
speed and direction of movement.
This is done for all networks, that
is, the value, policy and neural re-

8We split the dimension in 1000 bins in the [−10, 10] range. As in (Gu et al., 2021), we only take the second
half of each trajectory. The initial state is independent of the skill and thus the beginning of the trajectory does
not tell anything about the gained controllability.

9The approaches are not new, but using them to generate checkpoints that can be used as skills has not been
done before to the best of our knowledge.

8

ward networks. We use the same simple CNN architecture as in (Mnih et al., 2015) for all three
networks. For exact learning details see Appendix H.

Our algorithm uses finite episode lengths because once it reaches a rewarding state, the agent can
stay there forever. Because of this, we reset the environment every 500 steps.

One of the main difficulties when dealing with Montezuma’s Revenge is that it cannot be simulated
as fast as the other studied environments. On top of that, an agent can learn hundreds of different
skills without ever leaving the first room. Finally, skills learned by our agent evolve from simple to
very complex and extended in time. In the beginning, the agent just needs to stay close to the initial
position. By the end of training, the agent learns to collect a key, open the door, avoid several enemies
and visit four different rooms. In the most complex skills, it takes the agent several hundred steps to
reach a rewarding state. This means that experiments can take several days to visit a different room.

25 27

29

3334

36

3838

(a)

0 25 50 75 100 125 150 175 200

step

0.00

0.01

0.02

0.03

0.04

0.05

re
w

ar
d

(b)

Figure 7: (a) The position of the agent in the most
rewarding state of each skill. The skills are num-
bered by the creation order. (b) The rewards re-
ceived by skill 29 during part of its trajectory. This
shows the long term nature of the discovered skills.

In order to save computation, we adapt the num-
ber of training steps to ensure the agent has
learned each skill. See Appendix F for details.

We found out that the first thing the agent learns
is to get the life counter to 0. Then it starts
exploring the room, with 0 lives already. This is
because losing a life happens very easily during
random exploration and because once the agent
reaches 0 lives, all future positive samples will
have 0 lives. This has two side effects. On
the one hand, the initial 100 − 200 steps of an
episode are spent losing lives. On the other
hand, exploration is harder, as the agent will
reach a terminal state very easily. Because of
this, we cut out the part of the image that shows
the remaining lives, see Appendix G.

Figure 7(a) visualizes different skills. The first observations which get the maximum possible reward
are overlaid. All the shown skills go to the bottom and kill the skull first. Then, they move to a specific
location. It can be seen that later skills explore states further and further away from the initial state.
Figure 7(b) shows that the skill receives no reward for many steps. Only after the agent has killed
the skull being on the ladder becomes rewarding10. This shows that both the reward network and
the agent have learned a lot of the concepts that are necessary to tackle Montezuma’s Revenge. This
includes controlling the agent in the 2d environment, killing enemies and interacting with different
objects. All of this without ever accessing the original reward function. Eventually, after learning a
few hundred skills, the neural reward function pushes the rewarding states all the way to the fourth
room. This video shows a run of this skill.

5 Limitations

Our approach has three main limitations: the randomized exploration strategy, the re-learning
necessary for each new skill and the depth-first nature of the search of skills.

We have shown that the random exploration allows for discovering diverse skills. However, it can
lead to slow progress in complex regions of the state space. Using more sophisticated exploration
policies could lead to faster evolution of the skills. A potential avenue for improving this is using
previously discovered skills as exploration policies.

As stated in Section 3.2, we use multiple techniques to make the learning of the next policy more
efficient. Still, the vast majority of our compute is used for learning these policies. Using more
advanced transfer learning or even meta-learning algorithms, could make the policy learning more
efficient. Another possibility would be to relabel previously seen trajectories with ideas similar to
(Rauber et al., 2017).

10Using the ladder is needed to kill the skull, but the reward function gives no reward when the agent is on the
ladder before killing the skull.

9

https://github.com/amujika/Open-Ended-Reinforcement-Learning-with-Neural-Reward-Functions/blob/main/videos/montezuma_other_rooms.gif

Finally, our approach only uses the current skill to create the next one. On a high level, it uses a
single search point at each time. Then, the iterative increase in complexity of the skills leads to a
DFS-like exploration. This may not always be optimal. For example, in Montezuma’s Revenge it
causes the agent to explore only one of the two possible exits of the first room. On top of that, our
algorithm can sometimes get stuck in places were backtracking is complicated or impossible, see
Figure 9 in the Appendix. This also happens in Montezuma’s Revenge when the life-counter is not
removed. Figuring out smart back-tracking strategies or keeping multiple search points could address
this problem and make our algorithm even more efficient.

6 Conclusion

We have presented an unsupervised reinforcement learning algorithm that uses reward functions
encoded by neural networks. Our algorithm alternates between increasing the complexity of the
reward function and transferring previous knowledge to learn a new skill that finds rewarding states.
This allows it to learn an unbounded number of skills.

We have thoroughly tested the different components of our model in a 2d navigation task. This
has allowed us to better understand our method in practice. We have shown that our method
works both with high dimensional feature inputs, in robotic environments, and pixel inputs, in
Montezuma’s Revenge. Our algorithm learned a diverse set of skills in both settings. In HUMANOID
and Montezuma’s Revenge, skills found by our method achieve a zero-shot performance that takes
millions of steps to learn in the classical reinforcement learning setup.

We believe our algorithm is one step in a direction that may one day allow reinforcement learning
agents to fully understand an environment without making use of any predefined reward function.
Just like in Computer Vision and Natural Language Processing, this will lead to agents that need very
few labels from the task at hand to be able to solve it and will drastically expand the applicability of
reinforcement learning.

Acknowledgements

We would like to thank Xun Zuo for helping with the implementation of the maze environment, on
top of many great discussions. We would also like to thank Frederik Benzing and Yassir Akram
for many fruitful discussions. Finally, we also thank the anonymous reviewers for the thorough and
insightful reviews and discussions. Robert Meier and Asier Mujika were supported by grant no.
CRSII5 173721 of the Swiss National Science Foundation.

References
Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In

Proceedings of the twenty-first international conference on Machine learning, pp. 1, 2004.

Joshua Achiam, Harrison Edwards, Dario Amodei, and Pieter Abbeel. Variational option discovery
algorithms. arXiv preprint arXiv:1807.10299, 2018.

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631, 2019.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. arXiv
preprint arXiv:1707.01495, 2017.

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu, Glenn Powell, Bob McGrew, and Igor
Mordatch. Emergent tool use from multi-agent autocurricula. arXiv preprint arXiv:1909.07528,
2019.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. Advances in neural information
processing systems, 29:1471–1479, 2016.

10

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large scale
deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and
Qiao Zhang. JAX: composable transformations of Python+NumPy programs, 2018. URL
http://github.com/google/jax.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018a.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random network
distillation. arXiv preprint arXiv:1810.12894, 2018b.

Andres Campero, Roberta Raileanu, Heinrich Küttler, Joshua B Tenenbaum, Tim Rocktäschel, and
Edward Grefenstette. Learning with amigo: Adversarially motivated intrinsic goals. arXiv preprint
arXiv:2006.12122, 2020.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and
Armand Joulin. Emerging properties in self-supervised vision transformers. arXiv preprint
arXiv:2104.14294, 2021.

Jongwook Choi, Archit Sharma, Honglak Lee, Sergey Levine, and Shixiang Shane Gu. Variational
empowerment as representation learning for goal-based reinforcement learning. arXiv preprint
arXiv:2106.01404, 2021.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre Bayen, Stuart Russell, Andrew Critch,
and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised environment
design. arXiv preprint arXiv:2012.02096, 2020.

Yali Du, Lei Han, Meng Fang, Ji Liu, Tianhong Dai, and Dacheng Tao. Liir: Learning individual
intrinsic reward in multi-agent reinforcement learning. 2019.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O Stanley, and Jeff Clune. First return, then
explore. Nature, 590(7847):580–586, 2021.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Carlos Florensa, Yan Duan, and Pieter Abbeel. Stochastic neural networks for hierarchical reinforce-
ment learning. arXiv preprint arXiv:1704.03012, 2017a.

Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse
curriculum generation for reinforcement learning. In Conference on robot learning, pp. 482–495.
PMLR, 2017b.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In International conference on machine learning, pp. 1515–1528.
PMLR, 2018.

Sébastien Forestier, Rémy Portelas, Yoan Mollard, and Pierre-Yves Oudeyer. Intrinsically motivated
goal exploration processes with automatic curriculum learning. arXiv preprint arXiv:1708.02190,
2017.

C Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax-a differentiable physics engine for large scale rigid body simulation. 2021.

11

http://github.com/google/jax

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adversarial inverse reinforce-
ment learning. arXiv preprint arXiv:1710.11248, 2017.

Alex Graves, Marc G Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. In international conference on machine learning, pp.
1311–1320. PMLR, 2017.

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Shixiang Shane Gu, Manfred Diaz, Daniel C Freeman, Hiroki Furuta, Seyed Kamyar Seyed
Ghasemipour, Anton Raichuk, Byron David, Erik Frey, Erwin Coumans, and Olivier Bachem. Brax-
lines: Fast and interactive toolkit for rl-driven behavior engineering beyond reward maximization.
arXiv preprint arXiv:2110.04686, 2021.

Leslie Pack Kaelbling. Learning to achieve goals. In IJCAI, pp. 1094–1099. Citeseer, 1993.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Kevin Li, Abhishek Gupta, Ashwin Reddy, Vitchyr H Pong, Aurick Zhou, Justin Yu, and Sergey
Levine. Mural: Meta-learning uncertainty-aware rewards for outcome-driven reinforcement
learning. In International Conference on Machine Learning, pp. 6346–6356. PMLR, 2021.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher–student curriculum
learning. IEEE transactions on neural networks and learning systems, 31(9):3732–3740, 2019.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control
through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim
Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International conference on machine learning, pp. 1928–1937. PMLR, 2016.

Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsically
motivated reinforcement learning. arXiv preprint arXiv:1509.08731, 2015.

Ashvin Nair, Vitchyr Pong, Murtaza Dalal, Shikhar Bahl, Steven Lin, and Sergey Levine. Visual
reinforcement learning with imagined goals. arXiv preprint arXiv:1807.04742, 2018.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. arXiv preprint
arXiv:2003.04960, 2020.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration
by self-supervised prediction. In International conference on machine learning, pp. 2778–2787.
PMLR, 2017.

Deepak Pathak, Dhiraj Gandhi, and Abhinav Gupta. Self-supervised exploration via disagreement.
In International conference on machine learning, pp. 5062–5071. PMLR, 2019.

Vitchyr H Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-fit:
State-covering self-supervised reinforcement learning. arXiv preprint arXiv:1903.03698, 2019.

Rémy Portelas, Cédric Colas, Katja Hofmann, and Pierre-Yves Oudeyer. Teacher algorithms for
curriculum learning of deep rl in continuously parameterized environments. In Conference on
Robot Learning, pp. 835–853. PMLR, 2020a.

Rémy Portelas, Cédric Colas, Lilian Weng, Katja Hofmann, and Pierre-Yves Oudeyer. Automatic
curriculum learning for deep rl: A short survey. arXiv preprint arXiv:2003.04664, 2020b.

Roberta Raileanu and Tim Rocktäschel. Ride: Rewarding impact-driven exploration for procedurally-
generated environments. arXiv preprint arXiv:2002.12292, 2020.

12

Paulo Rauber, Avinash Ummadisingu, Filipe Mutz, and Juergen Schmidhuber. Hindsight policy
gradients. arXiv preprint arXiv:1711.06006, 2017.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approximators.
In International conference on machine learning, pp. 1312–1320. PMLR, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman. Dynamics-aware
unsupervised discovery of skills. arXiv preprint arXiv:1907.01657, 2019.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017a.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go without
human knowledge. nature, 550(7676):354–359, 2017b.

Avi Singh, Larry Yang, Kristian Hartikainen, Chelsea Finn, and Sergey Levine. End-to-end robotic
reinforcement learning without reward engineering. arXiv preprint arXiv:1904.07854, 2019.

Rupesh Kumar Srivastava, Bas R Steunebrink, Marijn Stollenga, and Jürgen Schmidhuber. Continu-
ally adding self-invented problems to the repertoire: first experiments with powerplay. In 2012
IEEE International Conference on Development and Learning and Epigenetic Robotics (ICDL),
pp. 1–6. IEEE, 2012.

Bradly C Stadie, Sergey Levine, and Pieter Abbeel. Incentivizing exploration in reinforcement
learning with deep predictive models. arXiv preprint arXiv:1507.00814, 2015.

Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob Bauer, Jakub Sygnowski, Maja
Trebacz, Max Jaderberg, Michael Mathieu, et al. Open-ended learning leads to generally capable
agents. arXiv preprint arXiv:2107.12808, 2021.

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur Szlam, and Rob
Fergus. Intrinsic motivation and automatic curricula via asymmetric self-play. arXiv preprint
arXiv:1703.05407, 2017.

Ian Tenney, Dipanjan Das, and Ellie Pavlick. Bert rediscovers the classical nlp pipeline. arXiv
preprint arXiv:1905.05950, 2019.

Vivek Veeriah, Junhyuk Oh, and Satinder Singh. Many-goals reinforcement learning. arXiv preprint
arXiv:1806.09605, 2018.

Vivek Veeriah, Matteo Hessel, Zhongwen Xu, Richard Lewis, Janarthanan Rajendran, Junhyuk Oh,
Hado van Hasselt, David Silver, and Satinder Singh. Discovery of useful questions as auxiliary
tasks. arXiv preprint arXiv:1909.04607, 2019.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
arXiv preprint arXiv:1901.01753, 2019.

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeffrey Clune, and Kenneth Stanley.
Enhanced poet: Open-ended reinforcement learning through unbounded invention of learning
challenges and their solutions. In International Conference on Machine Learning, pp. 9940–9951.
PMLR, 2020.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. arXiv
preprint arXiv:1811.11359, 2018.

Yunzhi Zhang, Pieter Abbeel, and Lerrel Pinto. Automatic curriculum learning through value
disagreement. arXiv preprint arXiv:2006.09641, 2020.

13

Zeyu Zheng, Junhyuk Oh, and Satinder Singh. On learning intrinsic rewards for policy gradient
methods. arXiv preprint arXiv:1804.06459, 2018.

14

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] We discuss limitations and future
directions of research in the Conclusion

(c) Did you discuss any potential negative societal impacts of your work? [No] We
developed a new approach for open-ended learning. While we hope that our work
moves the understanding of unsupervised open-ended processes forward in the long
term, we do not expect any immediate societal impacts in our work.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A] No theory

(b) Did you include complete proofs of all theoretical results? [N/A] No theory

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [Yes]

(b) Did you mention the license of the assets? [Yes]

(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]
Included code, we will release it under the Apache 2 license or similar

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

15

