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Abstract

The Johnson-Lindenstrauss (JL) lemma is a cornerstone of dimensionality reduc-
tion in Euclidean space, but its applicability to non-Euclidean data has remained
limited. This paper extends the JL lemma beyond Euclidean geometry to handle
general dissimilarity matrices that are prevalent in real-world applications. We
present two complementary approaches: First, we show the JL transform can be
applied to vectors in pseudo-Euclidean space with signature (p, q), providing theo-
retical guarantees that depend on the ratio of the (p, q) norm and Euclidean norm of
two vectors, measuring the deviation from Euclidean geometry. Second, we prove
that any symmetric hollow dissimilarity matrix can be represented as a matrix of
generalized power distances, with an additional parameter representing the uncer-
tainty level within the data. In this representation, applying the JL transform yields
multiplicative approximation with a controlled additive error term proportional to
the deviation from Euclidean geometry. Our theoretical results provide fine-grained
performance analysis based on the degree to which the input data deviates from
Euclidean geometry, making practical and meaningful reduction in dimensionality
accessible to a wider class of data. We validate our approaches on both synthetic
and real-world datasets, demonstrating the effectiveness of extending the JL lemma
to non-Euclidean settings.

1 Introduction

The Johnson-Lindenstrauss (JL) lemma [1] stands as a cornerstone result in dimensionality reduction.
It states that random linear projection can reduce the dimensionality of datasets in Euclidean space,
while approximately preserving pairwise distances. Formally,
Proposition 1.1 (Johnson-Lindenstrauss Lemma). For any set of n points x1, x2, . . . xn in Rd and
ε ∈ (0, 1), there exists a map f : Rd → Rm, where m = O(log n/ε2) such that for any i, j ∈ [n],

(1− ε)∥xi − xj∥2 ≤ ∥f(xi)− f(xj)∥2 ≤ (1 + ε)∥xi − xj∥2 (1)

In modern algorithm design, the JL lemma is widely used as a key component or pre-processing
step for high-dimensional data analysis. In addition to effectiveness, another crucial reason for its
significant impact is that the JL lemma can be achieved by random linear maps, which are data-
independent and easy to implement. Johnson-Lindenstrauss Lemma has found numerous applications
in machine learning, from the most immediate applications in approximating all pairs distances (when
the input data is high-dimensional), to approximate nearest neighbor search [2], approximate linear
regression [3], clustering [4, 5, 6, 7], functional analysis [8] and compressed sensing [9].

Note that two conditions must be met to apply the JL lemma: (1) the data points lie in high-
dimensional Euclidean space, and (2) the coordinates of all points are available. However, many
real-world applications do not satisfy these two conditions. First, the dissimilarity measures used in
modern data analysis are often non-Euclidean and sometimes even non-metric. Common examples
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include Minkowski distance, cosine similarity, Hamming distance, Jaccard index, Mahalanobis
distance, Chebyshev distance, and Kullback–Leibler (KL) divergence, etc. Psychological studies have
long observed that human similarity judgments do not conform to metric properties [10]. Second,
high-dimensional coordinates may be unavailable or costly to obtain, whereas pairwise dissimilarities
are easier to access. In recommendation systems, for instance, computing user or item embeddings
can be expensive, while estimating pairwise dissimilarities (e.g. from co-click or co-purchase data) is
relatively efficient. To date, our understanding of the JL lemma deviating from these two classical
conditions mainly revolves around ℓp metrics and lower bound results.

In this paper, we study how to apply the Johnson-Lindenstrauss transform (a.k.a. random linear
projection) in non-Euclidean, non-metric settings. We provide theoretical analysis on the performance
of the JL transform in these settings and show experiments with both synthetic and real-world data.

Our setting. We consider the input as a dissimilarity matrix D of size n × n where Dij is the
dissimilarity between item i and j. We make only two assumptions for the dissimilarity measure:
symmetric (Dij = Dji) and reflexive (Dii = 0). Note that we do not require the triangle inequality
to be satisfied, therefore the dissimilarity can be non-metric. In short, the input is a symmetric hollow
dissimilarity matrix, and the expected output is a low-dimensional embedding of the original dataset
that approximately preserves pairwise distances.

The major challenge we encounter in this setting is two-fold. The first is to obtain good coordinates
from a generic input dissimilarity matrix to represent the data, before we can even apply the JL
transform. Second, we need a geometric characterization of the non-Euclidean non-metric setting, to
show how different our setting stands from Euclidean geometry, which the JL Lemma is based on.

Before we explain our results, we first mention existing lower bounds for dimension reduction in
non-Euclidean settings. JL Lemma considers Euclidean spaces only. Naturally, one asks whether
such a result is possible for other spaces. There are several non-trivial dimension reduction results
for ℓ1 norm [11] and ℓp norm [12]. However, the target embedding dimension for ℓ1, ℓp and nuclear
norm is necessarily polynomial in n for constant distortion [13, 14, 15]. These lower bounds remind
us that a worst-case guarantee on low distortion and logarithmic target dimension is not possible.
Rather, our results provide error analysis which depends on parameters characterizing how the input
data deviates from Euclidean geometry. In other words, we have fine-grained performance analysis.

Our Contributions. We present two approaches to recover coordinates that fit into the non-Euclidean
non-metric setting. For both approaches, we generalize the Euclidean norm ℓ2 to a new form to
capture the input data geometry, together with certain geometric parameters indicating how far it
deviates from Euclidean geometry. We give error analysis on the dissimilarity distortion, which may
involve an additive term whose magnitude is proportional to the geometric parameters.

At the heart of our first approach is the observation that any symmetric hollow matrix can be written as
the distance matrix of vectors in pseudo-Euclidean space [16, 17, 18]. Here the distance between two
vectors x = (x1, x2, ...xn) and y = (y1, y2, ...yn) is captured by a bilinear form of signature (p, q),
which is defined as ⟨x, y⟩p,q =

∑p
i=1 xiyi −

∑p+q
i=p+1 xiyi. The squared (p, q)-distance between x

and y is ∥x − y∥2p,q = ⟨x − y, x − y⟩. When p = n, q = 0, it is the squared Euclidean norm. We
will give a more detailed introduction later. At this point, it suffices to interpret the parameter p
resembling and q negating the Euclidean space. Our first result shows the generalization of the JL
lemma to the pseudo-Euclidean geometry.

Theorem 1.2 (Fine-grained JL lemma, informal Version of Theorem 2.3). Given any symmetric
hollow dissimilarity matrix D of size n, we are able to obtain embeddings X in the pseudo-Euclidean
space. For any ε ∈ (0, 1), there exists a JL transform to X with target dimension O(log n/ε2), such
that any pairwise dissimilarity Dij is preserved with at most 1± ε · Cij multiplicative factor, where
Cij is the ratio of the squared Euclidean distance and squared (p, q) distance.

Our second result takes a different route. We prove that a symmetric hollow matrix is also a matrix
of generalized power distances. Given two points x and y with respective radius rx and ry, the
generalized power distance is defined as ∥x − y∥2E − (rx + ry)

2, where ∥x − y∥2E denotes the
Euclidean norm. This is the squared length of the tangent line segments of two balls centered at x, y
with radii rx, ry. Again, at this point, it suffices to interpret rx, ry as a measure of deviation from
Euclidean space, with both a geometric meaning and a statistical interpretation of distance between
points with uncertainties.
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We show that any input symmetric hollow matrix D of size n can be written as the generalized
power distance matrix of n points {pi} with the same radius r =

√
|en|/2, where en is the smallest

eigenvalue of the Gram matrix of D. This linear algebra result may be of independent interest. Only
when D is a Euclidean distance matrix, all eigenvalues are non-negative and r = 0. Our second
result follows from applying the JL transform on the ball centers (i.e. {pi}). We obtain a (1 ± ε)
multiplicative approximation of the generalized power distance with an additive error of 4εr2.
Theorem 1.3 (Power-distance JL Lemma, informal Version of Theorem 3.3). Given any symmetric
hollow dissimilarity matrix D of size n and ε ∈ (0, 1), there exists a JL transform with target
dimension m = O(log n/ε2), such that any pairwise distance Dij is preserved with at most 1± ε

multiplicative factor and an 4εr2 additive factor, where r =
√

|en|/2 with en as the smallest
eigenvalue of the Gram matrix of D.

To complement Theorem 1.3, we are able to extend the techniques in [19] and give a lower bound of
Ω(log n/ε2) on the target dimension to achieve the multiplicative and additive factors as mentioned.
Note that m = Ω(log n/ε2) matches the JL lemma lower bound.

Experiments. We implement both methods of JL transform with respect to the above results and
evaluate their performances on 10 datasets. We observe that the experiment results corroborate with
our theoretical results, and outperform classical JL transform consistently on non-Euclidean datasts.
Our codes are on the Anonymous Github2.

1.1 Related Work

Random Linear Projection and JL Lemma A nice survey on JL transform can be found in [20].
There was a series of work [21, 22, 23, 24] that studied whether the bound on the target embedding
dimension in JL lemma is tight, starting from the original JL paper [1], and the optimality of JL lemma
for Euclidean dimension reduction is finally established even among non-linear embeddings [19, 25].
In terms of algorithms, there have been developments of variants of random projections that are more
friendly for implementations [26, 27, 28, 29, 30]. Empirical study of JL Lemma can be found in [31].

Last, Benjamini and Makarychev [32] considered dimension reduction using the Poincaré half-space
model of hyperbolic space Hn where each point is represented by (x, z) with x ∈ Rn−1 and height
z ∈ R+. They considered using JL random projection f on the Euclidean part and obtain (f(x), z)
with f(x) in Euclidean space of dimension O(log n/ε2), achieving 1 + ε distortion.

Data-dependent dimension reduction. A number of dimension reduction techniques that are also
popular in practice include Multidimensional scaling (MDS) [33] and Principal Component Analysis
(PCA) [34]. These methods are data-dependent and choose linear projections based on the input data.
There has also been recent work trying to apply these methods on non-Euclidean data, for example
PCA in hyperbolic or spherical geometry [35, 36, 37, 38]. Manifold learning (such as Isomap [39]
and LLE [40]) considers input data points that come from a low-dimensional manifold, recovers the
distances between points along the manifold and applies existing dimension reduction methods. A
recent work called Non-Euclidean MDS [18] considers dimension reduction of pseudo-Euclidean
settings and minimizes the loss called STRESS (the sum of squared difference of pairwise embedding
distances to the input dissimilarities). It does not provide error analysis or guarantees for individual
dissimilarity distortion.

2 Johnson-Lindenstrauss Lemma in Pseudo-Euclidean space

2.1 Pseudo-Euclidean space of signature (p, q)

We consider the d-dimensional vector space Rd equipped with a (p, q) bilinear form ⟨, ⟩ where
p+ q = d. For simplicity, we use Rp,q to denote Rd with the (p, q) bilinear form ⟨, ⟩. Consider two
d-dimensional (column) vectors u, v ∈ Rp,q, with u = (u1, u2, ...up+q) and v = (v1, v2, ...vp+q),
we define the bilinear norm as:

⟨u, v⟩ =
p∑

i=1

uivi −
p+q∑

i=p+1

uivi

2https://anonymous.4open.science/r/Non-Euclidean-Johnson-Lindenstrauss-1673

3

https://anonymous.4open.science/r/Non-Euclidean-Johnson-Lindenstrauss-1673


Equivalently, we can write ⟨u, v⟩ = uTΛv with Λ as a d× d diagonal matrix with the first p diagonal
elements as 1 and the remaining diagonal elements as −1. For a vector u, its scalar square is ⟨u, u⟩.
For two vectors u, v their interval square is obtained by ⟨u− v, u− v⟩.
Consider a given symmetric dissimilarity matrix D ∈ Rn×n, where Dij refers to the dissimilarity
measure of element i and element j. We assume that D is hallow, Dii = 0, and symmetric,
Dij = Dji. The following proposition shows that a set of vectors in the Pseudo-Euclidean space of
signature (p, q) can be obtained via D.
Proposition 2.1. For any hollow symmetric matrix D, there is a symmetric bilinear form ⟨, ⟩p,q for
integers p, q and n vectors x1, . . . , xn such that Dij = ⟨xi − xj , xi − xj⟩.

We now explain how to achieve this. With an input D, we first perform centralization to obtain the
Gram matrix B = Gram(D) = −CDC/2, where C = I − 1

n1n1
T
n is the centering matrix and

1n is a vector of ones. Since −CDC/2 is a symmetric matrix, its eigenvalues are real, denoted as
λ1 ≥ λ2 ≥ · · · ≥ λn. We take p as the number of non-negative eigenvalues and q to be the number
of negative eigenvalues. p+ q = n. Further, suppose U ∈ Rn×n is the orthogonal vectors, we have

B = −CDC/2 = U Diag(λ1, · · · , λn)U
T

Now we can recover the coordinates of the n elements as n-dimensional vectors. Specifically X is a
matrix of dimension n× n with the columns representing the coordinate vectors of the n points.

X = (x1, · · · , xn) = Diag(
√

|λ1|, · · · ,
√
|λn|) · UT

This way, we have B = −CDC/2 = XTΛX , with Λ = Diag(1, · · · , 1,−1, · · · ,−1) as a n × n
diagonal matrix with the first p diagonal elements as 1 and the remaining diagonal elements as −1.
Equivalently, we have

Dij = (xi − xj)
TΛ(xi − xj) = ⟨xi − xj , xi − xj⟩.

That is, the dissimilarity Dij is precisely the (p, q) interval square of xi, xj .

If the input dissimilarity matrix D is the squared Euclidean distance matrix of n points, the Gram
matrix is positive semi-definite and the above procedure would recover the Euclidean coordinates {xi}.
This is referred to as the classical Multidimensional scaling (MDS) [33]. If the input dissimilarity
matrix D generalizes beyond the squared Euclidean distance matrix but remains a hallow symmetric
matrix, we can still recover the coordinates so that they produce the entries in D using a general (p, q)
bilinear form. Notice that the above procedure generates coordinate vectors in dimension n.

The (p, q)-space has deep connections to spacetime and special relativity theory. Specifically, the
Lorentzian n-space is the vector space Rn with the n-dimensional Lorentzian inner product, where
the squared norm of a vector u = (u0, u1, · · · , un−1) has the form |u| = −u2

0 + u2
1 + · · ·+ u2

n−1.
Thus the Loerentizan space has signature (n− 1, 1). Four-dimensional Lorentzian space is called
the Minkowski space and forms the basis of special relativity. Furthermore, the collection of vectors
in Rn+1 with Lorentzian inner product of −1 has imaginary Lorentzian length and is precisely the
hyperboloid model of the hyperbolic n-space Hn [41].

2.2 Johnson-Lindenstrauss Lemma in (p, q)-space

We start with some notation. For a vector v = (v1, v2, · · · , vp+q) ∈ Rp,q, we will use ∥v∥2p,q to
denote the "(p, q)-norm" ⟨v, v⟩ and ∥v∥2E to denote the squared Euclidean norm of v. Further, we
denote v(p) = (v1, v2 · · · vp) ∈ Rp and v(q) = (vp+1, vp+2, · · · , vp+q) ∈ Rq. Then ∥v∥2p,q =

∥v(p)∥2E − ∥v(q)∥2E and ∥v∥2E = ∥v(p)∥2E + ∥v(q)∥2E .

First, we will prove a Johnson-Lindenstrauss style dimension reduction by applying the JL-lemma
separately on the p part and q part respectively. The proofs in this section can be found in Appendix B.
Lemma 2.2. For any set of n points x1, x2, . . . xn in Rp,q and ε ∈ (0, 1), there exists a map
f : Rp,q → Rp′,q′ , where p′, q′ = O(log n/ε2) such that for any i, j ∈ [n],

∥xi − xj∥2p,q − ε∥xi − xj∥2E ≤ ∥f(xi)− f(xj)∥2p′,q′ ≤ ∥xi − xj∥2p,q + ε∥xi − xj∥2E (2)

Essentially for (p, q)-space we can still have a similar JL-lemma, which, compared with the standard
JL-lemma Eq (1), we do not have the 1 + ε multiplicative error but rather an additive error to
the squared Euclidean norm. This gives us an immediate JL-style result when ∥xi − xj∥2p,q and
∥xi − xj∥2E are a constant factor of each other. Formally, we have the following statement.
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Theorem 2.3. For any set of n points x1, x2, . . . xn in Rp,q and ε ∈ (0, 1), there exists a map
f : Rp,q → Rp′,q′ , where p′, q′ = O(log n/ε2) such that for any i, j ∈ [n],

(1− ε · Cij)∥xi − xj∥2p,q ≤ ∥f(xi)− f(xj)∥2p′,q′ ≤ (1 + ε · Cij)∥xi − xj∥2p,q, (3)

where Cij =
∣∣∣ ∥xi−xj∥2

E

∥xi−xj∥2
p,q

∣∣∣.
A few remarks are in place. First, one can apply any JL-style algorithm for the p and q parts, for
example, by using the fast JL algorithm. Suppose fp is implemented by a random matrix Mp′p and
fq is implemented by a random matrix Mq′q. Then f is implemented by a matrix M of dimension
(p′ + q′) × (p + q) with Mp and Mq at the diagonal and zero elsewhere, f(x) = Mx. Second,
random projection for the (p, q) space setting provides an error-bound guarantee for a pair of points
that gracefully degrades as the (p, q) norm deviates from the Euclidean norm. Below we show a few
natural situations where the (p, q) norm and Euclidean norm are indeed bounded.
Lemma 2.4. Let v ∈ Rp,q. If each coordinate of v is selected from the same distribution, f with
a finite second moment, then we have with high probability, ∥v∥2E < C∥v∥2p,q if q < C−1

C+1p or
∥v∥2E < −C∥v∥2p,q if p < C−1

C+1q for C > 1.

Corollary 2.5. A random vector v chosen uniformly over the unit sphere Sp+q−1 has with high
probability, ∥v∥2E < C∥v∥2p,q if q < C−1

C+1p.

Now we put together all of the previous results into a single statement on a set of random points in
(p, q) space.

Theorem 2.6. Let X ⊂ Rp,q be a randomly selected point set of size n, with q < C−1
C+1p for a

constant C. For all u, v ∈ X , u−v
∥u−v∥E

has distribution equal to uniformly choosing a vector on

Sp+q−1. Then, with high probability, there exists a map f : Rp,q → Rp′,q′ , p′, q′ = O(C
2 log(n)
ϵ2 )

such that for any i, j ∈ [n],

(1− ϵ)∥xi − xj∥2p,q ≤ ∥f(xi)− f(xj)∥2p′,q′ ≤ (1 + ϵ)∥xi − xj∥2p,q. (4)

3 Johnson-Lindenstrauss Lemma for Generalized Power Distances

3.1 Generalized Power Distance

Given two balls centered at p, q ∈ Rd, with radii rp, rq , we define the generalized power distance as:

Pow((p, rp), (q, rq)) = ∥p− q∥2E − (rp + rq)
2. (5)

This power distance measures the distance of the internal tangents between two disjoint circles (the
tangent line that keeps two circles on different sides. See the middle picture in Figure 1). Note that
there is another second generalized power distance between two circles centered at pi of radius ri
given by ||p1 − p2||2E − (r1 − r2)

2, which measures the distance of the external tangents between the
circles (the tangent line that keeps two circles on the same side).

Geometric Interpretation. In elementary plane geometry, the power of a point is a real number that
reflects the relative distance of a given point from a given circle, introduced by Jakob Steiner in 1826.
The power of a point p with respect to a circle with center q and radius r is defined as ∥p− q∥2 − r2.
This value is positive when p is outside the circle, and by Pythagorean theorem it is squared tangential
distance |pt| where t is a tangent point of p to the circle. When p is inside the circle, the power is
negative, and precisely the negative of squared distance |ps| where s is a point on the circle with
△psq to be a right triangle with ∠spq as 90 degree.

The generalized power distance considers the distance between two circles and reduces to the classical
power distance if one of the circles is a point. Furthermore, two circles are disjoint if and only if their
generalized power distance is positive. In this case, their generalized power distance is equal to the
square of the distance between the two tangent points on the common internal tangent line between
the two circles (with the two circles on different sides). See Figure 1 for examples. The generalized
power distance can be called power distance of weighted points with rp as the weight of p.

There are several interesting properties of the generalized power distance. First, the Casey’s the-
orem [42, 43] still holds for generalized power distance. That is, if four circles in the plane are
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Figure 1: Left: power distance from a point p to a ball at q of radius rq; Middle: power distance between two
balls at points p, q with radius rp and rq respectively; Right: Casey’s Theorem.

tangent to the fifth circle, then the generalized power distances Pij , i, j ∈ {1, 2, 3, 4}, between them
satisfy the Ptolemy identity P12P34 + P23P41 = P13P24. This Ptolemy identity plays a key role
in applications of the generalized power distances. Indeed, the Ptolemy identity and the associated
Ptolemy inequality P12P34 + P23P41 ≥ P13P24 have been used in optimization and approximation
for prune search space and optimize geometric networks, for approximate distance estimate, circle
fitting and cyclic polygon detection; in distance geometry for ensuring distance constraints for sensor
networks [44] and molecule reconstruction [45]. In metric geometry [46], a metric space is called
Ptolemaic space if Ptolemy inequality holds for any quadriple points. It is well known that Euclidean
space and any inner-product spaces are Ptolemaic and a normed vector space is Ptolemaic if and
only if the norm comes from an inner product [47, 48]. Furthermore, a Riemannian manifold is a
Ptolemaic space if and only if its sectional curvature is non-positive [49]. It shows that Ptolemy
inequalities can be used for studying curvature properties of metric spaces. Recall that a length space
(X, d) is Gromov δ-hyperbolic if it satisfies Gromov’s Four-Point Condition: for any x, y, z, w ∈ X ,
d(x, z) + d(y, w) ≤ max{d(x, y) + d(z, w), d(x,w) + d(y, z)} + 2δ. The Ptolemy inequality is
another four-point condition on metric spaces for investigating curvature of general spaces [50].

Any Symmetric Dissimilarities are Power Distances. Now, we show that any symmetric hollow
dissimilarity matrix can be written as the matrix of power distances between n weighted points.

Lemma 3.1. Given any n × n symmetric hollow dissimilarity matrix, D, we can rewrite D =
E + 4r2(I − J) where r ∈ R+, E is a Euclidean distance matrix, I is an n × n identity matrix,
J = 1n1

T
n . More specifically E is a Euclidean distance matrix if and only if 2r2 ≥ |en| where en is

the least eigenvalue of Gram(D).

From Theorem 3.1, suppose E is an Euclidean distance matrix where the (i, j) element is ∥pi − pj∥2,
with n points {pi}. Then D is the matrix of generalized power distances {(pi, r)}, i.e., with the
(i, j) element as ∥pi − pj∥2E − 4r2. Here all the weighted points have radius r which can be seen
as a measure of how far the input matrix D is away from being Euclidean. When D is a Euclidean
distance matrix, the Gram matrix Gram(D) is positive semi-definite and the smallest eigenvalue is
en = 0. Thus r = 0 and the generalized power distance reduces to the squared Euclidean distance.
When D is no longer a Euclidean distance matrix, Gram(D) necessarily have negative eigenvalues,
i.e., en < 0. This makes r to be non-trivial.

Statistical Interpretation The generalized power distance also has a statistical interpretation using
the silhouette coefficient [51], which measures how similar two clusters are. Consider two clusters
X,Y , the silhouette value of a point x ∈ X is the average distance from x to points in Y minus
the average distance from x to other points in X . The silhouette coefficient of the two clusters
X,Y is the average of the silhouette coefficient of all points in X,Y . In Appendix A we show
that the silhouette coefficient of two Gaussian distributions X = N (µx, σx),Y = N (µy, σy) is
SCW (X ,Y) = ∥µx−µy∥2−(σx+σy)

2. Notice that this is precisely the generalized power distance
of weighted points (µx, σx) and (µy, σy).

Therefore, Theorem 3.1 suggests that any input dissimilarity matrix D that is hollow and symmetric is
actually the silhouette coefficients of n Gaussian distributions centered at {pi} with variance r which
is given by Theorem 3.1. Note that this statistical interpretation resonates with prior literature [52, 53]
which identified that one major source of data in non-Euclidean geometry is due to measurement
noises and uncertainties.
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3.2 Johnson-Lindenstrauss Lemma for Power Distance

Lemma 3.2. Given n weighted points (pi, ri) with pi ∈ Rd, there exists a map f : Rd → Rm, where
m = O(log n/ε2) such that for any i ̸= j ∈ [n],

(1− ε) Pow((pi, ri), (pj , rj))− ε(ri + rj)
2 ≤ Pow((f(pi), ri), (f(pj), rj)) (6)

≤ (1 + ε) Pow((pi, ri), (pj , rj)) + ε(ri + rj)
2. (7)

With Lemma 3.1 and Lemma 3.2 we immediately have the following.
Theorem 3.3. Given any n × n symmetric hollow dissimilarity matrix, D, with power distance
representation by {(pi, r)} where r =

√
|en|/2 and en is the smallest eigenvalue of Gram(D) =

− 1
2CDC with C = 1 − J/n and J is an all 1 matrix, there exists a map f : Rn → Rm, where

m = O(log n/ε2) such that for any i ̸= j ∈ [n],

(1− ε) Pow((pi, r), (pj , r))− ε4r2 ≤ Pow((f(pi), r), (f(pj), r))

≤ (1 + ε) Pow((pi, r), (pj , r)) + ε4r2.

Last, we remark that the error bounds in Lemma 3.2 also imply a 1 + ε distortion for dimension
reduction on the Euclidean distances of the centers (as in the JL Lemma 1). Therefore, the lower
bound on the target dimension being Ω(log n/ε2) for a dimension reduction algorithm satisfying the
error bounds in Lemma 3.2 for generalized power distances holds, by the same argument in the proof
of dimension optimality of standard JL-lemma [19].

4 Algorithms for Non-Euclidean Johnson-Lindenstrauss Transforms

The algorithms used for the experiments are presented as follows. In both cases we assume an input
dissimilarity matrix D which is symmetric (Dij = Dji) and hollow (Dii = 0).

Pseudo-Euclidean JL Transform
1. Find the orthogonal decomposition of the dissimilarity matrix D = OΛOT where Λ is a

diagonal matrix of the eigenvalues.
2. Let A be the (p, q) signature, i.e. A = sign(Λ)
3. Find the the embedding into Rp,q by finding V AV T .

4. For each point x in the embedding, split it into x(p) and x(q). Use standard JL transform
to project into Rp′

and Rq′ respectively where p′ and q′ are the specified target dimension.

5. Return the projected points (x(p′), x(q′)) along with their (p′, q′) signature.

Power distance JL Transform
1. Find the orthogonal decomposition of the dissimilarity matrix OΛOT

2. Find en, the smallest eigenvalue of Gram(D). Set r =
√

|en|/2.

3. Add 4r2(J − I) to D to find the new Euclidean distance matrix, E.
4. Recover the Euclidean coordinates X ′ such that Eij = ∥x′

i − x′
j∥2. Perform standard JL

transform on X ′ to dimension m.
5. Return the resulting points along with their radii r.

Computational efficiency. Since both methods start with a dissimilarity matrix we necessarily need
to recover the ‘coordinates’ first. This can be done by running the singular value decomposition
(SVD) on the Gram matrix in O(n3) time. There are several possible ways to speed up this step in
practice – by using landmark MDS for example. Another approach, motivated by the generalized
power distance formulation, is to consider appending a proper term 4r2 to the input matrix D and
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later use the power distance with the recovered coordinates. If it happens that the coordinates are to
be learned from a representation learning module, we can skip this part and directly apply dimension
reduction. When applying standard JL transform we use random projection of Gaussian vectors. One
can use any JL transform for example [26, 27, 28, 29, 30] for this purpose.

5 Experiments

In this section, we present experimental results of the proposed JL transforms in non-Euclidean
settings with only a dissimilarity matrix as input. First, we validate our theoretical results by showing
the approximation error on datasets that are highly non-Euclidean. Next, we evaluate the algorithms
on real-world datasets, with the classical JL transform as a baseline. Finally, we test the proposed JL
transforms on a downstream task, k-means clustering, to show its potential wide applications.

Datasets. We use two synthetic datasets that are made non-Euclidean: Random-simplex and
Euclidean-ball. At a high level, for the Random-simplex, given a dataset of size n, each point is
constructed such that its first n− 1 coordinates form a simplex, while the final coordinate dominates
the pairwise distances. This design induces a large negative eigenvalue in the Gram matrix. The
Euclidean-ball dataset, inspired by Delft’s balls [53], consists of n balls with varying radii. The
distance between two balls is defined as the minimal distance between any two points on their surfaces,
resulting in dissimilarities that violate the triangle inequality. For real-world data, We consider three
categories: genomics, image and graph data. The genomics data includes three cancer-related datasets
from the Curated Microarray Database (CuMiDa) [54]. Following the practice in prior work [18],
we obtain dissimilarities with entropic affinity. We also test two celebrated image datasets: MNIST
and CIFAR-10, each with 1000 images randomly sampled. We use the measures mentioned in [55]
to calculate the dissimilarities. The graph datasets are selected from the SNAP project [56]. The
pairwise distances are shortest path distances. The basic statistics of all datasets are shown in Table 1.
We defer more details in Appendix C.

Dataset Simplex Ball Brain Breast Renal MNIST CIFAR10 Email Facebook Mooc
Size 1000 1000 130 151 143 1000 1000 986 4039 7047

# {λ < 0} 900 887 53 59 57 454 399 465 1566 268
Metric ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✓ ✓ ✓

Table 1: Non-Euclidean/Non-metric Datasets used in experiments

5.1 Validation of Theoretical Results

Pseudo-Euclidean JL Transform. We start with demonstrating the multiplicative factor of pseudo-
Euclidean projection indeed falls into the range of (1± ε · Cij), as a corroboration of Theorem 2.3.
Throughout, we set ε = 0.5 and the constant in the target dimension O(log n/ε2)) as 2. Figure 2
verifies the approximation ratio on the Simplex and Brain datasets. We observe that most pairwise
dissimilarities behave as claimed. For the Brain dataset, even the bar range is very small we still
have all green points. There are minor exceptions indicated by the red points in the Simplex dataset.
However, first observe that they are still very close to the error bars. Further, we did not optimize
the constant factor in O(log n/ε2)). In fact, if we double the target dimension (from 80 to 160), the
percentage of violations drops significantly from 12.01% to 4.62% for the Simplex dataset. We defer
the plots of other datasets to Appendix C.

Power Distance JL Transform. To validate Theorem 3.3, we show the residual additive error
of the power distance JL transform. By ’residual’ we refer to the absolute difference between the
dissimilarities given by the JL transform and the (1± ε) approximation of the true dissimilarities.
This term should be smaller than 4εr2. As shown in Figure 3, all sampled points appear below the red
line, which is taken as 4ε(r/100)2, a much tighter upper bound. Recall that a larger r indicates more
deviation from Euclidean geometry, the fact that the residual error is small shows the effectiveness of
our JL transform. We defer the plots of other datasets to Appendix C.
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Figure 2: The left is for Simplex dataset and right for the Brain dataset. Green points indicate the approximation
ratio is within the range and red the opposite. The error bars match the upper and lower bounds given by
(1± ε · Cij). We sample 20 pairs of dissimilarities for presentation.

Figure 3: The left is for MNIST and right for CIFAR-10 dataset. We sampled 100 pairs of dissimilarities and
adopt r/100 for presentation. Using the original r makes the red line at roughly y = 40000, which is very loose.

5.2 Performance of JL Transforms

Performance on Relative Error. We compare two proposed JL transforms with the classical JL
transform on all datasets and report the relative error, which is defined as the maximum among
|Dij−D̂ij |

Dij
for all (i, j) pairs. D̂ij is the dissimilarity matrix obtained from any JL transform. It is a

suitable metric because all three algorithms have different theoretical guarantees, but the end goal
is always preserving pairwise dissimilarities. In Table 2 we show the worst-case (defined above)
average and median relative error. A smaller value indicates better performance.

We observe JL-PE performs the best for genomics data and JL-power performs the best for the rest,
on both metrics. The significant improvement implies when the JL transform matches with geometry,
we can expect really good results. The image datasets report inf for JL because different images are
projected to the same point. In a few cases Jl-PE has slightly worse relative error than JL, but note
that this might be the outcome of really large factor C, which the performance of JL-PE is based on.

Method Simplex Ball Brain Breast Renal MNIST CIFAR10 Email Facebook MOOC
JL Max 6.47e5 5.97e5 1.02e12 7.09e10 3.42e12 inf inf 3.85e4 1.18e6 2.94e5

JL-PE Max 1.11e6 5.31e5 8,21e4 262.20 2.37e4 8.47e5 2.24e6 3.24e6 2.51e7 1.35e7
JL-Power Max 109.18 12.102 3.11e7 1.92e6 1.17e8 85.76 55.74 781.45 82.74 24.22

JL Ave 442.65 43.78 1.11e9 9.86e7 1.50e9 inf inf 15.64 12.62 39.83
JL-PE Ave 47.59 23.71 8.16 1.15 6.60 15.93 18.24 13.79 52.52 63.44

JL-Power Ave 13.52 1.002 3.73e4 3.12e3 5.57e4 1.47 1.61 1.60 1.32 2.04
JL Median 6.36 6.68 2.69e12 1.95e11 1.18e12 1.78 2.29 7.00 5.08 6.13

JL-PE Median 2.57 2.78 1284.06 174.74 3160.58 2.11 2.04 2.06 5.83 6.03
JL-Power Median 12.79 1.00 1.01e7 8.20e6 7.57e7 1.30 1.35 1.35 1.16 1.99

Table 2: Max and Average Relative Error of All Datasets on Three JL Transforms.
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Performance on Downstream k-Means Clustering. We now evaluate if the propsoed JL transforms
consistently perform well on downstream tasks. The setup is straightforward: we first apply JL
transform to reduce the dimension of the original data, then we compare k-Means clustering cost
obtained from the processed data with the original optimal clustering cost.

Dataset #Clusters (k) Original JL JL-pq JL-power
Brain 5 3.92× 10−3 728.00 3.13 33.26
Breast 4 0.03 827.69 28.93 12.53
Email 42 5614 22634 21244 20764

Facebook 15 20499 284142 91644 303203

Table 3: Performance of Three JL Transforms with k-Means Clustering.

Table 3 demonstrates that both of the proposed JL transforms outperforms the classical JL, with
only one exception on Facebook where JL-power is slightly worse than JL. This observation shows
better effectiveness of the proposed JL transforms in downstream tasks. However, similar as above,
the relative performance varies between JL-pq and JL-power. This raises a key direction for future
research: formalize the conditions under which a specific JL transform is most suitable.

6 Discussions

The Pseudo-Euclidean space we study shares conceptual foundations with recent advances in similar-
ity learning. Notably, [57] proposed neural similarity learning (NSL) which uses bilinear matrices to
generalize inner product similarity in convolutional neural networks through both static and dynamic
approaches. The bilinear form structures also appear in modern neural architectures [58]. In the
scaled dot-product attention mechanism used in transformers, the attention score between two tokens
is computed as a bilinear form: score(q, k) = q⊤Wk, where q and k are query and key vectors
and W is a learned weight matrix. This mechanism effectively learns a similarity function over
the token space, which aligns with our use of bilinear forms to represent pairwise dissimilarities in
non-Euclidean geometry.

Future Direction. A promising future direction is to integrate the mathematical formulation in
this paper using both the pseudo-Euclidean representation and the generalized power distance
representation with current machine learning pipelines for representation and similarity learning.
Recently there has been increasing interest in representation learning in non-Euclidean spaces, e.g.,
learning modules in hyperbolic [59, 60, 61, 62, 63, 64, 65], spherical or mixed-curvature product
manifolds (Cartesian products of hyperbolic, hyperspherical and Euclidean manifolds) [35, 66, 67, 68]
or general manifolds [69]. Many of the prior work assume (piecewise) constant curvature in the
embedded space and our setting includes these spaces and beyond. One limitation is we are not
able to build a theoretical connection between two proposed representations, or conditions that one
outperforms the other. Further, we are not aware of any lower bound result complementing the
fine-grained JL guarantee from the pseudo-Euclidean representation.

Conclusion. We explore Johnson-Lindenstrauss Transform in the non-Euclidean setting with dissimi-
larity matrix as the input. Via two different approaches, pseudo-Euclidean geometry and generalized
power distance, we show two theoretical results with similar flavor to the classical JL lemma. The
first gives a fine-grained error analysis and the second has an extra additive error term, both having
parameters indicating the deviation from Euclidean geometry. The experiment results corroborate
with our theoretical results, and demonstrate the superior performance of two proposed approaches
for Jl-type dimension reduction with non-Euclidean data.
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A Relation of Generalized Power Distance to Silhouette Coefficient

The silhouette coefficient [51] is a measure of how similar an object is to its own cluster compared
to other clusters. The silhouette coefficient ranges from -1 to 1, where a high value indicates that
the object is well matched to its own cluster and poorly matched to neighboring clusters. If most
objects have a high value, then the clustering configuration is appropriate. If many points have a low
or negative value, then the clustering configuration may have too many or too few clusters.

For simplicity, let us consider two clusters of finite points X,Y ⊆ Rm with |X| = |Y | = n. The
classical silhouette coefficient (in two clusters) can be defined as follows: For each point x ∈ X ,
define “inner distance” a(x) as the average distance between x and all other points in the same cluster,
and “cross distance” b(x) as the average distance between x and all points in the other cluster Y .
That is:

a(x) =
1

n− 1

∑
x′∈X, x′ ̸=x

d(x, x′) (8)

b(x) =
1

n

∑
y∈Y

d(x, y) (9)

Then, the silhouette coefficient for a point x ∈ X is defined as:

s̄(x) =
b(x)− a(x)

Norm(a(x), b(x))
,

and the silhouette coefficient for the cluster X is defined as the average of the silhouette coefficients
for all points in the cluster:

s̄(X) =
1

n

∑
x∈X

s̄(x).

Here the denominator Norm is a normalizing function which is usually chosen to be
Norm(a(x), b(x)) = max{a(x), b(x)} for the classical silhouette coefficient to make sure the
range lies in [−1,+1]. The silhouette coefficient can be used to measure the quality of a cluster.
For the overall clustering, the average silhouette coefficient scores over all clusters can be used to
measure the quality of the whole clustering results [70].

Now we are interested in using a similar idea to study the dissimilarity (divergence) between two
probability distributions, say two Gaussian distributions X = N (µx, σx),Y = N (µy, σy). We
can naturally view the two distributions as two clusters. Here we are interested in the “silhouette
coefficient score” of the whole clustering.

To better analyze the “silhouette coefficient score” between two Gaussian distributions, we consider
an unnormalized version of the silhouette coefficient. For any x ∈ X , let

a(x) = Ex′∼X [∥x− x′∥2],
b(x) = Ey∼Y [∥x− y∥2],
s(X ) = Ex∼X [b(x)− c · a(x)],

where c ≥ 1 is a constant parameter used as a trade-off balance between inner distance and cross
distance. Now we can define an (unnormalized) silhouette score between two Gaussian distributions
X and Y as:

SC(X ,Y) ≜
1

2
[s(X ) + s(Y)]

=
1

2
[Ex∼X [b(x)− c · a(x)] + Ey∼Y [b(y)− c · a(y)]]

= Ex,y∼X×Y
[
∥x− y∥2

]
− c

2

(
Ex,x′∼X [∥x− x′∥2] + Ey,y′∼Y [∥y − y′∥2]

)
Based on properties of Gaussian distributions, we could calculate:

SC(X ,Y) = ∥µx − µy∥2 − (c− 1)(σ2
x + σ2

y).

In general, we could consider a silhouette score between two Gaussian distributions composed with
two parts balanced with each other:
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1. Some distance DISP(X ,Y) measures the similarity between the two distributions.
2. Some negative terms ∆ represent the variances of the two distributions themselves.

Here we consider the following construction of a silhouette score between two Gaussian distributions
we are interested in: Let ∆[X ] = Ex,x′∼X [∥x− x′∥2].

SCW (X ,Y) ≜ DIS2W (X ,Y)− (∆[X ] + ∆[Y]) (10)

= ∥µx − µy∥2 + (σx − σy)
2 − 2(σ2

x + σ2
y) (11)

= ∥µx − µy∥2 − (σx + σy)
2 (12)

where DIS2W is the squared 2-Wasserstein distance. This construction is interesting because it is
consistent with our construction of generalized power distance, which brings up a potential statistical
interpretation.

Normalized Silhouette Score One could also define a normalized version of the Silhouette Score.
In general, it could be defined as:

SC(X ,Y) ≜
DISP(X ,Y)− C · (∆[X ] + ∆[Y])

Norm(DISP(X ,Y), C · (∆[X ] + ∆[Y]))
(13)

with some normalizer function Norm().

For example, we could define the normalized version SCW as:

SCW (X ,Y) ≜
∥µx − µy∥2 − (σx + σy)

2

∥µx − µy∥2 + (σx + σy)2
(14)

The range of SCW is [−1, 1]. Intuitively, it can be used to measure how well two Gaussian distri-
butions are separated. When these two Gaussian distributions have very close centers or very large
variances, the normalized silhouette score is close to −1, which means sampling from these two
distributions has a low chance of being well separated. It becomes −1 when they are identical X = Y .
When these two distributions are far away or variances are very small, the normalized silhouette
score is close to 1, which means sampling from these two distributions enjoys a high chance of being
well separated. It becomes +1 when these two distributions are delta distributions on distinct center
points. Zero represents borderline cases. We set it to be −1 for µx = µy and σx = σy = 0.

B Missing Proofs in Section 2 and Section 3

B.1 Proofs in Section 2

Proof of Lemma 2.2. We apply the standard Johnson-Lindenstrauss lemma to the collection of points
{x(p)

i } and {x(q)
i } separately. By Eq (1) there are two random projection fp : Rp → Rp′

and
fq : Rq → Rq′ with p′, q′ = O(log n/ε2) such that for any i ̸= j,

(1− ε)∥x(p)
i − x

(p)
j ∥2E ≤ ∥fp(x(p)

i )− fp(x
(p)
j )∥2E ≤ (1 + ε)∥x(p)

i − x
(p)
j ∥2E

(1− ε)∥x(q)
i − x

(q)
j ∥2E ≤ ∥fq(x(q)

i )− fq(x
(q)
j )∥2E ≤ (1 + ε)∥x(q)

i − x
(q)
j ∥2E

Now we can bound the (p′, q′)-norm of the vector under projection f which produces f(xi) =
(fp(xi), fq(xi)) of dimension p′ + q′.

∥f(xi)− f(xj)∥2p′,q′ = ∥fp(xi)∥2E − ∥fq(xi)∥2E
≤ (1 + ε)∥x(p)

i − x
(p)
j ∥2E − (1− ε)∥x(q)

i − x
(q)
j ∥2E

= ∥xi − xj∥2p,q + ε∥xi − xj∥2E
The other direction is similar.

Proof of Lemma 2.4. Consider the variables ∥v∥2E/(p + q) and ∥v∥2p,q/(p + q). Let µ = E(X2)
where X is a random variable with distribution f . Taking p + q → ∞ and using Central Limit
Theorem implies that ∥v∥2E/(p+ q) and ∥v∥2p,q/(p+ q) will converge to their means which are µ

and p−q
p+qµ respectively. Plugging in q < C−1

C+1p and p < C−1
C+1q give us what we want.
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Proof of Theorem 2.6. We may first write the uniform distribution over the sphere as Y =

( Y1√∑p+q
i Y 2

i

, Y2√∑p+q
i Y 2

i

, ...
Yp+q√∑p+q
i Y 2

i

) where each Yi = N(0, 1). Then the distribution of ∥u−v∥E

∥u−v∥p,q

will be : ∑p+q
i=1 Y 2

i∑p
i=1 Y

2
i −

∑p+q
i=p+1 Y

2
i

Now
∑p+q

i=1 Y 2
i is just a chi-squared random variable with p + q degrees of freedom. A common

known concentration inequality is:

P(χ2 ∈ (1± δ)(p+ q)) ≥ 1− 2e−
p+q
2 ( 1

2 δ
2− 1

3 δ
3)

On the other hand,
∑p

i=1 Y
2
i −

∑p+q
i=p+1 Y

2
i has mean p− q and we have the following concentration

inequality:
P(χ2 ∈ (p− q)± 2δ(p+ q)) ≥ 1− 2e−

p+q
2 ( 1

2 δ
2− 1

3 δ
3)

since
∑p+q

i=1 Y 2
i ∈ (1 ± δ)(p + q) implies

∑p
i=1 Y

2
i −

∑p+q
i=p+1 Y

2
i ∈ (p − q) ± 2δ(p + q). The

greatest error ratio clearly is bounded by q = C−1
C+1p and at:

(1 + δ)(p+ q)

(p− q)− 2δ(p+ q)

p− q

p+ q
− 1 =

2pC(1 + δ)/(C + 1)

2p/(C + 1)− 4δpC/(C + 1)

1

C
− 1 =

δ + 2δC

1− 2δC

P(
∑p+q

i=1 Y 2
i∑p

i=1 Y
2
i −

∑p+q
i=p+1 Y

2
i

∈ (1± δ + 2δC

1− 2δC
)
p+ q

p− q
) ≥ 1− 2e−

p+q
2 ( 1

2 δ
2− 1

3 δ
3)

Now let δ = ϵ/2
4C+2+ϵC :

P(
∑p+q

i=1 Y 2
i∑p

i=1 Y
2
i −

∑p+q
i=p+1 Y

2
i

∈ (1± ϵ

2
)
p+ q

p− q
) ≥ 1− 2e−O((p+q)ϵ2/C2) ≥ 1−O(n−2)

The last inequality comes from the fact that our target dimension is O(C2 log(n)/ϵ2), so we can
make the assumption p + q > O(C2 log(n)/ϵ2). From a union bound, then we have with high
probability, ∥u−v∥E

∥u−v∥p,q
≤ C(1 + ϵ

2 ) Then, we can use Theorem 2.2 with input ϵ′ = ϵ/(2C) which
gives us the error bound:

∥f(xi)− f(xj)∥2p′,q′ ≤ ∥xi − xj∥2p,q +
ϵ

2C
∥xi − xj∥2E (15)

≤ ∥xi − xj∥2p,q +
ϵ

2C
C(1 +

ϵ

2
)∥xi − xj∥2p,q (16)

= ∥xi − xj∥2p,q + (
ϵ

2
+

ϵ2

2
)∥xi − xj∥2p,q (17)

≤ (1 + ϵ)∥xi − xj∥2p,q (18)

(19)

B.2 Proofs in Section 3

Proof of Lemma 3.1. We begin by finding the Gram Matrix of E = D − 4r2(I − J). Recall that the
centering matrix C = I − J

n . The Gram matrix of E is

−1

2
CEC = −1

2
C(D − 4r2(I − J))C = −1

2
CDC + 2r2C(I − J)C = −1

2
CDC + 2r2C.

Here we use the fact that C(I − J) = C and C2 = C. Further, C = I − J
n is symmetric and

positive semi-definite. C has a single eigenvalue of 0 with 1n as its eigenvector. We see that
Gram(D) = − 1

2CDC and C share that eigenvalue and eigenvector. The rest of the eigenvalues of
C are 1. Then, the eigenvalues of Gram(E) are exactly 2r2 added to the eigenvalues of Gram(D).
Thus, it is clear all of its eigenvalues are greater than or equal to zero as long as 2r2 ≥ |en|.
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Proof of Lemma 3.2. We apply the standard Johnson-Lindenstrauss Lemma on the centers of the
power distance representation {pi} with a random projection f : Rd → Rm. By Eq (1) we have

Pow((f(pi), ri), (f(pj), rj)) = ∥f(pi)− f(pj)∥2E − (ri + rj)
2

≤ (1 + ε)∥pi − pj∥2E − (ri + rj)
2

= (1 + ε) Pow((pi, r), (pj , r)) + ε(ri + rj)
2.

The other direction is similar.

C Additional Experimental Results

C.1 Details of Data Sets

SNAP dataset. We tested our methods on a diverse collection of real-world network datasets
sourced from the Stanford Network Analysis Project (SNAP) [56]. These datasets span various
domains and exhibit a wide range of structural properties, helping to validate the robustness and
generalizability of our findings.

• Email-Eu-core (Email) [71]: Email exchanges within a European research institution.
• MOOC-actions (MOOC) [72]: User actions on a Massive Open Online Course platform.
• Facebook-ego-networks (Facebook) [73]: Ego-networks of Facebook users.

We only used the graph structures and ignored the edge weights and directions. That means all graphs
are treated as unweighted and undirected.

Synthetic datasets for examples. We also manually generated two datasets to demonstrate when
projecting in Pseudo-Euclidean space is better than projecting with power distances and vice versa.
In the first dataset, we had a single very large negative eigenvalue and the rest all positive eigenvalues
in the diagonal matrix of the orthogonal decomposition of the distance matrix. In this situation, power
distances of the points would have large radii and the error would be large while Pseudo-Euclidean
projection would be on a signature of (p, 1), so the error bound would be much smaller. In the second
dataset, we had the ratio of positive eigenvalues to negative eigenvalues was a constant fraction, and
the negative eigenvalues were all small. In this way, Pseudo-Euclidean projection would have a large
error bound while power distance projection would have very small radii and a small error bound.

Other datasets. We randomly select 1000 images from MNIST and CIFAR-10. The distance
measure between two images are computed by the k-neareast neighbor (i.e. Isomap) with k = 10. The
distance measure of genomics dataset is Entopic Affinity, introduced in prior works and commonly
used for this datasets. The details of implementation can be found in our Github Repo.

C.2 Details of Implementation

All experiments are done with a Macbook Pro with Apple M2 Chip of 16GB memory. The algorithms
are fairly efficient and we did not encounter issues on computational resources.

The JL Transforms have only one parameter ε, and we set that to be 0.5 throughout the paper. The
constant used in the big O notation of O(log n/ε2) is 2. Another caveat is, our setting does not give
access to data coordinates, therefore after obtaining coordinates from the JL transform, we use the
original dissimilarity measure to reconstruct D̂. If the original measure is inexplicit or unknown, we
use Euclidean distance. We only use the data coordinates for the classical JL.

C.3 More Illustrations

The illustrations here extend the experiments to verify Theorem 2.3 and Theorem 3.3.
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(a) Residual error on simplex (b) Residual error on ball

(c) Residual error on email (d) Residual error on facebook

Figure 4: Illustrations of Power Distance JL Transform Residual Error

(a) Approximation factor for email (b) Approximation factor for facebook

(c) Approximation factor for MNIST (d) Approximation factor for CIFAR-10

Figure 5: Illustrations of Pseudo Euclidean JL Transform Multiplicative Error
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