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Abstract—Remote sensing object detection faces unique 

challenges due to objects' varied scales and orientations. To 

address these challenges, we propose the Spatial Channel 

Attention Fusion Module (SCAF-Module), designed to enhance 

detection accuracy by integrating multi-scale convolutions, 

adaptive rotated convolutions, and parallel spatial channel 

attention mechanisms. The experiments, conducted using the 

DOTA-v1.0 and HRSC2016 datasets, demonstrate the efficacy of 

the SCAF-Module. We achieved mean Average Precision (mAP) 

scores of 80.94% and 98.23% on these datasets, respectively. 

Comparative experiments reveal that the SCAF-Module surpasses 

several advanced models, including the baseline Oriented R-CNN. 

Additionally, ablation studies highlight the significance of the 

spatial and channel attention mechanisms and the impact of 

rotated convolutions on detection performance. The SCAF-

Module presents a robust and adaptable framework for remote 

sensing object detection, offering significant improvements over 

existing methods. This work paves the way for further 

optimization and application of the module in other challenging 

remote sensing tasks. 

Keywords—Remote Sensing, Object Detection, Attention 

Mechanism, Neural Networks 

I. INTRODUCTION 

Remote sensing imagery plays a pivotal role in a wide array 
of applications, including environmental monitoring, urban 
planning, disaster management, and agricultural assessment. 
These applications demand accurate and efficient object 
detection methods to extract meaningful information from 
complex and large-scale images. However, detecting objects in 
remote sensing images presents unique challenges compared to 
natural image datasets. The diverse scales, orientations, and 
dense distribution of objects within cluttered backgrounds 
significantly hinder the performance of traditional detection 
algorithms. 

Conventional object detection models, such as YOLO [1] 
and Faster R-CNN [2], have achieved significant success in 
natural images. However, these models often encounter 
limitations when applied to remote sensing imagery. 
Specifically, traditional methods struggle to manage objects 
with varying scales, accurately detect objects with arbitrary 
orientations, and adapt to the complex background clutter 
typical in remote sensing environments. Additionally, most 
conventional models rely on axis-aligned bounding boxes, 

which are not well-suited for the detection of oriented objects, 
leading to reduced accuracy. Several approaches have been 
proposed to address these issues, such as incorporating rotated 
bounding boxes and employing multi-scale feature extraction 
techniques. However, these methods often involve trade-offs 
between computational efficiency and detection accuracy, and 
may still fall short in environments with highly varied object 
scales and orientations. Moreover, these models' integration of 
attention mechanisms has been relatively limited, often focusing 
on spatial or channel attention separately, rather than leveraging 
their combined potential. 

To overcome these challenges, we propose the Spatial 
Channel Attention Fusion Module (SCAF-Module). This 
module integrates multi-scale convolutions, adaptive rotated 
convolutions, and parallel spatial channel attention mechanisms 
to enhance detection accuracy. The multi-scale convolutions 
include a 3 × 3  rotated convolution, a 3 × 3  dilated rotated 
convolution, and a 5 × 5 dilated convolution, each contributing 
to the detection of objects at various scales and orientations. The 
spatial and channel attention mechanisms further refine these 
features, allowing the model to selectively focus on important 
regions and adapt to different object characteristics. 

We define multi-scale convolution as the application of 
convolutional layers with different receptive fields, designed to 
capture features at various scales [3]. Adaptive rotated 
convolution [4] is defined as a type of convolution that adapts to 
the orientation of objects, enhancing the model's sensitivity to 
rotated objects. The Spatial Channel Attention Fusion is a 
technique that enhances feature representation by focusing on 
significant spatial regions and feature channels [5]. 

Our contributions are as follows: 

• Multi-scale and Adaptive Rotated Convolutions: By 
incorporating convolutions with different receptive fields and 
adaptive rotated convolutions, the SCAF-Module effectively 
captures objects of varying scales and orientations. 

• Spatial and Channel Attention Mechanisms: These 
mechanisms enhance the model's ability to focus on significant 
regions and channels, improving detection performance. 

• Comprehensive Evaluation: Extensive experiments on the 
DOTA-v1.0 and HRSC2016 datasets demonstrate the SCAF-
Module's effectiveness, achieving mAP scores of 80.94% and 
98.23%, respectively. 

This work was supported by the National Natural Science Foundation of 
China under Grant No. 61702340. 



 

The remainder of this paper is organized as follows: Section 
II reviews related work in remote sensing object detection. 
Section III details the proposed SCAF-Module and its 
integration into the backbone network. Section IV presents the 
experiment setup, results, and ablation studies. Finally, Section 
TABLE VI.  concludes the paper and discusses future work. 

II. RELATED WORK 

A. Remote Sensing Object Detection Frameworks 

Object detection in remote sensing images has garnered 
significant attention due to its critical applications in areas such 
as urban planning, disaster management, and environmental 
monitoring. Traditional object detection frameworks designed 
for natural images, such as YOLO and Faster R-CNN, have been 
adapted to remote sensing scenarios. However, these 
frameworks face challenges unique to remote sensing images, 
such as the need to detect objects at various orientations and 
scales. Consequently, specialized frameworks have been 
developed to address these challenges, focusing on rotated 
object detection, multi-scale feature extraction, and robust 
performance in diverse and cluttered environments. 

To mitigate the abundance of rotated anchors and to 
minimize the disparity between the feature representations and 
the actual objects, Ding et al. [6] have introduced the RoI 
transformer. This technique, which extracts rotated RoIs from 
the horizontal ones yielded by the RPN, substantially enhances 
the precision of detecting objects with orientation. Nonetheless, 
the incorporation of fully-connected layers and the RoI 
alignment process during the learning phase adds a layer of 
complexity and computational demands to the network. 

To tackle the detection of small-scale, densely packed, and 
rotated objects, Yang et al. [7] have crafted an oriented object 
detection approach that integrates with the established Faster R-
CNN framework. Additionally, a novel representation for 
oriented objects, known as gliding vertexes [8], has been put 
forward. This method refines the detection process by acquiring 
four vertex gliding offsets from the regression component of the 
Faster R-CNN architecture. 

Despite these advancements, the reliance on horizontal RoIs 
for classification and oriented bounding box regression in these 
methods leads to significant misalignment issues between the 
objects and their corresponding features. Furthermore, various 
studies have delved into one-stage or anchor-free oriented object 
detection frameworks, which forgo the need for region proposal 
generation and RoI alignment, directly outputting object classes 
and oriented bounding boxes. For instance, a refined one-stage 
oriented object detector [9] has been proposed, featuring two 
pivotal enhancements: feature refinement and progressive 
regression, addressing the misalignment of features. A new label 
assignment strategy for one-stage oriented object detection, 
inspired by RetinaNet, dynamically assigns anchors as either 
positive or negative through an innovative matching approach. 
A single-shot alignment network (S2ANet) [10] has been 
introduced for oriented object detection, focusing on 
harmonizing the classification score with location precision 
through deep feature alignment. Lastly, a dynamic refinement 
network (DRN) [11]has been conceptualized for oriented object 

detection, leveraging the anchor-free detection approach of 
CenterNet [12]. 

B. Addressing Metric and Loss Inconsistency 

The issue of inconsistency between metrics and loss 
functions is prevalent in horizontal bounding box object 
detection and becomes even more pronounced in remote sensing 
object detection due to the introduction of angle parameters. In 
horizontal bounding box detection, new IoU (Intersection over 
Union) calculation methods like DIoU (Distance Intersection 
over Union) [13] and GIoU (Generalized Intersection over 
Union) [14] have been proposed to alleviate inconsistency 
problems. However, these methods are non-differentiable and 
thus not directly applicable to remote sensing object detection. 

Existing solutions to inconsistency in remote sensing object 
detection are limited, primarily focusing on designing new loss 
functions. These can be categorized into bounding box-based, 
pixel-based, and Gaussian distribution-based loss functions. 
Most current detection methods calculate the IoU of two 
inclined bounding boxes, often using smooth L1 as the 
regression loss function. However, for near-square targets, high 
IoU can still result in a significant loss. To address this, Yang et 
al. [7] proposed the IoU-smooth L1 loss, which combines IoU 
and smooth L1 to mitigate the problem. The overlapping forms 
of two inclined bounding boxes vary greatly. Zheng et al. [15] 
addressed this by proposing a rotation-robust IoU (RIoU) 
calculation method for 3D object detection, which can also be 
applied to 2D rotated object detection. This method defines a 
pair of projected rectangles to calculate the overlap area, 
allowing for the regression of bounding boxes at any angle. For 
anchor-free detection methods, Guo et al. [16] proposed using a 
convex hull formed by a set of irregular points to represent each 
rotated target, then optimizing the detector using a convex hull-
based CIoU (Complete Intersection over Union) loss. 
Additionally, the smooth L1 loss is insensitive to large aspect 
ratio targets. To address this, Chen et al. [17] proposed PIoU 
(Pixels Intersection over Union) loss, which determines whether 
pixels are within the rotated box and calculates the rotated IoU 
by accumulating these pixels. This loss function can be applied 
to both anchor-based and anchor-free frameworks, though its 
accuracy needs improvement. 

C. Gaussian-based Loss 

Recently, methods based on 2D Gaussian distributions have 
garnered significant attention. Yang et al. [18] analyzed the 
impact of angle differences, center point deviations, and 
different aspect ratios between rotated candidate boxes and 
ground truth on loss function changes. They designed a new loss 
function based on Gaussian Wasserstein distance. The approach 
involves converting rotated bounding boxes to 2D Gaussian 
distributions, calculating the Gaussian Wasserstein distance 
between the distributions of the ground truth and predicted 
boxes to derive the new loss function. However, this method 
lacks scale invariance, and optimizing only the rotation center 
can lead to positional deviations in the detection results. To 
address the scale variation issue brought by Gaussian 
Wasserstein distance, KL divergence [19] has been used as a 
substitute for loss calculation. This method, similar to Gaussian 
Wasserstein distance, derives a theoretical explanation for 
selecting distribution distance metrics to maintain detection 



 

accuracy and scale invariance after transforming parameters into 
2D Gaussian distributions. Both loss functions introduce 
additional hyperparameters, but the key to maintaining 
consistency between evaluation and loss is ensuring their trends 
remain consistent. Inspired by Kalman filtering, the KFIoU 
(Kalman Filter Intersection over Union) loss [20] was proposed. 
The basic steps involve modeling the ground truth and predicted 
bounding boxes as Gaussian distributions, aligning the center 
points of the two distributions, obtaining the Gaussian 
distribution of the overlapping area through Kalman filtering, 
and converting it back to a rotated bounding box. This approach 
approximates the rotated IoU. 

D. Backbone Network Design 

Designing an effective backbone network for remote sensing 
images is crucial due to the varying scales and orientations of 
objects. Li et al. [3] introduced a strategy incorporating large 
kernel convolutions with different receptive fields into the 
backbone network. This approach dynamically adjusts the 
receptive fields to capture features at various scales. However, 
large kernel convolutions may lead to information loss for small 
objects, as their large receptive fields might cover multiple 
objects or noise regions. Pu et al. [4] employed adaptive rotated 
convolutions, rotating the convolutional kernels to achieve 
rotational sampling. While effective, rotating large kernels 
significantly increases computational complexity without a 
corresponding improvement in accuracy. This trade-off 
highlights the need for a balanced approach that can capture 
features at different scales and orientations without excessive 
computational cost. 

E. Attention Mechanisms 

Attention mechanisms serve as a straightforward yet potent 
means of augmenting neural network representations across a 
multitude of applications. The channel-wise attention 
mechanism, exemplified by the SE block [5], leverages the 
insights from global averaging to recalibrate the importance of 
feature channels. Concurrently, spatial attention schemes such 
as those found in GENet [21], GCNet [22], and SGE [23], fortify 
the network's capacity to incorporate contextual cues through 
spatial filtering techniques. The CBAM [24] and BAM [25] 
architectures amalgamate channel and spatial attention, 
capitalizing on the strengths of both to refine feature 
representation. 

Our proposed method focuses on the integration of backbone 
network design and attention mechanisms. Li et al. [3] 
incorporated prior knowledge from remote sensing images to 
develop large kernel selective convolutions; however, these 
large kernel convolutions can reduce the network's sensitivity to 
small objects, which are prevalent in remote sensing imagery. 
Pu et al. [4] designed rotated convolutions that are sensitive to 
object angles, yet this approach introduces significant 
computational overhead. In contrast, our work combines both 
strategies by implementing spatial attention, utilizing smaller 
rotated convolutions alongside larger standard convolutions. 
This approach effectively balances the detection of small and 
large objects without substantially increasing computational 
costs. Additionally, channel attention mechanisms [5] are 
employed to suppress irrelevant features while enhancing the 

importance of relevant ones, thereby improving overall 
detection performance. 

III. PROPOSED METHOD 

In this section, we introduce the architecture and components 
of the Spatial Channel Attention Fusion Module (SCAF-
Module), designed to enhance remote sensing object detection 
by integrating multi-scale convolutions, adaptive rotated 
convolutions, and parallel spatial channel attention mechanisms. 
We also detail the overall backbone structure, which 
incorporates the SCAF-Module into a hierarchical framework to 
effectively capture and represent features at multiple levels. The 
SCAF-Module is built upon the following assumptions: (1) 
Objects in remote sensing images vary greatly in scale and 
orientation [20], necessitating a detection method that can 
handle these variations effectively. (2) Multi-scale [3] and 
adaptive rotated convolutions [4] are effective in capturing 
detailed features across different scales and orientations. (3) 
Spatial and channel attention mechanisms [5] can further 
enhance the detection performance by emphasizing important 
features. 

A. Spatial Channel Attention Fusion Module 

The Spatial Channel Attention Fusion Module (SCAF-
Module) is designed to enhance feature representation by 
integrating spatial [3]and channel attention [5] mechanisms with 
multi-scale and rotated convolutions [4]. This module aims to 
address the challenges posed by the diverse scales and 
orientations of objects in remote sensing images. The overall 
structure of the SCAF-Module is depicted in Fig. 1. 

1) Multi-scale Convolutions 
The SCAF-Module begins by processing the input feature 

map � through three convolutional layers, each with a different 
receptive field to capture features at various scales. The three 
convolutional layers include: 

• 3 × 3 Rotated Convolution: Captures fine-grained details 
and small-scale features with enhanced sensitivity to object 
orientations, improving detection accuracy for rotated objects. 

• 3 × 3 Rotated Dilated Convolution (dilation rate = 2): 
Utilizes a dilation rate of 2 to expand the receptive field without 
increasing the number of parameters, capturing medium-scale 
features while maintaining orientation adaptability. 

• 5×5 Standard Dilated Convolution (dilation rate = 2): 
Further expands the receptive field to capture larger-scale 
features, ensuring comprehensive feature extraction across 
various object scales. 

These layers generate three feature maps �� , �� , and �� 
respectively. The use of different receptive fields allows the 
module to balance sensitivity to both large and small objects, 
which is crucial for the diverse object sizes found in remote 
sensing images.  

2) Rotated Convolution 
Rotated convolution is designed to address the unique 

challenges posed by remote sensing images, particularly the 
diverse orientations of objects. Traditional convolutional layers 
are limited by their fixed orientation, which can hinder the 
model's ability to accurately capture features of rotated objects. 
The rotated convolution mechanism introduces a way to  



 

Fig. 1. The overall structure of the SCAF-Module. 

dynamically adjust the orientation of the convolutional filters, 
enabling better alignment with the objects in the input image. 
The primary advantage of rotated convolution is its ability to 
rotate the convolutional kernels to match the orientation of the 
target objects. This is particularly beneficial for remote sensing 
applications where objects such as buildings, vehicles, and 
agricultural fields can appear at various angles. By aligning the 
convolutional filters with the orientation of these objects, the 
rotated convolution can more effectively capture the relevant 
features, leading to improved detection accuracy. The process of 
rotated convolution involves the following steps: 

• Kernel Rotation: The convolutional kernel is treated as a 
set of sampling points in the kernel space. These sampling points 
are then rotated by an angle θ, which is dynamically determined 
based on the input feature map. This rotation allows the kernel 
to align with the orientation of the objects in the image. 

• Bilinear Interpolation: After rotating the sampling points, 
bilinear interpolation is used to map the original convolution 
parameters to the new rotated positions. This ensures that the 
rotated kernel retains the characteristics of the original kernel 
while adapting to the new orientation. 

• Dynamic Angle Generation: The rotation angle 
  is not 
fixed but is generated dynamically by a routing function based 
on the input features. This allows the model to adapt to different 
orientations present in the input image, providing a flexible and 
robust solution for capturing rotated objects. 

Rotated convolution addresses the limitations of traditional 
convolutional layers by introducing orientation adaptability. 
This innovation is crucial for improving the accuracy of object 
detection in remote sensing images, where the orientation of 
objects is often varied and unpredictable. By aligning the 
convolutional filters with the objects' orientations, the SCAF-

Module can more effectively capture and represent the relevant 
features, leading to superior detection performance. 

3) Spatial Attention Mechanism 
The spatial attention mechanism is designed to focus on 

important regions within the feature maps, addressing the 
variability in the shapes and scales of objects. As shown in Fig. 
2, the spatial attention mechanism operates as follows: 

• Concatenation: The feature maps �� , �� , and ��  are 
concatenated along the channel dimension to form a combined 
feature map �. 

• Pooling: The combined feature map � undergoes average 
pooling and max pooling along the channel dimension, 
producing the average feature map ��  and maximum feature 
map �. 

• Fusion: The pooled feature maps ��  and �  are 
concatenated along the channel dimension to form the fused 
feature map ��. 

• Convolution and Activation The fused feature map �� 
is passed through a convolutional layer and a sigmoid activation 
function to produce the spatial attention map ��: 

 (Conv([AvgPool( ), MaxPool( )])),F FSF σ=  (1) 

where σ denotes the sigmoid activation function, which maps 
the output to a range of [0, 1], serving as the spatial attention 
weights. This mechanism enables the model to selectively focus 
on significant regions in the feature maps, enhancing the 
detection of objects with varying shapes and scales. 

4) Channel Attention Mechanism 
The channel attention mechanism dynamically adjusts the 

weights of different channels, emphasizing channels that are 
more informative for the task at hand. This mechanism is crucial  
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Fig. 2. Spatial attention mechanism. 

for optimizing the feature representation by selectively 
enhancing the most relevant channels based on the global 
context of the feature map. As shown in Fig. 3, the channel 
attention mechanism operates as follows: 

• Global Average Pooling: Each feature map �� undergoes 
global average pooling to capture the global context of the 
feature map, resulting in a descriptor vector � . The global 
average pooling operation aggregates the spatial information 
across the entire feature map, producing a channel-wise 
descriptor that summarizes the global context. 

• Squeeze and Excitation: The descriptor vector � is passed 
through two convolutional layers. The first convolutional layer 
reduces the number of channels by a ratio (typically 16), and the 
second convolutional layer restores the original number of 
channels. This sequence of operations is designed to learn the 
importance of each channel dynamically: 

 2 1(Conv (ReLU(Conv ( )))),
c

s zσ=  (2) 

where Conv�  and Conv�  are the convolutional layers used for 
compression and excitation, respectively, and σ  denotes the 
sigmoid activation function. 

• Reweighting: The learned channel weights ��  are applied 
to the corresponding feature map �� , producing the channel-
weighted feature map ���: 

 ��� = �� ⊙ �� , (3) 

where ⊙ denotes the element-wise multiplication. 

The core idea behind this mechanism is to use global 
information to recalibrate the feature map in a channel-wise 
manner, enhancing the model's ability to focus on the most 

informative channels and improving the overall feature 
representation. By integrating this SE-based channel attention 
mechanism, the SCAF-Module can effectively capture and 
utilize the global context, leading to improved performance in 
remote sensing object detection tasks. 

5) Feature Fusion 
The outputs from the spatial and channel attention 

mechanisms are element-wise multiplied and summed to 
produce a new feature map ��: 

 �� = ∑ ��
��� �� ⊙ ���. (4) 

where ⊙  denotes the element-wise multiplication. This 
fusion step integrates spatial and channel attention, enhancing 
the feature representation by focusing on both important regions 
and informative channels. Finally, the fused feature map �� is 
element-wise multiplied with the input feature map �  to 
produce the final output � of the module: 

 � = � ⊙ ��. (5) 

This final step ensures that the enhanced features are 
integrated with the original input, maintaining the integrity of 
the input information while incorporating the attention 
mechanisms' enhancements. The SCAF-Module, through its 
combination of multi-scale convolutions, spatial attention, and 
channel attention, effectively addresses the challenges of 
detecting objects with varying scales and orientations in remote 
sensing images. 

B. Backbone Structure 

The backbone structure of the SCAF-Module is 
meticulously designed to effectively capture and process the 
diverse features present in remote sensing images. This section 
provides an in-depth look at the backbone architecture, 
consisting of multiple stages, each composed of several blocks 
that integrate the SCAF-Module to enhance feature 
representation. 

1) Block Structure 
Each block within the backbone is constructed to maintain 

the shape and channel dimensions of the input while enhancing 
the feature representation through a series of operations. The 
block structure is as follows: 

• Normalization 1: The input feature map undergoes a 
normalization process to stabilize and accelerate the training 
process. 

• Fully Connected Layer: A fully connected (FC) layer is 
applied to the normalized features, transforming them into a 
different feature space. 
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Fig. 3. Channel attention mechanism. 



 

• GELU Activation: The output from the fully connected 
layer is passed through a GELU (Gaussian Error Linear Unit) 
activation function to introduce non-linearity. 

• SCAF-Module: The activated features are then processed 
by the SCAF-Module, which applies multi-scale convolutions, 
spatial attention, and channel attention to enhance the feature 
representation. 

• Fully Connected Layer: Another fully connected layer is 
applied to the features output by the SCAF-Module. 

• Normalization 2: A second normalization layer is used to 
further stabilize the feature representations. 

• MLP: Finally, the features pass through a multi-layer 
perceptron (MLP) for additional transformation and refinement. 

The block incorporates two residual connections to preserve 
the original input features and prevent the degradation problem 
commonly encountered in deep networks. The first residual 
connection adds the input to the feature map before the second 
normalization step, while the second residual connection adds 
the input to the final output of the block, ensuring that the input-
output shape and channel dimensions remain unchanged.  The 
block structure is illustrated in Fig. 4. 

2) Stage Structure 
The backbone is organized into multiple stages, each 

consisting of several blocks to progressively extract and refine 
features at different scales and resolutions. Each stage operates 
as follows: 

• Shape and Channel Adjustment: At the beginning of each 
stage, a convolutional layer adjusts the shape and channel 
dimensions of the input feature map to prepare it for further 
processing. 

• Repeated Blocks: The adjusted feature map is then passed 
through a series of blocks. Each block applies the operations 
described above, progressively enhancing the feature 
representation. 

• Normalization: The output of the final block in each stage 
undergoes normalization to ensure stable feature distribution 
before passing to the next stage. 

The multi-stage structure allows the backbone to capture 
features at varying levels of abstraction, from low-level edges 
and textures to high-level semantic information. 

3) Integration with Oriented R-CNN 
The backbone is integrated into the Oriented R-CNN 

framework, replacing the original ResNet backbone. The 
Oriented R-CNN is specifically designed for object detection in 
remote sensing images, where objects often appear in arbitrary 
orientations. By incorporating the SCAF-Module-based 
backbone, the Oriented R-CNN benefits from improved feature 
extraction capabilities, particularly in handling the diverse 
scales and orientations of objects in remote sensing imagery. 

The backbone structure leveraging the SCAF-Module 
significantly enhances the capability of the Oriented R-CNN to 
accurately detect and classify objects in remote sensing images. 
The multi-scale convolutions, combined with spatial and 
channel attention mechanisms, ensure that the model captures a 
comprehensive set of features, leading to superior detection 
performance. 

IV. EXPERIMENTS 

In this section, we present the experiments conducted to 
evaluate the performance of the proposed SCAF-Module. We 
detail the datasets used, the evaluation metrics, and the 
experiment setup. Finally, we present and analyze the results, 
demonstrating the effectiveness of our approach. 

A. Datasets and Evaluation 

We evaluate the SCAF-Module on two widely used remote 
sensing image datasets: DOTA-v1.0 and HRSC2016. These 
datasets are chosen for their diversity in object scales, 
orientations, and complexity of scenes, which pose significant 
challenges for object detection models. 

DOTA-v1.0 [26]: The following fifteen object classes are 
covered in this dataset: Plane (PL), Baseball diamond (BD), 
Bridge (BR), Ground track field (GTF), Small vehicle (SV), 
Large vehicle (LV), Ship (SH), Tennis court (TC), Basketball 
court (BC), Storage tank (ST), Soccer-ball field (SBF), 
Roundabout (RA), Harbor (HA), Swimming pool (SP), and 
Helicopter (HC). The dataset contains a wide variety of object 
scales and orientations, making it a suitable benchmark for 
evaluating our model's ability to handle diverse object 
characteristics. Due to the large size of images, offline data 
augmentation is typically used. For single-scale training and 
testing, images are cropped to 1024×1024 patches with 200 
pixels overlap. For multi-scale training and testing, images are 
first resized to 0.5, 1.0, and 1.5 times their original size, and then 
cropped to 1024×1024 patches with 500 pixels overlap. 

HRSC2016 [27]: This dataset focuses on ship detection and 
includes images captured from various angles and distances, 
with ships annotated using oriented bounding boxes. The 
variability in ship sizes and orientations makes this dataset an 
excellent testbed for our model's robustness. 
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Fig. 4. Block structure. 



 

The primary evaluation metric used in The experiments is 
the mean Average Precision (mAP), which measures the 
precision-recall performance across different object categories. 
We report the mAP scores to provide a comprehensive 
assessment of our model's detection capabilities. 

B. Experiment Setup 

The experiments are conducted using the MMRotate 
framework on an NVIDIA GeForce RTX 3090 GPU with a 
batch size of 2 for training and evaluation. The optimizer used 
is AdamW with a learning rate of 5 × 10 ! , "� = 0.9, "� =
0.999, and a weight decay of 0.05. The learning rate follows a 
step policy with an initial linear warmup for 500 iterations 
starting at a third of the base learning rate, then decaying at 
epochs 8 and 11. Image normalization is applied with mean 
values [123.675, 116.28, 103.53] and standard deviations 
[58.395, 57.12, 57.375]. The training pipeline includes resizing, 
random flipping (horizontal, vertical, diagonal), random 
rotation, normalization, padding, and data collection. The test 
pipeline involves multi-scale augmentation and normalization. 

The SCAF-Module is integrated into the Oriented R-CNN 
framework, replacing the original ResNet backbone, to evaluate 
its performance in detecting objects with arbitrary orientations 
in remote sensing images. For the ablation experiments, the 
backbone is not pre-trained on ImageNet to enhance 
experimental efficiency. In contrast, for the comparative 
experiments, the backbone undergoes pre-training on ImageNet 
for 300 epochs before being fine-tuned on the DOTA-v1.0 and 
HRSC2016 datasets to achieve higher performance. 

C. Comparative Experiments 

In this section, we evaluate the performance of the SCAF-
Module against six advanced models, including the baseline 
Oriented R-CNN, using two widely adopted remote sensing 
image datasets: DOTA-v1.0 and HRSC2016. The comparison 
focuses on mean Average Precision (mAP) as the primary 
metric. 

1) DOTA-v1.0 Dataset 
The DOTA-v1.0 dataset is a standard benchmark for remote 

sensing object detection. We conducted experiments using both 
single-scale and multi-scale training and testing protocols to 
assess the robustness of our model. 

For the single-scale evaluation, large images from the 
DOTA-v1.0 dataset were divided into 1024×1024 patches with 
a 200-pixel overlap. The results, summarized in Table I, show 
that the SCAF-Module achieved a significant mAP of 78.96%, 
outperforming all compared models. This demonstrates the 
module's ability to effectively capture fine-grained details and 
accurately detect objects at a fixed scale. In the multi-scale 
evaluation, images were rescaled to 0.5, 1.0, and 1.5 times their 
original sizes, with a 500-pixel overlap during patching. As 
shown in Table II, the SCAF-Module achieved an mAP of 
80.94%, again surpassing the other models. This result 
highlights the module’s robustness in adapting to various object 
scales, a critical requirement in remote sensing tasks. 

 

 

Fig. 5. Detection Results on DOTA-V1.0 Dataset. 



 

These evaluations on the DOTA-v1.0 dataset confirm the 
superior performance of the SCAF-Module, particularly in its 
ability to enhance detection accuracy across both single and 
multi-scale scenarios. To visually represent the effectiveness of 
our model on the DOTA-v1.0 dataset, we present a series of 
detection result images in Fig. 5. 

2) HRSC2016 Dataset 
The HRSC2016 dataset focuses on ship detection, providing 

a rigorous test of model precision and robustness. We evaluated 
our model under the PASCAL VOC 2007 and VOC 2012 
metrics to ensure a thorough assessment. As detailed in Table 
III, the SCAF-Module achieved mAP scores of 90.61% under 
the VOC 2007 metric and 98.23% under the VOC 2012 metric, 
marking a notable improvement over the other models. This 
performance can be attributed to the module's advanced 
attention mechanisms and multi-scale convolutional structure, 
which enhance its ability to detect ships with varying 
orientations—a frequent challenge in remote sensing imagery. 

Overall, the results from the HRSC2016 dataset further 
validate the effectiveness of the SCAF-Module in detecting 
objects with diverse scales and orientations, reinforcing its value 
as a robust tool for remote sensing object detection tasks. 

D. Ablation Study 

To understand the contribution of each component in the 
SCAF-Module, we conduct ablation studies on the DOTA-v1.0 
dataset. The goal is to analyze the effects of Spatial Attention, 
Channel Attention, their order, and the use of Rotated 
Convolutions on the overall performance of the model. 

Contribution of Individual Components 

We investigate the contributions of various components to 
the overall performance of our model. The baseline 
configuration employs multi-scale convolutional layers without 
any additional mechanisms. We then incrementally add the 
following components: rotated convolutions, channel attention, 
and spatial attention. All experiments are conducted using 
single-scale training and testing on the DOTA-v1.0 dataset. 

The baseline is multi-scale convolutional layers without any 
attention mechanisms. This setup serves as the foundational 
model, capturing features at different scales. We first 
incorporate spatial attention into the baseline. The spatial 
attention mechanism enables the model to focus on important 
spatial regions, enhancing the detection of objects of varying 
shapes and scales within the image. Next, we add the channel 
attention mechanism to the model with rotated convolutions. 
This mechanism allows the model to emphasize important 
channels, improving the representation of semantic information 
critical for accurate object detection. Finally, we integrate 
rotated convolutions into the model. Rotated convolutions 
enhance the model's ability to capture features at various 
orientations, crucial for remote sensing images where objects 
often appear in arbitrary orientations. 

The results of these experiments are summarized in Table 
IV. Each row in the table shows the mAP achieved by the model 
with the addition of the respective component. The performance 
improvements with each added component demonstrate the 
effectiveness of both the rotated convolutions and the attention 
mechanisms in enhancing the detection capabilities of the 
model. 

1) Order of Spatial and Channel Attention 
We also tested different sequences of applying Spatial and 

Channel Attention. The results of these experiments are 
presented in Table V. 

When comparing the sequences of applying Spatial and 
Channel Attention, it is observed that the parallel application of 
both attentions yields the best results. Sequential applications 
result in slightly lower mAP scores, indicating that the 
simultaneous focus on both spatial and channel aspects is more 
beneficial. 

2) Effects of Rotated Convolutions 
Finally, we tested the impact of using Rotated Convolutions 

in different configurations. The results of these experiments are 
presented in Table VI. 

TABLE I.  AP FOR EACH CATEGORY AND OVERALL MAP ON DOTA-V1.0 (SINGLE-SCALE). 

Model PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP 

GWD [18] 88.92 77.08 45.91 69.30 72.52 64.05 76.33 90.87 79.18 80.45 57.67 64.36 63.60 64.75 48.24 69.55 

R3Det [9] 89.30 73.36 45.10 71.21 76.51 74.01 81.03 90.89 79.01 83.54 59.37 63.47 63.04 65.93 37.02 70.19 

S2A-Net 
[10] 

88.70 81.41 54.28 69.75 78.04 78.23 80.54 90.69 84.75 86.22 65.03 65.81 76.16 73.37 58.86 76.11 

ReDet [28] 88.79 82.64 53.97 74.00 78.13 84.06 88.04 90.89 87.78 85.75 61.76 60.39 75.96 68.07 63.59 76.25 

Oriented R-
CNN [29] 

88.86 83.48 55.27 76.92 74.27 82.10 87.52 90.90 85.56 85.33 65.51 66.82 74.36 70.15 57.28 76.28 

LSKNet [3] 89.78 81.24 54.09 75.96 79.31 85.13 88.49 90.90 87.41 84.87 64.12 64.31 77.03 78.22 67.02 77.86 

SCAF(ours) 89.72 85.25 55.38 76.10 79.55 84.85 88.43 90.85 87.46 85.71 66.99 68.54 76.85 79.79 68.87 78.96 

TABLE II.  MAP ON DOTA-V1.0 (MULTI-SCALE). 

Model mAP 

R3Det 76.47 

S2A-Net 79.42 

ReDet 79.87 

GWD 80.23 

LSKNet 80.32 

O-RCNN 80.62 

SCAF(ours) 80.94 

TABLE III.  MAP ON HRSC2016 (VOC 2007 AND VOC 2012). 

Model mAP(07) mAP(12) 

S2A-Net 90.17 95.01 

R3Det 89.26 96.01 

GWD 89.85 97.37 

O-RCNN 90.50 97.60 

ReDet 90.46 97.63 

LSKNet 90.27 97.80 



 

SCAF(ours) 90.61 98.23 

TABLE IV.  CONTRIBUTION OF INDIVIDUAL COMPONENTS. 

Configuration mAP 

Baseline 67.62 

+ Spatial Attention 68.45 

+ Channel Attention 69.32 

+ Rotated Convolution 69.79 

TABLE V.  ORDER OF SPATIAL AND CHANNEL ATTENTION. 

Configuration mAP 

Spatial then Channel Attention 67.77 

Channel then Spatial Attention 68.44 

Parallel Spatial & Channel Attention 69.32 

TABLE VI.  EFFECTS OF ROTATED CONVOLUTIONS. 

Configuration mAP 

All ordinary convolutions 69.32 

The first convolution rotated 69.59 

The first and second convolutions 
rotated 

69.79 

All convolutions rotated 69.70 

In the experiments focusing on the Rotated Convolutions, 
replacing the first and second convolutions with rotated ones 
gives the best performance. Using only ordinary convolutions or 
replacing all convolutions with rotated ones results in lower 
mAP scores. This suggests that a balanced combination of 
ordinary and rotated convolutions is most effective for capturing 
diverse object orientations in remote sensing images. 

The ablation study demonstrates the effectiveness of each 
component within the SCAF-Module. Spatial Attention 
enhances the model's ability to focus on important regions 
within the image, Channel Attention dynamically adjusts the 
significance of different feature channels, and Rotated 
Convolutions improve the detection of objects with varying 
orientations. The combination of these components results in a 
significant performance boost, validating the design choices 
made in the development of the SCAF-Module. 

V. CONCLUSION 

In this paper, we introduced the Spatial Channel Attention 
Fusion Module (SCAF-Module), a novel approach designed to 
enhance remote sensing object detection. By integrating multi-
scale convolutions, adaptive rotated convolutions, and parallel 
spatial channel attention mechanisms, our model effectively 
addresses the challenges posed by the diverse scales and 
orientations of objects in remote sensing images. 

The experiment results on the DOTA-v1.0 and HRSC2016 
datasets demonstrate the effectiveness of the SCAF-Module. 
Specifically, the module achieved impressive mean Average 
Precision (mAP) scores of 80.94% and 98.23% on the DOTA-
v1.0 and HRSC2016 datasets, respectively. These results 
underscore the adaptability and robustness of our approach in 
handling various object detection scenarios in remote sensing 
imagery. Furthermore, the ablation studies validate the 
individual contributions of the spatial and channel attention 
mechanisms, as well as the impact of rotated convolutions on 
improving detection accuracy. The comparative experiments 
show that the SCAF-Module outperforms several advanced 

models, including the baseline Oriented R-CNN, highlighting its 
superior performance. 

Overall, the SCAF-Module offers a significant advancement 
in remote sensing object detection by providing a more 
comprehensive and adaptable framework. Future work will 
focus on further optimizing the module and exploring its 
application in other challenging remote sensing tasks. 
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