
Published as a conference paper at ICLR 2024

IMPROVING LORA IN PRIVACY-PRESERVING FEDER-
ATED LEARNING

Youbang Sun∗

Dept. of Mechanical & Industrial Engineering
Northeastern University
{sun.youb}@northeastern.edu

Zitao Li, Yaliang Li & Bolin Ding
Alibaba Group
{zitao.l, yaliang.li,
bolin.ding}@alibaba-inc.com

ABSTRACT

Low-rank adaptation (LoRA) is one of the most popular task-specific parameter-
efficient fine-tuning (PEFT) methods on pre-trained language models for its good
performance and computational efficiency. LoRA injects a product of two train-
able rank decomposition matrices over the top of each frozen pre-trained model
module. However, when applied in the setting of privacy-preserving federated
learning (FL), LoRA may become unstable due to the following facts: 1) the ef-
fects of data heterogeneity and multi-step local updates are non-negligible, 2) ad-
ditive noise enforced on updating gradients to guarantee differential privacy (DP)
can be amplified and 3) the final performance is susceptible to hyper-parameters.
A key factor leading to these phenomena is the discordance between jointly opti-
mizing the two low-rank matrices by local clients and separately aggregating them
by the central server. Thus, this paper proposes an efficient and effective version
of LoRA, Federated Freeze A LoRA (FFA-LoRA), to alleviate these challenges
and further halve the communication cost of federated fine-tuning LLMs. The
core idea of FFA-LoRA is to fix the randomly initialized non-zero matrices and
only fine-tune the zero-initialized matrices. Compared to LoRA, FFA-LoRA is
motivated by practical and theoretical benefits in privacy-preserved FL. Our exper-
iments demonstrate that FFA-LoRA provides more consistent performance with
better computational efficiency over vanilla LoRA in various FL tasks.

1 INTRODUCTION

Recent years have witnessed tremendous success in the development of large language models
(LLMs) (Touvron et al., 2023; OpenAI, 2023; Zhang et al., 2022a; Zeng et al., 2022). The appli-
cations of LLMs range from a versatile chatbot for different writing tasks (OpenAI) to multi-modal
systems (Driess et al., 2023; Wu et al., 2023; Bommasani et al., 2021). Besides the commercial-
ized products based on general-purpose LLMs, people can also build their customized LLMs by
utilizing their task-specific data to fine-tune pre-trained LLMs (Howard & Ruder, 2018). Since
modern LLMs usually contain billions of parameters, fine-tuning on all parameters has prohibitively
high computational costs. As a remedy, parameter efficient fine-tuning (PEFT) approaches (Ding
et al., 2023), such as Low-Rank Adaptation (LoRA) (Hu et al., 2021) have been developed and
commonly adapted in many downstream tasks. PEFT methods freeze the majority of parameters in
pre-trained LLMs, and perform update on a small subset of parameters. Compared to full model
fine-tuning, these approaches usually offer on-par or even better performance while significantly
improving computational efficiency.

In this paper, we focus on LoRA for its good performance and versatility for a wide spectrum of tasks
with many variations. However, LoRA still requires sufficient training data to achieve significant
improvement over the raw model. The data-limited parties can unite with others and adopt federated
learning (FL) (Li et al., 2020) as the computation framework to fine-tune the model collaboratively.
The parameter-efficient nature of LoRA is welcomed in FL due to its low communication costs and
relatively low local computational burdens. Furthermore, if the data parties in FL (usually known
as clients in FL) want to provably prevent local data leaking from their shared information in FL,

∗Work was done while the first author Youbang Sun was an intern at Alibaba Group.

1

Published as a conference paper at ICLR 2024

differential privacy (DP) (Dwork et al., 2006) techniques can be further employed to provide privacy
guarantees.

While there are many existing research results exploring (privacy-preserved) PEFT in the central
setting, the exploration on how to conduct (privacy-preserved) LoRA in the FL setting is still a pre-
mature. Directly migrating LoRA methods from the central setting and combining it with FedAvg
may not achieve the best performance since other sources of interference in the (privacy-preserving)
FL setting, such as noisy gradients and non-iid distribution of data in the cross-silo setting, can
play important roles in the optimization process. In real-world LLM applications with privacy con-
cerns, such as federated fine-tuning (Babakniya et al., 2023) or fine-tuning under differential privacy
guarantees (Li et al., 2022), the performance of LoRA often suffers deterioration.

Contributions. In this paper, we identify three discordances in applying LoRA in the privacy-
preserved FL setting. The first is presented as a mismatched term brought by the joint local updates
and separate global aggregations on the two sets of low-rank matrices of LoRA. The second discor-
dance is that if we employ DP-SGD as the differentially private optimizer for training, the injected
noise can be amplified by the locally “semi-quadratic” nature of LoRA. Lastly, the choice of one
hyper-parameter of LoRA, the scaling factor α, can significantly affect the convergence and perfor-
mance of the final model, no matter enforcing DP or not.

To resolve these discordances, we propose our solution named Federated Freeze A LoRA
(FFA-LoRA). FFA-LoRA freezes the non-zero initialized low-rank matrices and only perform up-
date and aggregation on the zero-initialized matrices, only half as many parameters as LoRA. Beside
FFA-LoRA’s obvious effect of saving half of the communication and computational cost in FL, we
also provide intuitions on why it can alleviate the three aforementioned discordances. We conduct
comprehensive experiments to demonstrate the advantages of FFA-LoRA over LoRA in privacy-
preserving FL, across different tasks, hyper-parameters and privacy protection levels.

We summarize our contributions as follows:

• We explore the conditions in privacy-preserved FL that are discordant with LoRA, and provide
explanations on the potential reasons of this performance degradation.

• We propose a new method, FFA-LoRA, which tailors LoRA to increase its performance in these
undesirable but unavoidable conditions in privacy-preserved FL.

• We conduct extensive experiments to verify that FFA-LoRA can consistently outperform LoRA.

2 BACKGROUND AND RELATED WORKS

Parameter efficient fine-tuning. The ever-increasing network size of LLMs makes them pro-
hibitively expensive, if possible at all, to fine-tune directly. To mitigate this problem, parameter-
efficient fine-tuning (PEFT) methods have been proposed. These methods introduce a small number
of additional trainable parameters Θ to improve model performance and keep most of the pre-trained
parameters Φ frozen. The task-specific increment ∆Φ is then encoded into ∆Θ with much smaller
dimensions. Houlsby et al. (2019) added additional trainable neural modules named adapters to
each layer of the network. Alternatively, prefix-tuning(Li & Liang, 2021) and prompt-tuning(Lester
et al., 2021) modify the network by concatenating additional trainable dimensions to input or hidden
layers of the network. Another series of works (Hu et al., 2021; Yu et al., 2021b) proposed LoRA
and RGP, using low-rank matrices to approximate or re-parameterize the pre-trained weight matri-
ces. LoRA is arguably the most popular approach among PEFT methods, it only requires tuning less
than 1% of the parameters in the full fine-tune approach but achieves comparable performance in a
wide range of downstream tasks. There are also works (He et al., 2021; Chavan et al., 2023) that
seek to provide a generalized method that unifies these PEFT methods.

Federated fine-tuning with LLM. Although fine-tuned LLMs can become backbones for applica-
tions in different areas, the fine-tuning process still favors large-scale, domain-specific data. How-
ever, such domain-specific data is typically possessed by multiple parties, with each party’s dataset
only containing inadequate data to fine-tune models by itself. Furthermore, these parties are often
prohibited from sharing such data directly with other entities. A common solution for this dilemma is
federated learning (Kairouz et al., 2021), which allows a set of agents to fine-tune LLMs efficiently
by sharing their local model updates without explicitly sharing their respective data. Tian et al.
(2022) proposed FedBERT and performed federated pre-training on the BERT model. Different
from traditional machine learning models, LLM’s tremendous model size can consume significant

2

Published as a conference paper at ICLR 2024

amount of resources for cross-party communication and require immense computation resources
for local training. Many research solutions rely on the combination of PEFT with FL. There have
been multiple studies of PEFT in FL in the recent years, Zhang et al. (2022b) considers PEFT in
the federated setting. Recently, (Kuang et al., 2023) proposed FS-LLM, a federated framework for
federated fine-tuning LLMs. It has been pointed out that data heterogeneity in FL is a challenge for
PEFT algorithm (Kairouz et al., 2021; Babakniya et al., 2023).

PEFT with differential privacy. Although LLMs are powerful tools and offer great performance
thanks to their ability to extract rich features with the transformer structure and large number of
parameters, it is also well known that LLMs with large number of parameters can leak critical
information contained in the training dataset (Carlini et al., 2021; Huang et al., 2022). A popular
privacy notion that can provide theoretical guarantees against training data leakage from the model
is differential privacy (DP) (Dwork et al., 2006).

Definition 1 ((ϵ, δ)-DP). A randomized algorithm A is (ϵ, δ)-differentially private if for any two
neighboring datasets D and D′, which differ in exactly a single record, and for all possible subsets
S ⊂ O of possible outputs of A: Pr[A(D) ∈ S] ≤ eϵPr[A(D′) ∈ S] + δ.

Intuitively, DP ensures that any single record cannot significantly affect the distribution of the output.
With such indistinguishable output distributions, any adversary can only gain limited additional
knowledge about whether a specific record is in the input data. The level of privacy is denoted by the
privacy parameters (ϵ, δ), a smaller choice of (ϵ, δ) means a stronger privacy protection guarantee.

Machine learning with DP: DP-SGD. A classic mechanism used to ensure the published model
differentially private is DP-SGD (Song et al., 2013; Abadi et al., 2016; Bassily et al., 2014). It
requires a DP optimizer to privatize gradients before using them to update the model. Compared
with the vanilla stochastic gradient descent (SGD) algorithm, DP-SGD has two additional operations
in each iteration. It first clips per-sample gradients with a norm constraint C to limit the maximum
influence of any sample. Then, it adds a Gaussian noise z ∼ N (0, C2σ2Ip) to the sum of clipped
gradients in a batch B. Namely, ḡ =

(∑
i∈B Clip(∇fi, C) + z

)
/|B|. Finally, this noisy sum of

clipped gradients ḡ is used to update the model. The scalar σ is decided by privacy composition
rules (Abadi et al., 2016) given privacy parameter ϵ, δ, total number of iteration T and sampling rate
q = |B|/N , where N is the total number of samples in the training set.

In the central setting, where a single trainer possesses all data, existing studies on fine-tuning LLM
with DP guarantees mainly adopt DP-SGD as the optimization algorithm. Yu et al. (2021a) stud-
ied the effect of parameter-efficient algorithms in private fine-tuning. Li et al. (2021a; 2022) found
that although the number of trainable parameters has been significantly reduced for PEFT, the per-
formance of private fine-tuning is not significantly better, which might be contrary to traditional
beliefs (Bassily et al., 2014).

Different DP settings in FL. Generally, there are two different levels of differential privacy pro-
tection in federated learning, depending on whether the federated aggregation server is trusted by
the clients or not. The first setting assumes that the server is trusted, the model updates are shared
to the server without privacy concerns; this privacy guarantee is on the final output model achieved
by randomization in the global aggregated update on the server side (McMahan et al., 2017b). A
stronger privacy setting is to forgo the trustworthy server assumption and ensure the shared update
from each client is already differentially private (Li et al., 2021b; Wu et al., 2020; Qu et al., 2021).

In this paper, we adopt the stronger privacy setting, ensuring that any shared information (i.e.,
updates of model parameters) from local clients to server satisfies DP. By DP’s properties, including
parallel composition, sequential composition and resistance to post-processing (Dwork et al., 2006;
Abadi et al., 2016; Li et al., 2021b), the final model automatically satisfies DP globally.

3 LORA IN PRIVACY-PRESERVING FL

In this paper, we focus on LoRA, one of the most promising PEFT methods in the central setting,
LoRA has been shown to exhibit better performance than other PEFT methods in the federated
setting Kuang et al. (2023). The core idea of LoRA is to constrain the weight update on the model
by a low rank decomposition,

W0 +∆W = W0 +BA. (1)

3

Published as a conference paper at ICLR 2024

Instead of training the entire weight matrix W0 ∈ Rd×k composing Φ, the updates are performed
on A ∈ Rr×k and B ∈ Rd×r composing Θ. With r << min(d, k), the number of trainable
parameters |Θ| is reduced by an order of O(r/min(d, k)) compared to full fine-tune with size |Φ|.
In order to recover the performance of raw model at the start of training, and keep the weights
trainable through back-propagation, A uses random Gaussian initialization, while B is set to zero.
The product matrix is additionally scaled by a factor α/r. α also has influence on the performance
of LoRA and is required to be tuned.

Discordance 1: Data heterogeneity and model-averaging introduce interference to LoRA. The
performance of vanilla LoRA is negatively affected when faced with cross-silo FL tasks with data
heterogeneity (Babakniya et al., 2023). Notice that the loss for back-propagation is computed on
the composition of raw model parameters and the product of A and B (as Equation 1), and LoRA
performs optimization over A and B jointly on client side. This implies that the problem is approx-
imately optimized as a locally semi-quadratic problem (suppose the model is locally linear when
learning rate is small). However, when the server performs aggregation on the server side, A and
B are averaged separately following vanilla FedAvg McMahan et al. (2017a). The product of the
averaged A and B involves additional terms that may neither benefit the optimization on the clients’
loss or FL global loss.

For example, consider a FL task involving two clients with datasets of a same size. If clients locally
fine-tune on full parameters and the server aggregates with FedAvg, the new model parameters can
be represented as the following:

W+ =
1

2
(W1 +W2) = W0 +

1

2
(∆W1 +∆W2), where Wi = W0 +∆Wi, i = 1, 2. (2)

An implicit assumption ensuring the global convergence of FL algorithms is ∆Wglobal ≈ 1
2 (∆W1+

∆W2), where ∆Wglobal is the update assuming the server can access all clients’ dataset directly.
When the clients use LoRA locally, we can also consider ∆Wi ≈ BiAi. However, after using
FedAvg to aggregate the trainable low-rank matrices, the server produces

W̃+ = W0 +
1

2
(B1 +B2)×

1

2
(A1 +A2)︸ ︷︷ ︸

Parameters after aggregation with LoRA + FedAvg

̸= W0 +
1

2
(B1A1 +B2A2) = W+︸ ︷︷ ︸

Ideal parameters following model-averaging

. (3)

Thus, it is possible for two clients in FL to converge to two different combinations of adaptation
matrices Bi,Ai, yet when an aggregation such as FedAvg is applied in server, a linear combination
does not necessarily provide good performance for the specific task. The difference between 1

2 (B1+

B2) × 1
2 (A1 +A2) and 1

2 (∆W1 +∆W2) may become more significant when i) number of local
update steps between aggregations is large and ii) the local datasets are different across clients.

This echoes with the “client-drift” phenomenon discussed by Karimireddy et al. (2020). “Client-
drift” happens in heterogeneous FL when there is a difference between the average of local loss
optima of clients and the optimum of the global loss, i.e.

∑
i Θ

∗
i ̸= Θ∗

global. It is caused by the local
gradient dissimilarity among clients and slows down convergence. Since the parameters in LoRA
are locally quadratic in construction, they are more prone to “client-drift” than a locally linear task
such as full-fine-tuning.

Discordance 2: The noise with DP-SGD can be amplified with LoRA. Although LoRA and DP-
SGD are the most popular methods in PEFT and privacy-preserved machine learning respectively,
directly combining them together may not be the optimal choice. The discordance again comes from
the semi-quadratic structure of LoRA. Consider the parameters after a single DP-SGD update. Even
if no norm clipping operation is triggered, the parameters are updated as

W0 + (B + ξB)(A+ ξA) = W0 +BA+ ξBA+BξA + ξBξA,

where ξA and ξB consist of the Gaussian noises from DP-SGD. Three terms contain noise and the
third term, ξBξA, no longer follows a Gaussian distribution. This shows that noise is cascaded after
the multiplication in LoRA, introducing additional difficulties for convergence in fine-tuning.

We provide synthetic verification with Figure 1. In this example, W ∈ R1024×1024 and rank r = 8.
We plot the Frobenius norm of the noise matrices ξBξA and ξW for LoRA and full fine-tuning
respectively. Due to the multiplication in LoRA by construction, the norm of noise scales quadraticly
with σ, and is significantly worse that full fine-tune when σ exceeds 0.5.

4

Published as a conference paper at ICLR 2024

For an FL algorithm with 1000 communication rounds, 10 local update steps and a dataset such as
SST-2, using batch-size B = 200, a DP guarantee with ϵ = 6, δ = 1e− 5 will require a noise factor
of σ = 0.99. In this case, LoRA will produce approximately 3 times more noise compared to full
model fine-tuning This could be an explanation to why LoRA does not significantly outperform full
fine-tuning despite having less parameters, as reported in (Yu et al., 2021a; Li et al., 2022; Babakniya
et al., 2023).

0.0 0.2 0.4 0.6 0.8 1.0
0

500

1000

1500

2000

2500

3000

No
ise

 N
or

m

|| B A||F
|| W||F

Figure 1: Frobenius norm of noise terms
within a single update.

Discordance 3: LoRA requires careful tuning on α.
In terms of the optimal scaling factor α, empirical re-
sults (Kuang et al., 2023) have demonstrated that in
many more complex tasks, a larger α shows higher per-
formance after fine-tuning, yet as α increases, the al-
gorithm becomes more and more unstable with much
higher variance across different runs. According to Zhou
& Cong (2017), the convergence speed for FedAvg-like
algorithms is closely related to the objective function’s
smoothness factor L. As the scaling factor α increases,
the problem becomes less smooth by construction, slow-
ing down convergence.

Furthermore, with increase of the scaling factor α, the
impact of noise on the model performance gets worse.
This could be explained by the fact that as α increases,
the update ∆A becomes less significant compared to
A0. Since B is initialized at 0, the gradient informa-
tion in ∆B becomes more important in comparison. Yet
the gradient clipping and privacy engine sees the update on both A and B equally. Due to the imbal-
anced distribution of information in gradients, the algorithm suffers from either excessive informa-
tion loss or excessive noise, a trade-off between increasing α for better performance and decreasing
α to prevent noise-induced performance deterioration.

While searching for a good hyper-parameter α is important, hyper-parameter optimization (HPO)
is usually costly (Khodak et al., 2021). Adding in α for HPO means extra communication and
computation costs proportional to the search space size of the α.

4 A SIMPLE RECEIPT: FFA-LORA
In the previous section, we discussed the discordance between LoRA and privacy-preserved FL.
Motivated by theory, we propose a simple modification to LoRA, Federated Freeze-A Low Rank
Adapters, or FFA-LoRA for short. FFA-LoRA modifies the training process of LoRA by setting
matrix A to fixed after initialization. That is, for a weight matrix W ∈ Rd×k, we consider the
model update to be projected to a low-rank matrix such that

W = W0 +∆W = W0 +BA0, with B ∈ Rd×r,A0 ∈ Rr×k.

W0 is initialized as the pre-trained weight, and A0 follows a random Gaussian initialization. Fol-
lowing vanilla LoRA, we start with B0 = 0 so that the pre-trained model is recovered at the start of
fine-tuning. The key difference is that we consider B trainable and keep both W0 and A0 frozen.

We note that our approach is somewhat similar to the works regarding the intrinsic dimension of deep
models by (Li et al., 2018; Aghajanyan et al., 2020), however these works emphasis on the existence
of low intrinsic dimensions in deep models and the generalization properties. We summarize the
advantages of FFA-LoRA as the following.

FFA-LoRA has no extra interference with data heterogeneity and model-averaging. We re-
consider the federated aggregation example in Section 3. In the heterogeneous setting, each client
will generate a different ∆Wi. Since ∆Wi ≈ BiA0 in FFA-LoRA, the update is more compatible
with FedAvg and DP-SGD than LoRA. Similar to Equation 3, we write the the aggregation step of
a two-client system for FFA-LoRA:

W̃+ = W0 +
1

2
(B1 +B2)×A0 = W0 +

1

2
(B1A0 +B2A0) = W+. (4)

Unlike LoRA in Equation 3, FFA-LoRA does not have the aggregation error term caused by low
rank adaptation.

5

Published as a conference paper at ICLR 2024

FFA-LoRA works better with noise from DP-SGD. Because FFA-LoRA no longer employs the
locally semi-quadratic structure as LoRA, the noise in DP would not be amplified. When no norm
clipping operation is triggered, the parameters are updated as W0 + (B + ξB)A0 = W0 +BA+
ξBA. This is because the trainable parameters are only the zero-initialized matrices B. The noise
introduced by DP-SGD is only in the term ξBA but without the ξBξB term, making FFA-LoRA
less susceptible to noise than LoRA.

In addition, from an analytical perspective, if the model is Lipschitz smooth with respect to W , sim-
ilar smoothness can be obtained for FFA-LoRA, but not for LoRA. We state our formal theorem and
proof on the smoothness conditions of the two algorithm in the appendix. Convergence properties
similar to (Zhou & Cong, 2017) can be derived from this theorem.

FFA-LoRA does not rely on α, and is equivalent to LoRA with α = ∞. In our previous
discussion of LoRA’s reliance on α in some tasks, this reliance on α is circumvented in FFA-LoRA.
We can view the set of trainable parameters Θ as a dynamical system, a time-dependent series
{Θt}t∈[T] generated by the the FFA-LoRA algorithm. We present the following theorem to illustrate
the connection between α and η in FFA-LoRA.
Theorem 1. For local updates with the same initial condition on W, vanilla LoRA update with
scaling factor αLoRA produces trajectory {W k

αLoRA
}k∈[K], and FFA-LoRA with scaling αFFA

produces trajectory {W k
αFFA

}k∈[K]. Then we have

lim
αLoRA→∞

W k
αLoRA

= W k
αFFA

, for all k, αFFA. (5)

We refer to the appendix for proof of Thm. 1. It is evident that introducing the scaling factor when
fine-tuning with FFA-LoRA is unnecessary. However, the same does not apply to LoRA. For the
case of LoRA, both A and B are trainable by construction, however, A0 is initialized with Gaussian
distribution, away from 0. For LoRA, when α is different, the initialization point is different, if we
want two selection of α to have the same performance, we need to also change the variance of A’s
initialization.

For vanilla LoRA, as discussed in Section 3, as α increases and η decreases, the update on A
become less significant compared to A0. As α→∞, there is almost zero change to be made on A,
i.e. A ∼ A0. Yet the update on B is just as significant, making the dynamics of LoRA infinitely
close to FFA-LoRA when α approaches infinity.

FFA-LoRA saves computation and communication. Since A0 is fixed after initialization in
FFA-LoRA, the total number of trainable parameters in the model is effectively halved compared
to LoRA. This leads to the most straightforward advantage in the efficiency of computation and
communication. Meanwhile, since we get same performance for a wide range of α in FFA-LoRA
as long as the learning rate is scaled accordingly, we can fix α and only search for other hyper-
parameters such as learning rate in HPO.

We note that subsequent to the submission of this paper, multiple new studies (Zhang et al., 2023;
Zhu et al., 2024; Hao et al., 2024) have also considered similar approaches. While this paper dis-
tinctly considers the federated and privacy related properties, the succeeding papers can serve as
verification of the effectiveness of FFA-LoRA. Another intuitive approach towards the problem at
hand is to alternatively update the two LoRA weights. While this update method exhibit similar
properties, it is empirically shown to be slow to converge.

In general, not only does FFA-LoRA provide higher efficiency compared to LoRA, FFA-LoRA
is also able to preserve all the benefits of LoRA, while avoiding the shortcomings of LoRA as
mentioned previously in Section 3.

5 EXPERIMENTS

In this section, we evaluate and compare the performance of FFA-LoRA with LoRA on two LMs,
RoBERTa (Liu et al., 2019) and LLaMA (Touvron et al., 2023). We show that our approach consis-
tently perform better for different types of tasks. We first evaluate the language understanding tasks
from the GLUE benchmark(Wang et al., 2018) including MNLI, SST2, QNLI and QQP using the
RoBERTa model. For language generation tasks, we use the LLaMA model with experiment set-
tings provided by (Kuang et al., 2023) as benchmark and use the GSM-8K dataset for evaluation. All
experiments were run using NVIDIA Tesla A100 GPUs with half-precision enabled for efficiency.

6

Published as a conference paper at ICLR 2024

Our experiments are organized as follows: We provide the overall performance comparison of
FFA-LoRA and LoRA in Section 5.1 (Table 1, 3). Questions regarding the critical factors of con-
vergence are answered in Section 5.2 (Table 2, 4, 7). The evaluation on language generation tasks
are provided in Section 5.3.

We note that our results do not exactly match the centralized PEFT results presented in (Hu
et al., 2021) and (Yu et al., 2021a) due to the additional introduction of federated communica-
tion/aggregation and data heterogeneity in our setup. Our experiments with LoRA is able to match
LoRA’s performance reported in (Hu et al., 2021) in the centralized setting.

5.1 PERFORMANCE OF FFA-LORA AND LORA IN LANGUAGE UNDERSTANDING TASKS

Our experiments on language understanding tasks are based on RoBERTa-Large (355M) (Liu et al.,
2019), a popular choice that has been widely adopted in many research studies for its robustness and
versatility. We start from a pre-trained model available from the HuggingFace library.

All our experiments with LoRA and FFA-LoRA are run in a 3-client cross-silo federated set-
ting. Data on clients are randomly split among all clients sampled to fit certain proportions
to ensure strong data heterogeneity. For the heterogeneous setting, we split data based on
their labels, we use [0.1, 0.9], [0.9, 0.1], [0.5, 0.5] data split for binary classification tasks and
[0.9, 0.05, 0.05], [0.05, 0.9, 0.05], [0.05, 0.05, 0.9] for three-class classification tasks. In order to
make a fair comparison, we keep the batch-size B = 200 and total communication round to 1000,
the local update steps to 10, the same across all experiments. All experiments use the same SGD
(DP-SGD for the experiments with privacy guarantees) optimizer, all the transformer-related hyper-
parameters such as sequence length lseq = 128, are kept to be consistent with previous studies (Hu
et al., 2021). The classification head of the LM is frozen after initialization, and we add adapters to
both the attention layers and the feed-forward layers and choose a scaling factor α = 8 for LoRA.
The same scaling factor α is applied to FFA-LoRA for the sake of consistency, although it is not
needed as stated in Section 4.

Experiments with differential privacy guarantees. We report the best result from a set of ex-
periments run with learning rate η ∈ {0.01, 0.02, 0.05, 0.1} for LoRA and η ∈ {0.1, 0.2, 0.5, 1}
for FFA-LoRA. The batch-size and total number of update steps are kept to be the same across
different tasks. We fix the rank r = 8 for both algorithms. In terms of privacy parameters, we use
δ = 1e−5 and three different choices of privacy budget ϵ ∈ {6, 3, 1}. Given the sampling rate, total
step number and privacy requirement ϵ, δ, we use the privacy accountant from Opacus (Yousefpour
et al., 2021) to calculate the noise scale σ for all our experiments. The optimal clipping threshold is
determined from a grid search of C ∈ {2, 5, 10}. The results are presented in Table 1. To ensure the
privacy guarantees have been met in our experiments, we refer to Section A.5 in the appendix for
technical analysis.

The introduction of DP significantly degrades algorithm performance across every task for both
FFA-LoRA and LoRA, yet FFA-LoRA offers better performance with and without privacy. We note
that the biggest performance gap occurs in the MNLI task, which is a three-class classification task
with the strongest level of data heterogeneity across agents. This performance gap demonstrates that
FFA-LoRA is more suitable for tasks where heterogeneity is strong.

Priv. Budget Method MNLI
(matched)

MNLI
(mismatched) SST-2 QQP QNLI

Non Private LoRA 82.03±10.7 82.50±10.9 94.32±2.1 83.51±3.3 88.95±6.7

FFA-LoRA 85.05±1.1 85.62±1.0 94.32±1.7 84.35±0.6 90.35±1.9

ϵ = 6
LoRA 39.46±14.3 39.69±14.8 93.70±0.5 82.11±1.0 84.99±1.1

FFA-LoRA 78.81±0.8 80.00±0.7 93.73±0.3 83.31±0.4 87.27±1.0

ϵ = 3
LoRA 35.82±8.9 35.85±9.1 93.32±0.5 82.08±0.7 83.94±0.6

FFA-LoRA 77.42±0.8 78.69±0.8 93.59±0.3 83.03±0.4 86.18±1.7

ϵ = 1
LoRA 33.80±1.6 33.80±1.5 92.14±0.6 81.28±0.7 78.93±6.8

FFA-LoRA 75.05±1.3 76.50±1.3 92.46±0.5 82.50±0.4 81.53±1.4

Table 1: Experiments of FFA-LoRA and LoRA with differential privacy guarantees, accuracy (%)
evaluated across 20 runs with mean and standard deviation.

7

Published as a conference paper at ICLR 2024

5.2 ABLATION STUDY

Although FFA-LoRA is shown to be effective under federated settings and with private guarantees,
previous works have also provided studies on the impact of the other hyper-parameters in LoRA
algorithm. In order to provide a more comprehensive evaluation of the three discordances discussed
in Section 3, we still need to answer the following questions:

• How does data heterogeneity affect performance of FFA-LoRA and LoRA?
• What is the impact of adapter parameter budget (r) for FFA-LoRA and the relationship

between adapter parameter budget (r) and privacy budget (ϵ) of DP-SGD?
• How do FFA-LoRA and LoRA behave when we choose different α for scaling?
• How does different initialization on A affect performance?

We answer the questions above with the following experiments.

How does data heterogeneity affect performance of FFA-LoRA and LoRA? Our discussion in
Section 3 stated that LoRA is not compatible with FedAvg when there is strong heterogeneity among
clients. For verification, we consider the four tasks with both homogeneous and heterogeneous data,
and provide the experiment results below. The severe heterogeneity case corresponds to the data
distribution provided in Section 5.1, while data is split with [0.15, 0.85], [0.85, 0.15], [0.5, 0.5] and
[0.6, 0.2, 0.2], [0.2, 0.6, 0.2], [0.2, 0.2, 0.6] respectively in the mild heterogeneity configuration.

Data Dist. Method MNLI
(matched)

MNLI
(mismatched) SST2 QQP QNLI

i.i.d. LoRA 86.90 87.15 94.42 84.47 91.38
FFA-LoRA 87.13 87.21 95.14 86.31 92.64

mild het. LoRA 87.01 87.33 93.55 84.41 91.36
FFA-LoRA 87.04 87.36 94.10 85.33 91.62

severe het. LoRA 82.03 82.50 94.32 83.51 88.95
FFA-LoRA 85.05 85.62 94.32 84.35 90.35

Table 2: Prediction accuracy (%) comparison between i.i.d. and non-i.i.d. data distribution.

It is evident that FFA-LoRA behaves better than LoRA in both i.i.d. and non-i.i.d. settings, but the
performance is similar in the privacy-free setting.

What is the impact of adapter parameter budget (r) for FFA-LoRA and the relationship be-
tween adapter parameter budget (r) and privacy budget (ϵ) of DP-SGD?
We first evaluate the performance of FFA-LoRA and LoRA without the consideration of privacy, we
use the mild heterogeneity data distribution and keep the batch-size and total number of update steps
to be the same across different tasks. We experiment with rank r ∈ {2, 4, 8, 16} on four tasks, and
report the best accuracy.

The results are shown in Table 3. From the subspace similarity discussions in LoRA, we note that
increasing rank does not necessarily increase information from the gradients, similar observations
can be found in our experiments. Based on the results, we can see that FFA-LoRA has better
performance in the majority of tasks, regardless of the trainable parameter number. In fact, due to
the reduction of trainable parameters in FFA-LoRA, we should compare between FFA-LoRA and
LoRA with the same parameter budget (i.e. compare FFA-LoRA r = 16 with LoRA r = 8). In this
case, the advantage of FFA-LoRA over LoRA becomes more apparent.

Although there have been multiple studies on the performance of LoRA with DP, the relationship
between rank r and privacy budget ϵ is unclear. We present the experiments below and compare
the impact of rank r on FFA-LoRA versus LoRA on the QNLI dataset. We use a privacy budget of
ϵ ∈ {6, 3, 1} with rank r ∈ {2, 4, 8, 16}. The results are shown in Table 4.

In our experiments, we find that as the privacy requirements gets stronger, the performance differ-
ence of LoRA between different rank r becomes more and more apparent, yet for FFA-LoRA, the
algorithm is still able to output relatively stable performance on a wide range of rank selections.

How do FFA-LoRA and LoRA behave when we choose different α for scaling? As mentioned
previously, LoRA requires a good scaling factor α in order to achieve a good performance. It has

8

Published as a conference paper at ICLR 2024

Method # of params
(million)

MNLI
(matched)

MNLI
(mismatched) SST-2 QQP QNLI

LoRA (rank 16) 3.15 (0.877%) 87.43 87.47 93.98 84.79 91.92
LoRA (rank 8) 1.57 (0.440%) 87.01 87.33 93.55 84.41 91.36
LoRA (rank 4) 0.79 (0.220%) 86.07 86.41 93.89 83.71 91.51
LoRA (rank 2) 0.39 (0.110%) 85.83 86.52 93.58 83.00 91.76

FFA-LoRA (rank 16) 1.57 (0.440%) 85.82 86.38 95.30 84.89 91.65
FFA-LoRA (rank 8) 0.79 (0.220%) 87.04 87.36 94.10 85.33 91.62
FFA-LoRA (rank 4) 0.39 (0.110%) 85.61 86.11 94.47 84.64 91.38
FFA-LoRA (rank 2) 0.20 (0.055%) 84.89 85.75 94.18 84.92 90.98

Table 3: Prediction accuracy (%) comparison on FFA-LoRA and LoRA with different ranks.

privacy budget Method r = 16 r = 8 r = 4 r = 2

Non-Private LoRA 91.92 91.36 91.51 91.76
FFA-LoRA 91.65 91.62 91.38 88.56

ϵ = 6
LoRA 86.87 86.45 85.24 83.54

FFA-LoRA 87.33 87.57 86.74 86.31

ϵ = 3
LoRA 86.23 86.05 85.35 85.57

FFA-LoRA 86.36 86.98 86.22 85.08

ϵ = 1
LoRA 80.54 81.45 58.30 58.15

FFA-LoRA 81.87 83.01 82.06 82.64

Table 4: Prediction accuracy (%) of FFA-LoRA and LoRA across privacy and parameter budgets.

been shown in proof of Thm. 1 that the scaling factor does not affect the overall performance of
the algorithm. We conducted experiments with a selection of different α, and refer to A.6 in the
appendix for the details and discussion.

How does different initialization on A affect performance? Since our proposed FFA-LoRA sets
A as fixed throughout the fine-tuning process, a natural question would be regarding the initialization
of A.We provide a discussion in Appendix A.8.

5.3 EXTENDING BEYOND LANGUAGE CLASSIFICATION

We next consider the task of Natural Language Generation (NLG) with LLaMA-7B, a more sophis-
ticated model with significantly more parameters.

Our method has achieved an accuracy of 17.12% on the task of GSM-8K, significantly better than
the best performance of LoRA at 15.68% (15.31% reported in (Kuang et al., 2023)). It is also the
best results on fine-tuning LLaMA with GSM-8K to the best of our knowledge.

For an additional dataset on the computer vision task. We use the pre-trained vision transformer
(Dosovitskiy et al., 2020) and consider the task of fine-tuning on the Food-101 dataset Bossard et al.
(2014). In short, the algorithms performs similarly compared to the language classification tasks.

We report the details of the two experiments above in Appendix A.3 and A.7 respectively.

6 CONCLUSION

In this paper, we discussed how to improve LoRA in the context of privacy-preserving federated
learning. An in-depth analysis was provided on LoRA’s deficient performance in FL and with
DP guarantees. We proposed a modification to LoRA named FFA-LoRA, which is theoretically
motivated, empirically verified and computationally more efficient. Beyond the scope of this paper,
FFA-LoRA could motivate more interesting problems related to PEFT for future study. For instance,
we provide some preliminary results in Appendix A.4 to motivate future studies on algorithms that
are even more parameter-efficient for federated LLM fine-tuning, one potential future direction is al-
ternative initialization methods for matrices such as the orthogonal initialization. From a theoretical
perspective, FFA-LoRA could be related to random kernel methods due to its pseudo-linear nature.

9

Published as a conference paper at ICLR 2024

REFERENCES

Martin Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pp. 308–318, 2016.

Armen Aghajanyan, Luke Zettlemoyer, and Sonal Gupta. Intrinsic dimensionality explains the ef-
fectiveness of language model fine-tuning. arXiv preprint arXiv:2012.13255, 2020.

Sara Babakniya, Ahmed Roushdy Elkordy, Yahya H Ezzeldin, Qingfeng Liu, Kee-Bong Song,
Mostafa El-Khamy, and Salman Avestimehr. Slora: Federated parameter efficient fine-tuning
of language models. arXiv preprint arXiv:2308.06522, 2023.

Raef Bassily, Adam Smith, and Abhradeep Thakurta. Private empirical risk minimization: Efficient
algorithms and tight error bounds. In 2014 IEEE 55th annual symposium on foundations of
computer science, pp. 464–473. IEEE, 2014.

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora, Sydney von Arx,
Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al. On the opportu-
nities and risks of foundation models. arXiv preprint arXiv:2108.07258, 2021.

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In Computer Vision–ECCV 2014: 13th European Conference, Zurich,
Switzerland, September 6-12, 2014, Proceedings, Part VI 13, pp. 446–461. Springer, 2014.

Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-Voss, Katherine
Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al. Extracting training data
from large language models. In 30th USENIX Security Symposium (USENIX Security 21), pp.
2633–2650, 2021.

Arnav Chavan, Zhuang Liu, Deepak Gupta, Eric Xing, and Zhiqiang Shen. One-for-all: Generalized
lora for parameter-efficient fine-tuning. arXiv preprint arXiv:2306.07967, 2023.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter,
Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multi-
modal language model. arXiv preprint arXiv:2303.03378, 2023.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography: Third Theory of Cryptography Conference,
TCC 2006, New York, NY, USA, March 4-7, 2006. Proceedings 3, pp. 265–284. Springer, 2006.

Yongchang Hao, Yanshuai Cao, and Lili Mou. Flora: Low-rank adapters are secretly gradient
compressors. arXiv preprint arXiv:2402.03293, 2024.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards a
unified view of parameter-efficient transfer learning. arXiv preprint arXiv:2110.04366, 2021.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146, 2018.

10

Published as a conference paper at ICLR 2024

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Jie Huang, Hanyin Shao, and Kevin Chen-Chuan Chang. Are large pre-trained language models
leaking your personal information? In Findings of the Association for Computational Linguistics:
EMNLP 2022, pp. 2038–2047, 2022.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Ad-
vances and open problems in federated learning. Foundations and Trends® in Machine Learning,
14(1–2):1–210, 2021.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

Mikhail Khodak, Renbo Tu, Tian Li, Liam Li, Maria-Florina F Balcan, Virginia Smith, and Ameet
Talwalkar. Federated hyperparameter tuning: Challenges, baselines, and connections to weight-
sharing. Advances in Neural Information Processing Systems, 34:19184–19197, 2021.

Weirui Kuang, Bingchen Qian, Zitao Li, Daoyuan Chen, Dawei Gao, Xuchen Pan, Yuexiang Xie,
Yaliang Li, Bolin Ding, and Jingren Zhou. Federatedscope-llm: A comprehensive package for
fine-tuning large language models in federated learning. arXiv preprint arXiv:2309.00363, 2023.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

Chunyuan Li, Heerad Farkhoor, Rosanne Liu, and Jason Yosinski. Measuring the intrinsic dimension
of objective landscapes. arXiv preprint arXiv:1804.08838, 2018.

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60, 2020.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Xuechen Li, Florian Tramer, Percy Liang, and Tatsunori Hashimoto. Large language models can be
strong differentially private learners. arXiv preprint arXiv:2110.05679, 2021a.

Xuechen Li, Daogao Liu, Tatsunori B Hashimoto, Huseyin A Inan, Janardhan Kulkarni, Yin-Tat
Lee, and Abhradeep Guha Thakurta. When does differentially private learning not suffer in high
dimensions? Advances in Neural Information Processing Systems, 35:28616–28630, 2022.

Zitao Li, Bolin Ding, Ce Zhang, Ninghui Li, and Jingren Zhou. Federated matrix factorization with
privacy guarantee. Proceedings of the VLDB Endowment, 15(4), 2021b.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017a.

H Brendan McMahan, Daniel Ramage, Kunal Talwar, and Li Zhang. Learning differentially private
recurrent language models. arXiv preprint arXiv:1710.06963, 2017b.

OpenAI. Introducing chatgpt. https://openai.com/blog/chatgpt. Accessed: 2023-09-
21.

OpenAI. Gpt-4 technical report. arXiv, pp. 2303–08774, 2023.

11

https://openai.com/blog/chatgpt

Published as a conference paper at ICLR 2024

Chen Qu, Weize Kong, Liu Yang, Mingyang Zhang, Michael Bendersky, and Marc Najork. Natural
language understanding with privacy-preserving bert. In Proceedings of the 30th ACM Interna-
tional Conference on Information & Knowledge Management, pp. 1488–1497, 2021.

Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with differ-
entially private updates. In 2013 IEEE global conference on signal and information processing,
pp. 245–248. IEEE, 2013.

Yuanyishu Tian, Yao Wan, Lingjuan Lyu, Dezhong Yao, Hai Jin, and Lichao Sun. Fedbert: When
federated learning meets pre-training. ACM Transactions on Intelligent Systems and Technology
(TIST), 13(4):1–26, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
sual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023.

Nan Wu, Farhad Farokhi, David Smith, and Mohamed Ali Kaafar. The value of collaboration in
convex machine learning with differential privacy. In 2020 IEEE Symposium on Security and
Privacy (SP), pp. 304–317. IEEE, 2020.

Ashkan Yousefpour, Igor Shilov, Alexandre Sablayrolles, Davide Testuggine, Karthik Prasad, Mani
Malek, John Nguyen, Sayan Ghosh, Akash Bharadwaj, Jessica Zhao, et al. Opacus: User-friendly
differential privacy library in pytorch. arXiv preprint arXiv:2109.12298, 2021.

Da Yu, Saurabh Naik, Arturs Backurs, Sivakanth Gopi, Huseyin A Inan, Gautam Kamath, Janardhan
Kulkarni, Yin Tat Lee, Andre Manoel, Lukas Wutschitz, et al. Differentially private fine-tuning
of language models. arXiv preprint arXiv:2110.06500, 2021a.

Da Yu, Huishuai Zhang, Wei Chen, Jian Yin, and Tie-Yan Liu. Large scale private learning via low-
rank reparametrization. In International Conference on Machine Learning, pp. 12208–12218.
PMLR, 2021b.

Aohan Zeng, Xiao Liu, Zhengxiao Du, Zihan Wang, Hanyu Lai, Ming Ding, Zhuoyi Yang, Yifan
Xu, Wendi Zheng, Xiao Xia, et al. Glm-130b: An open bilingual pre-trained model. In The
Eleventh International Conference on Learning Representations, 2022.

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022a.

Zhuo Zhang, Yuanhang Yang, Yong Dai, Lizhen Qu, and Zenglin Xu. When federated learn-
ing meets pre-trained language models’ parameter-efficient tuning methods. arXiv preprint
arXiv:2212.10025, 2022b.

Fan Zhou and Guojing Cong. On the convergence properties of a k-step averaging stochastic gradi-
ent descent algorithm for nonconvex optimization. arXiv preprint arXiv:1708.01012, 2017.

Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez de Ocáriz Borde, Rickard Brüel
Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, and Justin Solomon.
Asymmetry in low-rank adapters of foundation models. arXiv preprint arXiv:2402.16842, 2024.

12

Published as a conference paper at ICLR 2024

A APPENDIX

A.1 SMOOTHNESS ANALYSIS

Theorem 2 (Smoothness conditions). Assume that the loss function give weight and dataset is
denoted F (W, D). For a low-rank decomposition on model parameter W such that W(A,B) =
W0 +BA satisfying Equation (1). We have the following properties.

1. If B is trainable, A is fixed with ∥A∥ ≤ C and F (W, D) is Lipschitz smooth with factor
L. The loss function F (W(A,B)) is Lipschitz smooth with respect to B with factor LC2.

2. If both A and B are trainable and F (W, D) is Lipschitz smooth with factor L, the loss
function F (W(A,B)) has no Lipschitz smoothness guarantees.

All smoothness notions are defined with respect to matrix Frobenius norm, denoted as ∥ · ∥.

Proof. First we show that, given W(A,B) = W0 + BA, and the gradient on W is denoted as
∇WF , then we can write the gradients on matrix B as∇BF = ∇WFAT , since

⟨B1 −B2,∇BF ⟩ = ⟨W(A,B1)−W(A,B2),∇WF ⟩
= ⟨B1A−B2A,∇WF ⟩
= ⟨B1 −B2,∇WFAT ⟩

Similarly, we have ∇AF = BT∇WF . Using the gradients on A and B, we provide the proof for
all the properties.

1. For property 1, we know that for any given B1,B2,

∥∇BF (W(A,B1))−∇BF (W(A,B2))∥
=∥∇WF (W(A,B1))A

T −∇WF (W(A,B2))A
T ∥

≤L∥W(A,B1)−W(A,B2)∥∥A∥
≤L∥B1 −B2∥∥A∥2

≤LC2∥B1 −B2∥

2. For the second property, for the ease of notation, we introduce the stacked variable x :=
[A,B]. We construct a counter-example such that the function is not Lipschitz smooth with
respect to x.

We consider W,A,B ∈ Rd×d, F (W) = 1
2∥W∥

2 with W0 = 0. Then we consider a
sequence {xk}k∈N such that xk = [Ak,Bk] = [kId, kId], then

lim
k→∞

∥∇xW(Ak,Bk)−∇xW(A0,B0)∥
∥xk − x0∥

= lim
k→∞

∥∇AW(Ak,Bk)−∇AW(A0,B0)∥+ ∥∇BW(Ak,Bk)−∇BW(A0,B0)∥
∥Ak −A0∥+ ∥Bk −B0∥

= lim
k→∞

∥k3Id∥+ ∥k3Id∥
∥kId∥+ ∥kId∥

=∞

From the existence of the above counter-example, we can see that although F (W) is 1-
Lipschitz smooth, the function is not smooth with respect to x.

A.2 PROOF FOR THEOREM 1

Proof. The theorem starts with initial condition on W, since W = W0 + αBαAα and that the
initialization of A is non-zero, this condition implies that Aα = A1 = A, and Bα = 1

αB1. Now
we compare the update of the two algorithms given the same initial conditions.

13

Published as a conference paper at ICLR 2024

From Theorem 1 we know that for FFA-LoRA, different αFFA does not affect its dynamics, without
loss of generality, we consider the case where αFFA = 1.

The FFA-LoRA update is as follows, the only update is on B:

W k+1
FFA = W0 + 1×Bk+1Ak = W0 + (Bk − η∇Bk)Ak = W k − η∇BkAk

The rest of the proof is given by induction, as long as the limit holds for the k + 1-th local iteration
given that the k-th iteration holds.

Without the loss of generality, we first consider when αLoRA = 1, then for iteration k, we denote the
learning rate as η1, denote the matrices and their gradient as Ak

1 ,B
k
1 and ∇Ak

1 ,∇Bk
1 , respectively.

And by definition, we have the update that

Ak+1
1 ← Ak

1 − η1∇Ak
1

Bk+1
1 ← Bk

1 − η1∇Bk
1

And the update of the original weight matrix W becomes

W k+1
1 = W0 +∆W k+1

1 = W0 + (Bk
1 − η1∇Bk

1)(A
k
1 − η1∇Ak

1)

= W k
1 − η1

(
∇Bk

1A
k
1 +Bk

1∇Ak
1

)
+ η2∇Bk

1∇Ak
1

Since LoRA do not satisfy the conditions provided in Theorem 1, changing αLoRA will affect its
updates. When we choose a different αLoRA = α and corresponding ηα = η1

α2 , we can write the
update of LoRA as

Ak+1
α ← Ak

α − ηα∇Ak
α = Ak

α −
η1
α
∇Ak

α = Ak
1 −

η1
α
∇Ak

1

Bk+1
α ← Bk

α − ηα∇Bk
α = Bk

α −
η1
α
∇Bk

α =
1

α
Bk

1 −
η1
α
∇Bk

1

W k+1
α = W0 + α(

1

α
Bk

1 −
η1
α
∇Bk

1)(A
k
1 −

η1
α
∇Ak

1)

= W0 +Bk
1A

k
1 − η1∇Bk

1A
k
1 −

η1
α
Bk

1∇Ak
1 −

η21
α
∇Bk

1∇Ak
1

Therefore we have

lim
αLoRA→∞

W k+1
αLoRA

= lim
α→∞

W0 +Bk
1A

k
1 − η1∇Bk

1A
k
1 −

η1
α
Bk

1∇Ak
1 −

η21
α
∇Bk

1∇Ak
1

= W k
1 − η1∇Bk

1A
k
1

= W k+1
FFA

Which completes our proof.

A.3 LLAMA EXPERIMENTS AND DETAILS

Similar to RoBERTa, LLaMA is also widely used and offers competitive results for its network size.
We evaluate both LoRA and FFA-LoRA with the GSM-8K dataset using the same set of hyper-
parameters listed by (Kuang et al., 2023). Our method has achieved an accuracy of 17.12% on
the task of GSM-8K, significantly better than the best performance of LoRA at 15.68% (15.31%
reported in (Kuang et al., 2023)). It is also the best results on fine-tuning LLaMA with GSM-8K
to the best of our knowledge. We sample some generated answers of LoRA and FFA-LoRA in
Table 5. The answers generated by FFA-LoRA demonstrate better performance on longer questions
with more complex contexts.

A.4 A MOTIVATION FOR FURTHER REDUCING TRAINABLE PARAMETERS

Our approach named FFA-LoRA in Section 4 exhibits a number of theoretical benefits compared to
LoRA, additionally, it also performs better and is more consistent as shown in Section 5. We can
conclude that for PEFT with adapters, by freezing randomly initialized parameters and only train on

14

Published as a conference paper at ICLR 2024

Question: A new program had 60 downloads in the first month. The number of downloads
in the second month was three times as many as the downloads in the first month,
but then reduced by 30% in the third month. How many downloads did the
program have total over the three months?

FFA-LoRA: The number of downloads in the first month was 60. The number of downloads
in the second month was 3 times as many as the first month, so that is 3 * 60 =
180. The number of downloads in the third month was 180 - 30% = 180 - 54 =
126. The total number of downloads over the three months is 60 + 180 + 126 =
366. The answer is 366.

LoRA: The number of downloads in the first month was 60. The number of downloads
in the second month was 60 x 3 = 180. The number of downloads in the third
month was 180 - 30 = 150. The answer is 150.

Question: John decides to get a loan by mortgaging his home. His house is worth
$250,000. He gets a loan worth 40% of that. He uses 60% of that to pay off his
debts. How much money did he have leftover after paying debt?

FFA-LoRA: John’s house is worth 250,000 dollars. He gets a loan worth 250,000 x 40% =
100,000 dollars. He uses 100,000 x 60% = 60,000 dollars to pay off his debts.
100,000 - 60,000 = 40,000 dollars. The answer is 40,000.

LoRA: John’s house is worth 250,000 dollars. 40% of that is 250,000 x 0.4 = 100,000
dollars. 100,000 dollars is the amount of the loan. 100,000 / 0.6 = 166,666
dollars. 166,666 - 100,000 = 66,666 dollars. 66,666 dollars is the amount of
money he has left.

Question: Octavia wants to make a quilt for her sister. She is going to build it from small,
medium, and large t-shirts that her family is done with. A small t-shirt is 3
square feet of fabric. A medium one is 4 square feet. A large one is 6 square feet.
If she uses 11 small shirts, 8 medium, and 6 large shirts, how many square feet is
the quilt?

FFA-LoRA: A small shirt is 3 square feet. A medium shirt is 4 square feet. A large shirt is 6
square feet. 11 small shirts is 11 x 3 = 33 square feet. 8 medium shirts is 8 x 4 =
32 square feet. 6 large shirts is 6 x 6 = 36 square feet. 33 + 32 + 36 = 101 square
feet. The answer is 101.

LoRA: Octavia is going to use 11 small shirts, 8 medium, and 6 large shirts. 11 + 8 + 6 =
25. 3 square feet is 12 square feet. 25 * 12 = 300 square feet. The answer is 300
square feet.

Table 5: Example of generated answer for GSM8K datasets

15

Published as a conference paper at ICLR 2024

Method # of params acc w/o DP acc@ϵ = 6 acc@ϵ = 3
LoRA (rank 16) 3145728 (0.877%) 92.49% 86.87% 86.23%
LoRA (rank 4) 786432 (0.220%) 91.40% 85.2% 85.35%

FFA-LoRA (rank 16) 1572864 (0.440%) 92.49% 87.33 % 86.36%
FFA-LoRA (rank 4) 393216 (0.110%) 92.20% 86.75% 86.22%

QVP (rank 128) 1572864 (0.412%) 90.46% 84.23% 83.16%
QVP (rank 64) 393216 (0.107%) 90.17% 86.41% 84.44%
QVP (rank 32) 98304 (0.0272%) 87.31% 85.69% 84.31%
QVP (rank 16) 24576 (0.00685%) 83.40% 84.44% 83.67%

Table 6: Comparison between LoRA, FFA-LoRA and QVP adapters, including number of trainable
parameters.

the set of parameters that were initialized at 0 is a valid and practical approach. This guided us to get
an even more aggressive construction of adapters, which we refer to as QVP Adapters, formulated
as below.

For a weight matrix W ∈ Rd×k, we consider the model update to be projected to a low-rank matrix
such that

W = W0 +∆W = W0 +Q0V P0,

where Q0 ∈ Rd×r,V ∈ Rr×r,P0 ∈ Rr×k. Similar to FFA-LoRA, W0 is the pre-trained weight,
and P0,Q0 follows a random Gaussian initialization. We consider V trainable and start with V0 =
0, W0,Q0,P0 are kept frozen throughout the training process. We provide the performance of QVP
adapters below in Table 6, and compare with LoRA and FFA-LoRA.

For the experiments where these algorithms have the same parameter budget (r = 64 for QVP versus
r = 4 for FFA-LoRA, etc.), QVP do not perform as good as the previously mentioned algorithms.
But a unique advantage offered by QVP adapters is that it is possible to even further reduce the
number of trainable parameters, and the algorithm is still able to learn meaningful features from
data. The same is impossible for LoRA and FFA-LoRA since the rank r can not be smaller than 1
for these methods. Therefore, QVP is potentially useful in the case where the parameter budget is
extremely constrained, such as local private training in mobile devices.

A.5 DIFFERENTIAL PRIVACY GUARANTEE

We present the following corollary regarding the privacy guarantees in our experiments.

Corollary 2.1 (Privacy Guarantee). Given Theorem 1 with moments accountant in (Abadi et al.,
2016), the parallel composition and resistance to post-processing of DP, the mechanism updating
FFS-LoRA with locally ran DP-SGD and FedAvg can satisfy (ϵ, δ)-DP given ∀i, q = |Bi|

|Ni| , the

number of total local updates T of each client and σ = O(
q
√

T log(1/δ)

ϵ). (The exact σ is computed
by the Pytorch’s Opacus package (Yousefpour et al., 2021) numerically given q, T, ϵ, δ).

Proof. Firstly, we consider the local datasets {Di}i∈[n]for the FL network to be disjoint chunks
of the global dataset. The DP-SGD with FedAvg used in our paper to train LoRA or FFA-LoRA
can be considered as (A) locally updating trainable parameters with DP-SGD, (B) averaging the
trainable parameters from clients on the server, and (C) repeating the above two steps for some
iterations. The privacy loss of (A) can be composed by moment accountants used in (Abadi et al.,
2016). The privacy loss of all clients performing local updates can be composed by the parallel
composition property of DP. The averaging on the server in (B) is a post-processing operation that
does not introduce privacy loss. Privacy loss of multiple FL rounds of (C) can again be composed
with moment accountants used in (Abadi et al., 2016). Eventually, we can convert the moment
accountants to (ϵ, δ)-DP as Theorem 1 in (Abadi et al., 2016).

A.6 EXPERIMENTS WITH DIFFERENT SCALING FACTOR α

We conducted experiments with a selection of different α, we use α = 8, r = 8 as baseline, and
choose learning rate η according to the learning rate scaling discussed above. Our results are shown

16

Published as a conference paper at ICLR 2024

in Table 7. For FFA-LoRA, the performance using η that scales with α is consistent across the
wide range of α. However for LoRA, the same relationship does not hold, and the performance of
LoRA degrades drastically when α changes. Additional grid-search shows that LoRA still is able to
converge with high accuracy with adequate learning rate, but finding an optimal learning rate given
α is in general arduous. We note that the optimal η for α = 256 is the same for both FFA-LoRA
and LoRA, consistent with our discussion in Section 4.

Method α = 2 α = 8 α = 16 α = 64 α = 256
LoRA (best LR) 91.78% 91.36% 92.11% 91.50% 91.23%

LoRA (LR scaling) 71.88% 91.36% 92.11% 50.96% 49.46%
FFA-LoRA (LR scaling) 91.31% 91.62% 91.9% 91.17% 92.46%

Table 7: Experiment with different scaling factor α.

A.7 COMPUTER VISION EXPERIMENTS

For context, we provide performance reported on huggingface as baseline. A centralized, fine-tuned
model has an accuracy of 0.8539.

We first report the results in our centralized experimental setting in the table below.In this case
there is no significant performance discrepancy between the two methods, implying that FFA-LoRA
and vanilla has similar performance without consideration of DP and FL. This also aligns with our
observations in previous experiments.

In terms of the federated case, we first report the iid setting. It can be seen that compared to LoRA,
FFA-LoRA has both (a) better convergence and (b) less fluctuations in training. The findings align
with our findings in language-related tasks, showing that the properties of LoRA being discussed in
our paper are not limited to language tasks only.

Method Baseline Cen. LoRA Cen. FFA-LoRA FL iid LoRA FL non-iid FFA-LoRA
Accuracy 85.39% 86.18% 85.83% 81.33% 82.10%

Table 8: Performance of FFA-LoRA in vision transformer evaluated on Food-101 dataset.

A.8 DIFFERENT MATRIX INITIALIZATION FOR A

Since our proposed FFA-LoRA sets A as fixed throughout the fine-tuning process, a natural question
would be regarding the initialization of A. We know that for a zero-initialized A matrix, neither
LoRA nor FFA-LoRA are able to train any meaningful results. However, suppose that we have A to
be full rank (which is also satisfied for any random initialization in general), there are a number of
different initialization that we could utilize.

In the majority of this paper, we consider the same initialization as LoRA. Apart from Kaiming
initialization, we consider orthogonal random initialization and using the top r singular vectors of
W0 as matrix A. We provide some initial results in Table 9, it can be seen from the plot that matrix
with orthogonal initialization seems to perform slightly better than the existing approach. However,
the performance gap is not significant enough for a definitive answer.

Method QNLI mean QNLI variance
Kaiming Init. 91.84% 0.38%

Orthogonal Init. 92.16% 0.83%
SVD Init. 91.50% 0.59%

Table 9: Performance of algorithm under similar conditions and different initialization on matrix A.

17

	Introduction
	Background and Related Works
	LoRA in privacy-preserving FL
	A Simple Receipt: FFA-LoRA
	Experiments
	Performance of FFA-LoRA and LoRA in Language Understanding Tasks
	Ablation Study
	Extending Beyond Language Classification

	Conclusion
	Appendix
	Smoothness Analysis
	Proof for Theorem 1
	LLaMA Experiments and Details
	A motivation for further reducing trainable parameters
	Differential Privacy Guarantee
	Experiments with different scaling factor
	Computer Vision Experiments
	Different Matrix Initialization for A

