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ABSTRACT

Neural radiance fields (NeRFs) have emerged as a powerful scene representa-
tion technique to implicitly encode radiance information in space. Recent works
demonstrated that using a grid-based positional encoding to encode 3D radiance
information in space achieves fast training speeds, often requiring only a few min-
utes of training on small-scale synthetic datasets. However, training a NeRF model
that uses a grid encoding on large outdoor scenes requires several hours of train-
ing. In many scenarios, large scenes may have different amounts of detailing at
different regions, with reconstruction/representation quality more important for
some detailing compared to others. Different regions of the scene are however
given equal importance and thus typically no regions of the scene are prioritized
in allocating parameters in the learned model. In this work, we propose a new
grid-based positional encoding technique that integrates scene importance infor-
mation in large scenes to accelerate training. Our encoding flexibly allocates more
model parameters to learn the radiance information in regions of the scene that
are deemed more important. This ensures that the more detailed scene regions are
represented with a larger number of parameters, allowing more detailed radiance
information to be encoded. With our approach, we demonstrate higher quality
representation for the important parts of the scene compared to state-of-art tech-
niques for instant NeRF training, while enabling on-par or faster training times as
state-of-art NeRF models and small model sizes.

1 INTRODUCTION

Creating a 3D representation of various objects in a scene from a sparse set of 2D images taken
from different angles, and their corresponding poses is a fundamental problem in computer graphics
and computer vision with a large body of prior research. In this body of work, neural radiance
fields (NeRFs) (Mildenhall et al., 2020) have emerged as a powerful scene modeling technique that
has demonstrated impressive and photo-realistic rendering of the scene from novel views. NeRFs
parameterize the view-dependent radiance at each point in space using a neural network. NeRFs take
the 3D coordinate of a point in space as well as the view direction as input and output the radiance
emitted at this point in the corresponding direction. Using a differentiable volume renderer (Kajiya
& Von Herzen, 1984) to render images using the radiance field and comparing them against a set
of captured training images, the NeRF model parameters can be trained with gradient optimization.
NeRFs traditionally required several hours of training to capture high-quality scene details, and
several recent works (Fridovich-Keil et al., 2022; Sun et al., 2022; Müller et al., 2022; Liu et al.,
2020) aim to speed up NeRF training. Among these works, Instant-NGP (Müller et al., 2022) is
particularly noteworthy in achieving fast training speeds, requiring just a few minutes of training on
small-scale synthetic datasets.

When creating 3D representations of large-scale outdoor scenes, we may intend to capture high-
quality scene details of a large expanse of space, with different sections of the scene demanding a
different levels of detail. For example, a drone that surveys a large area of land might capture certain
regions consisting of objects of interest close up, capturing intricate details of fine-grained features,
while observing other areas from a distance where only general characteristics are recorded. As
another example, regions of the scene could be identified by an upstream process, for example, via
text using a language model (Kerr et al., 2023)). In other cases, some regions of the scene may
simply possess more important detailing and objects than others. In these scenarios, different parts
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of the scene can be assumed to have different levels of ”importance” in terms of the amount of detail
that should be captured.

Capturing a large scene, for example from images taken from overhead by a drone, with instant
NeRF methods (such as Instant-NGP) requires a large model to encode the fine details of the scene.
A number of works enabling instant NeRF training (Fridovich-Keil et al., 2022; Sun et al., 2022;
Müller et al., 2022) utilize a grid-based positional-encoding, that translates a 3D location (x, y, z
spatial coordinate) into a latent space feature that is then processed by an MLP. Grid-based encoding
considers a voxel grid in 3D space, in which each corner is associated with a feature vector with
trainable parameters (or embeddings). The 3D position is encoded into a latent space feature vector
by aggregating (interpolating) the embeddings at the corners of the voxel containing the point. As
the radiance information in each voxel is exclusively encoded by the few embedding parameters in
its neighborhood, these parameters can be quickly optimized to encode the radiance field within the
voxel, enabling fast training. While this encoding enables fast training for smaller scenes, encoding
fine-grained features in large-scale scenes requires using a high resolution voxel grid, thus requiring
a large amount of memory (see Sec. 3.1). Prior works have addressed this problem by using a hash-
encoding (Müller et al., 2022), or decomposed tensor representation (Chen et al., 2022) to store the
voxel-grid parameters. These techniques work well for small and synthetic datasets, but capturing
finer details of large scenes still requires a large model that requires long train times (several hours).
This is because the training phase has to optimize a large number of model parameters and requires
a large number of training samples. For instance, training InstantNGP on the pipes1 (see Sec. 4.1)
scene of the drone-deploy (Pilkington, 2022) dataset that is able to achieve peak quality requires 4-5
hours of training on a large model of over 750 MB in size.

While there are often only a few parts of the scene that are need to be captured at a higher degree
of detail, the training process for these scene parts (which for example contains subjects of interest)
is not prioritized. This makes generating an accurate representation of important locations slower.
To capture a large outdoor scene, for instance, we observe that a large portion of training time is
spent in optimizing the high-frequency parts of the scene such as the grass, highly textured sand,
etc. (see Sec. 3.1). Hence, the training process and model used by NeRFs currently do not consider
the level of importance and desired detailing for different parts of the scene, and the entire region is
considered to be of equal importance in the training process.

In this work, we aim to integrate importance of different regions in a large scene within the rep-
resentation encoding to accelerate training with instant NeRF methods with a novel framework,
Hierarchical Importance Weighted Encoding (HIWE). To this end, we first quantify scene impor-
tance at different 3D locations by defining an importance distribution function, which is a proba-
bility distribution function over 3D space coordinates. This importance distribution function can
be generated automatically (e.g., by using density of structure from motion points to identify sur-
faces) or manually where the user specifies objects of importance in the scene (Sec 3.2). HIWE
uses a novel grid-based positional encoding technique which maps 3D spatial coordinates into a
latent feature vector using a different number of trainable parameters to encode local regions based
on the amount importance assigned to each region. HIWE uses a bounding box hierarchy to store
the learned parameters instead of a regular voxel grid. Each axis aligned bounding box is associ-
ated with a fixed number of trainable parameters that encodes radiance information for the spatial
region of the scene mapped to the bounding box. Bounding boxes can have different sizes. Larger
bounding boxes would encode any 3D region with lower resolution (i.e., fewer parameter per unit
volume) than smaller bounding boxes. Regions with less desired importance can thus be encoded
by larger bounding boxes. The same region can also be mapped by multiple overlapping bounding
boxes to also increase the number of parameters that are used to represent that region. By controlling
the location, number, and sizes of the bounding boxes, we can flexibly provision regions of higher
importance with more parameters (described in Sec. 3.3). This allocation of bounding boxes is done
using the importance distribution function for the scene.

A key challenge with HIWE is to efficiently index and identify the local-grids for any point in space.
To enable this lookup efficiently, we pose it as an ray-primitive intersection problem (see Sec. 3.5) in
which the ray consists of a ray origin and an infinitesimal extent, and the primitive is the local grid’s
surrounding bounding box. We make use of the hardware-accelerated ray-primitive intersection
routine to retrieve the bounding box containing the position, and implement this using the NVIDIA
optix application framework (Parker et al., 2010).
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This work makes the following contributions. First, we propose a novel importance-weighted po-
sitional encoding that flexibly allocates more model parameters to regions/objects that have more
important parts of a large-scale scene. Second, we develop a bounding volume hierarchy-based
implementation of our positional encoding that is able to leverage HW-accelerated ray-bounding
box intersection primitives for fast feature indexing. Third, we demonstrate that HIWE’s encoding
enables higher quality representation for important regions of large-scale scenes than state-of-art
methods, while still ensuring fast training times and small model sizes. We evaluate our method
on a large scale outdoor dataset captured from a drone (Pilkington, 2022) and we compare against
state-of-the-art NeRF techniques that use a grid based encoding techniques, both qualitatively and
quantitatively (by measuring PSNR, SSIM and LPIPS (Zhang et al., 2018) metrics). With HIWE
positional encoding, we demonstrate that we can achieve an increase in PSNR of up to 2.3dB over
these methods in our evaluation, when training a model of size < 100MB requiring requiring fewer
than 15 minutes of training (with 30,000 iterations) on a high end GPU.

2 RELATED WORK

Neural Implicit scene representations. Neural networks can be used to parameterize information
in signals (such as images, 3D scenes) as a continuous, differentiable function (Sitzmann et al.,
2020; Park et al., 2019). These methods have emerged as a powerful tool to learn 3D scene repre-
sentations, in which a neural network function maps a 3D spatial coordinate to the physical param-
eters of the scene. This enables representing object geometries/surfaces using signed distance (Li
et al., 2023c; Wang et al., 2021; Yariv et al., 2020; Niemeyer et al., 2020; Chibane et al., 2020;
Park et al., 2019), occupancy (Mescheder et al., 2019), material and surface properties such as re-
flectance/transmittance and textures (Saito et al., 2019; Henzler et al., 2020), or radiance with neural
radiance fields (Mildenhall et al., 2020). Neural radiance fields map 3D spatial coordinate and a
view direction to the radiance (RGBσ) emitted in the corresponding direction at that location. Sev-
eral works aim to render photo-realistic novel views from the learnt model of the scene on small
scale datasets (Barron et al., 2021; 2022; 2023). However, extending these methods to learn a high
quality representation of large outdoor scenes requires several hours of training, with a large model.
Compared to these approaches, our work aims to quickly learn scene parameters representing pre-
specified, targeted regions in large scenes to enable accelerated NeRF training.

Fast NeRF training with grid-based positional encoding. A 3D positional encoding transforms
3D spatial coordinates into a latent space feature, which encodes local radiance information for
NeRF training (Liu et al., 2020). Grid-based positional encoding divides the 3D space using a grid
(a voxel grid), and associates an embedding vector to each corner of the grid. The latent feature
vector is computed by aggregating the embedding associated with the corners of the voxel contain-
ing the coordinate. Grid-based encoding is a commonly used encoding technique to enable fast
training, demonstrated by works such as Fridovich-Keil et al. (2022); Sun et al. (2022); Yu et al.
(2021); Liu et al. (2020). However, these methods require large amounts of memory to represent
large scenes, as it requires allocation of a large high-resolution voxel grid. Several approaches have
been proposed to address this problem, such as using a small array indexed by a hash function to
store the parameters (Müller et al., 2022), or representing the volume as a 4D tensor of embedding
vectors and parameterizing it with its low-rank factors (Chen et al., 2022). However, these works
require significantly high training times for large outdoor scenes, as a large number of grid encoding
parameters are still required to capture all details of the scene (see Sec. 3). We compare HIWE to
other grid-encoded representation techniques in Sec. 4.

Large scene representations with NeRFs Representing large scenes, such as a city-scale scene
captured from an overhead drone was investigated by several works. Prior works Xiangli et al.
(2022); Xu et al. (2023) propose special model architectures to effectively represent multi-scale data
captured at different resolutions. Other works Turki et al. (2022); Tancik et al. (2022); Zhang et al.
(2023) propose using several smaller NeRF models to represent a large scene, with each model
representing a segmented region in space. Similarly, F2Nerf (Wang et al., 2023) uses a spatially
subdivision regions of space and learns implicit grid encodings on individual grids based on the
number of samples captured by the camera. While these approaches enable high quality training of
large outdoor scenes, achieving a high quality representation requires several hours of training. On
the other hand, we are concerned with training a small model (< 100MB) with reconstructing an
accurate scene representation with than 15 minutes of training time.

3



Under review as a conference paper at ICLR 2024

Compression techniques for NeRFs. In order to reduce the storage size of the scene representation
with minimal loss in quality, several works propose techniques such as compressed encoding based
on the level of scene detail (Martel et al., 2021; Lindell et al., 2022), pruning the parameters that
encode radiance in empty space (Liu et al., 2020), using a lower floating point precision for less
detailed scene parts (Li et al., 2023a) or embedding features at the corners of an octree representa-
tion to represent different level of detail (Yu et al., 2021). CC-Nerf (Tang et al., 2022) computes a
low-rank decomposition of the dense tensor to obtain an efficient scene representation. While our
training method relies on using a smaller model for fast training, compression methods often require
long processing times as they either require a post-processing step or require several iterations of
simultaneously training and pruning of the model. HollowNerf (Xie et al., 2023) observes the lim-
itation of needing a large model to obtain a high quality reconstruction on synthetic datasets. They
show that by not learning radiance at the interior (unseen) parts of the objects, they could train a
light-weight model. However, this approach does not necessarily lead to faster training, and this
observations was only demonstrated on smaller synthetic datasets.

Efficient training sampling techniques for faster convergence. NeRF training optimizes a loss
defined as the difference between the RGB values of the pixels in the rendered image to the cor-
responding pixels of the images in the training dataset. To speed up convergence, sampling pixels
for training weighted by the loss contributed by each pixel is implemented in InstantNGP (Müller
et al., 2022; Li et al., 2023b). When training large outdoor scenes, however, a significant portion of
training resources are allocated to less important, high frequency details of the scene (see Sec. 3).
We propose a new pixel sampling method that prioritizes choosing the important scene parts instead.

Other radiance field representation techniques. Explicit scene representation techniques model
the scene with a collection of several parameterized geometric primitives (like point clouds or
meshes). Gradient based optimization methods that use a differentiable rasterizer (Laine et al.,
2020) are increasingly becoming popular for inverse rendering problems to learn the parameters of
these representations primitives efficiently. ADOP Rückert et al. (2022) uses an efficient differen-
tiable point cloud rasterizer to learns a point cloud representation of the scene. 3D gaussian splat-
ting (Kerbl et al., 2023) is a recent work that represents a scene with a set of 3D gaussians, where
each gaussian is parameterized by its 3D position, covariance, view dependent radiance information
and transparency α. The gaussian parameters can be learnt by gradient descent optimization on the
loss between the ground truth images and the rendered images. Rendering of the 3D gaussians is
done by α blending using a differentiable rasterizer. The fast algorithm used in differentiable raster-
ization (Lassner & Zollhofer, 2021) enables rendering and learning to proceed in a very fast manner.
See Sec. 4.4 for a more detailed discussion in comparison to our work.

3 METHOD

A typical NeRF network architecture consists of a 3D positional encoder, a directional encoder (typ-
ically the spherical harmonic (SH) coefficients of the view direction (Fridovich-Keil et al., 2022))
and a multi-layer perceptron (MLP). The positional encoder takes a 3D coordinate (x, y, z) as input
and produces a latent space feature vector. This latent space feature along with the SH coefficients
is passed as input to the MLP to generate the radiance (density σ and the RGB color). Rapid train-
ing of NeRFs is achieved by using a grid-based positional encoder (Liu et al., 2020; Fridovich-Keil
et al., 2022; Sun et al., 2022). A grid-based encoder considers the 3D space discretized into a voxel
grid, and each grid corner is associated with an embedding vector. The latent feature vector of a 3D
point is derived by interpolating the embeddings at the corners of the voxel containing the point.

3.1 TRAINING OF HIGH-FREQUENCY SCENE REGIONS

Fast training is possible with a grid based encoding because the parameters at the grid corners en-
code the radiance information of only the neighbouring voxels. This small set of parameters (along
with that of the small MLP) can be quickly optimized for each voxel leading to fast training (Liu
et al., 2020; Müller et al., 2022). However, capturing large outdoor scenes in detail requires the pa-
rameterization of radiance inside each voxel with a high-resolution grid. Updating and optimizing
each parameter requires a large amount of samples and long training times. Fig. 1 shows large scene
captured from a drone, which is a part of the house2 dataset (see Sec. 4.1). On using a smaller
model to capture the scene (an 8-level multi-resolution hash encoding model with a maximum reso-
lution grid of size of 2048 voxels spanning the extent of the scene, and a hash-encoding size of 219
elements per level), we find that the model is inadequate to represent all parts of the scene at high
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enough quality. However, a lager model (16 levels with a hash table size of 222), is able to learn
a more detailed scene representation but requires hours of training (200k iterations). The training
process for the large model spends a significant proportion of the time to learning the high-frequency
regions of the scene (in this instance, the grass).

(a) Ground Truth (b) Small model (c) Nerfacto-big

Figure 1: Training a large scene with nerfacto - the smaller model seen in (b) is not able to capture
scene adequately. Using a large model is able to significantly improve on the representation. How-
ever, using a larger model in (c) results in better quality, but requires longer training times.

When using InstantNGP, the large number of parameters for this high frequency region contributes
significantly to hash collisions, leading to lower quality. Hence, encoding the region with fewer pa-
rameters which can be made to quickly converge is a more efficient way to encode these regions. In
general, these scene components can be considered to be less important, as they add little semantic
or structural information and are challenging to be represented efficiently. This importance infor-
mation is generated prior to training as described in Sec. 3.2. We leverage this information to more
efficiently allocate model parameters to different regions of the scene. An overview of our approach
is depicted in Fig. 2.

Aggregate features at voxel 
corners in the local grid

Feature vector

Cover 3D space with set of 
bounding boxes

Importance distribution 
over a large scene 

Local grids

Voxel

Figure 2: HIWE importance weighted positional encoding overview

3.2 IMPORTANCE DISTRIBUTION IN THE SCENE

In order to describe the importance of different parts of the scene, we define an importance distri-
bution function f : R3 → R. f is a probability distribution function defined over 3D space which
describes the amount of importance that should be given to each location in space. From the defini-
tion of a probability distribution, we can describe the importance of a volume V as the integral of f
over volume V (where dτ is the volume element).

Importance(V ) =

∫
V

f(x, y, z)dτ (1)

The importance distribution for any scene can be determined and configured based on the use case,
either manually or automatically. For example, there may be a particular scene component that is of
specific interest such as a statue in the middle of a field of grass. In this scenario, the statue would
be assumed to be the more important scene component, requiring more representation detail. In
this work, we consider two potential scenarios: (i) A single region or object in a scene is defined
as important. We describe the importance distribution for this case with a 3D gaussian distribution
centered at the position to focus on that region or object (see Sec. 4.3). (ii) Regions of the scene
close to object surfaces are marked as important. A reasonable candidate used to automatically mark
the region around the surfaces as important is the normalized density of the structure-from-motion
(SfM) point cloud (see Sec. 4.2).
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3.3 IMPORTANCE WEIGHTED POSITIONAL ENCODING ARCHITECTURE

Encoding local scene features with local grids. We propose a new grid-based positional encoding
technique, HIWE, which maps 3D spatial coordinates to a latent feature vector using a different
number of trainable parameters to encode local regions based on the amount importance assigned to
this region. HIWE uses a bounding box hierarchy to store the learned parameters instead of a voxel
grid. Each axis aligned bounding box is associated with a local grid comprising of N×N×N voxels
(where N is a fixed hyperparameter) with each voxel corner associated with trainable parameters.
Each local grid encodes radiance information of scene elements in the region enclosed within the
bounding box. Each bounding box can be mapped to a 3D region of any size but would still have the
same sized local grid (i.e. N ×N ×N voxels). Thus, larger bounding boxes would encode any 3D
region with lower resolution (i.e., fewer parameter per unit volume) than smaller bounding boxes.
The same region can also be mapped by multiple overlapping bounding boxes to also increase the
number of parameters that are used to represent that region. Regions with less desired importance
can thus be encoded by larger bounding boxes. By controlling the location, number, and sizes of the
bounding boxes, we can flexibly provision regions of higher importance with more parameters. We
describe how the bounding box allocation is done in Sec. 3.3. The feature vector associated with
any 3D point (x, y, z) is generated by aggregating (linearly interpolating) the 8 embedding vectors
at the corners of the local grid containing the point, as shown in Eq. 2. The feature vector for a 3D
point when it maps to multiple overlapping local grids is determined by calculating the arithmetic
mean of the those computed from each individual local grid (shown in Eq. 3).

fvlocal(x, y, z) = Interpx,y,z∈bbox(x, y, z) (2)
Where fvlocal is the feature computed by the local grid

feature vector(x, y, z) =
1

Nbboxes

∑
bbox∈bboxes

fvlocal(x, y, z) (3)

Generation of local grids according to scene importance. At the start of training, our encoding
allocates a set of bounding boxes, each corresponding to a local grid. Fig. 3 shows the procedure for
generating bounding boxes. The size of the bounding box is proportional to the desired importance
of any given region. The total number of bounding boxes (Nbbox) is fixed and is configured ahead
of time, and decides the total number of learned parameters in the model. To determine the center
of each of the Nbbox bounding boxes (i.e., the 3D location that it maps to), we sample Nbbox points
from the importance distribution as shown in Fig. 3. Thus, the important regions of the scene
are allocated more bounding boxes. The size of each bounding box is inversely proportional to
the deemed importance of the region around the center of the bounding box. To determine this
deemed importance in the surrounding region, we again sample the original importance distribution
to generate a point cloud with a large number of sampled points. Each bounding box is then sized
such that they all have the same number of sampled points from the point cloud (hyperparameter
Np0). Thus regions with higher importance will have smaller bounding boxes (as the density of
sampled points is higher). The less important regions will automatically be sized to be bigger as
those regions have a lower point density.

Szbbox = β ∗ (cube enclosing points(Np0, cbbox))
.33 (4)

Where Szbbox is the size of the bounding box, Np0 is the number of points to be enclosed within
the bounding box, β is a hyperparameter (grid-size constant), cbbox is the bounding box center and
cube enclosing points returns minimum volume of a cube centered at cbbox that encloses
Np0 points. This process is done L number of times, each time with a different Np (i.e., points
per bounding box). Please refer to Appendix A for details. This generates a hierarchy of bounding
boxes to represent the scene at different scales of resolution. In our evaluation, L was set to 8.

3.4 IMPORTANCE WEIGHTED PIXEL SAMPLER

For each training iteration, assigning a higher weight in selecting pixels that render scene regions
with higher importance enables faster training around the important parts of the scene. Hence, we
implement an importance weighted pixel sampler that chooses pixels weighted on the amount of
importance seen by each pixel. From a ray r(t) = o + td casted from the camera center to the
image, where o represents the ray origin, d is the ray direction and t > 0 is the time parameter, we
can evaluate the amount of importance seen by each pixel as:

Importancepixel(px, py) =

∫ tf

tn

T (t)f(o+ td)dt (5)
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Compute bounding 
box sizes

Sample point cloud 
from distribution

Importance distribution 
in scene space

Sample bounding 
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Figure 3: Generation of bbox features: Starting from the importance distribution function, we
sample a point cloud in 3D space from the distribution. The bounding box centers are sampled from
this point cloud distribution uniformly. From these bounding box centers, the size of each box is
computed such that it encloses a fixed number of points of the point cloud.

T (t) = exp(−
∫ tf

t

σ(r(t))dt) (6)

where f is the importance distribution function, and σ is the volume density, as defined when for
volume rendering (Kajiya & Von Herzen, 1984). Evaluating this quantity is not trivial. However,
a simple approximation is to consider the space being constituted by regions where either σ = 0
(unoccupied regions in space), or σ(t) = δ(t − t0) at regions where there is occupancy. Here, t0
is the ray’s time at which it hits the point of occupancy. In this scenario, the importance seen by
pixel is given by f(r + t0d). From Sec. 3.3, we know that the volume of the bounding box seen by
the corresponding ray is proportional to the importance of the region. Hence, the pixel’s importance
is proportional to the volume of the first local grid bounding box encountered by the pixel. In
our implementation, we take the the lowest hierarchy level of the HIWE local grid bounding box
intersected by the ray cast by the pixel to approximate importance seen by each pixel.

3.5 FAST INDEXING OF BOUNDING BOXES

An important challenge in implementing HIWE positional encoding is indexing the learned param-
eters corresponding to each point in space. This is challenging because we need to identify all the
bounding boxes that enclose each 3D coordinate. From our experiments, the number of bounding
boxes (L *Nbbox) allocated is about 10,000 to 100,000 for large outdoor scenes and correspond-
ing bounding boxes need to be identified for all the training points (approximately 100K). A brute
force search across all bounding boxes for each point is infeasible. The problem of finding enclos-
ing bounding boxes for a large batch of points can be posed as a ray-bounding box intersection
problem, with the ray’s maxmimum time extent is limited to 0.0. Batched ray-bounding box in-
tersection finding operations can be efficiently carried out using a bounding-volume-hierarchy tree
search built on top of the HIWE bounding boxes. By leveraging hardware acceleration support for
ray-bounding box intersection tests using libraries such as NVIDIA-optix (Parker et al., 2010) or
Intel-embree (Wald et al., 2014), we develop an efficient approach to index local grids from a batch
of 3D point samples.

4 RESULTS

4.1 EXPERIMENTAL SETUP

We implement our approach as a new method in nerfstudio (Tancik et al., 2023), a standardized
framework to develop and evaluate NeRF models. We demonstrate our approach on large scale
drone-deploy dataset (Pilkington, 2022) which consists of sequences of high-resolution images data
captured by a drone on large scale scenes for the following data sequences: pipes1, tower1,
tower2, house1, house2, house3, ruins1, ruins3. We generate the poses used for train-
ing and evaluation using colmap (Schönberger & Frahm, 2016; Schönberger et al., 2016). We eval-
uate all our trained models on a desktop computer with an NVIDIA RTX4090 GPU for 30k training
iterations, which takes about 15 minutes of training time. We compare our approach with the base-
line nerfacto model (Tancik et al., 2023), which uses 16 levels of resolution, max-resolution voxel
grid size of 2048 and the hash table size set to 219. We also present results for nerfacto-h22, which
uses a hash table size 222, the nerfacto-big model (Tancik et al., 2023) and TensoRF (Chen et al.,
2022). We demonstrate our approach in 2 scenarios: (1) When a region’s importance is determined
by the density of structure from motion point cloud of the scene; and (2) One specific region of the
scene is marked as important by the user.
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4.2 SCENARIO 1: IMPORTANCE DETERMINED BY SFM POINT CLOUD DENSITY

In this scenario, we define the importance of the scene as being proportional to the density of the
sparse structure from motion (SfM) point cloud. We sample from this distribution to generate 8
levels in the bounding box hierarchy (L) with a grid size constant β = 1.1.

Fig. 4 shows a qualitative evaluation of our approach. We observe that our model is able to produce
visibly sharper images reconstructions of detailed scene parts using the same number of parameters
after the same number of training iterations. However, the house3 data sequence has a particularly
degraded quality, with floaters present in the scene. We find that this was due to improper pose
information produced by colmap that can be addressed by training for a few more iterations. Table 1
shows the LPIPS, SSIM and PSNR measured for each of the scenes in the dataset. We see better
accuracy in the images rendered by our approach compared to others.
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Figure 4: Visual comparison of scenes rendered with various NeRF methods.

4.3 SCENARIO 2: SINGLE REGION MARKED AS IMPORTANT

In this scenario, we mark a specific region of the scene as important with a standard normal gaussian
distribution function around the region to describe the scene importance. Fig. 5 shows the rendered
image reconstructed with the ground truth representation. We set the important region around the
center of the graffitti shown in the figure. We observe with only 30K iterations of training, our model
is able to recover details of the particular region with greater quality compared to the nerfacto-big
model trained for 100k iterations.

4.4 COMPARISON TO SCENE REPRESENTATION WITH 3D GAUSSIAN SPLATTING

While are work targets neural radiance fields, we also compare against another non-neural implicit
radiance method, 3D gaussian splatting (3DGS) (Kerbl et al., 2023) that enabled high speed re-
construction using 3D gaussians. We find that individual gaussians are able to accurately encode
high frequency scene regions efficiently with short training times (about 30 minutes), and is able to
achieve a better rendering quality than NeRF-based methods. Table 2 shows a comparison of our ap-
proach with 3DGS after training for 30K iterations. However, a fair and direct comparison between
these fundamentally different implicit radiance fields methods is challenging as each representation
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pipes1 tower1 tower2 house1 house2 house3 ruins1 ruins3
PSNR↑

Ours 23.1 19.1 21.64 18.51 20.86 17.35 17.5 18.25
nerfacto 21.59 17.75 19.88 17.15 19.94 17.83 18.15 18.07
nefacto-h22 21.11 17.9 19.94 16.94 19.91 17.99 17.9 18.1
nerfacto-big 22.5 17.7 19.57 17.75 17.6 12.16 18 18.08
TensoRF 18.26 16.97 20.9 17.66 20.65 16.72 17.41 18.31

SSIM↑
Ours 0.7 0.45 0.55 0.57 0.38 0.56 0.38 0.42
nerfacto 0.62 0.47 0.46 0.52 0.38 0.45 0.39 0.44
nefacto-h22 0.62 0.47 0.46 0.47 0.38 0.46 0.4 0.45
nerfacto-big 0.72 0.42 0.43 0.57 0.38 0.45 0.41 0.44
TensoRF 0.36 0.44 0.44 0.51 0.36 0.41 0.44 0.32

LPIPS↓
Ours 0.20 0.7 0.61 0.47 0.74 0.60 0.63 0.7
nerfacto 0.31 0.72 0.69 0.45 0.80 0.57 0.62 0.73
nefacto-h22 0.29 0.65 0.69 0.42 0.80 0.56 0.62 0.7
nerfacto-big 0.19 0.68 0.63 0.34 0.79 0.54 0.58 0.68
TensoRF 0.64 0.83 0.72 0.62 0.86 0.69 0.8 0.8

Table 1: LPIPS, PSNR and SSIM computed on evaluation images rendered from various models

ho
us

e2

Ground Truth Nerfacto-big Ours

Figure 5: Visual comparison between nerfacto-big baseline vs our approach, with the area
around the graffiti is assigned a higher level of importance. The definition of each individual
bricks is higher around the graffitti region. The quality diminishes in the grass region and the pe-
ripheral regions of the image compared to nerfacto-big.

pipes1 tower1 tower2 house1 house2 house3 ruins1 ruins3
3DGS 27.01 22.15 24.2 27.00 23.52 22.15 24.66 24.23
Ours 23.5 19.10 21.64 18.51 20.86 17.35 17.5 18.25

Table 2: PSNR of 3DGS scene representation with our approach

has different tradeoffs. For instance, modelling the scenes as explicit gaussians typically requires a
large amount of gaussian primitives to encode the scene resulting in significantly higher overhead
for storage of the model (over 1GB on average vs 86MB for our model), especially for large scenes.
Surface representation is also more challenging with these methods. Additionally, 3DGS relies on
rasterization for fast training speeds. The rendering technique (rasterization) used will not be able
to model scattering, reflective and refractive media present in the representation.

5 CONCLUSION

We introduce HIWE, a novel positional encoding technique for neural radiance fields that leverages
the knowledge of importance in representing different scene parts of large-scale scene to accelerate
training and enable higher representation quality. HIWE flexibly allocates more model parameters to
encode regions of the scene with more detailing and importance. We develop an efficient bounding
box-based implementation of HIWE that leverages hardware accelerated ray-bounding box intersec-
tions for fast feature indexing. With HIWE, we demonstrate better rendering quality for important
regions of large scale scenes, while using similar model sizes and enabling on-par or faster training
times as state-of-art NeRF methods.
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A ALLOCATION OF THE BOUNDING BOXES

Here we describe here the algorithm we use to allocate the BBOX levels for our encoding. We start
with the importance distribution f and hyperparameters describing the bounding box generation
process to produce an array of sets of bounding boxes B. The algorihtm is shown in Alg. 1.

Input : Number of levels L, base level point limit Np0, importance distribution f , number of
bbox at level 0, Nbboxbaselevel, growth factor b, grid constant β

Def. : · cube enclosing box(c, Ne, V): returns minimum volume cube centered at c that
encloses Ne points from set V .
· sample points(p, nump): Sample nump points from a probability distribution p

BBox array B = {}
Np ← Np0

DISTMAX ← 100000
Distribution point cloud P ← sample points(f , DISTMAX )
for lvl← 1 ... L do

BBOX Centers C ← sample points(f , Nbbox)
BBOX Extends E ← {}
for c ∈ C do

volbbox ←
cube enclosing box(c, Np, P)
szbbox ← β ∗ vol0.33bbox
E ← E ∪ szbbox

end
Np ← Np ∗ b
Nbbox ← Nbbox/b

.33

B ← B ∪ (lvl, (C, E)) ; /* Add the level, centers, extends of BBox */
end
return B;

Algorithm 1: Our BBOX hierarchy heneration algorithm
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