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ABSTRACT

Recently, hypergraph neural networks (HGNNs) exhibit the potential to tackle
tasks with high-order correlations and have achieved success in many tasks. How-
ever, existing evolution on the hypergraph has poor controllability and lacks suf-
ficient theoretical support (like dynamic systems), thus yielding sub-optimal per-
formance. One typical scenario is that only one or two layers of HGNNs can
achieve good results and more layers lead to degeneration of performance. Under
such circumstances, it is important to increase the controllability of HGNNs. In
this paper, we first introduce hypergraph dynamic systems (HDS), which bridge
hypergraphs and dynamic systems and characterize the continuous dynamics of
representations. We then propose a control-diffusion hypergraph dynamic system
by an ordinary differential equation (ODE). We design a multi-layer HDSode as a
neural implementation, which contains control steps and diffusion steps. HDSode

has the properties of controllability and stabilization and is allowed to capture
long-range correlations among vertices. Experiments on 9 datasets demonstrate
HDSode beat all compared methods. HDSode achieves stable performance with
increased layers and solves the poor controllability of HGNNs. We also provide
the feature visualization of the evolutionary process to demonstrate the controlla-
bility and stabilization of HDSode.

1 INTRODUCTION

Figure 1: Performance comparison of
different methods with respect to var-
ied numbers of neural network layers on
Cora-CA dataset.

Real-world correlation data inherently includes high-
order correlations that graphs cannot fully depict, such
as group ties in social networks (Bu et al., 2010) and
co-actor relationships in movies (Fan et al., 2021). The
hyperedge in hypergraphs can connect two or more ver-
tices, allowing the hypergraph to perform high-order cor-
relation modeling compared to the graph. Recently, hy-
pergraph neural networks have gained interest due to
their ability to handle high-order correlation tasks such
as drug-target interactions (Ruan et al., 2021), social rec-
ommendation (Xia et al., 2021), and gene expression im-
putation (Viñas et al., 2023). The information propaga-
tion from layer to layer in traditional convolutional neu-
ral networks can be regarded as discrete information dif-
fusion (Lin et al., 2017; Saharia et al., 2022; Rombach
et al., 2022), and as the layer goes deeper (more diffusion
steps), the expressive ability of features also increases
(Rolnick & Tegmark, 2017; Li et al., 2021).

However, we found that existing hypergraph neural networks tolerate only small diffusion steps
(e.g., HGNN (Feng et al., 2019) contains only 2 layers), while the performance drops significantly
by raising layer numbers, as shown in Figure 1. The reason is that diffusion in hypergraph neural
networks is merely simple message-smoothing within neighbors, resulting in poor controllability
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and stabilization with controllability referring to the capability to fine-tune and adjust the diffusion
process. Graph ODE-based methods bridge graph evolution and dynamic systems to the smoother
representation of diffusion dynamics, enabling deeper networks (Poli et al., 2019; Xhonneux et al.,
2020; Rusch et al., 2022). However, it is challenging to directly apply these methods to high-
order structures since diffusion in pair-wise correlation structures (graphs) and beyond pair-wise
correlation structures (hypergraphs) follow different paradigms. In this paper, we aim to propose a
hypergraph dynamic system to improve the controllability and stabilization of information diffusion
on the hypergraph, thereby improving the expressive ability of features as the number of diffusion
steps increases.

In this paper, we theoretically introduce hypergraph dynamic systems, which bridge hypergraphs and
dynamic systems. We propose a specific hypergraph dynamic system based on a control-diffusion
ODE. Based on this, we propose a neural network implementation HDSode that achieves control-
lable and stable long-distance diffusion on hypergraphs. Our HDSode method exhibits steady perfor-
mance as the diffusion steps (layers) increase, shown in Figure 1. We also present the properties of
HDSode, including stability analysis and the connection to hypergraph neural networks. In our ex-
periments, we employ 9 real-world hypergraph benchmarks and thoroughly evaluate HDSode in an
inductive setting and a production setting with 8 compared methods to validate the effectiveness of
HDSode. Furthermore, we provide feature visualizations of the evolutionary process to demonstrate
the controllability and stability of HDSode. We summarize our contributions as follows:

• We introduce hypergraph dynamic systems to establish the connection between hypergraph
and dynamic systems. This dynamic system characterizes dynamic continuous representa-
tions. We then propose a control-diffusion hypergraph dynamic system based on an ODE.

• We design a multi-layer framework HDSode as a neural implementation of the hypergraph
dynamic system to generate accurate vertex representations and prove the properties of
HDSode, including stability analysis which indicates that HDSode can capture long-range
relations among vertices.

• We perform an extensive empirical evaluation of HDSode on 9 datasets, indicating that
HDSode can achieve best performance compared with all methods. Moreover, HDSode can
achieve stable performance with respect to the increase of 16 or more layers, which solves
the poor controllability issue of HGNNs.

2 RELATED WORKS

Hypergraph neural networks. Hypergraph neural networks have been proposed for convolution
operations on hypergraphs to handle non-Euclidean hypergraph data, which is first introduced from
the spectral perspective by HGNN (Feng et al., 2019). Hyper-Atten (Bai et al., 2021) additionally
focuses on the hypergraph attention module based on HGNN. Besides, HyperGCN (Yadati et al.,
2019) is proposed for training GCN on hypergraphs by converting hypergraphs into graphs with
intermediaries to represent hyperedges. In addition to the spectral-based methods mentioned above,
HGNN+ (Gao et al., 2022) provides a spatial-based method for propagating messages from vertices
to hyperedges and then to vertices. UniGNN (Huang & Yang, 2021) presents a unified structure for
message passing in graph and hypergraph neural networks, allowing common graph neural network
models (e.g., GCN (Kipf & Welling, 2017), GAT (Veličković et al., 2018), GIN (Xu et al., 2018),
and GraphSAGE (Hamilton et al., 2017)) to be generalized to hypergraphs.

Neural ordinary differential equations (Neural ODEs). Neural ODE is first proposed by Chen
et al. (2018) to represent the continuous dynamics of the hidden representations. ODEs parame-
terized by neural networks have been utilized in recent years to analyze structured graph data and
develop connections between dynamic systems and correlation structures. GDE (Poli et al., 2019) is
a continuous deep correspondence formal extension of graph neural networks. CGNN (Xhonneux
et al., 2020) characterizes the continuous dynamics of vertex representations in terms of solutions to
linear graph diffusion differential equations. In addition, GREAD (Choi et al., 2022) adds a reaction
term to the graph diffusion ODE to obtain sharpening of the vertex representation, and GraphCON
(Rusch et al., 2022) models control and damping oscillators and couples them based on the graph
structure. Further, there are also implementations based on partial differential equations to model
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deep learning on the correlation structure as a continuous diffusion process (Chamberlain et al.,
2021; Thorpe et al., 2021; Bodnar et al., 2022; Eliasof et al., 2021).

3 PRELIMINARY

Notations and problem statement. Compared to the simple graph, each hyperedge in the hyper-
graph is a subset of the vertex set. Generally, a hypergraph is defined as G = (V, E) with V, E
representing the vertex set and hyperedge set, respectively. The hyperedges is denoted by an in-
cidence matrix H ∈ {0, 1}|V|×|E|, whose entities are defined as Hv,e = 1(v ∈ e) with indicator
function 1(·). The degree of a vertex v ∈ V is defined as d(v) =

∑
e∈E Hv,e. Similarly, the degree

of hyperedge e ∈ E is defined as δ(e) =
∑

v∈V Hv,e. The diagonal degree matrices of vertex and
hyperedge are denoted by Dv = diag(d) and De = diag(δ), respectively. Given a hypergraph G,
a corresponding vertex feature matrix Zv ∈ R|V|×c, and a corresponding hyperedge feature matrix
Ze ∈ R|E|×c, our goal is to learn a vertex representation Yv and a hyperedge representation Ye.

Hypergraph neural networks. Most current hypergraph neural networks follow the message-
passing framework. In each layer, the input vertex representations are first aggregated into hyper-
edges, and then the output vertex representations are obtained from the corresponding hyperedges.
Formally, in the k-th layer, the output vertex representations x

(k)
v are obtained from the previous

representations using aggregation function AGG and update function UPD as:

x(k)
v = UPD(x(k−1)

v ,AGG({x(k)
e : e ∈ Ne(v)})), x(k)

e = AGG({x(k−1)
v : v ∈ Nv(e)}), (1)

where the Ne(v) and Nv(e) are the vertex and hyperedge neighbor function, respectively.

Neural ordinary differential equations. For certain types of models, including residual networks
(He et al., 2016), the conversion of the hidden feature is regarded as the following discrete system:
x(t + 1) = x(t) + f(x(t), θ(t)). It can be considered as the forward Euler discretization form
of the following first-order ODE equation with time step ∆t = 1 as dx

dt = f(x(t), θ), where f is
a parameterized function defined in a dynamic system. In the remainder of the paper, dx

dt will be
abbreviated as ẋ for the sake of brevity.

4 METHOD

In this section, we first theoretically introduce hypergraph dynamic systems. Then, we provide a
specific hypergraph dynamic system form based on an ODE. Next, we divide the ODE into a control
step and a diffusion step by an ODE discretization for neural implementation. Furthermore, we
describe the detailed neural implementation of the HDSode framework, and also the time complexity
of the control step and the diffusion step.

4.1 HYPERGRAPH DYNAMIC SYSTEM.

We first propose the definition of hypergraph dynamic systems based on the following equation:[
Ẋv

Ẋe

]
= f

([
Xv(t)
Xe(t)

])
and

[
Xv(0)
Xe(0)

]
=

[
Zv

Ze

]
, (2)

where Xv(t) and Xe(t) represent the vertex representation matrix and the hyperedge representa-
tion matrix at time t, respectively. The function f represents the velocity of representation in the
dynamic system, Zv and Ze represent the initial conditions of vertex features and hyperedge fea-
tures, respectively. Due to the continuous existence of timestamp t, the above hypergraph dynamic
systems can produce the representation status at any moment.

ODE-based hypergraph dynamic system. The velocity function f in equation 2 can be described
in different ways. We consider the velocity function as a union of a control function and a diffusion
function to propose an ODE-based hypergraph dynamic system as follows:[

Ẋv

Ẋe

]
=

[
gv(Xv(t))
ge(Xe(t))

]
+A

[
Xv(t)
Xe(t)

]
. (3)
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Figure 2: Illustration of our HDSode framework.

Here, in the first term, gv and ge are the control functions, acting as the control velocity of each ver-
tex representation and hyperedge representation, respectively. The second term is the diffusion term,
where A denotes the diffusion velocity effect between the vertex representation and the hyperedge
representation in the dynamic system by the correlation of the hypergraph. The diffusion term de-
scribes the process by which features or representations teleport across the vertices and hyperedges
of the hypergraph. The control term specifically refers to a fine-tuning step that complements the
primary diffusion process and acts as an auxiliary function, adjusting and controlling the diffusion
term to align more precisely with the downstream goals.[

Xv(T )
Xe(T )

]
=

[
Xv(0)
Xe(0)

]
+

∫ T

0

f

([
Xv(t)
Xe(t)

])
dt. (4)

Given vertex features Xv(0) and hyperedge features Xe(0) as input, the vertex representations
Xv(T ) and hyperedge representations Xe(T ) of time T are generated using the integral for the
learning tasks in the hypergraph as equation 4. Not only can we obtain accurate final represen-
tations, but more importantly, we can also acquire the dynamic changes of representations from
Xv(0),Xe(0) to Xv(T ),Xe(T ) by changing the upper bound of the integral.

ODE discretization with Lie-Trotter splitting. We expect to propose a multi-layer neural net-
work framework HDSode related to the above ODE-based hypergraph dynamic system to obtain
accurate representations. We first employ the Lie-Trotter (Geiser, 2009) splitting method for the
discretization of equation 3, which is as follows:[

Xv(t+
1
2 )

Xe(t+
1
2 )

]
=

[
Xv(t)
Xe(t)

]
+

[
gv(Xv(t))
ge(Xe(t))

]
,

[
Xv(t+ 1)
Xe(t+ 1)

]
=

[
Xv(t+

1
2 )

Xe(t+
1
2 )

]
+A

[
Xv(t+

1
2 )

Xe(t+
1
2 )

]
, (5)

where the time step is integrated into control functions gv, ge, and diffusion matrix A. We notice that
each iteration of representations in the dynamic system has a time interval of 1 and time iteration
is separated into a control step and a diffusion step. Similar to the residual network, the control
step modifies the representation of vertices and hyperedges by the control functions. The diffusion
step propagates representation messages between vertices and hyperedges according to matrix A. It
is worth mentioning that the diffusion step is parameter-free. If the diffusion matrix A is suitably
designed, representations are stable to a specific value in the diffusion step with proof in Section D.

4.2 HDSode: NEURAL IMPLEMENTATION OF ODE-BASED HYPERGRAPH DYNAMIC SYSTEM

In the following, we present the implementation of HDSode framework to the previous analysis by
introducing the neural implementation of the control step and diffusion step in the HDSode layer,
respectively. Furthermore, we will analyze the time complexity of the two steps, respectively. The
illustration of the HDSode framework can be found in Figure 2.

Neural implementation of control step. Our HDSode layer allows any function with the same
input and output dimensions as control functions. In this paper, we take two simple one-layer fully
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connected networks as modifications of vertex representations and hyperedge representations, re-
spectively. Specifically, it can be expressed by the following formula:[

Xv(t+
1
2 )

Xe(t+
1
2 )

]
=

[
Xv(t)
Xe(t)

]
+ σ

([
WvXv(t)) + bv
WeXe(t)) + be

])
, (6)

where σ is the activate function, Wv,We ∈ Rc×c are the learnable weight matrices of vertex
representations and hypergraph representations, respectively, and bv, be ∈ Rc are learnable biases.

Neural implementation of diffusion step. The design of the diffusion matrix A is essential during
the diffusion process. If not suitably created, vertex representations and hyperedge representations
will diverge and become uncontrollable. In this study, we provide a design that holds both stability
and interpretability, as follows:[

Xv(t+ 1)
Xe(t+ 1)

]
=

[
Xv(t+

1
2 )

Xe(t+
1
2 )

]
+A

[
Xv(t+

1
2 )

Xe(t+
1
2 )

]
and A =

[
−αvI αvD

−1
v H

αeD
−1
e H⊤ −αeI

]
, (7)

where αv and αe are hyperparameters representing the teleport probabilities of vertices and hy-
peredges, respectively. We furthermore expand the matrix multiplication term to obtain the vertex
representation as Xv(t+ 1) = (1− αv)Xv(t+

1
2 ) + αvD

−1
v HXe(t+

1
2 ). The first term denotes

that the vertex representations stay unmodified with a keep-rate 1−αv in the diffusion process. The
second term denotes that the representation of the hyperedges directly connected to each vertex is
aggregated by average with a contribution proportion of αv , where HXe(t+

1
2 ) represents vertex-

level aggregation, and D−1
v represents an average normalization matrix. Similarly, the hyperedge

representation can be calculated as Xe(t+1) = αeD
−1
e H⊤Xv(t+

1
2 )+(1−αe)Xe(t+

1
2 ), where

the first and the second term represent the aggregation from the vertex representation at αe rate and
the original representation retained at 1− αe rate, respectively.

We obtain the vertex and hyperedge representations of any non-negative integer timestamp t using
the implementation described above. The hypergraphs from time t0 to time tn constitute a hy-
pergraph sequence as the left part in Figure 2, which corresponds to the evolution process of the
hypergraph dynamic system. Once the time T of the hypergraph dynamic system is selected, the
final vertex representation is Yv = Xv(T ), and the hyperedge representation is Ye = Xe(T ). The
whole algorithm of HDSode is shown in Appendix A.

Time complexity analysis. Here, we analyze the time complexity of the control step and the
diffusion step in each HDSode layer. In the control step, the running time is limited by multiplying
the weight matrices and the representations, so the time complexity of the control step is O((|V| +
|E|)c2), where c denotes the dimension of representations. In the diffusion step, the running time is
limited by the matrix multiplication operations of representations aggregation (i.e., HXe(t+

1
2 ) and

H⊤Xv(t +
1
2 )). Considering that the incidence matrix H is a sparse matrix, the time complexity

is O((tr(Dv) + tr(De))c). It should be noticed that the time complexity of the control term is
quadratic concerning the representation dimension, where the diffusion term is linear. Therefore, in
the implementation, we mask the control function in most time iterations to lower the total running
duration of the framework (i.e., a control step is conducted every certain number of layers).

5 PROPERTIES OF HDSode

In this section, we introduce the properties of our proposed HDSode. First, we provide the eigenvalue
propositions of the diffusion matrix A in HDSode and then explore the stability of diffusion steps.
Then, we discuss the relationship between HDSode and hypergraph neural networks.

5.1 STABILITY ANALYSIS.

Since the diffusion step in the ODE reflects the time iteration of the vertex and hyperedge repre-
sentations, the stability analysis of diffusion is essential. We first analyze the proposition of the
eigenvalue of the diffusion matrix A. Then, we perform a stability analysis on the diffusion process.
Proposition 5.1. Assume that the diffusion matrix’s eigendecomposition is A = UΛU−1 with
eigenvalue matrix Λ = diag(λi) and eigenvectors ui in equation 7, the eigenvalue λi lies in the left
half-plane of the complex plane or is 0.
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Table 1: Test accuracy (%) and standard deviation of semi-supervised vertex classification on a
transductive setting. “OOM” and “Avg. rank” represent “out of memory” and “Average rank”,
respectively. The best results are shown in bold.

Model Cora-CA DBLP-CA News20 IMDB4k-CA IMDB4k-CD DBLP4k-CC DBLP4k-CP Avg. rank
GCN 65.99±3.69 82.22±1.05 67.57±0.70 43.47±2.39 41.02±2.22 90.18±1.22 64.47±0.90 7.6

GraphSAGE 66.44±2.82 81.07±1.50 69.59±0.89 42.05±1.95 41.07±2.11 92.18±0.38 64.34±1.58 8.0
GDE 66.01±1.02 82.61±1.74 69.95±0.41 43.95±2.64 41.80±0.98 92.45±0.45 67.71±2.46 4.9

GraphCON 66.72±1.71 82.06±1.11 OOM 43.94±2.36 41.92±2.89 OOM 67.94±1.04 4.4
HGNN 67.58±1.83 82.83±1.09 76.58±0.94 43.21±2.39 41.08±2.43 93.46±0.77 67.99±2.12 4.0

HGNN+ 66.85±2.24 82.40±1.27 76.49±1.30 43.74±1.42 41.49±2.54 93.46±1.09 68.76±2.73 3.7
UniGCN 66.47±2.04 82.36±1.09 76.56±1.21 43.34±3.26 41.33±2.50 93.28±0.87 67.68±1.90 5.4
UniSAGE 68.59±1.61 82.16±1.25 75.52±1.22 42.82±2.66 41.62±3.05 93.64±0.58 67.81±2.12 4.7

HDSode 68.92±1.28 83.05±0.53 76.75±1.07 44.26±2.11 42.30±2.92 93.85±0.50 69.52±1.19 1.0

The proof is provided in Appendix B. The system is stable when the real part of the eigenvalue is
less than 0. If the eigenvalues have additional non-zero imaginary parts, the system will oscillate and
the oscillation will decrease with time. The number of 0 eigenvalues is then determined to further
investigate the characteristics of the diffusion matrix.
Proposition 5.2. The multiplicity of 0 eigenvalues after eigendecomposition of the diffusion matrix
A is equal to the number of connected components in the hypergraph.

The proof is provided in Appendix C. This property is the same as the property of our commonly
used graph Laplacian matrix. Once all of the hypergraph’s vertices are reachable from one other, the
hypergraph has only one connected component and the multiplicity of 0 eigenvalue in A is 1. For
ODE containing only diffusion terms as follows:[

Ẋv

Ẋe

]
= A

[
Xv(t)
Xe(t)

]
with solution

[
Xv

Xe

]
= etA =

|V|+|E|∑
i=1

eλituiu
⊤
i . (8)

If Re(λi) < 0, there is limt→∞ eλit = 0, while limt→∞ eλit = 1 for λi = 0. This indicates that the
representations are stable to the state corresponding to the 0 eigenvalue by the diffusion. When each
class of vertices in the hypergraph connects to vertices within the class, vertices in distinct classes
are stabilized to various representations. Control terms are required to stabilize distinct categories of
vertices to different representations if there are inter-hyperedges of classes. For the global including
the diffusion step and the control step, we give a stability condition in the Appendix D.

5.2 COMPARISON WITH HYPERGRAPH NEURAL NETWORKS.

We formalize the relationship between HDSode and hypergraph neural networks. Consider a sit-
uation where the control term is masked and the teleport probabilities αv and αe are both 1,
the vertex representations between every two layers include the relationship as Xv(t + 2) =
D−1

v HD−1
e H⊤Xv(t), whose form is consistent with linear HGNN+ layer (Gao et al., 2022) with-

out learning parameters. Given that the teleport probabilities in HDSode are susceptible to modi-
fication by the hypergraph structure and the control term finetunes the representation of diffusion,
HDSode has a better chance of producing an accurate representation than HGNN+.

6 EXPERIMENTS

In this section, we conduct experiments and compare HDSode to graph neural networks, graph ordi-
nary differential equations, and hypergraph neural networks on various benchmarks.

6.1 SEMI-SUPERVISED VERTEX CLASSIFICATION.

Our following experiments concentrate on the semi-supervised vertex classification task, which aims
to predict the labels of unlabeled vertices in a hypergraph given known partial vertex labels and all
vertex features. The output layer Ŷv = ϕ(Yv), ϕ : R|V|×c → R|V|×o acts on the final vertex
representation to obtain the probability that the vertex belongs to each category, where o represents
the number of categories.
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Table 2: Test accuracy (%) and standard deviation of semi-supervised vertex classification on a
production setting with inductive and transductive predictions. “OOM”, “prod.”, “ind.”, and “trans.”
denote “out of memory”, “production”, “inductive”, “transductive”, respectively. The best results
are shown in bold.

Model Cora-CA DBLP-CA News20 IMDB4k-CA IMDB4k-CD DBLP4k-CC DBLP4k-CP

GCN
prod. 65.13±4.87 81.62±1.42 67.13±0.44 42.09±2.72 41.12±1.90 90.16±1.32 63.48±1.75
ind. 64.48±4.57 81.54±1.71 67.33±0.65 41.40±3.52 42.05±1.84 90.80±1.32 62.81±2.82

trans. 65.46±4.63 81.23±1.25 67.13±0.53 42.55±2.66 40.84±2.00 90.45±1.21 63.46±1.48

GraphSAGE
prod. 66.52±2.08 80.67±1.19 68.91±1.70 42.98±2.21 41.28±2.30 91.70±0.69 61.53±3.64
ind. 67.38±0.56 80.91±1.40 68.51±1.36 45.04±2.97 41.58±2.42 91.58±0.56 62.11±4.89

trans. 66.08±2.65 79.62±1.14 68.99±1.85 42.67±2.20 41.15±2.25 91.74±0.76 60.73±3.87

GraphCON
prod. 66.74±3.34 81.53±2.09 OOM 42.63±2.47 41.51±2.76 OOM 67.22±1.87
ind. 64.16±3.67 81.37±2.12 OOM 42.25±2.93 41.25±2.97 OOM 67.53±2.43

trans. 66.82±3.44 81.58±2.09 OOM 42.79±2.42 41.58±2.85 OOM 67.14±2.22

HGNN
prod. 66.72±3.08 81.95±1.14 77.09±0.60 41.70±3.02 41.23±2.76 93.76±0.83 67.25±1.87
ind. 66.47±2.18 81.63±1.28 77.02±0.85 41.18±4.24 42.27±2.50 93.73±0.75 65.08±3.66

trans. 66.66±3.53 81.46±1.08 77.08±0.49 42.10±2.91 40.72±3.01 93.77±0.77 67.42±1.39

HGNN+
prod. 67.40±3.18 81.44±1.18 76.76±0.85 41.79±2.99 41.23±2.76 93.49±1.21 66.97±1.26
ind. 67.05±4.12 81.33±1.18 76.56±1.13 41.87±4.51 42.27±2.50 93.38±1.09 65.79±2.76

trans. 67.26±3.41 80.93±1.25 76.72±0.78 42.33±2.71 40.72±3.01 93.57±1.16 66.86±1.12

UniGCN
prod. 66.77±2.28 81.67±1.44 76.64±1.20 42.43±2.58 41.39±2.99 93.54±0.54 66.63±1.60
ind. 66.14±4.81 81.41±1.47 76.50±1.33 43.02±2.94 41.65±3.54 93.30±1.00 66.34±2.52

trans. 66.61±1.99 81.09±1.41 76.62±1.21 42.58±2.52 41.45±2.75 93.61±0.56 66.31±1.39

UniSAGE
prod. 68.03±2.39 82.01±1.18 76.15±1.59 43.14±3.19 41.23±3.00 93.57±0.40 68.05±1.82
ind. 68.21±2.85 81.97±1.45 75.97±1.26 42.16±4.47 42.01±3.58 93.30±0.48 66.92±3.83

trans. 67.88±2.72 81.38±1.10 76.10±1.80 43.32±2.87 40.83±2.76 93.70±0.49 68.13±1.43

HDSode
prod. 69.17±3.14 82.99±0.63 77.16±1.04 43.05±2.40 41.98±2.49 93.96±0.42 68.65±2.56
ind. 71.28±3.04 83.42±0.82 77.26±1.33 43.71±4.22 42.34±2.93 93.26±1.01 67.55±2.34

trans. 68.29±3.81 82.23±0.65 77.11±1.09 42.74±2.05 41.87±2.42 94.10±0.73 68.61±2.43

Datasets. As explained below, we employ 9 publicly accessible hypergraph benchmark datasets
from existing research on hypergraph neural networks, including Cora-CA and DBLP-CA from
Yadati et al. (2019), News20 from Asuncion & Newman (2007), IMDB4k-CA and IMDB4k-CD
from Fu et al. (2020), DBLP4k-CC and DBLP4k-CP from Sun et al. (2011), Cooking from Gao
et al. (2022), and NTU from Chen et al. (2003). The details of datasets are shown in Appendix E.

Experiment settings and details. In the following experiments, we evaluate HDSode and the
compared methods in an inductive and a production setting. In both settings, we fix the total number
of known label vertices in the training set and the validation set, which contains a total of 1, 500
vertices including 10 vertices per class for training. Vertices not in the training set and validation
set are for test. The training, validation, and test data for each experiment are divided five times at
random, and the average performance and standard deviation of each method are reported for fair
comparisons. Other experiment settings, details, and implementations are in the Appendix F.

Compared methods. We compare HDSode to a comprehensive set of baselines divided into three
groups. The first group is the graph neural network (GNN) group, in which we select two popular
architectures, namely Graph Convolutional Network (GCN) (Kipf & Welling, 2017) and GraphSage
(Hamilton et al., 2017). In addition, we compare two ODE-based GNN models, Graph Neural
Ordinary Differential Equations (GDE) (Poli et al., 2019) and Graph-Coupled Oscillator Networks
(GraphCON) (Rusch et al., 2022). In the last group, we focus on methods that compute directly
on the hypergraph, including Hypergraph Neural Networks (HGNN) (Feng et al., 2019), General
Hypergraph Neural Networks (HGNN+) (Gao et al., 2022), UniGCN (Huang & Yang, 2021), and
UniSAGE Huang & Yang (2021).

6.1.1 VERTEX CLASSIFICATION UNDER THE TRANSDUCTIVE SETTING.

Table 1 shows the accuracy and average ranking among different methods on 7 public datasets of
the transductive vertex classification task. HDSode ranks first in all datasets, surpassing hypergraph
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(a) On control steps and
diffusion steps.

(b) On different vertex
numbers of DBLP4k-CP
in training set.

(c) On different vertex
numbers of Cora-CA in
training set.

(d) On different vertex
numbers of IMDB4k-CA
in training set.

Figure 3: Influence of different parts of HDSode.

neural network, graph ODE, and graph neural network methods. Two hypergraph neural network
techniques, HGNN+ and HGNN, with average rankings of 3.7 and 4.0 respectively, come in second
and third place, respectively. In the following ablation experiments, we only compare HDSode with
these two methods. GraphCON is the graph ODE approach that ranks after HGNN+ and HGNN but
outperforms the two hypergraph neural network methods (UniGCN and UniSAGE), even though
relational structures can only use graphs that are less expressive than hypergraphs. Among the
various comparison methods, two graph neural network methods (GCN and GraphSAGE) place
last, with average rankings of just 7.6 and 8.0, respectively. We first fix the correlation structure
and conduct two comparisons, namely HDSode vs. hypergraph neural network and graph ODE vs.
graph neural network. It’s important to emphasize that ODE-based methods show a clear advantage,
which suggests that the continuity of neural networks strengthens vertex representations. Then we
engage in another two sets of comparisons, namely HDSode vs. graph ODE and hypergraph neural
network vs. graph neural network. In both comparisons, the hypergraph-based methods outperform
their graph-based counterparts, indicating that hypergraphs have a richer ability to represent the
correlation relationship than graphs. In essence, binary correlation cannot adequately represent high-
order correlation. Furthermore, even though graph ODE methods employ continuous processing in
graph structures, they still fall below the best hypergraph neural network methods, demonstrating
the significance of hypergraph structure.

6.1.2 VERTEX CLASSIFICATION UNDER THE PRODUCTION SETTING.

The transductive setting excludes predictions for unseen vertices. For a more comprehensive eval-
uation in real-world production scenarios, we set up a production setting experiment that includes
production, transductive, and inductive predictions, where the detailed description is presented in
Appendix F.2. Table 2 delineates the performance of various methods on the vertex classification
task under the production setting. HDSode achieves the best results across the datasets in most
cases, except for production and transductive results in IMDB4k-CA, and the inductive result in
DBLP4k-CC. HDSode still demonstrates advantages over hypergraph neural networks and graph
ODE methods in inductive prediction. In DBLP4k-CC, the inductive result of HDSode is marginally
below HGNN. We hypothesize this is due to the larger hyperedge in DBLP4k-CC, implying that
removing inductive vertices has a greater impact on HDSode diffusion process than HGNN.

6.2 ABLATION STUDIES

How does the number of layers affect HDSode and hypergraph neural networks? We found
that HDSode has the ability to obtain long-distance neighbor knowledge. We experiment on HDSode

and the two best comparison methods HGNN and HGNN+ in Cora-CA, with different numbers of
layers. The results are shown in Figure 1. It is worth mentioning that the number of layers represents
the farthest distance for each vertex to obtain neighbor information. Additionally, the number of lay-
ers in HDSode also corresponds to the termination time T . The hypergraph neural network methods
HGNN and HGNN+ only receive competitive results in the shadow neural networks, which perform
best at 2 layers and rapidly drop when more than 4 layers. This means that each vertex only benefits
from its local neighbors and not the full hypergraph. In contrast, HDSode has achieved competitive
outcomes in shallow layers although not stabilized. As the number of layers increases, it acquires
long-distance neighbors and brings additional benefits. Finally, when the number of layers exceeds
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(a) At t = 1. (b) At t = 1/3 · T . (c) At t = 2/3 · T . (d) At t = T .

Figure 4: T-SNE visualization of vertex representation at different timestamp t.

16, HDSode produces reliable results. In this situation, each vertex collects knowledge from all of
the vertex in the hypergraph.

How are the contributions of the control steps and the diffusion steps? We found that both
the control step and the diffusion step are indispensable in HDSode. Figure 3(a) depicts the results
of HDSode using only the control steps and the diffusion steps in different benchmarks, denoted by
“HDSode(Con.)” and “HDSode(Diff.)”, respectively. It has been observed that removing either step
reduces the results. Comparing the contributions of two steps, the result is lower if just the control
step is included, since it does not employ the hypergraph structure but simply initial vertex features.

How does the label rate affect HDSode? When varying the HDSode training set label rate
from 1 to 20 labels per class, we observe that the performance gradually increases (see Figure
3(b),3(c),3(d)). We notice that HDSode tends to improve performance more for 1, 5 or 10 labels in
each class. This is because when the number of labeled vertices is relatively limited, the distance
between each unlabeled vertex and the nearest labeled vertex grows. If vertices wish to profit from
label information, the layer number is required to be increased, which is challenging for HGNNs.
Detailed results can be found in the Appendix G.2.

6.3 FEATURE VISUALIZATION.

We found the vertex representation evolution of the hypergraph dynamic system based on T-SNE
(Van der Maaten & Hinton, 2008) visualization. Figure 4 depicts vertex representations in DBLP-
CA at various timestamps. DBLP-CA is chosen since it contains the most vertices to provide more
trustworthy visualization results. It has been discovered that as time goes from 1 to T , various types
of vertices increasingly congregate. Figure 4(a) shows points of various colors interlaced, making it
difficult to distinguish between various kinds of vertices at first. After a time interval of about T/3,
vertices of the same subclass gradually are moved closer, wherein the yellow region only contains
a few vertices that are accidentally entered. When the timestamp rises close to 2T/3 or T , the
boundaries between the categories become more acute and the regions of different types of vertices
interact with relatively few vertices from other categories. The vertex representation is accurate at
the moment, and the vertex classification effectiveness is at its peak.

7 CONCLUSION

In this paper, we first introduce hypergraph dynamic systems, which bridge hypergraphs and dy-
namic systems. We then provide a specific hypergraph dynamic system based on a control-diffusion
ODE. Based on this, we propose a neural implementation framework HDSode, which has the ability
to capture long-range correlations among vertices. We introduce the properties of HDSode, includ-
ing stability analysis and relationship with hypergraph neural networks, which are essential to un-
derstanding HDSode. HDSode has been evaluated on vertex classification tasks in different settings.
HDSode has been demonstrated to obtain stable performance with increased layers while HGNNs are
not controllable and stable with more layers. The evolutionary process is demonstrated by feature
visualization. Future directions include extending HDSode to other classes of differential equations
(e.g., partial differential equations) and to the time-varying setting of hyperedges.
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A THE ALGORITHM OF HDSode

Algorithm 1 The algorithm of HDSode framework
Input: A Hypergraph G = (V, E) with an incidence matrix H , a vertex feature matrix Zv , a
hyperedge features matrix Ze, a degree matrix of vertices Dv , and a degree matrix of hyperedges
De. The stop time of the dynamic system T . The teleport probabilities αv, αe. The control step
interval s.
Output: The vertex representations Yv . The hyperedge representations Ye.

1: Initialize vertex and hyperedge representations by Xv(0)← Zv,Xe(0)← Ze.
2: for t = 0 to T − 1 do
3: if Current is the initial time or time s has elapsed since the last control step then
4: The control step is performed according to equation 6.
5: else
6: Skip the control step by Xv(t+

1
2 )←Xv(t),Xe(t+

1
2 )←Xe(t).

7: end if
8: The diffusion step is performed according to equation 7.
9: end for

10: The representaions at time T are the final results by Yv ←Xv(T ),Ye ←Xe(T ).
11: return The vertex representations Yv and the hyperedge representations Ye.

B PROOF OF PROPOSITION 5.1

Proof. For the diffusion matrix in HDSode, it is in the following form:

A =

[
−αvI αvD

−1
v H

αeD
−1
e H⊤ −αeI

]
. (9)

Consider the sum of all rows except the elements on the diagonal. For all i ∈ {1, 2, . . . , |V|},∑
j ̸=i

|Ai,j | = αv, since d(v) =
∑
e∈E

Hv,e. (10)

Similarly, For all i ∈ {|V|+ 1, |V|+ 2, . . . , |V|+ |E|},∑
j ̸=i

|Ai,j | = αe, since δ(e) =
∑
v∈V

Hv,e. (11)

According to the Gershgorin circle theorem, the eigenvalues λiof the matrix A satisfies λi ∈ RV ∪
RE . Here

RV = {z ∈ C : |z −Ai,i| ≤
∑
j ̸=i

|Ai,j | ∧ i ∈ {1, 2, . . . , |V|}} = {z ∈ C : ∥z +αv∥2 ≤ αv}, (12)

RE = {z ∈ C : |z−Ai,i| ≤
∑
j ̸=i

|Ai,j |∧i ∈ {|V|+1, . . . , |V|+ |E|}} = {z ∈ C : ∥z+αe∥2 ≤ αe}.

(13)
It is noticed that the two sets RV and RE have similar forms, therefore they are merged further as:

λi ∈ RV ∪ RE = {z ∈ C : ∥z +max(αv, αe)∥2 ≤ max(αv, αe)}. (14)

Therefore, the eigenvalue λi of A is 0 or distributed in the left half-plane of the complex plane (i.e.,
the real part of λi < 0).

C PROOF OF PROPOSITION 5.2

Proof. In the proof of this proposition, we prove it from two directions, namely the multiplicity of 0
eigenvalues is greater or equal to the connected components of the hypergraph, and the multiplicity
of 0 eigenvalues is less or equal to the connected components of the hypergraph.
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We first prove the multiplicity of 0 eigenvalues is greater or equal to the connected components of
the hypergraph. Considering that the hypergraph G = (V, E) contains k connected components
G1 = (V1, E1),G2 = (V2, E2), . . . ,Gk = (Vk, Ek), we can define k eigenvectors u1,u2, . . . ,uk as
follows:

ui(v) =
1√

|Vi|+ |Ei|
,∀v ∈ Vi and ui(e) =

1√
|Vi|+ |Ei|

,∀e ∈ Ei. (15)

According to the definition of A, Aui = 0 indicates that ui is the corresponding eigenvector of a
zero eigenvalue. According to the size of the vertices and hyperedges in the connected component
i, it can be known that

||ui|| =
√∑

v∈V
u2
i (v) +

∑
e∈E

u2
i (e) =

√∑
v∈Vi

1

|Vi|+ |Ei|
+

∑
e∈Ei

1

|Vi|+ |Ei|
= 1. (16)

Since any two connected components don’t include the same vertices or hyperedges, any two eigen-
vectors don’t contain non-zero values at the same element, that is

uT
i uj = 0,∀i ̸= j. (17)

Each connected component of the hypergraph can construct an eigenvector corresponding to a 0
eigenvalue, so the multiplicity of 0 eigenvalues is greater or equal to the connected components of
the hypergraph.

Then we prove the multiplicity of 0 eigenvalues is less or equal to the connected components of the
hypergraph. We multiply the rows of matrix A by a different coefficient to obtain the auxiliary proof
matrix A′ with the same 0 eigenvalue multiplicity, as follows:

A′ =

[
Dv −H
−H⊤ De

]
. (18)

A′ is a positive semidefinite matrix because it satisfies

ξTA′ξ =
∑
i,j

ξ(i)A′
i,jξ(j) =

∑
v∈e

(ξ(v)− ξ(e))2 ≥ 0, (19)

where the condition for the equality is that the element of the vector ξ corresponding to the vertex
and hyperedge in each connected component is a constant. It can be noted that the eigenvectors
u1,u2, . . . ,uk of A are also the eigenvectors of A′. Assume that the multiplicity of 0 eigenvalues
in matrix A′ is greater than the number of connected components in the hypergraph, then

∃ξ ̸= 0, ξTA′ξ = 0 ∧ ξ ⊥ u1,u2, . . . ,uk. (20)

As ξ ̸= 0, there exists ξ(v) ̸= 0 or ξ(e) ̸= 0. Let’s assume that there are non-zero elements of the
vertices or hyperedges in the i-th connected component in ξ. Since the element of the eigenvectors
ξ corresponding to the vertex and hyperedge in each connected component is a constant, ξ and ui

satisfy ξTui ̸= 0, which contradicts the hypothesis. So the multiplicity of 0 eigenvalues is less or
equal to the connected components of the hypergraph.

According to the proofs in the above two directions, there is only one possibility that the multiplicity
of 0 eigenvalues of matrix A is equal to the number of connected components of the hypergraph.

D A STABILITY CONDITION OF THE DYNAMIC SYSTEM

We consider the overall ODE system as represented by Ẋ = AX + g(X), where Ẋ encapsulates
both the vertex and hyperedge rate of change [Ẋv, Ẋe]

⊤, and g = σ(XW + b) denotes the control
function modulating vertex and hyperedge representations. Here, the control function employs an
activation function defined by σ(·) = max(0, ·). Notably, in instances where the control term
nullifies, system dynamics revert to being just diffusion-driven, thus reverting to a stability condition
ruled only by the diffusion term.

For scenarios divergent from this particular case, we front a Sylvester system defined by Ẋ =
AX + XW , promoting further analysis based on the prior work of Kanuri et al. (2020). We
embark on solving the constituent subsystems Ẋ = AX and Ẋ = W ∗X respectively, delineating
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Y1(t) and Y2(t) as their respective solutions, with W ∗ standing for the transpose of the complex
conjugate of W . We introduce the notion that a matrix Y1 is deemed Ψ-bounded on R if there exists
a bound for Ψ(t)Y1(t) over R. Specifically, a scalar M > 0 such that supt∈R |Ψ(t)Y1(t)| ≤ M .
Similarly, a matrix function (Φ,Ψ) is characterized as (Φ,Ψ)-bounded if ∥ΦY1Y

∗
2 Ψ∗∥ remains

bounded on R.

The stability of the system is predicated on two key conditions. Firstly, the continuity of matrices
A and W on R, which comports with our definitions. Secondly, the existence of a positive scalar
K such that for all t ≥ 0, the integral

∫∞
−∞ ∥Φ(t)Y1(t)PY ∗

2 (t)Ψ∗(t)∥ dt, remains bounded by K.
Here, Φ(t) and Ψ∗(t) are the bounded solutions for Y1(t) and Y2(t), respectively.

E DATASETS

Table S1: Real-world hypergraph benchmark dataset statistics.

Dataset Cora-CA DBLP-CA News20 IMDB4k-CA IMDB4k-CD DBLP4k-CC DBLP4k-CP Cooking NTU
#Vertices 2, 708 41, 302 16, 342 4, 278 4, 278 4, 057 4, 057 7, 304 2, 012
#Hyperedges 1, 072 22, 363 100 5, 257 2, 081 20 14, 328 2, 755 3, 345
#Features 1, 433 1, 425 1, 433 3, 066 3, 066 334 334 7, 304 6, 144
#Classes 7 6 4 3 3 4 4 20 67

Table S2: The train/val/test statistics of datasets in the transductive setting.

Dataset #Vertices #Hyperedges #Train/Val/Test Vertices Split Ratio (%)

Cora-CA 2, 708 1, 072 70/1, 430/1, 208 2.6/52.8/44.6
DBLP-CA 41, 302 22, 363 60/1, 440/39, 802 0.1/3.5/96.4

News20 16, 342 100 40/1, 460/14, 842 0.3/8.9/90.8
IMDB4k-CA 4, 278 5, 257 30/1, 470/2, 778 0.7/34.4/64.9
IMDB4k-CD 4, 278 2, 081 30/1, 470/2, 778 0.7/34.4/64.9
DBLP4k-CC 4, 057 20 40/1, 460/2, 557 1.0/36.0/63.0
DBLP4k-CP 4, 057 14, 328 40/1, 460/2, 557 1.0/36.0/63.0

Cora-CA and DBLP-CA are obtained from Yadati et al. (2019) targeting paper classification, in
which each paper is regarded as a vertex of the hypergraph, the hyperedge represents the co-author
relationship of the paper, and each vertex’s feature is the bag-of-words representation of the related
paper. The News20 is from Asuncion & Newman (2007) with the goal being to classify each news,
in which each vertex represents a news message, the hyperedge represents the occurrence of 100
popular words among news, and the vertex features are from the TF-IDF representations of the news
content. The IMDB4k-CA and IMDB4k-CD datasets have been developed by Fu et al. (2020),
whose aim is to categorize each film into action, comedy, and drama. Both datasets consider movies
as vertices with vertex features as bag-of-words representations of movie narrative keywords, and
hyperedges are conducted based on common actors and common directors, respectively. DBLP4k-
CC and DBLP4k-CP are academic networks to classify authors into 4 areas, namely databases, data
mining, machine learning, and information retrieval (Sun et al., 2011). The datasets treat each vertex
as an author, and hyperedges are provided based on co-conferences attended and co-publications
among authors in two datasets, respectively. The Cooking dataset consists of vertices representing
dishes, with hyperedges indicating dishes that use the same ingredients. Each dish is also associated
with categorical information indicating its cuisine type, such as French, Japanese. This dataset poses
a unique challenge as it lacks initial vertex features. The NTU dataset (Chen et al., 2003) includes
3D shapes categorized into various classes like chairs, doors, etc. The vertex features are extracted
using Multi-View Convolutional Neural Networks (MVCNN) (Su et al., 2015) and Group-View
Convolutional Neural Networks (GVCNN) (Feng et al., 2018) for 3D shapes. Since the NTU dataset
does not come with an initial hypergraph structure, we constructed it by treating each 3D shape as a
vertex and using a k-nearest neighbors method to build hyperedges based on MVCNN features and
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GVCNN features, respectively, thereby establishing the hypergraph structure. The detailed statistics
of 9 benchmarks are in Table S1.

F EXPERIMENT SETTINGS AND DETAILS

F.1 TRANSDUCTIVE SETTING

The transductive setting is one of the most common experimental settings in graph/hypergraph vertex
classification. In the transductive setting, the graph is fixed at training and testing. We know the
features of every node in the graph, but we only know the labels of a portion of the vertices (i.e., the
vertices in the training set, and the validation set). The goal is to predict the labels of the remaining
unlabeled vertices in the hypergraph.

In our experiment, 1, 500 vertices are considered as vertices with known labels for each dataset,
which represent the union of the training and validation sets. We select 10 vertices for each category
as the training set among the known labeled vertices. The test set is composed of vertices not
included in the training set or validation set. Table S2 provides the statistics of datasets in the
transductive setting.

F.2 PRODUCTION SETTING

Table S3: The train/val/test statistics of datasets in the production setting.

Dataset #Vertices #Hyperedges #Train/Val/Trans/Ind Vertices Split Ratio (%)

Cora-CA 2, 708 1, 072 70/1, 430/966/242 2.6/52.8/35.7/8.9
DBLP-CA 41, 302 22, 363 60/1, 440/31, 842/7, 960 0.1/3.5/77.1/19.3

News20 16, 342 100 40/1, 460/11, 872/2, 968 0.3/8.9/72.6/18.2
IMDB4k-CA 4, 278 5, 257 30/1, 470/2, 222/556 0.7/34.4/51.9/13.0
IMDB4k-CD 4, 278 2, 081 30/1, 470/2, 222/556 0.7/34.4/51.9/13.0
DBLP4k-CC 4, 057 20 40/1, 460/2, 046/511 1.0/36.0/50.4/12.6
DBLP4k-CP 4, 057 14, 328 40/1, 460/2, 046/511 1.0/36.0/50.4/12.6

Despite being a common research setting for vertex classification, the transductive setting excludes
predictions for hidden vertices. As a result, we also take into account how well HDSode is in actual
production settings, including transductive and inductive forecasts.

To evaluate the model inductively, we retain a few test vertices from training to form an inductive set,
and the remaining test vertices are treated as the observed transductive set (i.e., VU = Vtrans ⊔Vind
where VU ,Vtrans,Vind represent unlabeled test vertex set, transductive vertex set, and inductive
vertex set, respectively). Since the model is retrained periodically in production, Vind is regarded as
the fresh unobserved set of vertices that enter the hypergraph between two pieces of training. For a
hypergraph, we need to remove the inductive vertex set and its associated hyperedges to obtain the
observable hypergraph Gobs = (Vobs, Eobs).
Here, we formally present training and testing methods in production settings. For the vertices,
features of the whole hypergraph dataset, we can divide it into V = VL ⊔ Vtrans ⊔ Vind, Xv =
XL ⊔Xtrans ⊔Xind, where the observable vertices Vobs = VL ⊔ Vtrans, the observable features
Xobs = XL⊔Xtrans. We use yL to represent the labels of the vertices of the training and validation
sets. To obtain transductive results, we use hypergraph Gobs, feature Xobs, and labels yL to train
the model, and then use the hypergraph Gobs, and feature Xobs to predict the labels of the vertex set
Vtrans. To obtain indutive results, we use hypergraph Gobs, feature Xobs, and labels yL to train the
model, and then use the hypergraph G, and feature Xv to predict the labels of the vertex set Vind. To
obtain production results, we use hypergraph Gobs, feature Xobs, and labels yL to train the model,
and then use the hypergraph G, and feature Xv to predict the labels of the vertex set Vtrans ⊔ Vind.

In a manner akin to the transductive setting, 1, 500 vertices in the production setting embody the
combined training and validation sets, with each vertex treated as having a known label within
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datasets. Vertices outside the scope of the training and validation sets are designated as the test set,
wherein 20% serves as targets for inductive predictions. This arrangement derives from the observa-
tion that, on average, fewer vertices in inductive examination compared to transductive examination
in a production setting. Table S3 provides the statistics of datasets in the production setting.

F.3 HYPERGRAPH CLIQUE EXPANSION TO GRAPH

Given that the graph-based methods in our comparison methods are unable to execute directly on
hypergraph datasets, we describe a method here that expands cliques to transform hypergraph G =
(V, E) into graph Gcq = (Vcq, Ecq). The goal of a clique expansion is to transform the hyperedges
in a hypergraph into graph edges. Clique expansion will add edges to any two of the hyperedge’s
vertices for each hyperedge. Formally, the vertex set and edge set after clique expansion can be
defined as:

Vcq = V and Ecq = {(vi, vj) : ∃e ∈ E ∧ {vi, vj} ⊆ e}. (21)

F.4 TRAINING DETAILS

Table S4: The hyperparameters of HDSode.

Dataset Cora-CA DBLP-CA News20 IMDB4k-CA IMDB4k-CD DBLP4k-CC DBLP4k-CP

αv 0.05 0.05 0.1 0.1 0.05 0.05 0.1
αe 0.9 0.9 0.9 0.9 0.9 0.9 0.9
learning rate 10−2 10−2 10−2 10−2 10−2 10−2 10−2

weight decay 5× 10−4 5× 10−4 5× 10−4 5× 10−4 5× 10−4 5× 10−4 5× 10−4

dropout 0.15 0.15 0.15 0.1 0.15 0.15 0.15

Figure S1: Comparison of the contribution of control steps and diffusion steps across all datasets.

For graph neural networks and hypergraph neural networks, the number of network layers is set
to 2 to prevent over-smoothing, and the dimension of hidden layers is 64. In GDE, we set up the
same network structure as in the paper with hidden layer dimension 64. In the experiment of the
GraphCON, the graph convolution operator is selected as an autonomous coupling function, the
number of layers is 16, the hyperparameter search range in ODE is in {0, 0.05, . . . , 1}. In HDSode,
the control term time interval is set to 20, the termination time T is set to 40, and the search range for
the hyperparameters αv, αe in ODE is set to {0.05, 0.1, . . . , 0.95}. For datasets lacking hyperedge
features, the initial value of the hyperedge feature is the aggregation of features from its internal
vertices (i.e., Ze = D−1

e H⊤Zv). The random seed is the same for all experiments of different
methods and is set to 2, 022. All models are trained for 200 epochs using Adam optimizer with
learning rate in {10−2, 10−3}, weight decay in {5 × 10−4, 1 × 10−4, 5 × 10−5}, and dropout in
{0.05, 0.1, . . . 0.95}. The loss function is cross-entropy loss. We randomly partition the dataset five
times, select hyperparameters based on the average accuracy under the validation set, and report
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the average test accuracy and standard deviation under the hyperparameters. Table S4 provides the
hyperparameter details of HDSode in the transductive setting.

G ADDITIONAL ABLATION STUDY RESULTS

G.1 ABLATION STUDY ON CONTROL STEP AND DIFFUSION STEP

We further analyze the contribution of the control step and the diffusion step in 7 benchmarks, with
results shown in Figure S1. In all datasets, both steps are essential. HDSode(Con.) results are
worst since any hypergraph structure is not exploited. In IMDB4k-CA and IMDB4k-CD along with
DBLP4k-CC and DBLP4k-CP, it can be noticed that HDSode(Con.) achieves the same effect since
these two groups of datasets share the same vertex features, respectively.

G.2 ABLATION STUDY ON THE NUMBER OF VERTICES IN THE TRAINING SET

Table S5: Test accuracy (%) and standard deviation of semi-supervised vertex classification on a
transductive setting with 1 training vertex each class.

Model Cora-CA DBLP-CA News20 IMDB4k-CA IMDB4k-CD DBLP4k-CC DBLP4k-CP
GCN 25.14±7.72 46.24±6.78 40.85±11.39 36.65±2.11 36.36±1.73 83.46±7.62 36.65±9.91

GraphSAGE 25.21±3.91 46.92±10.31 42.44±12.20 36.23±0.83 36.10±1.17 77.55±8.27 37.13±8.01

HGNN 27.35±2.53 47.88±6.49 46.63±10.01 37.28±1.97 37.12±1.73 93.32±0.85 42.15±9.86

HGNN+ 34.98±3.93 52.73±3.96 49.50±11.17 34.70±1.84 37.31±2.33 93.37±0.35 41.92±8.02

UniGCN 27.94±1.31 50.91±6.86 47.08±9.65 37.02±1.70 36.83±1.47 92.73±1.15 39.83±8.70

UniSAGE 38.80±2.04 53.33±3.14 49.23±9.24 37.05±1.68 36.93±1.53 92.64±2.54 42.39±7.13

HDSode 39.58±3.59 60.22±2.17 52.70±9.58 37.12±2.20 37.38±1.29 93.43±1.56 43.46±7.51

Table S6: Test accuracy (%) and standard deviation of semi-supervised vertex classification on a
transductive setting with 5 training vertex each class.

Model Cora-CA DBLP-CA News20 IMDB4k-CA IMDB4k-CD DBLP4k-CC DBLP4k-CP
GCN 54.61±4.64 73.65±6.84 62.81±2.65 39.14±2.97 38.54±2.44 89.46±1.17 56.96±5.85

GraphSAGE 53.11±3.74 73.58±5.40 62.66±3.73 39.72±1.16 38.51±1.34 91.08±1.03 55.95±5.33

HGNN 60.52±4.12 75.55±4.27 75.05±1.57 40.63±1.76 39.42±2.58 93.35±0.77 58.07±6.02

HGNN+ 58.17±5.10 77.34±2.49 75.43±1.81 40.92±2.92 39.41±2.58 93.03±1.46 60.83±4.70

UniGCN 58.36±5.11 74.54±4.88 74.98±1.70 41.51±2.56 39.94±2.31 93.04±1.28 59.91±4.92

UniSAGE 62.56±3.27 77.94±2.39 73.90±2.85 41.67±2.50 39.56±2.85 93.28±0.42 59.74±3.22

HDSode 64.73±2.27 78.89±2.95 75.42±2.05 42.19±1.90 41.10±2.88 93.41±0.85 61.62±1.83

Table S5 and Table S6 show the result of semi-supervised vertex classification on a transductive set-
ting with 1 and 5 training vertex for each class, respectively. Under conditions with limited effective
supervisory information, information cannot be sufficiently propagated through the network, result-
ing in limitations of general hypergraph neural networks. However, our ODE-based model, through
the use of more layers, allows for the more extensive propagation of this limited supervisory infor-
mation. This more comprehensive message passing enables our model to overcome the performance
bottlenecks with the propagation capabilities of general hypergraph neural networks (with an aver-
age 1.73 and 0.82 accuracy enhancement in 1 and 5 training vertex in each class, respectively). In
our experiments, we have explored scenarios with significantly fewer training samples in each class,
specifically, datasets with only 5 and even 1 training vertex in each class. These few-shot conditions
present a more challenging environment for learning accurate vertex representations, as the available
information is considerably limited.
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G.3 ABLATION STUDY ON CHALLENGING DATASET

Table S7: Results on Cooking and NTU datasets.

Model Cooking NTU
#Train Vertices 1 5 1 5

GCN 25.90±6.46 32.87±3.99 61.48±4.07 79.64±1.85

GraphSAGE 26.68±5.91 32.73±5.11 60.83±6.53 76.78±1.13

HGNN 28.83±7.05 45.35±6.71 67.38±2.07 85.35±1.62

HGNN+ 32.94±5.37 47.87±4.21 67.34±2.52 85.27±0.92

UniGCN 28.25±7.16 45.98±7.12 66.60±3.37 84.10±0.86

UniSAGE 35.26±5.00 47.26±5.19 67.96±2.96 84.26±1.80

HDSode 36.15±4.18 49.37±3.38 71.36±1.36 86.64±1.28

We further show the performance of our model in diverse scenarios. Specifically, we have included
tests on datasets with unique characteristics, without initial vertex features (Cooking dataset), and
without an initial hypergraph structure (NTU dataset). The Results are shown in Table S7. In our
experimental evaluation, we observe significant performance improvements in both the Cooking and
NTU datasets when using our model. Specifically, when training with only 5 samples per class, our
model achieves an enhancement of 3.13% on the Cooking dataset and 1.51% on the NTU dataset.
With only 1 sample per class, the performance gains are even more pronounced, 2.52% on the Cook-
ing dataset and a 5.00% on the NTU dataset. This indicates a notable enhancement in our model’s
ability to capture and propagate limited supervisory information effectively across the hypergraph
structure, even in scenarios with minimal training data. Moreover, in a more challenging few-shot
scenario, these results highlight our model’s proficiency in leveraging the overall hypergraph struc-
ture to extract and utilize latent relational information, especially when dealing with limited known
vertex labels. In the case of the NTU dataset, where we construct the hypergraph structure from 3D
shape features using MVCNN and GVCNN, the performance improvement emphasizes our model’s
capacity to exploit complex relational patterns from visually extracted features. Overall, these re-
sults not only validate the effectiveness of our dynamical system-based hypergraph neural network
in diverse settings but also illustrate its potential to address challenges in hypergraph learning tasks
where general hypergraph models may be limited.

G.4 ABLATION STUDY ON THE TELEPORT PROBABILITY

(a) αv of DBLP4k-CP. (b) αe of DBLP4k-CP. (c) αv of IMDB4k-CA. (d) αe of IMDB4k-CA.

Figure S2: Additional performance comparison with teleport rates on DBLP4k-CP and IMDB4k-
CA datasets.

Figure S2 shows the result of teleport probabilities αv and αe of HDSode fall inside a certain range
of αv ∈ [0.05, 0.5] and αe ∈ [0.5, 0.95] in DBLP4k-CP and IMDB4k-CA, respectively. It should
be highlighted that HDSode outperforms the second-best result across a wide range of teleport prob-
abilities. We also notice that the teleport probability from hyperedge to vertex αv is optimal when
small, and conversely, the teleport probability from the vertex to the hyperedge αe achieves the best
results when large. This is because the initial hyperedge features are missing in DBLP4k-CP and
IMDB4k-CA, and are calculated using the corresponding vertex features, which is slightly incor-
rect. To get the precise representations, it is evident to lower the transfer probability from inaccurate
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hyperedge representation to vertices while increasing the transfer probability from accurate vertex
representation to hyperedges. In general, as the hyperparameters increase, performance rises and
subsequently drops. When using HDSode on a fresh dataset, we can alter αv to about 0.1 and αe to
approximately 0.9 by summarizing the results of IMDB4k-CA and DBLP4k-CP.

G.5 ABLATION STUDY ON THE INDUCTIVE RATIO OF PRODUCTION SETTING

Table S8: The ablation study on inductive vertex ratio of production setting. We report test accuracy
(%) and standard deviation of semi-supervised vertex classification on a production setting with in-
ductive and transductive predictions. “prod.”, “ind.”, and “trans.” denote “production”, “inductive”,
“transductive”, respectively. The best results are shown in bold.

Inductive vertex ratio 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

HGNN
prod. 67.31±3.40 66.72±3.08 66.65±2.97 67.00±2.73 66.95±3.19 67.21±2.54 67.71±2.69 68.21±2.59 67.26±1.98

ind. 65.83±4.24 66.47±2.18 66.79±2.59 66.66±3.66 66.65±3.98 66.98±3.41 67.64±3.37 68.03±3.65 67.37±2.45

trans. 67.50±3.25 66.66±3.53 66.14±3.31 66.75±1.71 66.72±1.83 66.36±1.54 66.00±1.29 66.94±2.33 64.95±2.89

HGNN+
prod. 67.50±3.05 67.40±3.18 67.18±3.37 67.50±3.77 67.28±3.63 66.63±3.86 67.28±3.53 66.80±3.61 66.93±3.54

ind. 67.00±4.98 67.05±4.12 66.51±3.47 67.03±4.06 66.75±4.01 65.93±4.56 67.24±4.01 66.52±4.40 66.88±3.97

trans. 67.64±3.61 67.26±3.41 66.54±3.59 66.29±3.67 66.12±3.16 65.86±2.78 65.39±1.76 65.95±2.43 65.62±2.13

HDSode
prod. 70.49±1.43 69.17±3.14 70.46±2.43 69.33±1.97 70.09±2.02 69.66±3.18 69.63±1.62 68.49±2.40 68.90±1.90

ind. 72.66±4.09 71.28±3.04 71.82±1.85 69.85±1.51 70.19±1.94 70.52±3.00 70.05±1.23 68.82±2.31 68.68±1.71

trans. 69.89±1.99 68.29±3.81 69.26±3.22 68.52±2.88 68.67±2.89 67.19±3.51 66.99±3.94 65.20±5.08 67.10±4.41

In order to verify the impact of different inductive vertex ratios on the results under production
settings, we conduct an ablation study of it on dataset Cora-CA with HGNN, HGNN+, and HDSode.
Detailed results are shown in Table S8. The table shows that, in various inductive vertex ratio
settings, our HDSode method outperforms both HGNN and HGNN+ among production, inductive,
and transductive results. Additionally, as the ratio rises, the number of the observation graph vertices
|Vobs| gradually decreases, causing the three results to essentially exhibit a downward trend.

G.6 ABLATION STUDY ON HYPERGRAPH OPERATORS AND GRAPH OPERATORS

Table S9: Test accuracy (%) and standard deviation of semi-supervised vertex classification of the
ablation study on hypergraph operators and graph operators. “OOM” and “HDSode(graph op.)”
represent ”out of memory” and ”HDSode using graph operators”, respectively. The best results are
shown in bold.

Model Cora-CA DBLP-CA News20 IMDB4k-CA IMDB4k-CD DBLP4k-CC DBLP4k-CP
GCN 65.99±3.69 82.22±1.05 67.57±0.70 43.47±2.39 41.02±2.22 90.18±1.22 64.47±0.90

HGNN 67.58±1.83 82.83±1.09 76.58±0.94 43.21±2.39 41.08±2.43 93.46±0.77 67.99±2.12

HDSode(graph op.) 67.48±3.04 82.78±1.93 OOM 43.81±3.16 41.53±2.18 90.67±0.83 66.75±0.79

HDSode 68.92±1.28 83.05±0.53 76.75±1.07 44.26±2.11 42.30±2.92 93.85±0.50 69.52±1.19

To verify the necessity of using hypergraph operators, we present an ablation study on whether the
model uses hypergraph operators or graph operators in different hypergraph datasets. The ablation
study includes four methods, namely GCN, HGNN, HDSode using graph operators, and HDSode.

According to the results in Table S9., we found that in the hypergraph dataset, the hypergraph method
achieves better results than the corresponding graph method (i.e., HGNN beats GCN, and HDSode

beats HDSode(graph op.), respectively), which indicates that it is necessary to use hypergraph oper-
ators in hypergraph correlation structures.

As a generalization of graphs, hypergraphs have richer correlation expression capabilities than
graphs. Such as in film background, hypergraphs adeptly capture the multifaceted connections
among actors. Each actor can be represented as a vertex, and a hyperedge encompasses various
correlations, such as actors co-starring in the same movie or originating from the same country. This
hypergraph approach allows for a comprehensive representation of connections beyond pairwise in-
teractions. Traditional graph models fall short since edges link only two nodes. They struggle to
directly represent these group-based relationships without becoming complex or losing clarity. In
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the graph operator, each vertex interacts with its adjacent vertices based on the edge connecting two
vertices, while the hypergraph operator generates pair-wise interaction or group interaction based
on the hyperedge that can connect two or more vertices.

H DETAILED VISUALIZATION OF REPRESENTATION

(a) At t = 1. (b) At t = 1/8 · T . (c) At t = 2/8 · T .

(d) At t = 3/8 · T . (e) At t = 4/8 · T . (f) At t = 5/8 · T .

(g) At t = 6/8 · T . (h) At t = 7/8 · T . (i) At t = T .

Figure S3: More specific T-SNE visualization of vertex representation at different timestamp t.

Taking T/8 as the time interval, Figure S3 gives a more detailed representation evolution process
in DBLP-CA. The dynamic variations in the vertex representation distribution are more clearly
depicted as the time period is shortened. When the timestamp t is larger, the representation is closer
to stability, so the change in the same time interval is less obvious. By reducing the visualization
time interval, we get more accurate evolution rules of representations. Through the accurate dynamic
evolution, we provide circumstantial evidence for the evolution process of representation from raw
to final.
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