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Abstract

This paper considers spectral norm estimation for the Gram matrix of n data points. Efficient
estimation methods like power iteration or Nystrom directly work with the Gram matrix
or submatrix and thus have their time complexities quadratically dependent on data size.
This paper investigates an orthogonal direction to accelerate the estimation through norm
approximation. Building on the seminal work of random features for kernel methods, we
propose to approximate the spectral norm of Gram matrix by the spectral norm of a
random feature matrix, which is often much smaller and hence more efficient to work with.
Original theoretical analysis suggests the approximation has an Õ(n/

√
q) absolute error and

Õ(ln n/
√

q) relative error with q random features, close to the errors of prior methods. We
apply the approximation to accelerate power iteration and Nystrom, improving their time
complexities by replacing the quadratic dependence on data size with a linear dependence.
Experimental results on two data sets show the accelerated methods significantly reduce the
estimation time while being able to maintain the estimation accuracy.

1 Introduction

In machine learning, spectral norm is a fundamental tool widely used to design learning algorithms (Achlioptas
& McSherry, 2005; Mazumder et al., 2010; Shivanna et al., 2015; Bietti et al., 2019; Roth et al., 2020; Zhang
et al., 2021; Chen et al., 2021; Do & Luong, 2021) and characterize learning performance (Drineas et al.,
2005; Kumar & Kannan, 2010; Takác et al., 2013; Gittens & Mahoney, 2013; Bartlett et al., 2017; Xiao et al.,
2020). An efficient estimation of spectral norm is a cornerstone of efficient learning and analysis.

Another fundamental tool in machine learning is Gram matrix, whose efficient approximation (Rahimi &
Recht, 2007; Drineas et al., 2005; Holodnak & Ipsen, 2015) and spectrum analysis (Shawe-Taylor et al., 2002;
Hachem et al., 2005; Hoyle & Rattray, 2004; Benaych-Georges & Couillet, 2016) have been widely studied and
used to characterize the generalization performance of kernel machines (Schölkopf et al., 1999; Shawe-Taylor
et al., 2005; Suzuki, 2018; Ma et al., 2020).

This paper considers spectral norm estimation for the Gram matrix of n data points. A basic approach is
to apply singular value decomposition on the Gram matrix to retrieve its eigenvalues and pick the largest
one (equal to spectral norm), which consumes O(n3) time. A faster alternative is to apply power iteration
(Epperson, 2021) on the Gram matrix to estimate its top eigenvalue, which consumes O(n2) time. Another
fast alternative is based on Nystrom method (Drineas et al., 2005; Yang et al., 2012), which randomly
samples r (r < n) data points from the input and estimates the scaled spectral norm of their Gram matrix to
approximate the target norm – the estimation takes O(r3) time if done by SVD and O(r2) by power iteration.

Both power and Nystrom methods are very efficient and popular, yet they directly work with Gram matrices.
In the seminal work (Rahimi & Recht, 2007), it is shown that a kernel function can be well approximated
by the product of two random mappings. This motivates us to hypothesize the spectral norm of a Gram
matrix (associated with the kernel) can also be well approximated by the spectral norm of a random mapping
matrix. Most importantly, the mapping matrix is often way smaller than the Gram matrix, allowing its norm
estimation to be performed more efficiently and thus further accelerating the power and Nystrom methods.
To the best of our knowledge, although random feature has been widely studied e.g., (Yu et al., 2016; Bach,
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2017; Dao et al., 2017; Munkhoeva et al., 2018; Yamasaki et al., 2020), its connection to spectral norm
estimation has not been investigated or exploited before.

This paper proposes to approximate Gram matrix spectral norm using random features (Rahimi & Recht,
2007) and apply it to accelerate the power and Nystrom based norm estimation methods. Original theoretical
analysis suggests the norm approximation quality is high i.e., with q random features, the approximation
endures an O(n/

√
q) absolute error that matches the error of kernel function approximation in terms of

q (Rahimi & Recht, 2008; Yang et al., 2012) and an Õ(ln n/
√

q) relative error that is very close to the
estimation error of power iteration in terms of n (Komzsik, 2003). On the efficiency side, the accelerated
power and Nystrom based estimation methods only consume O(n) and O(r) time, respectively, significantly
improving over the current O(n2) and O(r2) time respectively. We empirically evaluate the accelerated norm
estimation methods on two real-world data sets and results show they significantly reduce estimation time
while maintaining estimation accuracy. In particular, we observe their computation time indeed scale linearly
as the data size increases, while their basic counterparts’ time scale quadratically.

2 Spectral Norm Approximation based on Random Fourier Features

2.1 Notations

For matrix M , let M(i, j) be its element at row i column j, Mi: be its ith row vector and M:j be its jth column
vector; let ||M || be its operator norm, σi(M) be its ith singular value such that σ1(M) ≥ σ2(M) ≥ . . . and,
whenever eigenvalues exist, λi(M) be its ith eigenvalue such that λ1(M) ≥ λ2(M) ≥ . . .. Note ||M || = λ1(M).

2.2 Main Result

Consider the Gram matrix K ∈ Rn×n of n data points x1, . . . , xn ∈ Rp associated with a kernel function
k : Rp × Rp → R such that K(i, j) = k(xi, xj). Construct a random feature matrix Z ∈ Rn×q such that

Zi: =
√

2
q

[
cos(wT

1 xi + b1), . . . , cos(wT
q xi + bq)

]
, (1)

where w1, . . . , wq ∈ Rp are sampled i.i.d. from some distribution p (determined by the kernel) and b1, . . . , bq

are sampled i.i.d. in [0, 2π]. Our main result is stated as follows.
Theorem 2.1. Suppose K is constructed based on a bounded shift-invariant kernel. Then, for any ε > 0,
we have | ||K|| − σ2

1(Z) | ≤ ε with probability at least 1 − 2n exp(− ε2q
c1n2+c2nε ) over the random sampling of Z,

where c1, c1 > 0 are constants depending on the kernel bound.

Proof. We will apply the following two inequalities to prove the theorem.

Lemma 2.2 (Weyl’s Inequality). For any symmetric matrices S, T ∈ Rn×n,

max
i∈{1,...,n}

| λi(S) − λi(T ) | ≤ ||S − T ||. (2)

Lemma 2.3 (Matrix Bernstein’s Inequality). Let E1, . . . , Eq ∈ Rn×n be independent and zero-mean random
matrices such that ||Ei|| ≤ c almost surely for each i. Then, for every ε ≥ 0, we have

Pr
{∣∣∣∣∣λ1

(
q∑

i=1
Ei

)∣∣∣∣∣ ≥ ε

}
≤ 2n exp

(
− ε2/2

σ2 + cε/3

)
, (3)

where σ2 = ||
∑q

i=1 EE2
i ||.

To prove Theorem 2.1, first note σ2
1(Z) = ||ZZT || and by the Weyl’s inequality,

| ||K|| − ||ZZT || | = |λ1(K) − λ1(ZZT )| ≤ ||K − ZZT ||. (4)

2



Under review as submission to TMLR

Thus we can focus on bounding ||K − ZZT ||. Write

K − ZZT =
q∑

i=1
(1
q

K − Z:iZ
T
:i ) =

q∑
i=1

Ei, (5)

where Ei = 1
q K − Z:iZ

T
:i . Note each Ei is a zero-mean matrix because

Ei(a, b) = 1
q

[K(a, b) − 2 cos(wT
i xa + bi) cos(wT

i xb + bi)
]
, (6)

and by the Bochner’s theorem (see detailed arguments in (Rahimi & Recht, 2007))

E
[√

2 cos(wT
i xa + bi)

√
2 cos(wT

i xb + bi)
]

= K(a, b). (7)

Moreover, for i ̸= j, Ei and Ej are independent since (wi, bi) and (wj , bj) are independently sampled. Based
on these conditions, we can apply the Matrix Bernstein’s inequality on

∑q
i=1 Ei and have

Pr
{∣∣∣∣∣λ1

(
q∑

i=1
Ei

)∣∣∣∣∣ ≥ ε

}
≤ 2n exp(− ε2/2

σ2 + cε/3) (8)

where c is an (almost surely) upper bound for ||Ei|| and σ2 = ||
∑q

i=1 EE2
i ||.

The remaining task is to specify or bound c and σ2.

We can set c = n(c∗+2)
q where c∗ > 0 is an upper bound of the kernel function since (6) implies

||Ei|| ≤ n max
a,b

|Ei(a, b)| ≤ n(c∗ + 2)
q

. (9)

For σ2, we have ∣∣∣∣∣
∣∣∣∣∣

q∑
i=1

EE2
i

∣∣∣∣∣
∣∣∣∣∣ = q

∣∣∣∣EE2
i

∣∣∣∣ ≤ qn max
a,b

|EE2
i (a, b)| ≤ n2(c2

∗ + 4)
q

. (10)

The last inequality in the above argument is based on (7) so that

EE2
i = E

[
1
q2 K2 + (Z:iZ

T
:i )2 − 2

q
KZ:iZ

T
:i

]
= E(Z:iZ

T
:i )2 − K2

q2 , (11)

and thus

|EE2
i (a, b) | =

∣∣∣∣∣∣
n∑

j=1
EZ(a, i)Z(b, i)Z(j, i)2 − 1

q2 K(a, j)K(j, b)

∣∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣EZ(a, i)Z(b, i)Z(j, i)2 − 1
q2 K(a, j)K(j, b)

∣∣∣∣
≤ n · max

j

∣∣∣∣EZ(a, i)Z(b, i)Z(j, i)2 − 1
q2 K(a, j)K(j, b)

∣∣∣∣
≤ n(c2

∗ + 4)
q2 ,

(12)

where the last inequality is due to the fact that Z(a, b) ∈ [−
√

2/q,
√

2/q] by design.

Plugging (9) and (12) back to (8) and merging constants, we have

Pr
{∣∣∣∣∣λ1

(
q∑

i=1
Ei

)∣∣∣∣∣ ≥ ε

}
≤ 2n exp(− ε2q

c1n2 + c2nε
), (13)

where c1 = 2(c2
∗ + 4) and c2 = 2(c∗ + 2)/3.

Combining the above with (4) proves the theorem.
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2.3 Implications of the Main Result

A direct implication of Theorem 2.1 is we can speed up the estimation of ||K|| by estimating σ1(Z) instead
and using it to approximate ||K||. The efficiency gain comes from the fact that Z is often smaller than K
and therefore (i) Z can be computed faster than K from the input data points x1, . . . , xn and (ii) σ1(Z) can
be estimated faster than ||K|| based on proper estimation methods.

On the other hand, fixing the failure probability in Theorem 2.1 suggests ZZT has an Õ(n/
√

q) spectral
norm approximation error. We can discuss its implications from two perspectives.

First, since random feature was initially introduced to approximate kernel function instead of Gram matrix
spectral norm, we can compare our norm approximation error with the following kernel approximation error
derived in (Rahimi & Recht, 2008; Yang et al., 2012).
Lemma 2.4. Let M be a compact subset of Rp with diameter d(M) and k be a shift-invariant kernel. Then
for any xi, xj ∈ M , we have

Pr[ sup
xi,xj

|z(xi)T z(xj) − k(xi, xj)| ≥ ε] ≤ 28
(

σpd(M)
ε

)2
exp

(
− qε2

4(p + 2)

)
, (14)

where σ2
p is the second moment of the Fourier transform of k.

This lemma suggests an Õ(1/
√

q) kernel approximation error which has the same dependence on q as our norm
approximation error, implying the latter error is largely inherited from the former error. We notice (Rudi &
Rosasco, 2017) suggests the kernel approximation error could be further improved to Õ(1/q). Whether such
improvement also applies to norm approximation error remains an open problem.

Second, we can compare our approximation quality with that of the classic power method (which continuously
updates a randomly initialized vector z ∈ Rn by z = Kz and at last estimates the spectral norm by zT Kz).
The latter’s relative norm approximation error has been well studied, and an example in (Kuczyński &
Woźniakowski, 1992, Theorem 4.1) is stated as follows.
Theorem 2.5. For any symmetric positive definite matrix A ∈ Rn×n and T ≥ 2, the power method with T
updates gives an estimate of ||A|| using ||Ã|| with

Pr
{∣∣∥A∥ − ∥Ã∥

∣∣
∥A∥

> ε

}
≤ min(0.824,

0.354√
ε(T − 1)

)
√

n(1 − ε)T −1/2. (15)

Accordingly, we can extend Theorem 2.1 to obtain a relative norm approximation error guarantee.
Corollary 2.6. Suppose K is constructed with a bounded shift-invariant kernel and ||K|| = Θ(n). Then

Pr
{∣∣||K|| − ||ZZT ||

∣∣
||K||

> ε

}
≤ Õ(n exp(−ε2q)). (16)

Proof. In Theorem 2.1, replacing ε with ε||K|| gives a failure probability Õ(n exp(− ε2q||K||2

n2 )). Plugging in
||K|| = Θ(n) proves the corollary.

Now we compare the two guarantees. Corollary 2.6 suggests our method has an Õ( ln n√
q ) relative error rate.

In Theorem 2.5, by relaxing (1 − ε)T ≤ exp(−εT ), we see the power method has a roughly Õ( ln n
T ) relative

error rate. Both rates have the same logarithm dependence on n, implying our method is as robust as power
method when data size scales up.

Note, however, it is not exactly fair to compare our method with power method since they speed up norm
estimation from orthogonal directions: we replace the target matrix K with a smaller Z, while power method
replaces the traditional estimator (for any target matrix) with a faster one.
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3 Applying the Approximation to Speed up Spectral Norm Estimation

In this section, we demonstrate how to Theorem 2.1 to speed up the estimation of ||K|| given a set of data
points x1, . . . , xn. We focus on accelerating two popular estimation methods: power iteration and Nystrom
method, and will refer to their accelerated methods as RFF-Power and RFF-Nystrom, respectively.

3.1 Power versus RFF-Power

A popular method to estimate the top eigenvalue of a matrix is power iteration. To apply it, we first compute
the Gram matrix K from n data points in O(n2) time and then iteratively update a randomly initialized
vector z ∈ Rn by z = Kz

||Kz||F
in O(n2) time, where || · ||F denotes the Frobenius norm. After that, ||K|| is

estimated as zT Kz in O(n2) time. Overall, the computational time has a quadratic dependence on n.

Based on Theorem 2.1, we can estimate σ1(Z) instead. We can first compute Z from n data points in O(nq)
time and then iteratively update two randomly initialized vectors u ∈ Rn and v ∈ Rq by

v = ZT u

||ZT u||F
and u = Zv

||Zv||F
, (17)

in O(nq) time. After that, σ1(Z) is estimated as (uT Zv)2 in O(nq) time. Overall, the computational time of
RFF-Power has a linear dependence on n, more scalable than the standard Power method as n increases.

Convergence of the updates in (17) is guaranteed by the following lemma.
Lemma 3.1. If ||Z|| is unique and positive, then (uT Zv)2 converges to ||Z|| as updates (17) proceed.

Proof. Let v(t) and u(t) respectively denote the updated v and u after t rounds of (17). We aim to show v(t)

converges to the right singular vector of Z associated with the top singular value, and u(t) converges to the
left singular vector of Z associated with the top singular value.

We first study v(t). Let v(0) denote the randomly initialized v. By the update rules we have

v(t) = (ZT Z)t · v(0)

∥(ZT Z)t · v(0)∥F
. (18)

Let v1, · · · , vq be a set of orthonormal eigenvectors of ZT Z ∈ Rq×q and λ1, · · · , λq be the associated eigenvalues
satisfying λ1 > λ2 > . . .. Since vi’s form a basis of Rq, there exist some constants c1, · · · , cq ∈ R such that

v(0) = c1v1 + · · · + cqvq. (19)

By left multiplying (ZT Z)t on both sides and the fact λ1 > 0, we have

(
ZT Z

)t
v(0) =

q∑
i=1

ci

(
ZT Z

)t
vi =

q∑
i=1

ciλ
t
ivi = λt

1

(
c1v1 + c2

λt
2

λt
1

v2 + · · · + cq

λt
q

λt
1

vq

)
. (20)

This implies

v(t) =
(
Z⊤Z

)t
v0

∥ (Z⊤Z)t
v0∥F

=
λt

1

(
c1v1 + c2

λt
2

λt
1
v2 + · · · + cq

λt
q

λt
1
vq

)
||λt

1

(
c1v1 + c2

λt
2

λt
1
v2 + · · · + cq

λt
q

λt
1
vq

)
||F

=
c1v1 + c2

λt
2

λt
1
v2 + · · · + cq

λt
q

λt
1
vq

||c1v1 + c2
λt

2
λt

1
v2 + · · · + cq

λt
q

λt
1
vq||F

. (21)

As t increases, the right-hand-side converges to c1v1
||c1v1||F

= v1 because λi < λ1 for all i > 1. This proves v(t)

converges to the top eigenvector of ZT Z and thus the top right singular vector of Z.

By similar argument, u(t) converges to the top left singular vector of Z. The proof is complete.
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3.2 Nystrom versus RFF-based Nystrom

The Nystrom method offers a powerful way to construct the low-rank approximation of a matrix based on
its randomly sampled submatrices (Drineas et al., 2005; Yang et al., 2012). Its idea can also be applied to
estimate ||K|| based on n input data points as follows: first, randomly sample r points from the input and
construct their Gram matrix K̃ ∈ Rr×r; then, estimate n

r ||K̃|| as an approximation of ||K||. Overall, the
Nystrom process consumes O(r2) time for computing K̃ and O(r2) time for estimating ||K̃|| using the power
method. The total time has a quadratic dependence on r.

Based on Theorem 2.1, we can estimate σ1(Z̃) instead of ||K̃||, where Z̃ ∈ Rr×q is the random feature matrix
whose rows are constructed based on (1) for the r sampled data points. Overall, the RFF-Nystrom process
consumes O(rq) time for computing Z̃ and O(rq) time for estimating σ1(Z̃) using the power method. The
total time has a linear dependence on r, which is more scalable than Nystrom as r increases.

In the following, we will refer to r
n as the data sampling ratio of Nystrom-based estimation methods.

4 Experiment

We experiment on two public real-world data sets, namely, the Communities and Crime data set and the
White Wine Quality data set. On each data set, we pick the first n instances (only features, not labels), treat
them as the input data and estimate the spectral norm of their Gram matrix using the following methods.

– SVD (baseline): compute the Gram matrix of, apply SVD on it and retrieve the top eigenvalue.

– Power: the standard power iteration method described in Section 3.1.

– RFF-Power: the accelerated power iteration method described in Section 3.1.

– Nystrom: the Nystrom method described in Section 3.2.

– RFF-Nystrom: the accelerated Nystrom method described in Section 3.2.

For all methods, we use the common Gaussian kernel function k(xi, xj) = exp(− ||xi−xj ||2
F

2σ2 ) and set σ to 0.5 on
Crime and 0.1 on Wine. For RFF-based methods, the sampling distribution (associated with Gaussian kernel)
for w is N(0, I) where I is an identity matrix. For Nystrom based methods, we pick the first r instances (out
of n) to form the downsampled data set. All features are standardized to enhance numerical stability and all
reported results are averaged over 50 random trials (except the last two which are over 100 random trials).

4.1 Spectral Norm Estimation versus Input Data Size

Performance of all methods versus input data size n are shown in Figure 1, where estimation time includes the
time to compute Gram matrix, its submatrix or random feature matrix. For RFF-Power and RFF-Nystrom,
we set the number of random features to 50 on Crime and 150 on Wine. For Power and RFF-Power, we set
the number of power updates to 5. For Nystrom and RFF-Nystrom, we set the data sampling ratio to 0.8.
These choices are based on sensitivity analysis results in Figure 2.

In Figure 1 (a)(c), we see the norm estimates of both Power and RFF-Power are very close to the SVD
estimate, demonstrating their effectiveness. Figure 1 (b)(d) show how the log estimation time scales as n
increases. We see RFF-Power consistently consumes the least amount of time, demonstrating its efficacy.
Interesting, the time of three methods have roughly cubic, quadratic and linear dependence on data size,
consistent with our theoretical analysis on their time complexities.

In Figure 1 (e)(g), we see the norm estimates of Nystrom and RFF-Nystrom are very close but slightly lower
than the SVD estimate. We conjecture this gap is induced from the subsampling process of Nystrom and not
from the application of RFF-based norm approximation. Figure 1 (f)(h) show how the estimation time scales
as n increases. Again, we see RFF-Nystrom consistently consumes the least amount of time.

Overall, by comparing the left columns of Figure 1 and its right columns, we see RFF-Power and RFF-Nystrom
speed up Power and Nystrom, respectively, without sacrificing estimation accuracy.
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(a) Power-based Norm Estimates on Crime (b) Estimation Time on Crime

(c) Power-based Norm Estimates on Wine (d) Estimation Time on Wine

(e) Nystrom-based Norm Estimates on Crime (f) Estimation Time on Crime

(g) Nystrom-based Norm Estimates on Wine (h) Estimation Time on Wine

Figure 1
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(a) Estimate vs Power Update on Crime (b) Estimate vs Power Update on Wine

(c) Estimate vs Random Feature Number on Crime (d) Estimate vs Random Feature Number on Wine

(e) Estimate vs Sampling Ratio on Crime (f) Estimate vs Sampling Ratio on Wine

Figure 2: Sensitivity Analysis
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4.2 Sensitivity Analysis

We also perform sensitivity analysis on different estimation methods.

Figure 2 (a-b) show the performance of Power and RFF-Power versus the number of power updates. We see
both methods general converge after 5 updates, and Power converges slightly faster and more accurately than
RFF-Power.

Figure 2 (c-d) show the performance of RFF-Power versus the number of random features q. We see its
estimate converges to the baseline at a rate close to our theoretical prediction Q̃(1/

√
q). On Crime, it becomes

close to baseline at q = 50, which is way smaller than the data size n = 1993; on Wine, it becomes close
q = 150, which is also way smaller than the data size n = 4898. These allow RFF-Power to work with random
feature matrices that are much smaller than the corresponding Gram matrices and hence gains efficiency.

Figure 2 (e-f) show the performance of Nystrom-based estimation methods versus data sampling ratio. We
see both methods converge to the baseline as the ratio increases. Both convergence rates are similar, implying
the proposed norm approximation does not introduce additional estimation loss for Nystrom. However, we
do not observe larger variance on the performance than in other experiments. This may be because the
downsampled data set no longer has standardized features to guarantee numerical stability in performance.

5 Conclusion

This paper proposes to approximate the spectral norm of a Gram matrix for n given data points using the
random Fourier features of these data. Original theoretical analysis suggests an Õ(n/

√
q) approximation error

that matches the known error of approximating kernel functions using random features, and an Õ(ln n/
√

q)
relative approximation error that is very close to the known spectral norm estimation error using power
iteration. We then demonstrate applications of the proposed norm approximation to speed up two popular
spectral norm estimation methods: power iteration and Nystrom. Experimental results on two real-world
data sets demonstrate the efficacy of the accelerated methods.

Broader Impact Statement

This work proposes a novel spectral norm approximation method for Gram matrix that can be applied to
significantly accelerate its estimation for scalable data analytics. There are many potential uses and therefore
societal consequences of such methods, none of which we see the need to specifically highlight here.
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