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Abstract

We study the problem of robust estimation under heterogeneous corruption rates,
where each sample may be independently corrupted with a known but non-identical
probability. This setting arises naturally in distributed and federated learning,
crowdsourcing, and sensor networks, yet existing robust estimators typically as-
sume uniform or worst-case corruption, ignoring structural heterogeneity. For
mean estimation for multivariate bounded distributions and univariate gaussian
distributions, we give tight minimax rates for all heterogeneous corruption patterns.
For multivariate gaussian mean estimation and linear regression, we establish the
minimax rate for squared error up to a factor of

√
d, where d is the dimension.

Roughly, our findings suggest that samples beyond a certain corruption threshold
may be discarded by the optimal estimators – this threshold is determined by the
empirical distribution of the corruption rates given.

1 Introduction

In traditional statistics, we typically rely on the assumption that our data is generated in a “nice”,
i.i.d. manner from some population distribution. Robust statistics can be seen as a relaxation of these
assumptions, aiming to ensure meaningful performance even when the data that has been corrupted by
a small fraction of arbitrary, but potentially adversarially chosen, outliers. First proposed in seminal
work by statisticians such as Huber, Tukey, and Anscombe more than fifty years ago [1–4], this
problem remains highly relevant to this day, and has received considerable recent attention from the
statistics, machine learning, and theoretical computer science community, see e.g. [5–20]. A full
survey of this line of work is beyond the scope of this paper, see e.g. [21] for a more comprehensive
overview.

There are a number of related ways in the literature to model such outliers. For instance, one classical
setting is known as the Huber contamination model [22]. Here, there is a “nice” distribution D,
typically assumed to be from some well-behaved class of distributions, and we receive n samples
Z1, . . . , Zn from a distribution D′ = (1− ε)D + εN for some arbitrary noise distribution N , and
some error parameter ε > 0. In other words, to generate a sample point Zi, we generate a clean
sample from D with probability (1 − ε), and we sample an outlier from a noise distribution with
probability ε. There are also a number of other, more powerful, adversaries considered in the literature,
for instance, which allow the adversary to choose the corrupted points adaptively based on the clean
samples; see e.g. [23–25] for a more detailed discussion. However, by now, at least for many basic
estimation tasks such as mean estimation, tight (or nearly tight) rates are known for many parametric
families of distributions under all of these corruption models.

But, all of these models share an unfortunate drawback: namely, they all essentially assume a
homogeneous prior on the error rates across the dataset. In the Huber contamination model, for
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example, every sample is corrupted with the same probability ε. In practice, this is usually not
the case: we often obtain data from various heterogeneous sources, and consequently we should
have different priors on the cleanliness of different data points in our dataset. As an example, many
large-scale biomedical datasets are agglomerated in a distributed fashion over different institutions
and at different points in time, and it is unreasonable to assume that the rate of outliers ought to be
similar over the various sub-parts of the data. But because all existing robust statistics techniques
assume a uniform noise prior, it is unclear whether can obtain the optimal statistical rates for such
datasets, or what these rates even are in the first place.

Motivated by these considerations, we propose a natural generalization of the Huber contamination
model with heterogeneous corruption rates, where every data point is corrupted with a potentially
different error rate. Formally:
Definition 1 (λ-contamination). Let n be the number of samples, and let λ = (λ1, . . . , λn) ∈ [0, 1]n.
Let P be some distribution. We say a dataset Z = (Z1, . . . , Zn) is a λ-contaminated set of samples
from P if Zi = (1−Bi)Xi +BiX̃i, where:

• X1, . . . , Xn
iid∼ P is a set of clean samples from P ,

• Bi ∼ Bern(λi) are independent Bernoulli random variables for i = 1, . . . , n, and

• The outliers (X̃1, . . . , X̃n) are sampled from some joint distribution conditioned on the
realizations of X1, . . . , Xn and B1, . . . , Bn.

When a set of samples is generated this way, we denote this by Z ∼λ P .

In other words, we assume that the probability that the i-th sample is corrupted is λi, for different
values of λi. We pause to make a couple of remarks on this definition. First, when all the λi are the
same, this is essentially the standard Huber contamination model, except we allow that the outliers
may be chosen adaptively. Second, we will assume that we know λ exactly. However, our upper
bounds also naturally generalize to the setting where we only have approximate knowledge of the λi,
i.e., we just need a constant factor approximation λ̂i of the corruption rate for our results to hold (i.e.,
λi ≤ cλ̂i). Such upper bounds on the corruption rates can often be estimated from past performance
in practice. Finally, just as in standard robust statistics, there are many similar but not equivalent
definitions we can consider here, for instance, corresponding to oblivious contamination or strong
corruption [21, 23–25]. Our proposed error upper and lower bounds hold for both adaptive and
non-adaptive adversaries. We leave the exploration between the differences between these definitions
as an interesting future direction.

From a more conceptual point of view, the main challenge in this heterogeneous setting is how to
effectively “mix” the information from data points with different noise levels. As an illuminating
example, one important special case of the λ-contamination model is semi-verified learning [7, 9],
where there is a (very) small amount of trusted data, and a large amount of potentially very noisy data,
which corresponds to the setting where λi = 0 for a small number of i, and λi = γ for some γ close
to 1 for the rest of the data. In general, robust estimation is impossible if λi ≥ 1/2 for all i, however,
it turns out that in the semi-verified setting, one can obtain consistent estimators by combining the
information from the two sets of samples [7]. This example illustrates the main technical challenge
of the general heterogeneous setting. To obtain the tight rates, one must correctly identify how to
incorporate information from the noisier samples into the information from cleaner ones, and to do
so smoothly as a function of λi.

1.1 Our results

We establish lower and upper bounds for the statistical rates for a number of fundamental estimation
tasks in the λ-contaminated setting. We first consider robust mean estimation in the heterogeneous
setting, one of the most important and well-studied problems in robust statistics. For any distribution
P , let µP = EX∼P [X] be the expectation of P . We will measure the effectiveness of our estimators
using the following minimax metrics:
Definition 2 (Minimax, Minimax PAC rates for heterogeneous robust mean estimation [26, 27]). Let
D be a set of distributions over Rd, and let λ ∈ [0, 1]n. The minimax rate for λ-corrupted mean
estimation for the class D is defined to be

L(λ,D) = inf
M

sup
P∈D

EZ∼λP

[
‖M(Z)− µP ‖22

]
, (1)
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where the infimum is taken over all estimators M . The minimax PAC rate for λ-corrupted mean
estimation for the class D is defined to be

LPAC(λ,D, δ) = inf
M

sup
P∈D

inf

{
t ∈ [0,∞) : Pr

Z∼λP

[
‖M(Z)− µP ‖22 ≥ t

]
≤ δ
}
. (2)

Readers can refer to Ma et al. [26] for more details on the minimax PAC rate. Stated simply, the
minimax PAC rate is simply the smallest rate so that the probability that the estimator exceeds
LPAC(λ,D, δ) is small. Since by standard techniques, we can boost the error probability δ, we
will typically focus on the setting where δ is a small constant, and we will let LPAC(λ,D) :−
LPAC(λ,D, 1/5). We use this notion because it is necessary in the robust setting. In settings where
the unknown mean could be unbounded, no estimator can achieve finite expected error, even in the
standard Huber contamination model. This is because all samples may be corrupted with exponentially
small probability, in which case the error could be arbitrarily large.

Mean Estimation for Bounded Distributions: We first consider the class of bounded, multivariate
distributions. For this setting, we show:
Theorem 1. Let Dbr be the set of all distributions on Rd supported on the l2 ball of radius r. Then,

L(λ,Dbr) ' r2f(λ, 1) , where f(λ, k) = min
t∈[0,1]

(
k

|{i : λi ≤ t}|
+ t2

)
. (3)

Moreover, the optimal estimator can be implemented in nearly-linear time.

The function f(λ, k) can be thought of as a measure of the “effective” error rate of the dataset, and
will play a crucial role in many of our results going forward. Indeed, Theorem 1 implies that the
optimal robust mechanism chooses a corruption level t and only utilizes the data having corruption
rate below t, i.e., there is no improvement by considering the other samples up to constant factors.

Mean Estimation for Gaussians: Our next result concerns heterogeneous mean estimation for
Gaussians. Our main result can be summarized as follows:
Theorem 2 (informal, see Theorem 4). Let DNd the set of all multivariate Gaussian distributions on
Rd with identity covariance. Suppose that f(λ, d) = O(1), then d−1/2f(λ, d) . LPAC(λ,DNd ) .
f(λ, d).

In other words, we show that, in the regime where there are sufficiently many relatively clean samples,
f(λ, d) dictates the minimax rate, up to a

√
d factor. Note that this is arguably the most interesting

regime from a statistical perspective, as it is the only regime where the recovered Gaussian has
non-trivial statistical overlap with the true Gaussian. We note that our lower bound technique also
yields non-trivial bounds in more general settings, however, they are somewhat more difficult to
interpret—see the supplementary material for more discussion.

We pause to make a couple of remarks on this result. First, in constant dimensions, our bound
is tight up to constant factors, so our bound is tight in this regime. Second, we note that naïve
multi-dimensional techniques such as coordinate-wise methods would lose a Θ(d) factor in the
squared `2-error, so our bound represents a polynomial improvement over baseline methods.

Linear Regression: Finally, we turn our attention to Gaussian design linear regression with
heterogeneous corruptions. We assume the uncorrupted covariates are Gaussian with covariance
matrix Σ ∈ Rd×d and noise rate σ2. Then, for any choice of regression coefficients β ∈ Rd, we
assume that the clean data is of the form (W,Y ) ∈ Rd+1 where W ∼ N (0,Σ), and conditioned on
W , Y ∼ N (WTβ, σ2). We let D(Σ, σ2) the family of distributions over (W,Y ) of this form. For
any P ∈ D(Σ, σ2), we let βP denote its associated regression coefficients. In analogy to Equation (2),
we define the minimax PAC rate of squared excess risk under heterogeneous corruptions to be

Lreg(λ,D(Σ, σ2), δ) = inf
M

sup
P∈D(Σ,σ2)

inf

{
t ∈ [0,∞) : Pr

Z∼λP

[
‖M(Z)− βP ‖2Σ > t

]
≤ δ
}
,

(4)
and as before, we let Lreg(λ,D(Σ, σ2)) :− Lreg(λ,D(Σ, σ2), 1/5). Here ‖x‖Σ = x>Σx, which is
known to be the natural affine-invariant measure of error for linear regression [28]. Note that this
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is the standard joint contamination model [10, 29], where both the covariate and the target can be
jointly corrupted by the adversary, i.e., Zi = (Wi(1 − Bi) + BiW̃i, Yi(1 − Bi) + BiỸi). This is
opposed to the simpler target contamination model also considered in the literature where only the
target Y can be corrupted [30].

Our main result in this setting is as follows:

Theorem 3 (informal, see Theorem 5). Suppose that f(λ, d) = O(1), then d−1/2f(λ, d) .
Lreg(λ,D(Σ, σ2)) . f(λ, d).

In other words, as before, we establish the tight rate up to a factor of O(
√
d).

Upper bound techniques For all four problems, the upper bounds in the theorem statements can
be achieved by a thresholding estimator – set an appropriate threshold t and take the optimal robust
mean estimator with homogeneous corruption rate t. Thus, at least for bounded distributions and
Gaussians in a constant number of dimensions, our results show that there is no significant benefit in
collecting data with higher corruption rate beyond a certain threshold.

Per-sample reweighting In addition to this simple thresholding method, we also give a family of
more refined estimators that find an optimal per-sample weighting scheme, that match the theoretical
guarantees of the simple thresholding estimator, but which has a number of additional advantages
over it. First, as we discuss below, these methods seem to sometimes perform better in practice in
preliminary synthetic evaluations. Second, in the high-dimensional settings, the thresholding-based
methods have error rates which seem to plateau, resulting a the

√
d gap in the upper and lower

bounds. We believe resolving this gap is a very interesting open question. As a first step, we derive
natural heterogeneous variants of Tukey depth [4] and regression depth [31] using these per-sample
reweighting methods. We believe that these methods may allow us to bridge this gap, by leveraging
the higher corruption points that the thresholding-based methods ignore to boost the accuracy. To
reiterate, we propose the reweighted estimators as a possible avenue to improve the upper bounds but
the estimators used to obtain the minimax upper bounds are based on the thresholding estimators.

Lower bound techniques A key technical challenge that separates our analysis from that of
standard homogeneous robust statistics analysis is that of capturing the heterogeneity in the lower
bound. The standard approach for the lower bound in homogeneous robust statistics is to add a term
due to the corruption rate to the non-robust lower bound [32]. For example, in robust d-dimensional
Gaussian mean estimation under identity covariance with ε corruption, the minimax rate is of the
order Θ( dn + ε2), where n is the number of samples. The term d

n is obtained from classical statistics
literature while the ε2 term captures the fact that two distributions with mean within l2 distance of ε
can not be distinguished due to the ε contamination – proved via Le Cam’s method [28]. Such a two-
staged approach is unsuitable for our setting since the number of samples n can be made arbitrarily
large by artificially appending samples with λ = 1. Le Cam’s method captures the difficulty of the
problem in terms of corruption rate but fails to capture the dimensionality of the problem, while
Assouad’s method can capture the difficulty of the problem in higher dimension, but seems to have
difficulty capturing the power of an adversary. Thus, the challenge lies in constructing tight lower
bounds that incorporate both the terms jointly. Readers may refer to our lower bound construction in
Appendix C.2 for more details.

Experimental evaluations While we emphasize that the main contribution of this work is the-
oretical, in the supplementary material, we also perform some preliminary synthetic evaluations
to validate the effectiveness of our methods. In the bounded and univariate Gaussian settings, we
demonstrate that both the thresholding-based methods as well as the per-sample reweighting methods
outperform baselines from the standard homogeneous robust statistics literature. Our results also
demonstrate that in some settings, the per-sample reweighting methods also yield improvements over
the threshold-based methods in practice.

1.2 Related Works

As discussed previously, the robust statistics literature has typically focused on a homogeneous
corruption rate. In terms of heterogeneity, Charikar et al. [7] introduced the notion of semi-verified
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learning where a small amount of data is sampled from the true distribution in conjunction with a
dataset having only α fraction of the data uncorrupted (α� 1). The semi-verified learning problem
is closely related to the problem of list-decodable estimation introduced by Balcan et al. [33]; list-
decodable learning aims to recover a list of possible values of the quantity being estimated with the
guarantee that one of entries in the list is close to the true value. Typical results in semi-verified
learning lead of an error that depends on α but does not typically scale with the number of clean
samples. There has been a line of work extending their results [9, 13, 14, 19, 34].

Robustness and privacy are known to be deeply related [35–38]. In the privacy literature there has
been a line of work on optimal mechanisms under heterogeneous privacy demands [39–41]. However,
these works only focus on bounded univariate setting, and do not seem to imply anything directly for
the heterogeneous corruption setting we consider.

Organization: We define the problem of mean estimation for bounded distributions in Section 2, and
provide a general proof sketch to obtain the minimax rate. In Section 3, we present our results on
Gaussian mean estimation for both univariate and multivariate setting, followed by results on excess
risk minimization for Gaussian linear regression in Section 4. We present our thoughts on future
works in Section 5. Some illustrative experiments can be found in Appendix A.

2 Mean Estimation for Bounded Distributions

In this section, we prove Theorem 1.

2.1 Upper Bound

To obtain an upper bound on L(λ,Dbr), we shall restrict our attention to the class of estimators of the
form

∑n
i=1 wiZi for w ∈ ∆n. Via standard bias-variance decomposition,

E

∥∥∥∥∥
n∑
i=1

wiZi − µP

∥∥∥∥∥
2

2

 =

∥∥∥∥∥
n∑
i=1

wiE[Zi]− µP

∥∥∥∥∥
2

2

+ E

∥∥∥∥∥
n∑
i=1

wi(Zi − E[Zi])

∥∥∥∥∥
2

2

 . (5)

Denoting E[X̃i|Bi = 1] = µQi , the bias term can be upper bounded as∥∥∥∥∥
n∑
i=1

wi(E[Zi]− µP )

∥∥∥∥∥
2

2

=

∥∥∥∥∥
n∑
i=1

wiλi(µQi − µP )

∥∥∥∥∥
2

2

≤ 4r2(wTλ)2, (6)

using Jensen’s inequality and the fact that ‖µQi−µP ‖2 ≤ 2r. The variance term needs to be bounded
with more care since X̃ are not independent can dependent on X,B. It can be upper bounded as
E
[
‖
∑n
i=1 wi(Zi − E[Zi])‖

2

2

]
≤ 7r2‖w‖22 + 16r2(wTλ)2 (see Appendix B.1). Thus, we get the

upper bound

E

∥∥∥∥∥
n∑
i=1

wiZi − µP

∥∥∥∥∥
2

2

 ≤ 7r2
(
‖w‖22 + 3(wTλ)2

)
∀w ∈ ∆n. (7)

Taking minimum over w ∈ ∆n,

L(λ,Dbr) ≤ 7r2 min
w∈∆n

‖w‖22 + 3(wTλ)2. (8)

Since Slater’s condition holds, by KKT we obtain the solution of the above to be of form wi =
(β − 3(wTλ)λi)+, where (x)+ = max{x, 0}, for suitable β that ensures w ∈ ∆n. Exploiting this
structure, we obtain a near-linear time algorithm to find the exact minimizer of ‖w‖22 + c(wTλ)2

presented in Algorithm 1. For a vector λ, the notation λba denotes the sub-vector (λa, . . . , λb) for
a ≤ b. The proof of correctness is presented in Appendix B.2.

Simpler Upper Bound: While Algorithm 1 recovers the exact minimizer for (8), we also discuss a
significantly simpler upper bound – take the mean of the samples with corruption probability less
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Algorithm 1 Robust Mean Estimation for Bounded Distributions
Input: Z and corresponding λ, with λ assumed to be in ascending order
n← LENGTH(λ)
k ← 1
while k ≤ n do

if λk+1 <
1+c‖λk1‖

2
2

c‖λk1‖1
then

k ← k + 1
else

break
end if

end while
β ← 1+c‖λk1‖

2
2

k(1+c‖λk1‖22)−c‖λk1‖21
, α← c‖λk1‖1β

1+c‖λk1‖22
.

wk1 ← β − αλk1 , wnk+1 ← 0

return
∑n
i=1 wiZi

than t for a hyperparameter t. Let N(t) = |{i : λi ≤ t}|. Therefore, for any t ∈ [0, 1], we get the
upper bound from (7)

L(λ, r) . r2

(
1

N(t)
+ t2

)
. (9)

We can similarly take a minimum over t to get an upper bound on L(λ,Dbr). This simpler upper
bound suffices for proving minimax optimality.

2.2 Lower Bound

We use Le Cam’s two-point method to obtain the lower bound. Fix some 0 ≤ δ ≤ 1
4 . Let

P0 = re1(2Ber( 1
2 − δ) − 1) and P1 = re1(2Ber( 1

2 + δ) − 1), where e1 is a unit vector; we have
‖µP1

− µP2
‖22 = 4r2δ2.

Under distribution P0, consider the strategy such that adversary tries to ensure that the i-th sample is
as close to re1(2Ber( 1

2 )− 1) as possible in mean. Let Qi = re1(2Ber(γi)− 1) with

γi =

{
1
2 − δ + δ

λi
if λi ≥ 2δ

1+2δ ,
1
2 − δ else,

(10)

then the adversary simply samples Ỹi independently from Qi. Thus, the adversary can simulate1

the distribution re1(2Ber( 1
2 ) − 1) when λi ≥ 2δ

1+2δ . If λi < 2δ
1+2δ , then the adversary does not

perturb the distribution at all, or equivalently, samples X̃i from P0 independently. Thus, the proposed
adversarial strategy results in Zi drawn independently from re1(2Ber( 1

2 − εi)− 1), where

εi := δI
{
λi <

2δ

1 + 2δ

}
. (11)

Similar arguments hold when the underlying distribution is P1.

Let n(t) = |{i : λi < t}|. Using Le Cam’s method, we show in Appendix B.3

L(λ, r) ≥ r2δ2
(

1−
√

6δ2n(2δ)
)
∀δ ∈

[
0,

1

4

]
(12)

2.3 Proving Minimax Optimality

We outline how to pick a ‘good’ δ. For x ∈ [0, 1
4 ], let h(x) = N(2x)− 1

12x2 . Note that h is monotone,
piece-wise continuous, and ∃α > 0 such that h(α) < 0. We use the notation h(x−) to denote the left
limit of h at x; note that h(x−) = n(2x)− 1

12x2 .

1By simulate, we mean the mixture distribution matches the claimed distribution.
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Figure 1: Plot of weighted Tukey depth (see (17)) visualized for three different weighing schemes. (A)
is computed with the standard uniform weights wi = 1

n , (B) is computed with wi = I{λi≤t}
|{j:λj≤t}| using

the value of t from (21), and (C) is computed with weights given by Algorithm 1. For the dataset,
the true underlying distribution is N ((0, 0), I), and λ is sampled i.i.d. Points are contaminated by
replacing them with samples from N ((2, 2), I/5). The samples are marked in red ‘x’ if they were
contaminated; the size of the markers for each point is proportional to 1− λi. The estimated mean,
the point with maximum depth, is marked with a yellow star.

Consider the case that h( 1
4 ) < 0, i.e., |{i : λi ≤ 1

2}| <
4
3 . This conditions correspond to extremely

high levels of corruption and unsurprisingly, we show the minimax rate to be Θ(r2). Plug-in δ = 1
4

in (12) to get L(λ, r) & r2. We can get matching upper bound in (9) by setting t = 1.

Alternately, if h( 1
4 ) > 0 then since h(·) is a cadlag function and h(α) < 0, there exists δ∗ ∈ (0, 1

4 ]

such that h(δ∗) ≥ 0 and h(δ−∗ ) ≤ 0, i.e., N(2δ∗) ≥ 1
12δ2
∗

and n(2δ∗) ≤ 1
12δ2
∗

. Plug-in δ∗ in (12) to
get

L(λ, r) ≥ r2δ2
∗(1−

√
6δ2
∗n(2δ∗)) (13)

≥ r2δ2
∗

(
1−

√
1

2

)
' r2δ2

∗. (14)

In the upper bound of (9), set t = 2δ∗ to get

L(λ, r) . r2 1

N(2δ∗)
+ r2δ2

∗ (15)

≤ 12r2δ2
∗ + r2δ2

∗ ' r2δ2
∗, (16)

proving minimax optimality of the proposed schemes in (8) and (9) up to constant factors.

3 Mean Estimation for Gaussian Distributions

In this section, we describe our results for the problem of mean estimation for multivariate Gaussian
distributions at a high level. For conciseness, we defer the complete proofs to the appendix.

Upper Bound: We propose a weighted version of the Tukey median [4]. Define the weighted depth
of a point η ∈ Rd for a dataset Z = (Z1, . . . , Zn) and w ∈ ∆n as

Dw(η,Z) = min
v∈Sd

n∑
i=1

wiI{vT (Zi − η) ≥ 0}, (17)

where Sd = {x ∈ Rd : ‖x‖2 = 1}. The weighted Tukey median is defined as

µ̂TM(Z, w) := arg max
η∈Rd

Dw(η,Z). (18)

The standard Tukey depth (i.e., w = 1/n) of a point η is the minimum number of samples in a closed
half-space with η at the boundary. Thus, depth of η is high if it is surrounded by samples in all
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directions. Our weighted version allows us to decrease the sensitivity to samples which are more
likely to be corrupted. In Figure 1, we illustrate the Tukey depth map for three different weighing
schemes which demonstrates how using the weights w can be used to leverage the heterogeneity.
Proposition 1 establishes an upper bound on the performance of the weighted Tukey median.

Proposition 1 (Upper Bound for Gaussian Distributions). For all w ∈ ∆n satisfying (wTλ)2 +
d‖w‖22 ≤ c for some universal constants c,

sup
P∈DNd

PrZ∼λP

[
‖µ̂TM(Z, w)− µP ‖22 ≥ c′

(
(wTλ)2 + d‖w‖22

)]
≤ 1/5 , (19)

for some universal constant c′.

The proof of Proposition 1 (see Appendix C.1) involves proving that the depth of any point sufficiently
far from the true mean is going to be lower than the depth of the true mean in a uniform convergence
sense. Due to the weighted nature of the depth definition, we modify results from empirical process
theory to adapt to the weights and get tight upper bound.

Let N(t) = |{i : λi ≤ t}| and denote the weights w(t) such that w(t)i = I{λi≤t}
N(t) , i.e., we consider

the Tukey median estimator obtained by only considering samples with corruption less than t. Define

µ̂S(Z, t) = µ̂TM(Z, w(t)). (20)

By Proposition 1, the following holds for some universal constant c′

sup
P∈DNd

PrZ∼λP

[
‖µ̂S(Z, t)− µP ‖22 ≥ c′

(
t2 +

d

N(t)

)]
≤ 1/5, (21)

∀ t such that t2 + d
N(t) ≤ c for universal constants c.

3.1 Lower Bound and Minimax Rate

Univariate Case We begin our exposition by considering our result for d = 1, i.e., univariate
Gaussian distributions. We use Le Cam’s method to obtain the lower bound [28]; Le Cam’s method
lower bounds the estimation problem by a hypothesis testing problem where the optimal test is
entirely determined by the distribution of data from the different hypotheses. The two hypotheses we
consider are N (δ, 1) and N (−δ, 1) for δ to be chosen later. The adversary tries to ensure that the
resulting corrupted distribution under either hypotheses is the same, rendering those sample useless
for hypothesis testing.

If the corruption rate is greater than 1
2 for a sample, then the adversary can trivially ‘simulate’

the distribution 1
2 (N (δ, 1) +N (−δ, 1)). Alternately, when δ is small, adversary can simulate

the distribution max{N (δ, 1),N (−δ, 1)}/Z(δ) instead, where Z(δ) is an appropriate normalizing
constant. The adversary can simulate this distribution when the corruption rate is greater than 1−e−δ .
Thus, only the samples in the set {i : λi < min{ 1

2 , 1− e
−δ}} are relevant for hypothesis testing, and

it remains to choose a value of δ judiciously.

Based on our generic multivariate bounds of Theorem 4 later, we have the following Corollary 1 for
the univariate case.

Corollary 1 (Minimax Rate for Univariate Gaussian Distributions). Suppose
mint∈[0,1]

(
t2 + 1

N(t)

)
≤ c for some universal constants c, then

LPAC(λ,DN1 ) ' min
t∈[0,1]

(
1

N(t)
+ t2

)
. (22)

Moreover, the estimator µ̂S(Z, w(t∗)), with t∗ = arg mint∈[0,1]

(
t2 + 1

N(t)

)
, achieves this error.

Thus the proposed weighted Tukey median scheme is optimal in the univariate case – demonstrating
that beyond a certain corruption threshold determined by N(·), there is no way to leverage the more
contaminated samples up to universal constants.
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Multivariate Case In the multivariate setting, our upper and lower bounds (see Appendix C.2)
are off by a multiplicative factor of

√
d. This gap can possibly be attributed by our rather relaxed

handling of the heterogeneity since the proof technique we consider can recover the minimax rate of
d
n + ε2 in the homogeneous setting where λi = ε ∀i (see Appendix F).

Theorem 4. Suppose mint∈[0,1]

(
t2 + d

N(t)

)
≤ c for some universal constants c, then

1√
d

min
t∈[0,1]

(
d

N(t)
+ t2

)
. LPAC(λ,DN1 ) . min

t∈[0,1]

(
d

N(t)
+ t2

)
. (23)

Moreover, the estimator µ̂S(Z, w(t∗)), with t∗ = arg mint∈[0,1]

(
t2 + d

N(t)

)
, achieves the upper

bound.

The proof of Theorem 4 can be found in Appendix C.3. As Theorem 4 suggests, it might be possible
to leverage the heterogeneity beyond just discarding samples with a higher threshold and this might
reduce the squared-error by a factor of

√
d. However, as stated before, this gap might be an artifact of

the analysis rather than a true phenomenon. We leave this as an open question.

4 Linear Regression

We now consider the problem of linear regression under Gaussian covariates. The proofs for this
section can be found in Appendix D.

Background: Under no corruptions, the minimax rate is known to be σ2d
n , i.e., independent of Σ as

long as Σ is non-singular – the lack of information in directions with low eigenvalues of Σ if offset
by the ‖ · ‖Σ distance. In the homogeneous robust regression setting with ε corruption, the minimax
rate is of the order σ

2d
n + σ2ε2 [31].

For the upper bound, we consider a weighted version of Tukey median adapted to regression [31, 42].
Define the weighted regression depth of a point η ∈ Rd for a dataset Z with Zi = (Ŵi, Ŷi) and
w ∈ ∆n as

Dw(η,Z) = min
v∈Sd

n∑
i=1

wiI{(Ŷi − ηT Ŵi)(v
T Ŵi) ≥ 0}. (24)

The regression depth of a point η ∈ Rd is high if for all half-spaces, the sign of the residual errors
using η are distributed equally in every direction. The weighted Tukey regression coefficient is
defined as

β̂TC(Z, w) := arg max
η∈Rd

Dw(η,Z). (25)

Proposition 2 (Upper Bound for Regression). For all w ∈ ∆n satisfying (wTλ)2 + d‖w‖22 ≤ c for
some universal constants c,

sup
P∈D(Σ,σ2)

PrZ∼λP

[
‖β̂TC(Z, w)− βP ‖2Σ ≥ c′

(
(wTλ)2 + d‖w‖22

)]
≤ 1/5 , (26)

for some universal constant c′.

Like (20), we can similarly consider a thresholding method – define β̂S(Z, t) = β̂TM(Z, w(t)). The
lower bound construction is similar in spirit to Theorem 4. Based on our upper and lower bounds, we
present Theorem 5.

Theorem 5 (Minimax Rate for Linear Regression). Suppose mint∈[0,1]

(
t2 + d

N(t)

)
≤ c for some

universal constants c, then
σ2

√
d

min
t∈[0,1]

(
d

N(t)
+ t2

)
. Lreg(λ,D(Σ, σ2)) . σ2 min

t∈[0,1]

(
d

N(t)
+ t2

)
. (27)

Moreover, the estimator β̂S(Z, w(t∗)), with t∗ = arg mint∈[0,1]

(
t2 + d

N(t)

)
, achieves the upper

bound.

Note that when λi = ε ∀i, we can recover the homogeneous minimax rate of σ
2d
n + σ2ε2 using the

more refined lower bound in Appendix F.
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5 Discussion and Future Work

There exists several avenues of future work. Perhaps most pressing issue would be to address the
√
d

gap in our upper and lower bounds for multivariate Gaussian mean estimation and linear regression.
In this regard, it seems that neither our upper nor or lower bound in Theorem 4 can be tight for all
choices of λ. Indeed, the lower bound in Equation (23) is not tight for homogeneous corruption
(although this can be avoided with our more sophisticated lower bound technique, see Appendix F),
and on the other hand, the upper bound fails to be tight in the aforementioned regime of semi-verified
learning, where the upper bound would suggest that the error in the estimator should diverge as
d→∞, whereas existing upper bounds due to [7, 9] already demonstrate that dimension independent
rates are possible. This suggests that fundamentally new measures of robustness are needed to fully
characterize the complexity of learning under heterogeneous errors in the high-dimensional setting.
The heterogeneous robust estimation problem can also be studied under different corruption models
such as total-variation distance or Kullback-Leibler divergence corruption.
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(a) Bounded Mean Estimation (b) Univariate Gaussian Mean Estimation

Figure 2: Mean estimation algorithms for (a) bounded distributions and (b) univariate Gaussian
distributions. The x-axis is a proxy for degree of contamination of the model.

A Experiments

We investigate the practical performance of our algorithms and compare it with baseline in Figure 2.
For bounded mean estimation, we use the sample mean as the baseline since it is the minimax robust
estimator in the homogeneous setting. For univariate Gaussian mean estimation, we use the sample
median, equivalent to Tukey median in one dimension, as the baseline for the same reason.

We set n = 104 and for a fixed value q, we sample the corruption rates λ i.i.d. from the distribution
with cdf given by F (t) = 1 − (1 − t)q. As q increases we can expect a higher corruption rate.
Fixing this sampled λ, we sample the dataset 104 times. For bounded distribution, we plot the mean
squared-error and the corresponding standard deviations over the trials at each value of q considered.
For the Gaussian distribution, we plot the empirical 4

5 -th quantile of the squared-error along with
15
20 -th and 17

20 -th quantiles over the trials. For the bounded distribution, we choose r = 1 and choose
the true underlying distribution to be the point mass at 0, and the corrupted values to be 1. For
univariate Gaussian distribution, we fix the true distribution to be N (0, 1) and the corrupted values
sampled i.i.d. from N (100, 1).

Optimal linear method in the plots refer to the reweighing scheme proposed while threshold method
refers to the special case of reweighing that discards samples above a certain corruption threshold
and performs standard homogeneous robust estimation on the sub-sampled dataset.

While unclear for the Gaussian distribution, the reweighing does seem to provide marginal improve-
ment over thresholding method. Further investigation is required to establish whether reweighing
may pose significant advantages in high dimensions.

B Bounded Mean Estimation: Proofs

B.1 Variance Upper Bound

Using E‖X + Y ‖22 ≤ 2E‖X‖22 + 2E‖Y ‖22, we get

E

∥∥∥∥∥
n∑
i=1

wi(Zi − E[Zi])

∥∥∥∥∥
2

2

 = E

∥∥∥∥∥
n∑
i=1

wi((1−Bi)Xi − (1− λi)µP ) +

n∑
i=1

wi(BiX̃i − λiµQi)

∥∥∥∥∥
2

2


(28)

≤ 2E

∥∥∥∥∥
n∑
i=1

wi((1−Bi)Xi − (1− λi)µP

∥∥∥∥∥
2

2

+ 2E

∥∥∥∥∥
n∑
i=1

wi(BiX̃i − λiµQi)

∥∥∥∥∥
2

2


(29)
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Since {(1−Bi)Xi − (1− λi)µP } are independent random variables and ‖(1−Bi)Xi‖2 ≤ r, we
can use the crude variance bound E‖(1−Bi)Xi − (1− λi)µP ‖22 ≤ r2 to obtain

E

∥∥∥∥∥
n∑
i=1

wi((1−Bi)(Xi − µP )− (1− λi)µP )

∥∥∥∥∥
2

2

 ≤ r2‖w‖22. (30)

Inspecting the other term, we use the law of total variance by conditioning onB. In particular,

E

∥∥∥∥∥
n∑
i=1

wi(BiX̃i − λiµQi)

∥∥∥∥∥
2

2

 = E

∥∥∥∥∥
n∑
i=1

wi(Bi(X̃i − µQi) + µQi(Bi − λi))

∥∥∥∥∥
2

2

 (31)

≤ 2E

∥∥∥∥∥
n∑
i=1

wiBi(X̃i − µQi)

∥∥∥∥∥
2

2

+ 2E

∥∥∥∥∥∑
i

wiµQi(Bi − λi))

∥∥∥∥∥
2

2

.
(32)

For the first term in (32), use Jensen’s inequality as

E

∥∥∥∥∥
n∑
i=1

wiBi(X̃i − µQi)

∥∥∥∥∥
2

2

 = E

E
∥∥∥∥∥

n∑
i=1

wiBi(X̃i − µQi)

∥∥∥∥∥
2

2

∣∣∣∣B
 (33)

≤ 4r2E

( n∑
i=1

wiBi

)2
 (34)

= 4r2
∑
i

w2
i λi(1− λi) + 4r2(wTλ)2 (35)

≤ r2‖w‖22 + 4r2(wTλ)2. (36)

For the second term in (32), using the fact that ‖µQi‖2 ≤ r, using Jensen’s inequality we get

E

∥∥∥∥∥∑
i

wiµQi(Bi − λi))

∥∥∥∥∥
2

2

 ≤ r2E

(∑
i

wi(Bi − λi))

)2
 ≤ r2

4
‖w‖22. (37)

Combining the above, obtain

E

∥∥∥∥∥
n∑
i=1

wi(Zi − E[Zi])

∥∥∥∥∥
2

2

 ≤ 7r2‖w‖22 + 16r2(wTλ)2 (38)

B.2 Upper Bound Solution

To solve
min
w∈∆n

‖w‖2 + c(wTλ)2, (39)

consider the Lagrangian L(w, β, γ) = ‖w‖22 + c(wTλ)2 + 2β(1 −
∑
i wi) −

∑
i 2γiwi. KKT

condition on the Lagrangian leads to

wi = β − c(wTλ)λi + γi ∀i, (40)

where γiwi = 0, γi ≥ 0 ∀i. Thus, we can equivalently write

wi = (β − c(wTλ)λi)+. (41)

Notice that wi are decreasing in λi thus, order the indices such that λ1 ≤ λ2 . . . ≤ λn. Note that
since this is a strictly convex objective with a convex compact constraint set we are guaranteed a
unique solution w.
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Let m such that wi > 0 ∀i ≤ m and wi = 0 ∀i > m; if no such m exists then it is understood
m = n. Since

∑
wi = 1, use (41) to obtain the condition

mβ − c(wTλ)‖λm1 ‖1 = 1. (42)

Noting that wTλ =
∑m
i=1 wiλi, we can use (41) to obtain

wTλ = β‖λm1 ‖1 − cwTλ‖λm1 ‖22. (43)

Solving for wTλ and substituting in (42), obtain β =
1+c‖λm1 ‖

2
2

k(1+c‖λm1 ‖22)−c‖λm1 ‖21
, and

wi =
1 + c‖λm1 ‖22

m(1 + c‖λm1 ‖22)− c‖λm1 ‖21

(
1− cλi

‖λm1 ‖1
1 + c‖λm1 ‖22

)
+

∀i ∈ [n]. (44)

Thus, the problem of solving for the weights has been reduced to identifying the index k after which
the weights are zero. This is precisely what Algorithm 1 does. In particular, m + 1 = min{j :

wj = 0} by definition and wm+1 = 0 ⇔ λm+1 ≥ 1+c‖λm1 ‖
2
2

c‖λm1 ‖1
by (44). Therefore, if the loop in

Algorithm 1 runs without termination till index k = m, then it will correctly terminate at k = m

since λm+1 ≥ 1+c‖λm1 ‖
2
2

c‖λm1 ‖1
.

Thus, we need to show that the algorithm does not terminate before k = m to prove correctness.
Assume the contrary that it terminates at k = p < m, i.e., λp+1 ≥ 1+c‖λp1‖

2
2

c‖λp1‖1
. Observe that

λp+1 ≥
1 + c‖λp1‖22
c‖λp1‖1

⇔ λp+1 ≥
1 + c‖λp+1

1 ‖22
c‖λp+1

1 ‖1
(45)

=⇒ λp+2 ≥
1 + c‖λp+1

1 ‖22
c‖λp+1

1 ‖1
, (46)

where (46) follows since λ(s) are indexed in non-decreasing order. Extending this argument, we get
λm ≥ 1+c‖λm1 ‖

2
2

c‖λm1 ‖1
. Note since wm > 0, we have

λm <
1 + c‖λm1 ‖22
c‖λm1 ‖1

(47)

by (44) – a contradiction. This proves that the proposed algorithm solves for w correctly.

B.3 Lower Bound

By Le Cam’s method,

L(λ, r) ≥ r2δ2

(
1− TV

(
⊗ni=1Ber

(
1

2
− εi

)
,⊗ni=1Ber

(
1

2
+ εi

)))
, (48)

= r2δ2

1−

√√√√1

2

n∑
i=1

KL

(
Ber

(
1

2
− εi

)
,Ber

(
1

2
+ εi

)) (49)

= r2δ2

1−

√√√√6

n∑
i=1

ε2i

 , (50)

where we used 2ε log 1+2ε
1−2ε ≤ 12ε2 ∀ε ∈ [0, 1

4 ]. Let n(t) = |{i : λi < t}|, then we obtain

L(λ, r) ≥ r2δ2

(
1−

√
6δ2n

(
2δ

1 + 2δ

))
(51)

≥ r2δ2
(

1−
√

6δ2n(2δ)
)
∀δ ∈

[
0,

1

4

]
(52)
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C Mean Estimation for Gaussian Distributions: Proofs

C.1 Upper Bound

Recall

Dw(η,Z) = min
v∈Sd

n∑
i=1

wiI{vT (Zi − η) ≥ 0}, (53)

µ̂TM(Z, w) := arg max
η∈Rd

Dw(η,Z). (54)

Let G = {i : Bi = 0} and B = [n] \G. Note that Zi = Xi for i ∈ G. The depth of the true mean is
lower bounded as

Dw(µ,Z) ≥ min
v∈Sd

∑
i∈G

wiI{(Xi − µ)T v ≥ 0}. (55)

Define the class of indicator functions Fµ = {fv(x) = I{(x − µ)T v ≥ 0}|v ∈ Sd}. Note that
E[f(X)] = 1

2 ∀f ∈ Fµ. With some abuse of notation, let w(G) = {wi|i ∈ G}. By Proposition 4,
we have with probability at least 1− δ

4

min
f∈Fµ

∑
i∈G

wi

(
f(Xi)−

1

2

)
≥ −62‖w(G)‖2

√
VC(Fµ)− ‖w(G)‖2

√
log 4/δ

2
(56)

≥ −‖w‖2

(
62
√
d+

√
log 4/δ

2

)
, (57)

where we used VC(Fµ) = d; readers may refer to [43, Corollary 4.2.2] for VC dimension of
homogeneous half-space classifiers. Further, with probability at least 1 − δ/4, by McDiarmid’s
inequality [28] ∑

i∈G
wi =

n∑
i=1

wiI{Bi = 0} (58)

≥
n∑
i=1

wi(1− λi)− ‖w‖2

√
log 4/δ

2
(59)

= 1− wTλ− ‖w‖2

√
log 4/δ

2
. (60)

Thus, with probability at least 1− δ/2,

Dw(µ,Z) ≥ 1

2
− wTλ

2
− ‖w‖2

(
62
√
d+

√
9 log 4/δ

8

)
. (61)

Next, we show that depth of any point far away from the true mean is low. For any η ∈ Rd such that
‖η − µ‖2 ≥ r = Φ−1( 1

2 + α), let vη = η−µ
‖η−µ‖2 . We shall set the value of α > 0 later.

sup
η:‖η−µ‖2≥r

Dw(η,Z) ≤
∑
i∈B

wi + sup
η:‖η−µ‖2≥r

n∑
i=1

wiI{(Xi − η)T vη ≥ 0}. (62)

Define the class of indicator functions Gµ = {fη(x) = I{(x− η)T vη ≥ 0}|‖η − µ‖2 ≥ r}. Since
E[I{(X − η)T vη ≥ 0}] = Φ(−‖η − µ‖2), we have E[f(X)] ≤ 1

2 − α ∀f ∈ Gµ.

Now, note that Gµ ⊆ {fη(x) = I{(x − η)T vη ≥ 0}|η ∈ Rd}. By reparameterzing x, we have
VC({fη(x) = I{(x − η)T vη ≥ 0}|η ∈ Rd}) = VC({fη(x) = I{(x − η)T η ≥ 0}|η ∈ Rd}).
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Observe that VC({fη(x) = I{(x − η)T η ≥ 0}|η ∈ Rd}) ≤ VC({fη,v(x) = I{(x − η)T v ≥
0}|η, v ∈ Rd}) = d+ 1. Thus, VC(Gµ) ≤ d+ 1 ≤ 2d.

Thus, by Proposition 4, with probability at least 1− δ/4,

sup
η:‖η−µ‖2≥r

Dw(η,Z) ≤
∑
i∈B

wi + sup
g∈Gµ

n∑
i=1

wig(Xi) (63)

≤
∑
i∈B

wi +
1

2
− α+ ‖w‖2

(
62
√

2d+

√
log 4/δ

2

)
. (64)

Again, by McDiarmid’s inequality, with probability at least 1− δ/4,∑
i∈B

wi ≤ wTλ+ ‖w‖2

√
log 4/δ

2
. (65)

Thus, with probability at least 1− δ/2, we have

sup
η:‖η−µ‖2≥r

Dw(η,Z) ≤ 1

2
− α+ wTλ+ ‖w‖2

(
88
√
d+ 2

√
log 4/δ

2

)
. (66)

Combining (61) and (66), picking α = 3
2w

Tλ + ‖w‖2
(

150
√
d+ 3.5

√
log 4/δ

2

)
ensures that no

point η such that ‖µ − η‖2 ≥ Φ−1( 1
2 + α) can be returned by the Tukey median estimator. Thus,

with probability at least 1− δ, we have

‖µ̂TM − µ‖2 ≤ Φ−1

(
1

2
+ α

)
(67)

≤ 3α, (68)

using the identity Φ−1
(

1
2 + x

)
≤ 3x ∀x ∈ [0, 1

3 ]. The above upper bound is valid as long as

α = 3
2w

Tλ+ ‖w‖2
(

150
√
d+ 3.5

√
log 4/δ

2

)
< 1

3 .

Setting δ = 1/5, ensuring 3
2w

Tλ+ ‖w‖2
(

150
√
d+ 4.3

)
< 3

2w
Tλ+ 155‖w‖2

√
d ≤ 1

3 suffices.

Thus, summarizing, let g(w, λ) = 3
2w

Tλ + 155‖w‖2
√
d. For w and λ such that g(w, λ) ≤ 1

3 , we
have the guarantee that with probability at least 4

5 ,

‖µ̂TM − µ‖2 ≤ 3g(w, λ). (69)

To reduce the above condition to the simpler form stated in the main paper, note that

g(w, λ)2 ≤
(

3

2
wTλ+ 155‖w‖2

√
d

)2

(70)

≤
(

155wTλ+ 155‖w‖2
√
d
)2

(71)

≤ 2× 1552
(
(wTλ)2 + d‖w‖22

)
. (72)

Ensuring the above is less than 1
9 suffices. Thus, ∀w ∈ ∆n such that (wTλ)2 + d‖w‖22 ≤ 1

432450 , we
have

sup
P∈DNd

PrZ∼λP

[
‖µ̂TM(Z, w)− µP ‖22 ≥ 432450

(
(wTλ)2 + d‖w‖22

)]
≤ 1/5 (73)

Correspondingly, the threshold based estimator satisfies the following – ∀t ∈ [0, 1] such that t2 +
d

N(t) ≤
1

432450 , we have

sup
P∈DNd

PrZ∼λP

[
‖µ̂S(Z, w(t))− µP ‖22 ≥ 432450

(
t2 +

d

N(t)

)]
≤ 1/5 (74)
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C.2 Lower Bound

We provide a lower bound for Gaussian mean estimation in Rd in this section. For a vector v ∈ R
√
d,

let e(v) denote a vector in Rd with v as the first
√
d elements and the last d−

√
d elements equal to

0. Define the parameterized distribution Pδ(τ) = N (δe(τ), I) for δ > 0 to be specified later, and let
Pδ = {Pδ(τ)|τ ∈ {−1, 1}

√
d}.

Note: The supremum in our minimax definition is over both the true distribution and the adversarial
strategy. We shall specify the adversarial strategy later for our lower bound argument.

Note that LPAC(λ,DNd ) ≥ LPAC(λ,Pδ) ∀δ and thus, we shall lower bound LPAC(λ,Pδ).

We begin by lower bounding

LE(λ,Pδ) = inf
M

sup
P∈Pδ

EZ∼λP
[
‖M(Z)− µP ‖22

]
. (75)

For a vector τ , let τ ′j denote the vector such that τi = τ ′ji ∀i 6= j and τj = −τ ′jj . Using Assouad’s
lower bound technique [28],

inf
M

sup
P∈Pδ

EZ∼λP
[
‖M(Z)− µP ‖22

]
≥ inf

M

1

2
√
d

∑
τ∈{−1,1}

√
d

E
[
‖M(Z)− δe(τ)‖22

]
(76)

= inf
M

1

2
√
d

∑
τ∈{−1,1}

√
d

d∑
j=1

E
[
|M(Z)j − δe(τ)j |2

]
(77)

= inf
M

d∑
j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

E
[
|M(Z)j − δe(τ)j |2

]
(78)

≥ inf
M

√
d∑

j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

E
[
|M(Z)j − δτj |2

]
. (79)

Now, note that

∑
τ∈{−1,1}

√
d

E
[
|M(Z)j − δτj |2

]
=

∑
τ∈{−1,1}

√
d

E
[
|M(Z)j − δτj |2

]
+ E

[
|M(Z)j − δτ ′jj |2

]
2

∀j

(80)
Thus, we get

LE(λ,Pδ) ≥ inf
M

√
d∑

j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

E
[
|M(Z)j − δτj |2

]
+ E

[
|M(Z)j − δτ ′jj |2

]
2

(81)

≥

√
d∑

j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

inf
M

E
[
|M(Z)j − δτj |2

]
+ E

[
|M(Z)j − δτ ′jj |2

]
2

(82)

≥

√
d∑

j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

δ2(1− TV(PZ∼λPδ(τ), PZ∼λPδ(τ ′j))), (83)

where the last line follows by Le Cam’s method and the notation PZ∼λPδ(τ) refers to the distribution
of Z when the true distribution is Pδ(τ). We shall now specify a particular adversarial strategy to
lower bound the above.

Adversarial strategy motivation: Consider a particular sample with corruption rate λ and let the
underlying true distribution be Pδ(τ). Denote the perturbed sample as Z(τ) and the outlier to be
X̃(τ). Note that Z(τ) ∼ (1− λ)PX(τ) + λPX̃(τ). For any particular clean sample X(τ) ∼ Pδ(τ),
the adversary’s goal is to ensure the sample Z(τ) contains no information about τ . One possible way
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is that the adversary can try to ensure Z(τ) ∼ maxτ′ P (τ ′)
T , where the maximum is taken pointwise

over the pdf and T is a normalizing constant. Observe the identity

P (τ) +

(
max
τ ′ 6=τ

P (τ ′)− P (τ)

)
+

= max
τ ′

P (τ ′), (84)

where (·)+ := max{·, 0} is pointwise over the pdf. First, note that

∫
x∈Rd

(
max
τ ′ 6=τ

Pδ(τ
′)(x)− Pδ(τ)(x)

)
+

dx = T − 1,

where Pδ(τ)(x) is understood to be the pdf of Pδ(τ) at x. Thus,
(maxτ′ 6=τ P (τ ′)−P (τ))

+

T−1 is a valid

pdf, and for λ = T−1
T , we have (1 − λ)P (τ) + λ

(maxτ′ 6=τ P (τ ′)−P (τ))
+

T−1 = maxτ′ P (τ ′)
T . Thus, for

any λ ≥ 1− 1
T , there exists a way for the adversary to make the distribution of Z(τ) ∼ maxτ′ P (τ ′)

T ,
rendering the sample useless for identifying τ .

Now, we find an upper bound on T in terms of δ.

T =

∫
x∈Rd

max
τ∈{−1,1}

√
d

1√
(2π)d

e−
‖x−δe(τ)‖22

2 dx (85)

=

∫
x∈Rd

1√
(2π)d

max
τ∈{−1,1}

√
d

e−
‖x−δe(τ)‖22

2 dx (86)

=

∫
x′∈R

√
d

1√
(2π)

√
d

max
τ∈{−1,1}

√
d

e−
‖x′−δτ‖22

2 dx′ (87)

=

[∫
x′′∈R

1√
(2π)

max
τ∈{−1,1}

e−
‖x′′−δτ‖22

2 dx′′

]√d
(88)

=

[
2

∫
y∈R:y≥0

1√
2π
e−
‖y−δ‖22

2 dy

]√d
(89)

= [2Φ(δ)]
√
d
, (90)

where Φ(·) is the cumulative distribution function of standard normal distribution. Using 2Φ(x) ≤
1 + x and 1 + x ≤ ex, we obtain

T ≤ eδ
√
d. (91)

Thus, if λ ≥ 1 − e−δ
√
d then the adversary can ensure that Z(τ) ∼ maxτ′ P (τ ′)

T and contains no
information about τ .

Adversarial strategy: If for sample i, λi ≥ 1 − e−δ
√
d, then independently sample X̃(τ) ∼

β
(

maxτ′ 6=τ Pδ(τ
′)−Pδ(τ)

T−1

)
+

+ (1 − β)maxτ′ Pδ(τ
′)

T , where β = (T−1)(1−λ)
λ . The constraint λi ≥

1− e−δ
√
d ensures β ∈ [0, 1] and the above is a valid distribution.

Thus, Z(τ) ∼ maxτ′ Pδ(τ
′)

T . If λi < 1− e−δ
√
d, then adversary does no corruption, or equivalently,

independently sample X̃(τ) ∼ Pδ(τ) so that Z(τ) ∼ Pδ(τ).
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Thus, using Pinsker’s inequality in (83), obtain

LE(λ,Pδ) ≥

√
d∑

j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

δ2

(
1−

√
1

2
KL(PZ∼λPδ(τ), PZ∼λPδ(τ ′j))

)
(92)

=

√
d∑

j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

δ2

(
1−

√
1

2
KL
(
⊗ni=1PZi(τ),⊗ni=1PZi(τ ′j)

))
(93)

=

√
d∑

j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

δ2

1−

√√√√1

2

∑
i:λi<1−e−δ

√
d

KL (Pδ(τ), Pδ(τ ′j))

 (94)

=
√
dδ2

(
1−

√
δ2n(1− e−δ

√
d)

)
∀δ (95)

Let δ∗ be such that

n(1− e−δ∗
√
d) ≤ 1

64δ2
∗
, and N(1− e−δ∗

√
d) ≥ 1

64δ2
∗
. (96)

Substituting δ∗ in (95),

7

8

√
dδ2
∗ ≤ inf

M
sup
P∈Pδ∗

EZ∼λP
[
‖M(Z)− µP ‖22

]
. (97)

For a random variableK, letQ(K,α) := inf{t : Pr [K ≥ t] ≤ (1−α)}, i.e.,Q(·, α) is the α-quantile
of the random variable. Note that for a random variable K, EK ≤ Q(K,x)x + (1 − x)ess-supK
∀x ∈ [0, 1], where ess-sup denotes essential supremum. Further, note that in the minimax term
infM supP∈Pδ∗ , we can restrict ourselves to estimators M which output in [−δ∗, δ∗]

√
d × {0}d−

√
d

almost surely – otherwise the error can be reduced by projected to this region. Thus ess-sup‖M(Z)−
µP ‖22 ≤ 4

√
dδ2
∗ for any estimatorM and any distribution P . Thus, combining the above observations,

we have

inf
M

sup
P∈Pδ∗

EZ∼λP ‖M(Z)− µP ‖22 ≤ inf
M

sup
P∈Pδ∗

4

5
Q

(
‖M(Z)− µP ‖22,

4

5

)
+

4
√
dδ2
∗

5
. (98)

Using (97), we get

7

8

√
dδ2
∗ ≤

4

5
inf
M

sup
P∈Pδ∗

Q

(
‖M(Z)− µP ‖22,

4

5

)
+

4
√
dδ2
∗

5
(99)

=
4

5
LPAC(λ,Pδ∗) +

4
√
dδ2
∗

5
(100)

=⇒ 3

40

√
dδ2
∗ ≤ LPAC(λ,Pδ∗) ≤ LPAC(λ,DNd ). (101)

C.3 Minimax Optimality

For proving Theorem 4, we shall use the weighing wi = I{λi≤1−eδ∗
√
d}

N(1−eδ∗
√
d)

in our upper bound. From

(74), ∀t ∈ [0, 1] such that t2 + d
N(t) ≤ c for some universal constant c, we have

‖µ̂S(Z, w(t))− µ‖22 .

(
t2 +

d

N(t)

)
. (102)
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Thus, if mint∈[0,1]

(
t2 + d

N(t)

)
≤ c and let the minimum value be attained at t∗, then we have

‖µ̂S(Z, w(t∗))− µ‖22 .

(
t∗2 +

d

N(t∗)

)
(103)

≤
(

1− e−δ∗
√
d
)2

+
d

N
(

1− e−δ∗
√
d
) (104)

≤ dδ2
∗ + 64dδ2

∗ (105)

' dδ2
∗, (106)

where we used (96) in (105). Combining with (101), when mint∈[0,1]

(
t2 + d

N(t)

)
≤ c, we have

√
dδ2
∗ . LPAC(λ,DNd ) . min

t∈[0,1]

(
t2 +

d

N(t)

)
≤ dδ2

∗. (107)

Thus, when mint∈[0,1]

(
t2 + d

N(t)

)
≤ c,

1√
d

min
t∈[0,1]

(
t2 +

d

N(t)

)
. LPAC(λ,DNd ) . min

t∈[0,1]

(
t2 +

d

N(t)

)
. (108)

D Linear Regression: Proofs

D.1 Upper Bound

Recall

Dw(η,Z) = min
v∈Sd

n∑
i=1

wiI{(Ŷi − ηT Ŵi)(v
T Ŵi) ≥ 0}, (109)

β̂TC(Z, w) := arg max
η∈Rd

Dw(η,Z). (110)

Let the true underlying regression coefficient be β, i.e., W ∼ N (0,Σ) and conditioned on W ,
Y ∼ N (βTW,σ2). Let G = {i : Bi = 0}, B = [n] \ G, and Let w(G) = {wi|i ∈ G}. Note that
Zi = (Wi, Yi) for i ∈ G. The depth of the true coefficient is lower bounded as

Dw(β,Z) ≥ min
v∈Sd

∑
i∈G

wiI{(Yi − βTWi)(v
TWi) ≥ 0}. (111)

Define the class of indicator functions Fβ = {fv(w, y) = I{(y − wTβ)(vTw) ≥ 0}|v ∈ Sd}. Note
that E[f(Z)] = 1

2 ∀f ∈ Fβ . By Proposition 4, we have with probability at least 1− δ
4

min
f∈Fβ

∑
i∈G

wi

(
f(Xi)−

1

2

)
≥ −62‖w(G)‖2

√
VC(Fβ)− ‖w(G)‖2

√
log 4/δ

2
(112)

≥ −‖w‖2

(
62
√
d+

√
log 4/δ

2

)
, (113)

where we used VC(Fβ) = d. To see this, notice I{(y−wTβ)(vTw) ≥ 0} = I{vT (w(y−wTβ)) ≥
0} = I{vT w̃ ≥ 0}, where w̃ = w(y − wTβ) ∈ Rd. Thus, it is equal to the VC dimension of
homogeneous half-space classifiers, which is d [43, Corollary 4.2.2]. Further, with probability at
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least 1− δ/4, by McDiarmid’s inequality [28]∑
i∈G

wi =

n∑
i=1

wiI{Bi = 0} (114)

≥
n∑
i=1

wi(1− λi)− ‖w‖2

√
log 4/δ

2
(115)

= 1− wTλ− ‖w‖2

√
log 4/δ

2
. (116)

Thus, with probability at least 1− δ/2,

Dw(β,Z) ≥ 1

2
− wTλ

2
− ‖w‖2

(
62
√
d+ 1.5

√
log 4/δ

2

)
. (117)

Next, we show that depth of any point far away from the coefficient is low. For any η ∈ Rd such that
‖η − µ‖Σ ≥ r, let vη = η−β

‖η−µ‖2 . We shall set the value of r > 0 later.

sup
η:‖η−µ‖2≥r

Dw(η,Z) ≤
∑
i∈B

wi + sup
η:‖η−µ‖2≥r

n∑
i=1

wiI{(Yi − ηTWi)v
T
ηWi ≥ 0}. (118)

Again, by McDiarmid’s inequality, with probability at least 1− δ/4,∑
i∈B

wi ≤ wTλ+ ‖w‖2

√
log 4/δ

2
. (119)

Define the class of indicator functions Gβ = {fη(w, y) = I{(y− ηTw)(vTη w) ≥ 0}|‖η− µ‖Σ ≥ r}.
Thus, by Proposition 4, with probability at least 1− δ/4,

sup
f∈Gβ

n∑
i=1

wi(f(Zi)− E[f(Zi)]) ≤ 62‖w‖2
√
VC(Gβ) + ‖w‖2

√
log 4/δ

2
(120)

Now, note that

E[f(Z)] = Pr
[
(Y − ηTW )WT (η − β) ≥ 0

]
(121)

Using W ∼ N (0,Σ) and Y |W ∼ N (βTW,σ2), we get that

(Y − ηTW )WT (η − β) ∼M(ζ −M) (122)

where M = WT (η−β) ∼ N (0, ‖η−β‖2Σ) and ζ ∼ N (0, σ2) are independent. Letting T1, T2 ∼iid
N (0, 1),

Pr
[
(Y − ηTW )WT (η − β) ≥ 0

]
= Pr [M(ζ −M) ≥ 0] (123)

= Pr [ζ ≥M |M ≥ 0] (124)
= Pr [σT2 ≥ ‖η − β‖ΣT1|T1 ≥ 0] (125)

= 1− Pr
[
T2 ≤

‖η − β‖Σ
σ

T1|T1 ≥ 0

]
(126)

= 1−
(

1

2
+

1

π
arctan

‖η − β‖Σ
σ

)
(127)

=
1

2
− 1

π
arctan

‖η − β‖Σ
σ

(128)

Thus,

E[f(Z)] ≤ 1

2
− 1

π
arctan

r

σ
∀f ∈ Gβ . (129)
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Thus, with probability at least 1− δ/2, and using VC dimension bound presented in Proposition 3,

sup
η:‖η−µ‖Σ≥r

Dw(η,Z) ≤ 1

2
− 1

π
arctan

r

σ
+ wTλ+ ‖w‖2

(
2

√
log 4/δ

2
+ 879

√
d

)
. (130)

Combining with (117), setting

r = σ tan

{
π

[
3

2
wTλ+ ‖w‖2

(
3.5

√
log 4/δ

2
+ 941

√
d

)]}
(131)

ensures that the estimator β̂TC satisfies

‖β̂TC − β‖Σ ≤ r (132)

with probability at least 1− δ as long as
[

3
2w

Tλ+ ‖w‖2
(

3.5
√

log 4/δ
2 + 941

√
d

)]
≤ 2

5 .

Substitute δ = 1
5 and let g(w, λ) = 3

2w
Tλ+ 946‖w‖2

√
d. Then, for w such that g(w, λ) ≤ 2

5 , we
have with probability at least 4

5 ,

‖β̂TC − β‖Σ ≤ σ tanπg(w, λ) ≤ 8σg(w, λ), (133)

where we used the identity tanπx ≤ 8x ∀x ∈ [0, 2/5].

To reduce the above condition to the simpler form stated in the main paper, note that(
3

2
wTλ+ 946‖w‖2

√
d

)2

≤
(

946wTλ+ 946‖w‖2
√
d
)2

(134)

≤ 2× 9462
(
(wTλ)2 + d‖w‖22

)
. (135)

Ensuring the above is less than 4
25 suffices.

Thus, ∀w ∈ ∆n such that (wTλ)2 + d‖w‖22 ≤ 1
11186450 , we have

sup
P∈DNd

PrZ∼λP

[
‖β̂TC(Z, w)− µP ‖2Σ ≥ 114549248σ2

(
(wTλ)2 + d‖w‖22

)]
≤ 1/5 (136)

Correspondingly, the threshold based estimator satisfies the following – ∀t ∈ [0, 1] such that t2 +
d

N(t) ≤
1

11186450 , we have

sup
P∈DNd

PrZ∼λP

[
‖µ̂S(Z, w(t))− µP ‖2Σ ≥ 114549248σ2

(
t2 +

d

N(t)

)]
≤ 1/5 (137)

Proposition 3. VC(Gβ) ≤ 200d.

Proof. Recall Gβ = {fη(w, y) = I{(y − ηTw)(vTη w) ≥ 0}|‖η − µ‖Σ ≥ r}, where vη = η−β
‖η−β‖2 .

Let G+
β = {fη(w, y) = I{(y− ηTw)(vTη w) ≥ 0}|η ∈ Rd, η 6= µ}. Note that for the purposes of VC

dimension calculation, by re-parameterizing y and η, we can write

G+
β = {gη(w, y) = I{(y − ηTw)(ηTw) ≥ 0}|η ∈ Rd, η 6= 0}. (138)

We now switch to region notation instead of a functional notation. Let Gη = {(w, y)|gη(w, y) = 1}
and define the following

• H1+
η = {(w, y)|y − ηTw ≥ 0},

• H1−
η = {(w, y)|y − ηTw ≤ 0},

• H2+
η = {(w, y)|ηTw ≥ 0},
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• H2−
η = {(w, y)|ηTw ≤ 0}.

Note that Gη =
(
H1+
η ∩H2+

η

)
∪
(
H1−
η ∩H2−

η

)
. Define G = {Gη|η ∈ Rd, η 6= 0}, H+ =

{H1+
η ∩H2+

η |η ∈ Rd, η 6= 0} andH− = {H1−
η ∩H2−

η |η ∈ Rd, η 6= 0}.
We use the following property related to VC dimension [43]:

VC({A ∩B|A ∈ A, B ∈ B}) ≤ 10 max{VC(A),VC(B)}. (139)

The above holds for union as well.

Noting that G ⊆ {G = H1∪H2|H1 ∈ H+, H2 ∈ H−}. Define T = max{VC(H+),VC(H−)} then
VC(G+

β ) = VC(G) ≤ 10T . Similarly, by writing H+ ⊆ {H1+
η ∩H2+

η′ |η, η′ ∈ Rd, η, η′ 6= 0}, we
have VC(H+) ≤ 10 max{VC({H1+

η }}),VC({H2+
η })} = 10(d+ 1), where we used VC({H1+

η }) =

d+ 1 and VC({H2+
η }) = d. Similarly, VC(H−) ≤ 10(d+ 1).

Thus, VC(Gβ) ≤ 100(d+ 1) ≤ 200d.

D.2 Lower Bound

The lower bound argument we present is similar to Appendix C.2.

We begin by noting that when true regression coefficient is β then (W,Y ) ∼

N
(

0,

[
Σ Σβ
βTΣ βTΣβ + σ2

])
.

For a vector v ∈ R
√
d, let e(v) denote a vector in Rd with v as the first

√
d elements and the last d−

√
d

elements equal to 0. Let β(τ) = δΣ−
1
2 e(τ) for δ > 0 to be specified later. For τ ∈ {−1, 1}

√
d,

define the Y |W ∼ N (WTβ(τ), σ2). In other words, for τ ∈ {−1, 1}
√
d, (W,Y ) ∼ Pδ(τ) where

Pδ(τ) = N
(

0,

[
Σ Σβ(τ)

β(τ)TΣ β(τ)TΣβ(τ) + σ2

])

and let Pδ = {Pδ(τ)|τ ∈ {−1, 1}
√
d}.

We have Lreg(λ,D(Σ, σ2)) ≥ Lreg(λ,Pδ) ∀δ and thus, we shall lower bound Lreg(λ,Pδ).

We begin by lower bounding

LE(λ,Pδ) = inf
M

sup
P∈Pδ

EZ∼λP
[
‖M(Z)− βP ‖2Σ

]
. (140)

For a vector τ , let τ ′j denote the vector such that τi = τ ′ji ∀i 6= j and τj = −τ ′jj . For an estimation
M(Z), define N(Z) = Σ−

1
2M(Z) – note that this is a bijective map. Using Assouad’s lower bound
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technique [28],

inf
M

sup
P∈Pδ

EZ∼λP
[
‖M(Z)− βP ‖2Σ

]
≥ inf

M

1

2
√
d

∑
τ∈{−1,1}

√
d

E
[
‖M(Z)− β(τ)‖2Σ

]
(141)

= inf
M

1

2
√
d

∑
τ∈{−1,1}

√
d

E
[
‖N(Z)− δe(τ)‖22

]
(142)

= inf
N

1

2
√
d

∑
τ∈{−1,1}

√
d

E
[
‖N(Z)− δe(τ)‖22

]
(143)

= inf
N

1

2
√
d

∑
τ∈{−1,1}

√
d

d∑
j=1

E
[
|N(Z)j − δe(τ)j |2

]
(144)

= inf
N

d∑
j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

E
[
|N(Z)j − δe(τ)j |2

]
(145)

≥ inf
N

√
d∑

j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

E
[
|N(Z)j − δτj |2

]
. (146)

Now, note that

∑
τ∈{−1,1}

√
d

E
[
|N(Z)j − δτj |2

]
=

∑
τ∈{−1,1}

√
d

E
[
|N(Z)j − δτj |2

]
+ E

[
|N(Z)j − δτ ′jj |2

]
2

∀j

(147)
Thus, we get

LE(λ,Pδ) ≥ inf
N

√
d∑

j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

E
[
|N(Z)j − δτj |2

]
+ E

[
|N(Z)j − δτ ′jj |2

]
2

(148)

≥

√
d∑

j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

inf
N

E
[
|N(Z)j − δτj |2

]
+ E

[
|N(Z)j − δτ ′jj |2

]
2

(149)

≥

√
d∑

j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

δ2(1− TV(PZ∼λPδ(τ), PZ∼λPδ(τ ′j))), (150)

where the last line follows by Le Cam’s method and the notation PZ∼λPδ(τ) refers to the distribution
of Z when the true distribution is Pδ(τ). We shall now specify a particular adversarial strategy to
lower bound the above.

Adversarial strategy motivation: Readers can refer to the motivation in Appendix C.2 for more
details on the main idea behind the strategy described. We need to find an upper bound on the
normalizing constant T for the pdf maxτ Pδ(τ)

T . Let

S(τ) =

[
Σ Σβ(τ)

β(τ)TΣ β(τ)TΣβ(τ) + σ2

]
Thus,

T =

∫
w∈Rd,y∈R

max
τ∈{−1,1}

√
d

1√
(2π)d+1|S(τ)|

e−
‖(w,y)‖2

S(τ)−1

2 dwdy (151)

By Schur’s formula, |S(τ)| = |Σ|σ2 and by block inversion formula,

S(τ)−1 =

[
Σ−1 + β(τ)β(τ)T

σ2 −β(τ)
σ2

−β(τ)T

σ2
1
σ2

]
.

33



Performing change of variable (w, y) = G(x, y) where G =

[
Σ

1
2 0

0 1

]
, we obtain

T =

∫
x∈Rd,y∈R

max
τ∈{−1,1}

√
d

1√
(2π)d+1|Σ|σ2

e−
(x,y)TGT S(τ)−1G(x,y)

2

∣∣∣∣Σ 1
2 0

0 1

∣∣∣∣ dxdy (152)

Noting that

GTS(τ)−1G =

[
1 + δ2

σ2 e(τ)e(τ)T − δ
σ2 e(τ)

− δ
σ2 e(τ)T 1

σ2

]
,

we get

T =

∫
x∈Rd,y∈R

max
τ∈{−1,1}

√
d

1√
(2π)d+1σ2

e−
‖x‖22

2 − (δe(τ)T x−y)2

2σ2 dxdy (153)

=

∫
x∈Rd

1√
(2π)d

e−‖x‖
2
2/2

∫
y∈R

1√
2πσ2

max
τ∈{−1,1}

√
d

e−
(δe(τ)T x−y)2

2σ2 dydx (154)

=

∫
x∈R

√
d

1√
(2π)

√
d

e−‖x‖
2
2/2

∫
y∈R

1√
2πσ2

max
τ∈{−1,1}

√
d

e−
(δτT x−y)2

2σ2 dydx (155)

Let X ∼ N (0, I) be a random variable in R
√
d. We can write

T = EX

[∫
y∈R

1√
2πσ2

max
τ∈{−1,1}

√
d

e−
(δτTX−y)2

2σ2 dy

]
(156)

Note that maxτ∈{−1,1}
√
d δτTX = δ‖X‖1. Thus,

max
τ∈{−1,1}

√
d

e−
(δτTX−y)2

2σ2


= e−(y−δ‖X‖1)2/2σ2

y ≥ δ‖X‖1,
= e−(y+δ‖X‖1)2/2σ2

y ≤ −δ‖X‖1,
≤ 1 else.

Using the above upper bound, we obtain

T ≤ EX
[
1 +

2δ‖X‖1√
2πσ2

]
(157)

= 1 +
2δE[‖X‖1]√

2πσ2
(158)

= 1 +
2δ
√
d

πσ
(159)

≤ e
2δ
√
d

πσ . (160)

Thus, if λ ≥ 1 − e− 2δ
√
d

πσ then the adversary can ensure that Z(τ) ∼ maxτ′ P (τ ′)
T and contains no

information about τ .

Adversarial strategy: If for sample i, λi ≥ 1 − e− 2δ
√
d

πσ , then independently sample X̃(τ) ∼
β
(

maxτ′ 6=τ Pδ(τ
′)−Pδ(τ)

T−1

)
+

+ (1 − β)maxτ′ Pδ(τ
′)

T , where β = (T−1)(1−λ)
λ . The constraint λi ≥

1− e− 2δ
√
d

πσ ensures β ∈ [0, 1] and the above is a valid distribution.

Thus, Z(τ) ∼ maxτ′ Pδ(τ
′)

T . If λi < 1− e− 2δ
√
d

πσ , then adversary does no corruption, or equivalently,
independently sample X̃(τ) ∼ Pδ(τ) so that Z(τ) ∼ Pδ(τ).
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Thus, using Pinsker’s inequality in (150), obtain

LE(λ,Pδ) ≥

√
d∑

j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

δ2

(
1−

√
1

2
KL(PZ∼λPδ(τ), PZ∼λPδ(τ ′j))

)
(161)

=

√
d∑

j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

δ2

(
1−

√
1

2
KL
(
⊗ni=1PZi(τ),⊗ni=1PZi(τ ′j)

))
(162)

=

√
d∑

j=1

1

2
√
d

∑
τ∈{−1,1}

√
d

δ2

1−
√√√√1

2

∑
i:λi<1−e−

2δ
√
d

πσ

KL (Pδ(τ), Pδ(τ ′j))

 (163)

=
√
dδ2

(
1−

√
δ2

σ2
n(1− e− 2δ

√
d

πσ )

)
∀δ (164)

where (164) follows since

KL
(
Pδ(τ), Pδ(τ

′j)
)

= EW∼N (0,Σ)KL
(
N (WTβ(τ), σ2),N (WTβ(τ ′j), σ2)

)
(165)

= EW
δ2(τ − τ ′j)TΣ−

1
2WWTΣ−

1
2 (τ − τ ′j)

2σ2
(166)

=
δ2‖τ − τ ′j‖22

2σ2
(167)

=
2δ2

σ2
. (168)

Replacing δ ← δ/σ in (164), we get

LE(λ,Pσδ) ≥ σ2
√
dδ2

(
1−

√
δ2n(1− e− 2δ

√
d

π )

)
∀δ, (169)

Let δ∗ be such that

n(1− e−
2δ∗
√
d

π ) ≤ 1

64δ2
∗
, and N(1− e−

2δ∗
√
d

π ) ≥ 1

64δ2
∗
. (170)

Substituting δ∗ in (169),

7

8

√
dσ2δ2

∗ ≤ inf
M

sup
P∈Pσδ∗

EZ∼λP
[
‖M(Z)− βP ‖2Σ

]
. (171)

Note that in the minimax term infM supP∈Pδ∗ , we can restrict ourselves to estimators M which

output in V = {Σ− 1
2 v|v ∈ [−δ∗σ, δ∗σ]

√
d × {0}d−

√
d} almost surely – otherwise the error can be

reduced by projected to this region. Thus ess-sup‖M(Z)− βP ‖2Σ ≤ 4
√
dδ2
∗σ

2 for any estimator M
and any distribution P . Thus, combining the above observations, we have

inf
M

sup
P∈Pδ∗

EZ∼λP ‖M(Z)− µP ‖2Σ ≤ inf
M

sup
P∈Pδ∗

4

5
Q

(
‖M(Z)− µP ‖2Σ,

4

5

)
+

4
√
dδ2
∗σ

2

5
. (172)

Using (171), we get

7

8

√
dδ2
∗σ

2 ≤ 4

5
inf
M

sup
P∈Pσδ∗

Q

(
‖M(Z)− µP ‖2Σ,

4

5

)
+

4
√
dδ2
∗σ

2

5
(173)

=
4

5
Lreg(λ,Pσδ∗) +

4
√
dδ2
∗σ

2

5
(174)

=⇒ 3

40

√
dδ2
∗σ

2 ≤ Lreg(λ,Pσδ∗) ≤ Lreg(λ,D(Σ, σ2)). (175)
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D.3 Minimax Optimality

For proving Theorem 5, we shall use the weighing wi = I{λi≤1−e−
2δ∗
√
d

π }

N(1−e−
2δ∗
√
d

π )

in our upper bound.

From (137), ∀t ∈ [0, 1] such that t2 + d
N(t) ≤ c for some universal constant c, we have

‖β̂S(Z, w(t))− µ|2Σ . σ2

(
t2 +

d

N(t)

)
. (176)

Thus, if mint∈[0,1]

(
t2 + d

N(t)

)
≤ c and let the minimum value be attained at t∗, then we have

‖β̂S(Z, w(t∗))− µ‖2Σ . σ2

(
t∗2 +

d

N(t∗)

)
(177)

≤ σ2
(

1− e−
2δ∗
√
d

π

)2

+ σ2 d

N
(

1− e− 2δ∗
√
d

π

) (178)

≤ σ2 4dδ2
∗

π2
+ 64σ2dδ2

∗ (179)

' σ2dδ2
∗, (180)

where we used (170) in (179). Combining with (175), when mint∈[0,1]

(
t2 + d

N(t)

)
≤ c, we have

√
dσ2δ2

∗ . Lreg(λ,D(Σ, σ2)) . σ2 min
t∈[0,1]

(
t2 +

d

N(t)

)
≤ dσ2δ2

∗. (181)

Thus, when mint∈[0,1]

(
t2 + d

N(t)

)
≤ c,

σ2

√
d

min
t∈[0,1]

(
t2 +

d

N(t)

)
. Lreg(λ,D(Σ, σ2)) . σ2 min

t∈[0,1]

(
t2 +

d

N(t)

)
. (182)

E Weighted Generalization Bound

We refer the readers to [43] for an introduction to VC dimension, covering numbers, and packing
numbers.

Define the weighted empirical Rademacher complexity to be Rw(F ◦ X) =
E
[
supf∈F

∑
i wiσif(Xi)

∣∣X]. We first generalize Massart’s lemma to weighted Rademacher
complexity.

Lemma 1 (Weighted Massart’s Lemma). Assume |F| is finite and let

Bw = max
f∈F

√√√√ n∑
i=1

w2
i f(Xi), (183)

then

Rw(F ◦X) ≤ Bw
√

2 ln |F| (184)
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Proof.

esRw(F◦X) = e
sE

[
supf∈F

∑
i wiσif(Xi)

∣∣X]
(185)

≤ E
[
es supf∈F

∑
i wiσif(Xi)

∣∣X] (conditional Jensen’s inequality) (186)

≤ E

∑
f∈F

es
∑
i wiσif(Xi)

∣∣X
 (187)

=
∑
f∈F

n∏
i=1

E
[
eswiσif(Xi)

∣∣X] (188)

≤
∑
f∈F

n∏
i=1

es
2w2

i f(Xi)
2/2 (by Hoeffding’s lemma) (189)

≤ |F|es
2B2

w/2. (190)

Thus,

Rw(F ◦X) ≤ ln |F|
s

+
sB2

w

2
∀s > 0. (191)

Setting s =

√
2 ln |F|
Bw

, we get the claimed upper bound.

Lemma 2 (Weighted Rademacher Complexity Bound). Rw(F◦X) ≤ 31‖w‖2
√
VC(F) ∀X , where

VC(F) is the Vapnik–Chervonenkis dimension of F .

Proof. Much of this proof follows the analysis of Liao [44], Rebeschini [45], adapted to the weighted
version of our problem.

In the context of this proof, for the realizedX and for f ∈ F , define

‖f‖w =

√∑n
i=1 w

2
i f(Xi)2

‖w‖2
. (192)

Let maxf∈F ‖f‖w ≤ c. For family of functions that we consider, c = 1.

Let Fj ⊆ F be the minimal εj = c
2j cover of F with respect to ‖ · ‖w, i.e., Fj is the set of least

cardinality such that for any f ∈ F , ∃f ′ ∈ Fj such that ‖f −f ′‖w ≤ εj . Let |Fj | = C(F , εj , ‖ ·‖w).

For any f ∈ F , let fj(f) ∈ Fj be such that ‖f − fj(f)‖w ≤ εj . Denoting E[·|X] as Eσ[·], we have
for any m ≥ 1,

Rw(F ◦X) = Eσ

sup
f∈F

∑
i

wiσi(f(Xi)− fm(f)(Xi) +

m∑
j=1

(fj(f)(Xi)− fj−1(f)(Xi))


(193)

≤ Eσ

[
sup
f∈F

∑
i

wiσi(f(Xi)− fm(f)(Xi))

]
+ Eσ

sup
f∈F

∑
i

wiσi

m∑
j=1

fj(f)(Xi)− fj−1(f)(Xi)

.
(194)

Notice that

Eσ

[
sup
f∈F

∑
i

wiσi(f(Xi)− fm(f)(Xi))

]
≤ sup
f∈F

∑
i

wi|f(Xi)− fm(f)(Xi)| (195)

≤ sup
f∈F

√
n‖w‖2‖f − fm(f)‖w (196)

≤
√
n‖w‖2εm. (197)
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Now, for the second term, by Lemma 1, we have

sup
f∈F

∑
i

wiσi

m∑
j=1

fj(f)(Xi)− fj−1(f)(Xi) ≤
m∑
j=1

sup
f∈F

∑
i

wiσi (fj(f)(Xi)− fj−1(f)(Xi)) .

(198)

Thus, using Lemma 1,

Eσ

sup
f∈F

∑
i

wiσi

m∑
j=1

fj(f)(Xi)− fj−1(f)(Xi)

 ≤ (199)

m∑
j=1

‖w‖2 sup
f∈F
‖fj(f)− fj−1(f)‖w

√
2 ln |{fj(f)− fj−1(f)|f ∈ F}|. (200)

Note that |{fj(f)− fj−1(f)|f ∈ F}| ≤ |Fj ||Fj−1| ≤ 2 ln |Fj |. Further, by triangle inequality,

‖fj(f)− fj−1(f)‖w ≤ ‖fj(f)− f‖w + ‖f − fj−1(f)‖w (201)
≤ εj + εj−1 (202)
= 3εj (203)
= 6(εj − εj+1). (204)

Thus,

Eσ

sup
f∈F

∑
i

wiσi

m∑
j=1

fj(f)(Xi)− fj−1(f)(Xi)

 ≤ 12‖w‖2
m∑
j=1

(εj − εj+1)
√

ln |Fj |. (205)

Combining the above bounds,

Rw(F ◦X) ≤ ‖w‖2

2
√
nεm+1 + 12

m∑
j=1

(εj − εj+1)
√

lnC(F , εj , ‖ · ‖w)

 (206)

≤ ‖w‖2

{
2
√
n

c

2m+1
+ 12

∫ c/2

c/2m+1

√
lnC(F , x, ‖ · ‖w)dx

}
. (207)

For any ε ∈ (0, c2 ], ∃m ∈ Z≥1 such that c
2m+1 ≤ ε ≤ c

2m . Thus,

Rw(F ◦X) ≤ ‖w‖2

{
2
√
nε+ 12

∫ c/2

ε/2

√
lnC(F , x, ‖ · ‖w)dx

}
. (208)

Taking ε→ 0, obtain

Rw(F ◦X) ≤ 12‖w‖2
∫ c/2

0

√
lnC(F , x, ‖ · ‖w)dx. (209)

Setting c = 1 and using Lemma 3 obtain

Rw(F ◦X) ≤ 12
√

VC(F)‖w‖2
∫ c/2

0

√
10

x2
ln

2e

x2
dx (210)

≤ 12
√
VC(F)‖w‖2

∫ c/2

0

√
ln

20

x4
dx using lnx ≤ x/e∀x ≥ e (211)

≤ 31
√
VC(F)‖w‖2. (212)

Lemma 3. C(F , x, ‖ · ‖w) ≤
[

10
x2 ln 2e

x2

]VC(F)

The readers can refer to the proof of Lemma 3 presented in [43, 45] which generalizes to our modified
distance ‖ · ‖w.
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Proposition 4. Let F be a family of 0 − 1 valued functions and let X1, . . . , Xn
iid∼ P . For a fixed

vector w ∈ Rd, with probability at least 1− δ,

sup
f∈F

{∑
i

wi(f(Xi)− E[f(X)])

}
≤ 62‖w‖2

√
VC(F) + ‖w‖2

√
log 1

δ

2
, (213)

Proof. By McDiarmid’s inequality, with probability at least 1− δ,

sup
f∈F

{∑
i

wi(f(Xi)− E[f(X)])

}
≤ E

[
sup
f∈F

{∑
i

wi(f(Xi)− E[f(X)])

}]
+ ‖w‖2

√
log 1

δ

2
.

(214)

Let X ′1, . . . , X
′
n

iid∼ P then

E

[
sup
f∈F

{∑
i

wi(f(Xi)− E[f(X)])

}]
= E

[
sup
f∈F

{
E

[∑
i

wi(f(Xi)− f(X ′i))

∣∣∣∣X
]}]

(215)

≤ E

[
sup
f∈F

{∑
i

wi(f(Xi)− f(X ′i))

}]
(216)

by Jensen’s inequality. Let σ1, . . . , σn be i.i.d. Rademacher random variables then

E

[
sup
f∈F

{∑
i

wi(f(Xi)− f(X ′i))

}]
= E

[
sup
f∈F

{∑
i

wiσi(f(Xi)− f(X ′i))

}]
(217)

≤ E

[
sup
f∈F

∑
i

wiσif(Xi) + sup
f∈F

∑
i

wi(−σi)f(X ′i))

]
(218)

= 2E

[
sup
f∈F

∑
i

wiσif(Xi)

]
(219)

= 2E [Rw(F ◦X)] . (220)

The result of Lemma 2 completes the proof.

F LeCam-Assouad Interpolation Lower Bound

In this section, we provide an improved lower bound over those in Appendix C.2 and Appendix D.2,
while using similar ideas.

Fix a value of t ∈ [d] and m = d
t such that they are whole numbers. Roughly speaking, we shall

parametrize the mean of the d-dimensional Gaussian distributions in the hypotheses by vectors in
{−δ, δ}t with repeating each element m times. Choosing t = 1 leads to Le Cam’s method while
t = d leads to Assouad’s method.

For a vector v ∈ Rt, let et(v) ∈ Rd with

et(v)i = vdi/te ∀i ∈ [d], (221)

where d·e denotes the ceiling function. For convenience, we drop the subscript and denote et(v) by
e(v). Define the parameterized distribution Pδ(τ) = N (δe(τ), I) for δ > 0 to be specified later, and
let Pδ = {Pδ(τ)|τ ∈ {−1, 1}t}.
Note: The supremum in our minimax definition is over both the true distribution and the adversarial
strategy. We shall specify the adversarial strategy later for our lower bound argument.

Note that LPAC(λ,DNd ) ≥ LPAC(λ,Pδ) ∀δ and thus, we shall lower bound LPAC(λ,Pδ).

We begin by lower bounding

LE(λ,Pδ) = inf
M

sup
P∈Pδ

EZ∼λP
[
‖M(Z)− µP ‖22

]
. (222)
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For a vector τ , let τ ′j denote the vector such that τi = τ ′ji ∀i 6= j and τj = −τ ′jj . Using Assouad’s
lower bound technique [28],

inf
M

sup
P∈Pδ

EZ∼λP
[
‖M(Z)− µP ‖22

]
≥ inf

M

1

2t

∑
τ∈{−1,1}t

E
[
‖M(Z)− δe(τ)‖22

]
(223)

= inf
M

1

2t

∑
τ∈{−1,1}t

d∑
j=1

E
[
|M(Z)j − δe(τ)j |2

]
(224)

= inf
M

m∑
k=1

t∑
i=1

1

2t

∑
τ∈{−1,1}t

E
[
|M(Z)(i−1)t+k − δτi|2

]
(225)

≥
m∑
k=1

inf
M

t∑
i=1

1

2t

∑
τ∈{−1,1}t

E
[
|M(Z)(i−1)t+k − δτi|2

]
(226)

Now, note that ∀i, k∑
τ∈{−1,1}t

E
[
|M(Z)(i−1)t+k − δτi|2

]
=

∑
τ∈{−1,1}t

E
[
|M(Z)(i−1)t+k − δτi|2

]
+ E

[
|M(Z)(i−1)t+k − δτ ′ii |2

]
2

(227)
Thus, we get

LE(λ,Pδ) ≥
m∑
k=1

inf
M

t∑
i=1

1

2t

∑
τ∈{−1,1}t

E
[
|M(Z)(i−1)t+k − δτi|2

]
+ E

[
|M(Z)(i−1)t+k − δτ ′ii |2

]
2

(228)

≥
m∑
k=1

t∑
i=1

1

2t

∑
τ∈{−1,1}t

inf
M

E
[
|M(Z)(i−1)t+k − δτi|2

]
+ E

[
|M(Z)(i−1)t+k − δτ ′ii |2

]
2

(229)

≥
m∑
k=1

t∑
i=1

1

2t

∑
τ∈{−1,1}t

δ2(1− TV(PZ∼λPδ(τ), PZ∼λPδ(τ ′i))), (230)

where the last line follows by Le Cam’s method and the notation PZ∼λPδ(τ) refers to the distribution
of Z when the true distribution is Pδ(τ).

Adversarial strategy motivation: Consider a particular sample with corruption rate λ and let the
underlying true distribution be Pδ(τ). Denote the perturbed sample as Z(τ) and the outlier to be
X̃(τ). Note that Z(τ) ∼ (1− λ)PX(τ) + λPX̃(τ). For any particular clean sample X(τ) ∼ Pδ(τ),
the adversary’s goal is to ensure the sample Z(τ) contains no information about τ . One possible way
is that the adversary can try to ensure Z(τ) ∼ maxτ′ P (τ ′)

T , where the maximum is taken pointwise
over the pdf and T is a normalizing constant. Observe the identity

P (τ) +

(
max
τ ′ 6=τ

P (τ ′)− P (τ)

)
+

= max
τ ′

P (τ ′), (231)

where (·)+ := max{·, 0} is pointwise over the pdf. First, note that∫
x∈Rd

(
max
τ ′ 6=τ

Pδ(τ
′)(x)− Pδ(τ)(x)

)
+

dx = T − 1,

where Pδ(τ)(x) is understood to be the pdf of Pδ(τ) at x. Thus,
(maxτ′ 6=τ P (τ ′)−P (τ))

+

T−1 is a valid

pdf, and for λ = T−1
T , we have (1 − λ)P (τ) + λ

(maxτ′ 6=τ P (τ ′)−P (τ))
+

T−1 = maxτ′ P (τ ′)
T . Thus, for
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any λ ≥ 1− 1
T , there exists a way for the adversary to make the distribution of Z(τ) ∼ maxτ′ P (τ ′)

T ,
rendering the sample useless for identifying τ .

Now, we find an upper bound on T in terms of δ. Let 1 denote a vector of size m with all elements
equal to 1.

T =

∫
x∈Rd

max
τ∈{−1,1}t

1√
(2π)d

e−
‖x−δe(τ)‖22

2 dx (232)

=

∫
x∈Rd

1√
(2π)d

max
τ∈{−1,1}t

e−
‖x−δe(τ)‖22

2 dx (233)

=

[∫
x′∈Rm

1√
(2π)m

max
τ∈{−1,1}

e−
‖x′−δτ1‖22

2 dx′

]t
. (234)

Now note that∫
x′∈Rm

1√
(2π)m

max
τ∈{−1,1}

e−
‖x′−δτ1‖22

2 dx′ = 1 + TV(N (−δ1, I),N (δ1, I)), (235)

by total variation definition. Using Pinskser’s inequality and KL divergence between multivariate
Gaussians, we obtain

TV(N (−δ1, I),N (δ1, I)) ≤
√

KL(N (−δ1, I),N (δ1, I))

2
(236)

= δ
√
m (237)

Combining (234), (235) and (237), and using m = d
t

T ≤ (1 + δ
√
m)t (238)

≤ eδ
√
td. (239)

Thus, if λ ≥ 1 − e−δ
√
td then the adversary can ensure that Z(τ) ∼ maxτ′ P (τ ′)

T and contains no
information about τ .

Adversarial strategy: If for sample i, λi ≥ 1 − e−δ
√
td, then independently sample X̃(τ) ∼

β
(

maxτ′ 6=τ Pδ(τ
′)−Pδ(τ)

T−1

)
+

+ (1 − β)maxτ′ Pδ(τ
′)

T , where β = (T−1)(1−λ)
λ . The constraint λi ≥

1− e−δ
√
td ensures β ∈ [0, 1] and the above is a valid distribution.

Thus, Z(τ) ∼ maxτ′ Pδ(τ
′)

T . If λi < 1− e−δ
√
td, then adversary does no corruption, or equivalently,

independently sample X̃(τ) ∼ Pδ(τ) so that Z(τ) ∼ Pδ(τ).

Thus, using Pinsker’s inequality in (230), obtain

LE(λ,Pδ) ≥
m∑
k=1

t∑
i=1

1

2t

∑
τ∈{−1,1}t

δ2

(
1−

√
1

2
KL(PZ∼λPδ(τ), PZ∼λPδ(τ ′i))

)
(240)

=

m∑
k=1

t∑
i=1

1

2t

∑
τ∈{−1,1}t

δ2

(
1−

√
1

2
KL
(
⊗nj=1PZj(τ),⊗nj=1PZi(τ ′i)

))
(241)

=

m∑
k=1

t∑
i=1

1

2t

∑
τ∈{−1,1}t

δ2

1−
√√√√1

2

∑
j:λj<1−e−δ

√
dt

KL (Pδ(τ), Pδ(τ ′i))

 (242)

= dδ2

(
1−

√
dδ2

t
n(1− e−δ

√
dt)

)
∀δ (243)

Let δ∗ be such that

n(1− e−δ∗
√
dt) ≤ t

64dδ2
∗
, and N(1− e−δ∗

√
dt) ≥ t

64dδ2
∗
. (244)
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Substituting δ∗ in (243),
7

8
dδ2
∗ ≤ inf

M
sup
P∈Pδ∗

EZ∼λP
[
‖M(Z)− µP ‖22

]
. (245)

For a random variableK, letQ(K,α) := inf{t : Pr [K ≥ t] ≤ (1−α)}, i.e.,Q(·, α) is the α-quantile
of the random variable. Note that for a random variable K, EK ≤ Q(K,x)x + (1 − x)ess-supK
∀x ∈ [0, 1], where ess-sup denotes essential supremum. Further, note that in the minimax term
infM supP∈Pδ∗ , we can restrict ourselves to estimators M which output in [−δ∗, δ∗]d almost surely –
otherwise the error can be reduced by projected to this region. Thus ess-sup‖M(Z)− µP ‖22 ≤ 4dδ2

∗
for any estimator M and any distribution P . Thus, combining the above observations, we have

inf
M

sup
P∈Pδ∗

EZ∼λP ‖M(Z)− µP ‖22 ≤ inf
M

sup
P∈Pδ∗

4

5
Q

(
‖M(Z)− µP ‖22,

4

5

)
+

4dδ2
∗

5
. (246)

Using (245), we get

7

8
dδ2
∗ ≤

4

5
inf
M

sup
P∈Pδ∗

Q

(
‖M(Z)− µP ‖22,

4

5

)
+

4dδ2
∗

5
(247)

=
4

5
LPAC(λ,Pδ∗) +

4dδ2
∗

5
(248)

=⇒ 3

40
dδ2
∗ ≤ LPAC(λ,Pδ∗) ≤ LPAC(λ,DNd ). (249)

We remark that the lower bound presented here appears to be different from that of Appendix C.2.
However, the exact difference is hard to comment on since the term δ∗ is implicitly defined in the two
bounds. We do however remark that we can reconstruct the same

√
d gap in upper and lower bound

using this method as demonstrated below.

F.1 On Minimax Optimality

In the upper bound, use the weighing wi = I{λi≤1−eδ∗
√
dt}

N(1−eδ∗
√
dt)

. From (74), ∀v ∈ [0, 1] such that

v2 + d
N(v) ≤ c for some universal constant c, we have

‖µ̂S(Z, w(v))− µ‖22 .

(
v2 +

d

N(v)

)
. (250)

Thus, if minv∈[0,1]

(
v2 + d

N(v)

)
≤ c and let the minimum value be attained at v∗, then we have

‖µ̂S(Z, w(v∗))− µ‖22 .

(
v∗2 +

d

N(v∗)

)
(251)

≤
(

1− e−δ∗
√
dt
)2

+
d

N
(

1− e−δ∗
√
dt
) (252)

≤ dtδ2
∗ +

64d2δ2
∗

t
(253)

' d1.5δ2
∗ (setting t =

√
d) (254)

where we used (244) in (253). Combining with (249), when minv∈[0,1]

(
v2 + d

N(v)

)
≤ c, we have

dδ2
∗ . LPAC(λ,DNd ) . min

v∈[0,1]

(
v2 +

d

N(v)

)
≤ d1.5δ2

∗. (255)

Thus, when mint∈[0,1]

(
t2 + d

N(t)

)
≤ c,

1√
d

min
t∈[0,1]

(
t2 +

d

N(t)

)
. LPAC(λ,DNd ) . min

t∈[0,1]

(
t2 +

d

N(t)

)
. (256)
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F.2 Benefits of this Lower Bound

The lower bound presented in Appendix C.2 does not match the standard lower bound when all the
corruptions rates are equal, i.e., the homogeneous robust estimation problem. When λ = λ1, from
(95) in Appendix C.2, we obtain

LE(λ1,Pδ) ≥
√
dδ2

(
1−

√
nδ2I

{√
dδ < log

(
1

1− λ

)})
. (257)

Setting δ∗ = max
{

1√
2n
, 1√

d
log
(

1
1−λ

)}
, obtain the lower bound

LE(λ1,Pδ∗) &
√
d

n
+
λ2

√
d
, (258)

and thus,

LPAC(λ1,DNd ) &

√
d

n
+
λ2

√
d
. (259)

Using the lower bound presented of (243), we can fix this issue. Take t = 1 and set δ∗ =

max
{

1√
2dn

, 1√
d

log
(

1
1−λ

)}
to get the lower bound

LE(λ1,Pδ∗) &
1

n
+ λ2. (260)

Now take t = d and set δ∗ = max
{

1√
2n
, 1
d log

(
1

1−λ

)}
to get the lower bound

LE(λ1,Pδ∗) &
d

n
+
λ2

d
. (261)

Combining the two cases, obtain the bound

LE(λ1,Pδ∗) &
d

n
+ λ2, (262)

and thus, we get the right lower bound of

LPAC(λ1,DNd ) &
d

n
+ λ2. (263)

Similar steps can be used for Gaussian linear regression.
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