
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXPLORING THE TRADE-OFF BETWEEN MODEL COM-
PLEXITY AND NUMERICAL PRECISION FOR EFFICIENT
EDGE AI INFERENCE

Anonymous authors
Paper under double-blind review

ABSTRACT

When considering the compression of neural networks, the adoption of low-bit
representations for both parameters and activations has demonstrated significant
efficacy. The process of learning quantized weights through Quantization Aware
Training (QAT) stands out as a powerful means to substantially diminish the mem-
ory requirements for a specific model to efficiently perform inference. However,
despite the numerous works reporting the gains achieved using QAT, a comparison
with a notably simpler technique - reducing the model’s complexity using fewer
parameters - is often absent.
In this paper, we attemp to answer a seemingly simple question: to reduce a given
model’s storage requirements, is it better to reduce the number of parameters in the
model or to reduce the numerical precision? We explore the trade-off between the
dimensionality of parameters and activations one can afford to keep in memory,
and the numerical precision used to represent them. Through our experiments in
image classification, keyword spotting and language modelling, our results sug-
gest that quantizing weights to 2 bits and keeping a high number of parameters
seems optimal, regardless of the task considered and model architecture.

1 INTRODUCTION

Compressing neural networks is often necessary when seeking on-device implementation of artificial
intelligence application (Han et al., 2016). When it comes to compression, using low-precision
parameters and activations via quantization has proven to be an effective way to reduce the memory
a model needs to perform inference, while maintaining a good performance at the task it solves
(Jacob et al., 2018). Another possibility to fit a very large model into a memory-constrained device
is to reduce the number of parameters by scaling the model down. Scaling a model can be done by
depth, width or input resolution, or some combination of these factors. This idea was at the core of
EfficientNet (Tan & Le, 2019), and it is now commonly accepted that scaling the resolution, depth
and width of a model simultaneously yields better results than acting on either of these levers alone.

We propose to combine these two approaches, and ask ourselves the question: given a memory
footprint constraint, is it preferable to scale the dimensions of a model and keep a high numerical
precision (usually, 32 bits), or is it better to keep a high number of parameters and quantize them
to a low numerical precision (8 bits or less)? In this work, we aim at answering this question
by considering several tasks and model architectures, and observing how, given a fixed memory
footprint, the model accuracy varies when the numerical precision varies jointly with the number of
parameters. Our work develops ideas from EfficientNet (Tan & Le, 2019) to explore the trade-off
between model complexity and numerical precision. For instance, halving the numerical precision
makes it possible to store twice as many parameters at a constant memory footprint.

Current compression methods commonly use 8-bit representations (Jacob et al., 2018; Yang et al.,
2020) for several reasons: it incurs no drop in accuracy, 8-bit integer arithmetic is supported on
common hardware platforms, and it consumes much less energy. Our work aims at questioning
whether 8-bit is optimal or if other options could yield better results. Our results suggest that 2-bit
quantized networks offer the best compromise between numerical precision and model complexity,
advocating for the development of dedicated hardware (Qiu et al., 2016; Conti et al., 2023).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

In section 3, we shall detail how we propose to examine the trade-off between numerical precision
and model complexity. In section 4, we will present experimental results on four datasets: image
classification on CIFAR-10 (Krizhevsky et al., 2009) and ImageNet (Russakovsky et al., 2015),
language modeling on WikiText-103 (Merity et al., 2017), and keyword spotting in the Speech
Commands dataset (Warden, 2018).

2 RELATED WORK

MODEL SCALING

Scaling a model means increasing or decreasing its number of parameters, and in a broader sense its
computational cost. It can typically be done by adding more layers (depth scaling) as it is commonly
done in ResNet (He et al., 2016), by considering wider layers (width scaling) as in WideResNet
(Zagoruyko & Komodakis, 2016), or by taking larger signal as input (resolution scaling), typically
by considering larger images (see Tan & Le (2019), section 3.2). This opens the question of an opti-
mal compromise between these three directions when scaling a convolutional network. EfficientNet
(Tan & Le, 2019) studies this trade-off by appling it to a MobileNet (Howard et al., 2017). The key
finding of this paper is that scaling a model by depth, width and resolution simultaneously provides
better results than scaling by one of these factors alone.

The same type of research was applied to transformers, either vision transformers or language mod-
els. Most works study how scaling a model up increases its performance at certain tasks (Rae et al.,
2021; Chowdhery et al., 2023), notably at few-shot learning, but studying how scaling down impacts
performance has yet to be done. Here, the available levers for scaling a model are the embedding
dimension (which is often equal to the key/value dimension), the number of attention heads and the
number of layers.

NEURAL NETWORK QUANTIZATION

Quantization is the process of constraining the model parameters (and possibly activations also)
to a discrete, finite set. Typically, quantizing a tensor (parameter or activation) to b bits means
constraining all of its values to lie in a set of 2b elements. Now, quantizing a model can be done
using three different approaches.

Quantization-Aware Training (QAT) quantizes parameters iteratively during training. It requires
storing the parameters in high numerical precision (32 bits) and quantizing them at each forward
pass, accumulating gradients in the high-precision weights. These approaches have demonstrated
an ability to quantize weights to low numerical precisions (below 4 bits) without significant drops in
accuracy (Guo et al., 2022; Choukroun et al., 2019; Esser et al., 2020; Sun et al., 2020). They tend
to be the approaches that perform the best at inference time.

Post-Training Quantization (PTQ) is the process of quantizing a trained model, without re-training
the quantized weights - or with a slight finetuning. These approaches are often done by default
in edge AI platforms, with a numerical precision commonly reduced to 16 bits (Demidovskij &
Smirnov, 2020), 8 bits (Kluska & Zieba, 2020) or even 4 bits (Banner et al., 2019). Yet, further
lowering the numerical precision via PTQ yields a degradation in accuracy, and this approach tends
to produce poorer results than QAT to obtain models with low-precision parameters.

Finally, some works perform fully quantized training, using sub-32 bits precision only, which in-
volves a floating-point format at 16-bit (Narang et al., 2018) or 8 bits (Wang et al., 2018) precision,
or using directly 8-bit integer formats (Wang et al., 2022). Such approaches have the advantage of
reducing the memory and computational cost of training a model, and open up the possibility to
perform training on chip.

HARDWARE-AWARE NEURAL ARCHITECTURE SEARCH

Neural Architecture Search (NAS) (Elsken et al., 2019; White et al., 2023) is a field of deep learning
which develops methods to automatically find good designs of neural architectures for a given task.
These designs are searched in a restricted (but possibly infinite) search space which consists of
a broad set of architectures. Different architectures from the same search space typically share the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

same elementary computational block (for instance, a convolutional layer, a residual block (He et al.,
2016), or an inverted bottleneck MBConv (Howard et al., 2017)) which is repeated or dilated with
different sizes in each architecture. The goal of NAS is then to find a good (or the best) architecture
within the defined search space. Early NAS approaches involved large search spaces explored with
reinforcement learning or evolutionary algorithms, as per Zoph & Le (2017). The high cost of NAS
was later reduced with the introduction of differentiable NAS (Liu et al., 2019) and its continuous
optimization approach.

A further direction for NAS integrates hardware constraints, resulting in the subfield of Hardware-
aware NAS (HaNAS) (Benmeziane et al., 2021; Zhang et al., 2020). The core of the EfficientNet
work (Tan & Le, 2019) can be considered a part of it, as it optimizes the dimensionality of a prede-
fined type of block in a model, where the model should satisfy hypothetical hardware constraints.

3 PROPOSED METHOD

MODEL SCALING

Given its topology, the number of paramaters of a model can be known a priori. Also, knowing the
dimension of the data it will take as an input, the size of all intermediary calculations (or activations)
can be known in advance. Since inference does not require storing all activations in memory but only
computing them sequentially, knowing the size of the largest activation gives a good estimate of the
memory needed during inference. Adding the memory required from the model’s parameters and
from the largest activation, it is thus possible to estimate the memory a model will require to perform
inference, hereafter referred to as its memory footprint.

Now, there are several ways to vary the memory footprint of a model. A breakthrough approach
when it was released, EfficientNet (Tan & Le, 2019) details three levers for computer vision:

• The depth of the model, denoted d, that is, the number of layers it comprises;

• The width of the model, denoted w, typically the number of output neurons in a linear layer
or the number of filters in a convolutional layer;

• The resolution of the input data (specifically, an image), denoted r. It is seen as a multi-
plicative factor on all dimensions of the input signal, and will impact the size of all acti-
vations. For instance, it will change the dimensions of an input image (by a factor r) or
the sampling frequency of an audio signal, but it cannot be transposed to natural language
processing.

Varying the number of parameters using any of these levers is called scaling. An important insight
from EfficientNet is that scaling is optimal when performed on these three levers at the same time,
which they call compound scaling. We propose a visualization of different scaling methods in Figure
1. They also remark that the number of parameters in the model is proportional to d, w2 and r2. In
our study, since some of the tasks we consider do not involve images, we will not consider scaling
the input resolution r.

(a) Baseline (b) Width

(c) Depth (d) Compound

Figure 1: Scheme of different scaling methods applied to a fictional convolutional network. Assum-
ing the baseline model has N parameters, each of the scaled models has 2N parameters. On the side
is an example of output convolutional filters number in each block.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

When dealing with transformers, as illustrated in Figure 2, one can perform analogous scaling by
leveraging the following settings:

• The embedding dimension, that is the dimension of the space used to represent tokens;

• The number of attention heads;

• The number of layers in the decoder.

Figure 2: Simplified scheme of a decoder-only transformer architecture exhibiting the levers on
which to play for scaling: the embedding dimension e, the number of attention heads M and the
number of decoder layers N .

ADDING NUMERICAL PRECISION TO THE SCALING SCHEME

In this work, we aim at extending the ideas of EfficientNet-like compound scaling by integrating
the numerical precision into the scope of the analysis, and to apply it to tasks other than image
processing. Considering a fixed type of neural network, a generic task where one wishes to maximize
some Performance, and denoting N (w, d, bp, ba) the network with width w, depth d, numerical
precision of parameters and activations bp and ba, our target can be formulated as the following
optimization problem:

max
d,w,bp,ba

Performance [N (w, d, bp, ba)]

s.t. Memory footprint(N) ≤ target memory
(1)

Due to the variety of possible combinations, we followed the approach from EfficientNet (Tan & Le,
2019). We first built a baseline with high-precision, 32-bit parameters and activations that respected
the task-related memory constraint. This reference model with width w0 and depth d0 was then
scaled using the compound scaling, multiplying its width and depth by α1/3 when seeking to scale
the model number of parameters by α. To simplify the problem, we set the activations’ precision to
a fixed number of bits above the precision of parameters, that is:

ba = bp + k

for some value of k ∈ {0, 1, 2}. Now, lowering the numerical precision from 32 to bp bits typically
allows to store 32/bp times more parameters; consequently, our scaling factor will be set to α ≈
32/bp. Our problem of interest now consists in jointly varying the number of parameters and the
numerical precision of weights, and can consequently be reformulated as follows:

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

max
bp

Performance(Nα)

with α := argmax
a∈R∗

+

Memory footprint(Na, bp)

s.t. Memory footprint(Na, bp) ≤ target memory

wα :=α1/3w0, dα := α1/3d0

Nα :=N (wα, dα, bp, bp + k)

(2)

In plain language, it means that for every possible parameter bitwidth bp, we shall consider the
largest possible scale α satisfying the memory constraint and evaluate the performance of the result-
ing model. The bitwidth having the best performance will then be identified as the best suited for
the considered task.

MODEL QUANTIZATION VIA LSQ

To obtain models having low-bit parameters and activations, we used quantization-aware training
(QAT) because it delivers consistently good results. Among many possibilities when it comes to
QAT methods, we used Learned Step size Quantization (LSQ, Esser et al. (2020)) because it is
simple to implement, relies on simple operations (rounding and multiplications) and does not depend
on exogenous hyperparameters one might have to finetune. The method proposes to quantize any
scalar x ∈ R to b bits depending on a scaling factor s ∈ R∗

+ by mapping it to values in a segment
S = {QN , ..., QP }. If x can be assumed to be positive (i.e. ReLU activation), these can be set
as QN = 0 and QP = 2b − 1. If x is a signed tensor then we shall define QN = −2b−1 and
QP = 2b−1 − 1. In both cases, the discrete segment S contains 2b values and can be encoded using
b bits. The quantization counterpart of x is then defined as

qs(x) =

sQN if x/s < Qn

s
⌊
x
s

⌉
if QN ≤ x/s ≤ QP

sQP if x/s > QP

= s clip (x/s,QN , QP)

(3)

The backward rule of LSQ follows the spirit of the Straight-Through estimator (STE, Bengio et al.
(2013)) with

∂

∂x
qs(x) =

{
1 if QN ≤ x/s ≤ QP

0 else
(4)

and defines the derivative of qs(x) with respect to s as

∂

∂s
qs(x) =

−x

s +
⌊
x
s

⌉
if QN ≤ x/s ≤ QP

QN if x/s < QN

QP if x/s > QP

(5)

4 EXPERIMENTAL RESULTS

4.1 CIFAR-10

CIFAR-10 (Krizhevsky et al., 2009) is a lightweight image classification task of 32 × 32 pixel
images depicting 10 different object classes. It comprises 50k training images and 10k test images.
We tried two different models on this dataset: a simple ResNet-20 as described in (He et al., 2016),
and an EfficientNet-type network (Tan & Le, 2019) which we designed with the same number of
parameters as the default ResNet-20, that is about 270k parameters, which is much less than in the
original EfficientNet paper (see appendix A.1.2 for more details). In order to make quantization

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

easier, and to avoid assigning a bit for the sign of activations, we chose to use activations taking
positive values. Hence, we set the activation functions of the EfficientNet to ReLU instead of SiLU.
Both models were trained at different compression ratios: their memory footprint was decreased by a
factor 2, 5 and then 10 in the experiments. By construction, models specified at a given compression
ratio all have a very similar memory footprint. Since the images size is 32× 32 pixels, we chose not
to apply any resolutions scaling ; hence, the compound scaling for this part applies only to width
and depth.

In all cases, we performed a 10-fold cross validation over 200 epochs. A first round of experiments
was conducted with ResNet-20 only and a compression in width (see Figure 3a). Training was done
as in the original ResNet paper (He et al., 2016), that is with a SGD optimizer, learning rate of 10−1

and batch size of 128, momentum 0.9 and weight decay 10−4, and a learning rate divided by 10 at
iterations 32k and 48k.

(a) Width compression (b) Compound compression

Figure 3: Test error rates on CIFAR-10 with a ResNet-20-based model at different compression
rates, using width compression (left) or compound compression (right), depending on the numerical
precision of weights and activations. Areas in light colors represent the standard deviation of test
errors. WXAY denotes a model with parameters encoded in X bits and activations in Y bits. ”C=r”
denotes a model compressed ”r” times. Hence, the point at abscess ”W4A6” on the ”C=5” line
reports the accuracy of a model with weights and activations quantized to 4 and 6 bits respectively,
such that its memory footprint is 5 times lower than the baseline model.

As seen in Figure 3a, when performing scaling with respect to the model width alone, this experi-
ment suggests that the optimal trade-off between model size and numerical precision is with weights
quantized at 3 bits (and 10 times as many parameters as the 32-bit baseline) for most compression
ratios. The only exception is when considering an uncompressed network (C=1) where higher nu-
merical precision (here, weights quantized to 6 bits) yields higher classification accuracy.

In the second round, we applied a compound compression to reduce the memory footprint (as per
equation 2), and implemented both ResNet-20 and our EfficientNet. This time, we used Adam as
the optimizer with a 10−3 learning rate, an effective batch size of 1024 (128 over 8 GPUs) and a
learning rate division by 2 on plateau.

Now using compound scaling, as shown in Figure 3b, the optimal trade-off seems to be with the
lowest numerical precision possible (and as many parameters as possible) for all compression ratios
considered. Note that the results for 1-bit are missing, due to the fact that the number of high-
precision latent parameters is so much larger when quantizing to 1 bit that the training time becomes
prohibitive for low compression ratios. Thus, the run time in these cases exceeded the allowed
maximum we set (that is, one week).

4.2 IMAGENET

The well-known ImageNet dataset (Russakovsky et al., 2015), also called ISLVRC-12, is a heavier
image classification task. It comprises about 1.3 million train images and 45k validation images,
with 1000 image classes. Due to the difficulty of evaluating predictions on the actual test images on

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

the ImageNet server, we followed the similar split as (Tan & Le, 2019), that is we considered the
provided validation set as the test set and randomly selected 25k images from the training data as
the validation dataset used to determine the best epoch. The reported test error is thus the error on
the original ”validation” set, which the model never saw even during our validation steps.

The default transform applied in this dataset are a random resize of the smaller dimension of the
image between 256 and 480 pixels and then a random crop of 224× 224 pixels is applied, yielding
the image used for training.

The model we applied here is an EfficientNet (Tan & Le, 2019) whose memory footprint is 10 times
as low as the original EfficientNet-B0. The basis model having memory requirements of 26 MB
to infer on a single 224 × 224 image, we considered a maximum memory budget of 2.6 MB. An
important point is also that, for the sake of simplicity and comparison with other experiments, we
chose not to scale the model by input resolution, contrary to the original EfficientNet approach.
Additionally, we changed all activation functions in the EfficientNet to ReLU instead of the original
SiLU. In fact, activations resulting from SiLU have many, low absolute-value negative entries, thus
leading to unnecessarily using half of the allowed bits to encode these values while yielding higher
error in positive values. On the contrary, ReLU outputs positive tensors with many zero-valued
entries, which can perfectly be mapped in a discrete interval {0, ..., 2b−1} which also has a zero.
Yet, similarily to the original EfficientNet approach, all reported experiments were obtained using
compound scaling on the model’s width and depth: the 32-bit, 10× compressed model baseline was
obtained by multiplying EfficientNet-B0 depth and width by a factor 101/3.

Our model was trained over 30 epochs on ImageNet using an effective batch size of 1024 (128 over
8 GPUs), using the Adam optimizer, a learning rate of 10−3. Despite the parameters having different
sizes, we loaded as many of the EfficientNet-B0 pre-trained weights as could fit in the model, with
the intuition that the skip connections present in the architecture could help perform better than
starting from scratch.

Figure 4: Top-1 test error on ImageNet (ILSVRC 2012) with an EfficientNet-B0 compressed at a ra-
tio of 10 using compound scaling, depending on the numerical precision of weights and activations.

Again, this experiment (see Figure 4) suggests that the optimal trade-off between the model com-
plexity and numerical precision of its parameters occurs with the lowest numerical precision (and
the greatest number of parameters) possible.

4.3 WIKITEXT-103

WikiText-103 (Merity et al., 2017) is a corpus of Wikipedia articles, comprising over 100 million
tokens for a vocabulary of size 270k. This dataset serves as a benchmark for language modelling
tasks, where the goal for the model is to predict the next word in the text given a sequence of words.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

We chose to apply a NLP Transformer model to this task because of the state-of-the-art results of
this type of model. More specifically, we trained a Transformer model with adaptive inputs (Baevski
& Auli, 2019). This choice is motivated by the relatively limited number of parameters in the model
(270 million) compared to more recent state-of-the-art models having several (and up to hundreds
of) billions of parameters: see for instance RETRO (Borgeaud et al., 2022) which has 7.5 billion.

For the scaling of such a model, we followed the spirit of EfficientNet and varied jointly the embed-
ding dimension, the number of attention layers and the number of final layers. In the perspective of
edge implementation, we started from a 32× compression ratio, such that the 1-bit quantized model
will have the same number of parameters as the baseline one. This means that the compressed
full-precision transformer we consider should not have more than 8.4 million parameters, which is
remarkably small for a transformer.

Figure 5: Test perplexity on WikiText-103 v1 using a Transformer with adaptive inputs with weights
quantized at different precisions.

As showed in figure 5, the conclusion is not quite as clear as when working with the previous
datasets. It seems that the more irregular distribution of weights in transformers (Maekaku et al.,
2022) than in convolutional networks resulted in a significant degradation in performance. Also, in
this experiment, the activations were not quantized, as we found that quantizing them produced a
very large degradation in performance (see appendix A.3.1 for more details). In fact, the distribution
of activations is so irregular in transformers that some approaches such as Xi et al. (2023) suggest
to change the representation basis of activations and quantize them in this different basis. We also
found that LSQ was ill-suited for weight quantization above 4 bits, and we thus applied plain linear
quantization above this point. Thus, we can draw an insight from this experiment which goes in
the same direction as the previous ones: up to a certain point, lowering the numerical precision of
weights and keeping a relatively high number of parameters seems best.

4.4 KEYWORD SPOTTING

The Google Speech Commands dataset (Warden, 2018) is made of audio recordings of 34 different
keywords pronounced by different speakers. These keywords are simple speech commands such as
”yes”, ”no”, ”left”, etc. sampled at 16 kHz. The training dataset is made of 84k audio samples, the
validation set 10k, and the test set 11k.

A common task on this dataset is to predict the label of the speech command. To this aim, we first
transformed each speech command to a 2d image by applying a mel-frequency cepstrum (MFC)
transform on which we retained the 40 most significant coefficients, yielding a 40 × 81 image rep-
resentation of the keyword. This 2d image representing the command’s frequency was then fed to a
ResNet. By default, we considered a ResNet with a low memory budget, that is 230 kB.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) ResNet (b) GRU

Figure 6: Top-1 test classification error on Google Speech Commands with a ResNet (left) and GRU
(right), with weights quantized at different precisions

Here again (see Figure 6a), a lower numerical precision combined with a high number of parameters
yields the best results, with 2 bit being the optimal trade-off. Interestingly, 1-bit quantization does
not yield the best performance in this case. To validate our approach, we trained a GRU network
with the same memory budget as above (230 kB). Here again, and for the sake of simplicity, we
performed weights-only quantization. To scale the model, we jointly increased the number of layers
and the hidden dimension. Note that we removed the 1-bit quantization as the error rate was much
higher.

Once again (see Figure 6b), chosing a model with the lowest numerical precision and highest number
of parameters delivers the best results, with 2 bits quantization appearing as the best trade-off.

5 CONCLUSION AND DISCUSSION

Without any ambiguity, our work suggests that models having a high number of parameters in low
numerical precision perform better than those with fewer parameters in higher numerical precision,
at least to some extent. For all experiments involving a convolutional neural network or a GRU, we
found that compressing the model via 2-bit quantization and compound scaling is preferable to any
other choice in the cases we studied. This was particularly the case when considering compressed
models, and even more so when the compression ratio was high. Yet, we must bring a slight nuance
to this claim, as our experiments on CIFAR-10 (see Figure 3a) suggested that 2-bit quantization was
not always optimal when using width-only scaling. It also appears that compound scaling generally
gives better results than width-only scaling, in line with the insights from EfficientNet (Tan & Le,
2019). However, at full precision, compressing the ResNet-20 model 5× or 10× delivered worse
results when using compound scaling instead of width-only scaling. This observation calls for more
advanced investigation of methods to scale models down, not only up as most existing methods
propose. Yet, our experiments have some limitations:

• Scaling methods We tried to replicate the scaling methods presented in EfficientNet. Yet,
this method was not designed to scale models down but rather up. Thus, it is possible that
other scaling methods could yield a better performance, particularly for high compression
ratios at high numerical precision (that is, few parameters). Investigating scaling methods
for model compression could help better understand how reducing the number of parame-
ters in a given model type impacts its performance.

• LSQ for 6- to 8-bit quantization As our experiments suggest, LSQ might not be a great
quantization method for 6- to 8-bit quantization. Indeed, we suspect that multiplying in-
coming gradients by the highest integer possible, as per equation 5, yields unnecessarily
large gradients. In the future, we plan to extend the experiments to other QAT methods.

• Focus on memory vs. FLOPS Contrary to EfficientNet, our work focuses exclusively on
the memory space taken by a model when performing an inference. It does not consider the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

number of operations it requires at all, which could give better insights to design dedicated
hardware.

REFERENCES

Alexei Baevski and Michael Auli. Adaptive input representations for neural language modeling. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=ByxZX20qFQ.

Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization of convolutional
networks for rapid-deployment. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32.
Curran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_
files/paper/2019/file/c0a62e133894cdce435bcb4a5df1db2d-Paper.pdf.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or Propagating Gradients
Through Stochastic Neurons for Conditional Computation. Technical Report arXiv:1308.3432,
arXiv, August 2013. URL http://arxiv.org/abs/1308.3432. arXiv:1308.3432 [cs].

Hadjer Benmeziane, Kaoutar El Maghraoui, Hamza Ouarnoughi, Smail Niar, Martin Wistuba, and
Naigang Wang. Hardware-aware neural architecture search: Survey and taxonomy. In IJCAI, pp.
4322–4329, 2021.

Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Milli-
can, George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al.
Improving language models by retrieving from trillions of tokens. In International conference on
machine learning, pp. 2206–2240. PMLR, 2022.

Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit Quantization of Neural Net-
works for Efficient Inference. In 2019 IEEE/CVF International Conference on Computer Vision
Workshop (ICCVW), pp. 3009–3018, Seoul, Korea (South), October 2019. IEEE. ISBN 978-1-
72815-023-9. doi: 10.1109/ICCVW.2019.00363. URL https://ieeexplore.ieee.org/
document/9022167/.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Er-
ica Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang,
Brennan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern,
Douglas Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling
with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023. URL http:
//jmlr.org/papers/v24/22-1144.html.

Francesco Conti, Davide Rossi, Gianna Paulin, Angelo Garofalo, Alfio Di Mauro, Georg Rutishauer,
Gian marco Ottavi, Manuel Eggimann, Hayate Okuhara, Vincent Huard, Olivier Montfort, Lionel
Jure, Nils Exibard, Pascal Gouedo, Mathieu Louvat, Emmanuel Botte, and Luca Benini. 22.1
a 12.4tops/w @ 136gops ai-iot system-on-chip with 16 risc-v, 2-to-8b precision-scalable dnn
acceleration and 30biasing. In 2023 IEEE International Solid-State Circuits Conference (ISSCC),
pp. 21–23, 2023. doi: 10.1109/ISSCC42615.2023.10067643.

Alexander Demidovskij and Eugene Smirnov. Effective Post-Training Quantization Of Neural Net-
works For Inference on Low Power Neural Accelerator. In 2020 International Joint Conference
on Neural Networks (IJCNN), pp. 1–7, Glasgow, United Kingdom, July 2020. IEEE. ISBN 978-
1-72816-926-2. doi: 10.1109/IJCNN48605.2020.9207281. URL https://ieeexplore.
ieee.org/document/9207281/.

10

https://openreview.net/forum?id=ByxZX20qFQ
https://openreview.net/forum?id=ByxZX20qFQ
https://proceedings.neurips.cc/paper_files/paper/2019/file/c0a62e133894cdce435bcb4a5df1db2d-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/c0a62e133894cdce435bcb4a5df1db2d-Paper.pdf
http://arxiv.org/abs/1308.3432
https://ieeexplore.ieee.org/document/9022167/
https://ieeexplore.ieee.org/document/9022167/
http://jmlr.org/papers/v24/22-1144.html
http://jmlr.org/papers/v24/22-1144.html
https://ieeexplore.ieee.org/document/9207281/
https://ieeexplore.ieee.org/document/9207281/

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search: A survey. Jour-
nal of Machine Learning Research, 20(55):1–21, 2019. URL http://jmlr.org/papers/
v20/18-598.html.

Steven K. Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, and
Dharmendra S. Modha. Learned step size quantization. International Conference
on Learning Representations, ICLR, 2020. URL https://www.scopus.com/
inward/record.uri?eid=2-s2.0-85150602624&partnerID=40&md5=
4aa6f76db3e55222c06f15085c53efac. Cited by: 160; Conference name: 8th In-
ternational Conference on Learning Representations, ICLR 2020; Conference date: 30 April
2020; Conference code: 186995.

Qingyu Guo, Xiaoxin Cui, Jian Zhang, Aifei Zhang, Xinjie Guo, and Yuan Wang. A 4-bit Integer-
Only Neural Network Quantization Method Based on Shift Batch Normalization. In 2022 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 707–711, Austin, TX, USA,
May 2022. IEEE. ISBN 978-1-66548-485-5. doi: 10.1109/ISCAS48785.2022.9938013. URL
https://ieeexplore.ieee.org/document/9938013/.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding. International Con-
ference on Learning Representations, ICLR, 2016. URL https://www.scopus.
com/inward/record.uri?eid=2-s2.0-85083950579&partnerID=40&md5=
ae7228676281ce0516c219a129c7d3f6. Cited by: 2331; Conference name: 4th Inter-
national Conference on Learning Representations, ICLR 2016; Conference date: 2 May 2016
through 4 May 2016; Conference code: 149803.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778, Las Vegas, NV, USA, June 2016. IEEE. ISBN 978-1-4673-8851-1. doi: 10.1109/
CVPR.2016.90. URL http://ieeexplore.ieee.org/document/7780459/.

Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias Weyand,
Marco Andreetto, and Hartwig Adam. MobileNets: Efficient Convolutional Neural Networks for
Mobile Vision Applications, April 2017. URL http://arxiv.org/abs/1704.04861.
arXiv:1704.04861 [cs].

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and Training of Neural Networks for
Efficient Integer-Arithmetic-Only Inference. In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 2704–2713, Salt Lake City, UT, June 2018. IEEE. ISBN 978-1-
5386-6420-9. doi: 10.1109/CVPR.2018.00286. URL https://ieeexplore.ieee.org/
document/8578384/.

Piotr Kluska and Maciej Zieba. Post-training quantization methods for deep learning models. In
Ngoc Thanh Nguyen, Kietikul Jearanaitanakij, Ali Selamat, Bogdan Trawiński, and Suphamit
Chittayasothorn (eds.), Intelligent Information and Database Systems, pp. 467–479, Cham, 2020.
Springer International Publishing. ISBN 978-3-030-41964-6.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019. URL https://openreview.
net/forum?id=S1eYHoC5FX.

Takashi Maekaku, Yuya Fujita, Yifan Peng, and Shinji Watanabe. Attention weight smoothing using
prior distributions for transformer-based end-to-end asr. In Interspeech, pp. 1071–1075, 2022.

11

http://jmlr.org/papers/v20/18-598.html
http://jmlr.org/papers/v20/18-598.html
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150602624&partnerID=40&md5=4aa6f76db3e55222c06f15085c53efac
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150602624&partnerID=40&md5=4aa6f76db3e55222c06f15085c53efac
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85150602624&partnerID=40&md5=4aa6f76db3e55222c06f15085c53efac
https://ieeexplore.ieee.org/document/9938013/
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083950579&partnerID=40&md5=ae7228676281ce0516c219a129c7d3f6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083950579&partnerID=40&md5=ae7228676281ce0516c219a129c7d3f6
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083950579&partnerID=40&md5=ae7228676281ce0516c219a129c7d3f6
http://ieeexplore.ieee.org/document/7780459/
http://arxiv.org/abs/1704.04861
https://ieeexplore.ieee.org/document/8578384/
https://ieeexplore.ieee.org/document/8578384/
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mix-
ture models. International Conference on Learning Representations, ICLR, 2017. URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088226476&
partnerID=40&md5=5c632f093c6eb59e3e44f47dd3afd5e2. Cited by: 406;
Conference name: 5th International Conference on Learning Representations, ICLR 2017;
Conference date: 24 April 2017 through 26 April 2017; Conference code: 149804.

Sharan Narang, Gregory Diamos, Erich Elsen, Paulius Micikevicius, Jonah Alben, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, and Hao Wu. Mixed
precision training. International Conference on Learning Representations, ICLR, 2018. URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083952274&
partnerID=40&md5=466b4102c7e5112057d20cfaa571d26b. Cited by: 297;
Conference name: 6th International Conference on Learning Representations, ICLR 2018;
Conference date: 30 April 2018 through 3 May 2018; Conference code: 149806.

Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou, Jincheng Yu, Tianqi Tang,
Ningyi Xu, Sen Song, et al. Going deeper with embedded fpga platform for convolutional
neural network. In Proceedings of the 2016 ACM/SIGDA international symposium on field-
programmable gate arrays, pp. 26–35, 2016.

Jack W Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, Francis Song, John
Aslanides, Sarah Henderson, Roman Ring, Susannah Young, et al. Scaling language models:
Methods, analysis & insights from training gopher. arXiv preprint arXiv:2112.11446, 2021.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhi-
heng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and
Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International Jour-
nal of Computer Vision, 115(3):211–252, December 2015. ISSN 0920-5691, 1573-1405.
doi: 10.1007/s11263-015-0816-y. URL http://link.springer.com/10.1007/
s11263-015-0816-y.

Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xiaodong Cui, Swa-
gath Venkataramani, Kaoutar El Maghraoui, Vijayalakshmi (Viji) Srinivasan, and Kailash
Gopalakrishnan. Ultra-low precision 4-bit training of deep neural networks. In
H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neu-
ral Information Processing Systems, volume 33, pp. 1796–1807. Curran Associates, Inc.,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/13b919438259814cd5be8cb45877d577-Paper.pdf.

Mingxing Tan and Quoc V. Le. Efficientnet: Rethinking model scaling for convolu-
tional neural networks. volume 2019-June, pp. 10691 – 10700. International Ma-
chine Learning Society (IMLS), 2019. ISBN 978-151088698-8. URL https:
//www.scopus.com/inward/record.uri?eid=2-s2.0-85077515832&
partnerID=40&md5=b8640eb4e9a606d0067b4a420ca73df1. Cited by: 2899;
Conference name: 36th International Conference on Machine Learning, ICML 2019; Conference
date: 9 June 2019 through 15 June 2019; Conference code: 156104.

Maolin Wang, Seyedramin Rasoulinezhad, Philip H. W. Leong, and Hayden K.-H. So. NITI: Train-
ing Integer Neural Networks Using Integer-Only Arithmetic. IEEE Transactions on Parallel
and Distributed Systems, 33(11):3249–3261, November 2022. ISSN 1045-9219, 1558-2183,
2161-9883. doi: 10.1109/TPDS.2022.3149787. URL https://ieeexplore.ieee.org/
document/9709160/.

Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and Kailash Gopalakrish-
nan. Training deep neural networks with 8-bit floating point numbers. In S. Ben-
gio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (eds.),
Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.,
2018. URL https://proceedings.neurips.cc/paper_files/paper/2018/
file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf.

Pete Warden. Speech Commands: A Dataset for Limited-Vocabulary Speech Recognition, April
2018. URL http://arxiv.org/abs/1804.03209. arXiv:1804.03209 [cs].

12

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088226476&partnerID=40&md5=5c632f093c6eb59e3e44f47dd3afd5e2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85088226476&partnerID=40&md5=5c632f093c6eb59e3e44f47dd3afd5e2
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083952274&partnerID=40&md5=466b4102c7e5112057d20cfaa571d26b
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85083952274&partnerID=40&md5=466b4102c7e5112057d20cfaa571d26b
http://link.springer.com/10.1007/s11263-015-0816-y
http://link.springer.com/10.1007/s11263-015-0816-y
https://proceedings.neurips.cc/paper_files/paper/2020/file/13b919438259814cd5be8cb45877d577-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/13b919438259814cd5be8cb45877d577-Paper.pdf
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077515832&partnerID=40&md5=b8640eb4e9a606d0067b4a420ca73df1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077515832&partnerID=40&md5=b8640eb4e9a606d0067b4a420ca73df1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85077515832&partnerID=40&md5=b8640eb4e9a606d0067b4a420ca73df1
https://ieeexplore.ieee.org/document/9709160/
https://ieeexplore.ieee.org/document/9709160/
https://proceedings.neurips.cc/paper_files/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/335d3d1cd7ef05ec77714a215134914c-Paper.pdf
http://arxiv.org/abs/1804.03209

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber Zela, De-
badeepta Dey, and Frank Hutter. Neural Architecture Search: Insights from 1000 Papers, January
2023. URL http://arxiv.org/abs/2301.08727. arXiv:2301.08727 [cs, stat].

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers.
Advances in Neural Information Processing Systems, 36:49146–49168, 2023.

Yukuan Yang, Lei Deng, Shuang Wu, Tianyi Yan, Yuan Xie, and Guoqi Li. Training high-
performance and large-scale deep neural networks with full 8-bit integers. Neural Networks,
125:70–82, May 2020. ISSN 08936080. doi: 10.1016/j.neunet.2019.12.027. URL https:
//linkinghub.elsevier.com/retrieve/pii/S0893608019304290.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. volume 2016-
September, pp. 87.1 – 87.12. British Machine Vision Conference, BMVC, 2016. doi:
10.5244/C.30.87. URL https://www.scopus.com/inward/record.uri?eid=
2-s2.0-85047020267&doi=10.5244%2fC.30.87&partnerID=40&md5=
f366062925be32a86db4708142a7ae16. Cited by: 2140; Conference name: 27th
British Machine Vision Conference, BMVC 2016; Conference date: 19 September 2016 through
22 September 2016; Conference code: 127162; All Open Access, Bronze Open Access.

Li Lyna Zhang, Yuqing Yang, Yuhang Jiang, Wenwu Zhu, and Yunxin Liu. Fast hardware-aware
neural architecture search. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, pp. 692–693, 2020.

Barret Zoph and Quoc Le. Neural architecture search with reinforcement learning. In International
Conference on Learning Representations, 2017. URL https://openreview.net/forum?
id=r1Ue8Hcxg.

13

http://arxiv.org/abs/2301.08727
https://linkinghub.elsevier.com/retrieve/pii/S0893608019304290
https://linkinghub.elsevier.com/retrieve/pii/S0893608019304290
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047020267&doi=10.5244%2fC.30.87&partnerID=40&md5=f366062925be32a86db4708142a7ae16
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047020267&doi=10.5244%2fC.30.87&partnerID=40&md5=f366062925be32a86db4708142a7ae16
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047020267&doi=10.5244%2fC.30.87&partnerID=40&md5=f366062925be32a86db4708142a7ae16
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL EXPERIMENTAL DETAILS

A.1 BASELINE MODELS

A.1.1 PERFORMANCE OF BASELINE MODELS

This subsection aims at simply presenting the memory footprint of all models used in our experi-
mental results in section 4.

Table 1: Performances of all baseline models used in our experiments. All models were scaled dur-
ing our experiments, by factors varying from 2 to 30, which explains the difference in performance
between the baseline model and our reported results.

Dataset Model # param. Metric Score
CIFAR-
10

ResNet-20 270k Top-1 test
error (%)

8.5

CIFAR-
10

EfficientNet
(light)

270k Top-1 test
error (%)

6.5

ImageNet EfficientNet-
B0

5.3M Top-1 test
error (%)

22.3

Google
Speech-
Com-
mands

ResNet-20 270k Top-1 test
error (%)

4.6

Google
Speech-
Com-
mands

GRU 280k Top-1 test
error (%)

5.3

WikiText-
103

Transformer
(adaptive
inputs)

247M Test per-
plexity

18.7

A.1.2 DIMENSIONALITY OF BASELINE MODELS

Table 2: Number of parameters and dimensionality of the largest activation during inference for
different models and scaling ratios.

Model Scale ratio Input
size

param. /
Act. dim.

ResNet-20 1 (baseline) 32 270k / 16k
EfficientNet
(light)

1 (baseline) 32 254k / 49k

EfficientNet-
B0

1 (baseline) 224 5.3M / 1.2M

ResNet-18 1 (baseline) 224 11.7M / 0.8M

A.2 IMAGENET IMPLEMENTATION

Standard ImageNet data augmentations were used during our training (He et al., 2015). More pre-
cisely, during training, images were randomly resized between 240 and 480 pixels (on their smaller
dimension), and then a random crop of 224× 224 pixels was extracted to provide the actual training
image. During testing, images were also randomly resized randomly between 240 and 480 pixels,
then 5 crops (center and the four corners of the image) were extracted from the image, together
with the 5 crops from the horizontally flipped image, yielding 10 crops of the test image. Then,
predictions were averaged on the 10 crops.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A.3 ADDITIONAL RESULTS

A.3.1 TRANSFORMER WITH ADAPTIVE INPUT REPRESENTATION ON WIKITEXT-103
QUANTIZING WEIGHTS AND ACTICATIONS

In our experiments, we also tried to quantize the activations (together with the weights) of the trans-
form model with adaptive inputs. The results, as reported in figure 7, show very poor performance
when the numerical precision diminishes significantly. Also, it exhibits a rather erratic behavior
from which we can hardly draw conclusions. We suspect this difficulty when quantizing activa-
tions could come from the very irregular distribution of activations in a transformer, which is far
less smooth than in a convolutional model; thus, significant clamping of values due to quantization
range may incur large losses of information.

Figure 7: Test perplexity on WikiText-103 v1 using a Transformer with adaptive inputs with weights
and activations quantized at different precisions.

15

	Introduction
	Related Work
	Proposed Method
	Experimental Results
	CIFAR-10
	ImageNet
	WikiText-103
	Keyword Spotting

	Conclusion and Discussion
	Additional Experimental Details
	Baseline Models
	Performance of Baseline Models
	Dimensionality of Baseline Models

	ImageNet Implementation
	Additional Results
	Transformer with Adaptive Input Representation on WikiText-103 Quantizing Weights and Actications

