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Abstract

Protein Language Models (PLMs) create high-
dimensional embeddings that can be transformed
into interpretable features using Sparse Autoen-
coders (SAEs), where each feature activates on
specific protein patterns. However, scalably iden-
tifying which features are reliable enough for
protein annotation remains challenging. We ad-
dress this by developing a pipeline combining
three complementary methods: (1) expanded
database matching across 20+ annotation sources,
(2) feature-guided local structural alignment to
identify consistent activation regions, and (3)
LLM-based feature description generation. Our
annotation pipeline demonstrates three properties
of SAE features that make them a useful source
for functional annotation. First, they can represent
more granular patterns than existing annotations,
enabling the identification of sub-domains. Sec-
ond, they can detect missing annotations by find-
ing proteins that display recognizable structural
motifs but lack corresponding labels. Here, we
identify at least 491 missing CATH topology an-
notations with our pipeline. Third, they can main-
tain structural consistency across unseen proteins.
Of our 10,240 SAE features, we find 615 that
are structurally similar in unannotated metage-
nomic proteins, allowing us to match at least 8,077
metagenomic proteins to characterized proteins.
This provides a rapid annotation pipeline with
constant time search, that automatically includes
structural and functional information about the
feature that triggered the match.

1. Introduction

Functional annotation of uncharacterized proteins has his-
torically relied on sequence conservation. Hidden Markov
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Models and Position-Specific Scoring Matrices form the
foundation of major databases including CATH (Orengo
et al., 1997) (via Gene3D (Buchan et al., 2002)) and Pfam
(Bateman et al., 2004). These have been integrated into
resources like UniProt (Consortium, 2015) and InterPro
(Hunter et al., 2009), with tools like InterProScan enabling
annotation of novel sequences (Jones et al., 2014). However,
these methods struggle with divergent sequences, leading
to specialized metagenomic databases like Novel Metage-
nomic Pfams (NMPfamsDB) (Baltoumas et al., 2024) that
specifically curate sequences lacking Pfam annotations.

AlphaFold 2 (Jumper et al., 2021) catalyzed a shift to-
ward 3D structural annotation. This enabled new databases
of structural similarity, such as the Encyclopedia of Do-
mains (Lau et al., 2024). However, large-scale structural
search is computationally intensive. FoldSeek addresses
this by converting structure into sequence matching us-
ing a 3D-informed alphabet. (van Kempen et al., 2022).
Merizo-search uses embeddings trained on CATH for rapid
matching (Kandathil et al., 2025). While powerful, these
approaches have limitations: FoldSeek doesn’t provide
domain-specific functional information about the region(s)
that triggered the match, and Merizo-search is constrained
to identify hits based on supervised training on CATH.

Recent work has begun exploring sparse autoencoders
(SAEs) for extracting interpretable features from protein
language models. InterPLM (Simon & Zou, 2024) demon-
strated correspondence between individual amino acid acti-
vations and UniProtKB annotations, while InterProt (Adams
et al., 2025) associated protein-level SAE activations with
Pfam families. However, these approaches achieved limited
coverage, leaving over 75% of features unexplained when
using stringent matching criteria.

Contributions

Our work extends this foundation by: (1) incorporating the
full InterPro database across 20+ annotation sources includ-
ing hierarchical codes, (2) developing structural validation
through feature-guided local structural alignment, and (3)
integrating LLM-based pattern recognition to identify fea-
tures missed by existing databases. This approach doubles
annotation coverage while enabling missing annotation
detection and novel protein characterization.
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Figure 1. Workflow for protein-latent feature applications.

2. Using existing database annotations, local
structural alignment, and LLMs to screen
SAE features for cohesiveness

2.1. Combining protein annotation databases identifies
structurally and functionally cohesive features

We expand annotation coverage by incorporating the full
InterPro database (Hunter et al., 2009), which includes an-
notations from UniProtKB, Pfam, CATH / Gene3D (Orengo
et al., 1997), (Buchan et al., 2002), and 19 other sources.
We also include hierarchical codes such as Pfam clans and
CATH topologies to capture broader biological concepts.

For each SAE feature, we sample up to 1100 proteins across
10 activation levels and test whether any single annotation
code can predict high versus low feature activation, calculat-
ing F1 scores between predicted and actual activations. The
highest-performing features are distributed relatively evenly
across UniProtKB annotations, Pfam clans, Gene3D/CATH
codes, and individual Pfam families, demonstrating that
SAE features capture biological concepts at multiple levels
of granularity. Features with moderate F1s (0.5-0.75) are
more associated with UniProtKB features.

2.2. Feature-guided local structural alignment identifies
structurally cohesive features that correlate with
the presence of existing annotations

We introduce a procedure for Feature-Guided Local Struc-
tural Alignment to find “structurally cohesive” features,
meaning the regions that activate highly have a consistent

3D structure. We sample 20 AlphaFold-predicted structures
from the top activating proteins of a given SAE feature (ac-
tivation above 0.7), after de-duplicating gene orthologs. We
crop structures to 100 amino acids surrounding the peak ac-
tivating amino acid, then run pairwise structural alignment,
using backbone RM S D19, a modification of Root Mean
Square Deviation that allows for more lenience for longer
alignments (Carugo & Pongor, 2001).

We find that better structural alignment is correlated (pear-
son r=0.53) with higher annotation code F1 scores. Specif-
ically, 92% of features with RMSD1p9 < 5 have a
code-based F1 > .8, while only 51% of features with an
RMSD 1y > 5 have a code-based F1 > .8. Thus, for
pairwise alignments with low RM S D19, we would expect
they share a structural feature, even if one is missing an
annotation, or is an uncharacterized novel protein.

2.3. Large Language Models identify additional
cohesive features missed by other methods

While many features fire on a single existing database anno-
tation code, others appear to fire on traits across annotations.
Thus, asking LLLMs to reason over protein data is a natural
step in improving feature descriptions that can be used for
protein annotation. We adapt the automated pipeline from
InterPLM (Simon & Zou, 2024), using Claude-3.5 Sonnet
(New) to generate descriptions using protein metadata from
our annotation sources for 40 proteins at varying levels of
maximum feature activation.

As validation, we test if these descriptions can predict fea-
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Figure 2. Additional databases expand our ability to find cohesive features, and SAEs learn features at different levels of specificity.

ture activations on held-out proteins. We evaluate the ability
of both the generated descriptions and the expanded annota-
tion metadata to classify proteins as high or low activating
for each feature, calculating F1 scores on a separate test set.
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Figure 3. LLM-based F1 score vs. code-based F1 score on the
same train/val split.

We find that the LLM’s ability to describe a feature is highly
correlated with the F1 score of the single best code, as
shown in Figure 3.

Still, we find interesting cases where the LLM quantitatively
improves performance. For example, for £/3174, the LLM
identifies “this feature activates on transmembrane domains
in multi-pass membrane proteins, particularly those involved
in protein complex assembly and ion transport across mem-
branes.” This description, which focuses on transmembrane
domains across a broader range of proteins than would be
covered by a single Pfam family or clan, allows the descrip-

tion to outperform existing annotation codes.

We also analyze the 21 cases from our sampled features
where the code-based F1 is at least .2 or more higher than
the LLM-generated description’s F1, that is, the LLM un-
derperformed. In 20 of these cases, we find that precision
was higher than recall. In fact, in 17 of the 21, precision
was higher than .8 while for only 1 of the 21 cases was
recall higher than .8. This indicates that the LLM is some-
times writing overly specific descriptions, so it is missing a
broader view of what causes the feature to activate. For ex-
ample, for f/657, the description is “This feature activates on
catalytic domains of intradiol ring-cleavage dioxygenases
and carboxypeptidases,” which achieves an F1 of 0.5, but a
precision of .875. The description is missing other elements
besides these that also cause the feature to fire. In fact, this
feature is highly associated with the Pfam clan CL0287,
7 stranded beta sandwiches. This does potentially point a
way forward for the LLMs. Their focus on specificity is
likely driven by having too few examples in order to fit
into the context window. This suggests additional activating
examples might help them identify the broadest possible
applicable description.

3. Using PLM SAE features to enhance protein
annotation

Having identified cohesive features using our approaches,

we now show three benefits of utilizing these features.

3.1. SAE features capture granular subdomains
interpretable through targeted literature search

While our annotation matching successfully identifies co-
herent features, it also reveals an important limitation: we
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can identify the types of proteins where features activate,
but not always what specific elements within those proteins
cause the activation. This limitation, however, highlights
a key advantage of SAE features—their ability to capture
functional granularity beyond existing annotation schemes.

Figure 4 illustrates both this limitation and opportunity.
Eight different features (f/253, /515, /1505, £/1579, /1712,
/1731, £/2768, and /3288) all achieve high F1 scores for
the same Pfam clan annotation (APC clan, CL0062), yet
each activates on distinct protein regions—different trans-
membrane alpha helices, cytoplasmic domains (f/253), and
extracellular domains (f/515). While our annotation-based
screening identifies these as coherent features, it cannot ex-
plain their specific functional roles, demonstrating both the
power of SAE features to decompose protein families and
the need for methods to interpret this finer granularity.
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Figure 4. Eight SAE features correspond to the same Pfam clan
(APC, CL0062) but activate on distinct structural components
within GAP1_YEAST, including different transmembrane helices,
cytoplasmic domains, and extracellular loops. Left: Each row
shows feature activation along the length of the protein sequence
with highly activated (> 0.8) residues highlighted in color, com-
pared to the single Pfam domain (gray). Right: Feature activations
on AlphaFold predicted structure (AFDB: P19145) showing each
feature highlighting distinct structural components.

To bridge this gap, we provided OpenAl’s o4-mini-high
with the 10 highest-activating proteins for selected features,
their gene descriptions from UniProtKB, and precise amino
acid positions of peak activation, asking it to search for
literature describing these specific regions. In a pilot eval-
uation of 6 features, this approach identified papers that
discussed the exact regions highlighted by our features for 4
cases. For example, for /515, the model retrieved literature
on extracellular gating loops in APC proteins (Raba et al.,
2014)—functional detail entirely absent from the broader
clan annotation. An example prompt for this pilot, and more
detail on the retrieved papers is in Appendix B.

3.2. SAE features can identify missingness in existing
databases

Our local alignment procedure can also analyze features to
find missing annotations. Specifically, we examine proteins
that all activate the same SAE feature, but only some have

the expected database annotation while others do not. When
we measure RM S D1 for alignments between annotated
and unannotated proteins, they can be as good as RMSD
scores for alignments between two proteins with the annota-
tion, as shown in Figure 5. This suggests the unannotated
proteins may just be missing labels.

To analyze this at scale, we reviewed the 20 proteins per
feature randomly sampled in Section 2.2, looking at features
with a code-based F1 of .8 or above for a CATH code or
CATH topology. Across 221 features, we identify 1,055
of those top activating proteins in Swiss-Prot that are not
tagged with a CATH code by Gene3D, but have strong local
structural similarity to one of the proteins that does have a
Gene3D annotation.

As external validation, we then compare the CATH tags
from Gene3D, a sequence-based model, to TED (Lau et al.,
2024), which uses a deep learning structure-based approach.
We find that 491 of these proteins indeed do have a hit for
that same CATH topology in TED (see Appendix Table 2).

While we can verify these seemingly missing annotations for
CATH by using TED, there are SAE features that align with
annotations from other databases like Pfam or UniProtKB.
Thus, this combination of screening for existing annotations
and local structural alignment can help identify potential
missing annotations beyond just CATH.

Pairwise with code

0 Pairwise with and without code

30 A

Count

20 A

101

1 2 3 4 5 6 7
RMSD_100

Figure 5. Histogram for f/401 of RM S D1oo for pairwise align-
ments. Aligning structures with the top existing annotation to
structures without the annotation reveals features like /401 with
strong structural similarity despite different annotations. We show
an example of an alignment for two proteins that activate on /401
where one protein (QOP9AS) has and one protein (QSWSK6) lacks
the CATH 3.40.50 annotation, the topology code for the Rossmann
fold. For clarity, only the area around the feature is shown for
Q5WSKE6.
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3.3. Features can rapidly detect structural matches in
unannotated metagenomic proteins

A key advantage of feature-based annotation is that granular
features can detect conserved domains even when full pro-
teins show no sequence similarity to known families. This
enables annotation of highly divergent metagenomic se-
quences that lack Pfam matches, which we test using NMP-
famsDB (Baltoumas et al., 2024), a collection of metage-
nomic proteins that do not have any Pfam matches.

We find that many of our features activate highly in proteins
the SAE was not trained on. Specifically, for over 50%
of our features, there is at least one NMPfamsDB protein
that activates that feature with a value > 0.7. Then,
by applying our local structural alignment procedure,
we can identify 615 features with strong median local
structural alignments (RMSDyopg < 5 for pairwise
alignments between one Swiss-Prot protein and one
metagenomic protein) and 181 features with median
RMSD gy < 4. This is strong evidence these features
activate on the same structural element in both Swiss-
Prot proteins and metagenomic proteins, as seen in Figure 6.
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Figure 6. Median RM S Do per feature for comparisons within
Swiss-Prot or between Swiss-Prot and metagenomic proteins (top),
with local structural alignment example for £/931 between Swiss-
Prot protein QIM9H7 and metagenomic protein FO014369 (bot-
tom).

Using just these 615 features allows us to find matches be-
tween 12,526 metagenomic proteins in NMPfamsDB and
Swiss-Prot proteins with an RMSD199 < 5 (14.9% of
the 83,878 metagenomic proteins in NMPfamsDB we ana-
lyzed). At an RM S D1 threshold of 4 or better, we can
find matches for 8,077 metagenomic proteins (9.6%).

4. Conclusion

In this work, we demonstrate the potential benefits of using
latent SAE features from protein language models for pro-
tein annotation. We find features that consistently activate
on local elements of proteins. We also find features that iden-
tify missing database annotations at scale, and features that
allow us to characterize unannotated metagenomic proteins.
This annotation workflow automatically returns not only a
structurally similar characterized protein, but also structural
or functional information about exactly the aligned region.

We note several limitations of the work: first, while LLMs
can help, identifying where within proteins these features
fire remains primarily a manual task due to hallucinations
and the need for verification. Second, our structural ap-
proach requires conservation within 100 amino acids of
peak activation, which likely misses features that span dis-
tant regions or involve flexible motifs. We discuss one
example flexible motif in Appendix A. Third, for now we
rely on a single layer (Layer 18) of ESM-2 650M and focus
our annotation validation on Swiss-Prot proteins, which in-
creases the density of annotations within structural matches
but limits the space of proteins we can match.

Future work should expand this analysis across multiple
layers within PLMs and evaluate additional protein embed-
ding models. Additionally, other methods for clustering
PLM features should be considered, with this work showing
valuable tasks they may be able to perform. We also expect
advances in LLM capabilities and more advanced protein
representations may improve further on these tasks, and
hope this framework can provide a useful proof-of-concept
as this field develops further.

Code availability

Code is available at https://github.com/
ElanaPearl/interp—agents
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Impact statement

This paper presents work whose goal is to advance the field
of protein annotation. There are many potential societal
consequences of our work, such as helping biologists better
understand and annotate novel features, or discover new
functional domains in proteins. We do not see significant or
specific ethical risks with this work, though we suppose it is
possible that better understanding (and eventually designing)
proteins could be used maliciously in rare circumstances.
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A. Flexible regions

We note that many features still have a high code-based F1 even though they also have high RM S D1¢9. Some of these are
regions that are structurally flexible, for example f/73 below. We show three proteins, each with a homeodomain-like region
highlighted in orange and blue, and the highly activated region for /73 in pink.

~

B !

Figure 1. f/73 captures a variety of structures that all link two structurally consistent domains. Here, three proteins have homeolike-
domains are in orange and blue, while the highly active region for f/73 is in pink
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B. Understanding granular features

For six features, we used o4-mini-high to attempt to find citations that discussed the specific regions of interest. An example
prompt is given below, followed by the best citation (where applicable) found by the model. Each citation returned by the
model was reviewed manually, as the model could sometimes hallucinate specific quotes or mutations that were not found in
the underlying papers. Where no citation was retrieved, the feature was analyzed manually to determine its specific function.
Sometimes very promising literature about the specific region exists, but was not returned by o4-mini-high, perhaps because
of only asking about up 10 gene-species combinations per feature. For example, manually searching for additional papers
revealed that f/253 corresponds to the cytoplasmic loop between transmembrane domain 2 and 3 in amino acid permeases
(Cosgriff & Pittard, 1997).

Prompt for {/515

What do we know about the following proteins in these amino acid regions mentioned for each? Cite papers that
look specifically at or very near these regions

ACTP_PECCP Cation/acetate symporter ActP (Acetate permease) (Acetate transporter ActP) in Pectobacterium
carotovorum subsp. carotovorum (strain PC1) at 332

MNTH_AGRFC Divalent metal cation transporter MntH in Agrobacterium fabrum (strain C58 / ATCC 33970)
(Agrobacterium tumefaciens (strain C58)) at 309

KUP_CYTH3 Probable potassium transport system protein Kup in Cytophaga hutchinsonii (strain ATCC 33406 /
DSM 1761 / CIP 103989 / NBRC 15051 / NCIMB 9469 / D465) at 271

KUP_STRA1 Probable potassium transport system protein Kup in Streptococcus agalactiae serotype Ia (strain ATCC
27591/ A909 / CDC SS700) at 277

PUTP_STAAN Sodium/proline symporter (Proline permease) in Staphylococcus aureus (strain N315) at 310

In total (across all proteins) provide me only with 2-4 of the best matching citations and what we know about the
region from each paper
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Table 1. o4-retrieved feature citations for specific sub-domains.

Feature

04 description of best citation

Paper link

73

253

401

515

711

931

No citation retrieved discussed this specific subdomain (a flexible
linker region sandwiched between HTH domains).

No citation retrieved discussed this specific subdomain (in the cyto-
plasmic loop between TM2 and TM3).

“Schmidt et al. solved crystal structures of the Aquifex aeolicus Kdo
transferase (WaaA), a GT-B family homolog, revealing that the loop
encompassing residues 98—102 (equivalent to E. coli position ~101)
shapes the acceptor—substrate binding site...”

“Site-directed mutagenesis targeting extracellular loop 4 of S. aureus
PutP (residues 310, 314, 318) showed that altering the amino acid at
position 310 completely abolishes proline uptake...”

“In vivo cysteine cross-linking between TM2 and TM8—including
sites around residue 316—demonstrated that Mur] adopts both
inward- and outward-facing states during transport. Disruption of
membrane potential selectively destabilized the inward-facing con-
formation...”

“Residue 88 (human numbering) lies in the S-strand F of the TTR
fold, forming part of a critical hydrogen-bond network that stabilizes
the tetramer...”

https://pubmed.ncbi.nlm.nih.
gov/22474366/

https://www.sciencedirect.
com/science/article/pii/
S509692126140008352utm__
source=chatgpt.com
https://pubmed.ncbi.nlm.nih.
gov/30482840/

https://pmc.ncbi.nlm.nih.
gov/articles/PMC8122960/

C. Missing CATH annotations

Below we show the first 100 missing CATH annotations identified by our workflow, of the 491 that match with TED
annotations. We considered a match if TED contained a code matching the top CATH code for a given feature that was
within the same topology. Best code represents the top CATH code for that feature, while TED label is the exact TED label
for that protein (which may either be a CATH homologous superfamily or topology).


https://pubmed.ncbi.nlm.nih.gov/22474366/
https://pubmed.ncbi.nlm.nih.gov/22474366/
https://www.sciencedirect.com/science/article/pii/S0969212614000835?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S0969212614000835?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S0969212614000835?utm_source=chatgpt.com
https://www.sciencedirect.com/science/article/pii/S0969212614000835?utm_source=chatgpt.com
https://pubmed.ncbi.nlm.nih.gov/30482840/
https://pubmed.ncbi.nlm.nih.gov/30482840/
https://pmc.ncbi.nlm.nih.gov/articles/PMC8122960/
https://pmc.ncbi.nlm.nih.gov/articles/PMC8122960/
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Table 2. Rows 1-50

Protein Feature Best code TED label
Q01473 4 1.20.120.160 1.20.120
Q7Y0V9 52 3.30.530.20 3.30.530.20
QOWVI12 52 3.30.530.20 3.30.530.20
QIFVI6 52 3.30.530.20 3.30.530.20
Q8XA02 57 3.10.105.10 3.10.105.10
P46890 57 3.10.105.10 3.10.105.10
P77172 81 3.30.70.270 3.30.70.270
Q58121 112 1.20.58.340 1.20.58
028044 112 1.20.58.340 1.20.58
Q01473 119 1.20.120.160  1.20.120
Q49430 121 1.20.1560.10 1.20.1560.10
QOVFX2 129 1.20.5.500 1.20.5
Q5BL57 129 1.20.5.500 1.20.5
Q499U4 129 1.20.5.500 1.20.5
Q25C79 129 1.20.5.500 1.20.5
Q4UMJ9 159 1.20.1250.20 1.20.1250.20
P28246 159 1.20.1250.20 1.20.1250.20
QI9JXMS5 169 1.25.40.10 1.25.40.10
051072 180 1.25.40.10 1.25.40.10
Q8K4P7 180 1.25.40.10 1.25.40.10
Q8RWNO 194 3.40.395.10 3.40.395.10
QOWKVSE 194 3.40.395.10 3.40.395.10
Q09275 194 3.40.395.10 3.40.395.10
013769 194 3.40.395.10 3.40.395.10
Q8L7S0 194 3.40.395.10 3.40.395.10
Q2PS26 194 3.40.395.10 3.40.395.10
Q54KW6 196 1.25.40.10 1.25.40
P34511 218 1.25.40.20 1.25.40.20
P18540 251 3.40.50.2300 3.40.50.2300
022232 281 3.80.10.10 3.80.10
004615 310 2.60.210.10 2.60.210.10
Q9FKD7 310 2.60.210.10 2.60.210.10
Q9XHZ8 310 2.60.210.10 2.60.210.10
Q8C008 371 2.60.40.10 2.60.40
QI9STLS 399 3.40.140.10 3.40.140.10
QI9FG71 399 3.40.140.10 3.40.140.10
082264 399 3.40.140.10 3.40.140.10
QILYC2 399 3.40.140.10 3.40.140.10
Q04368 399 3.40.140.10 3.40.140.10
P76349 401 3.40.50.2000  3.40.50.2000
D3DJ42 401 3.40.50.2000  3.40.50.20
Q5WSK6 401 3.40.50.2000  3.40.50.2000
QY9SH31 419 3.40.50.2000 3.40.50
Q3E9A4 419 3.40.50.2000  3.40.50.2000
QILFP3 434 3.40.50.2000  3.40.50.2000
P75207 442 1.20.1560.10 1.20.1560.10
Q49430 443 1.20.1560.10 1.20.1560.10
Q9ZD06 449 3.30.2350.10  3.30.2350.10
Q8FB47 449 3.30.2350.10  3.30.2350.10
Q8ZGM2 449 3.30.2350.10  3.30.2350.10
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Table 3. Rows 51-100

Protein Feature Best code TED label
Q92HG4 449 3.30.2350.10  3.30.2350.10
P77607 544 3.40.50.1390 3.40.50.1390
Q8XA02 607 3.10.105.10 3.10.105.10
P46890 607 3.10.105.10 3.10.105.10
A9NCA7 713 3.40.50.2000  3.40.50.2000
067214 713 3.40.50.2000  3.40.50.2000
P37597 751 1.20.1250.20 1.20.1250.20
004292 789 3.30.450.20 3.30.450.20
Q9Z7F1 789 3.30.450.20 3.30.450.20
A2XBL9 789 3.30.450.20 3.30.450.20
Q39123 789 3.30.450.20 3.30.450.20
BOK165 843 3.30.479.30 3.30.479.30
P32233 848 3.40.50.300 3.40.50.300
Q2NLS82 848 3.40.50.300 3.40.50.300
AOAQOH2URH2 849 3.40.50.2000 3.40.50.2000
AOAQOH2URJ6 849 3.40.50.2000  3.40.50.2000
P33694 849 3.40.50.2000  3.40.50.2000
A1JSF2 873 3.40.50.300 3.40.50.300
P50837 889 3.30.420.10 3.30.420.10
Q60953 889 3.30.420.10 3.30.420.10
P53296 891 3.30.559.10 3.30.559.30
11S097 894 3.90.550.10 3.90.550.10
D37Z7ZN9 936 2.60.40.150 2.60.40.150
QI9C8E6 936 2.60.40.150 2.60.40.150
P54739 972 3.30.200.20 3.30.200.20
P54735 972 3.30.200.20 3.30.200.20
C4JDF8 1003 1.10.1200.10  1.10.1200.10
P39404 1013 3.40.50.2300 3.40.50.2300
083933 1016 1.20.1600.10  1.20.1600
P63400 1039 1.10.1760.20 1.10.1760
067248 1039 1.10.1760.20 1.10.1760
Q58299 1053 3.60.40.10 3.60.40.10
029259 1119 1.10.443.10 1.10.443.10
P07261 1119 1.10.443.10 1.10.443.20
083202 1205 3.30.70.270 3.30.70.270
P77172 1205 3.30.70.270 3.30.70.270
Q2NKCO 1205 3.30.70.270 3.30.70.270
Q10419 1233 2.40.30.170 2.40.30.170
P55501 1239 3.30.420.10 3.30.420.10
Q44493 1320 2.150.10.10 2.150.10.10
P75800 1329 3.30.70.1230  3.30.70.270
B5X7ZP2 1347 1.20.1250.20 1.20.1250.20
DOCCT2 1347 1.20.1250.20 1.20.1250.20
EOT2NO 1347 1.20.1250.20 1.20.1250.20
034353 1360 2.120.10.80 2.120.10.30
Q10412 1380 1.20.920.10 1.20.920
Q6YRK2 1416 3.30.70.270 3.30.70.270
B0XZV4 1447 1.20.1250.20 1.20.1250.20
083837 1466 1.25.40.10 1.25.40
QS8IARS 1482 2.30.42.10 2.30.42.10
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